Mathematics for Computer Graphics Tutorial 6

Exercise 1

Three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are used to construct two other vectors \mathbf{A} and \mathbf{B} as follows: $\mathbf{A} = \mathbf{a} + \mathbf{c}$ and $\mathbf{B} = \mathbf{b} - \mathbf{a}$. Find \mathbf{A} and \mathbf{B} calculate $|\mathbf{A}|$ and $|\mathbf{B}|$ in the following cases

1.
$$\mathbf{a} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$ $\mathbf{c} = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$

2.
$$\mathbf{a} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$ $\mathbf{c} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

3.
$$\mathbf{a} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\mathbf{c} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$

Exercise 2

Three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are used to construct two other vectors \mathbf{A} and \mathbf{B} as follows: $\mathbf{A} = |\mathbf{b}| \cdot \mathbf{a} - \mathbf{c}$ and $\mathbf{B} = |\mathbf{b}| \cdot \mathbf{c} + |\mathbf{c}| \cdot \mathbf{a}$

$$\mathbf{a} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} \sqrt{7} \\ 3 \end{bmatrix} \qquad \mathbf{c} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$

Find A and B.

Exercise 3

Find the product **a.b** in the following

1.
$$\mathbf{a} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$

2.
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\mathbf{b} = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$

3.
$$\mathbf{a} = \begin{bmatrix} 2 \\ -4 \\ 1 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} -1 \\ 2 \\ -3 \end{bmatrix}$$

Exercise 4

show that $|u+v| \neq |u| + |v|$ where u and v are two 3D vectors,