

# **BA (HONS) COMPUTER VISUALISATION AND ANIMATION**

| Answer FOUR questions               | Year: 1 |
|-------------------------------------|---------|
|                                     | Time:   |
|                                     | Date:   |
|                                     |         |
| MATHEMATICS FOR COMPUTER GRAPHICS 1 |         |
| Calculators may be used.            |         |
| Graph paper will be provided.       |         |
|                                     |         |

Continued 26/02/08

- 1.1. Define and illustrate by Venn diagrams the following:
  - a. union set operation
  - b. difference set operation

[5 marks]

- 1.2. Define the following sets:
  - a.  $\{a,b,c,d\} \cup \{2,3\} =$
  - b.  $\{2,1,5\}$  U  $\{1,5,7\}$  =
  - c.  $\{a,b,c\} \cap \{2,3\} =$
  - d.  $\{2,1,5\} \cap \{1,5,7\} =$
  - e.  $\{1,2,3,4,5,6\} \{2,3,5,7,9,6\} =$
  - d.  $\{3,4\} \{4,3,1\} =$

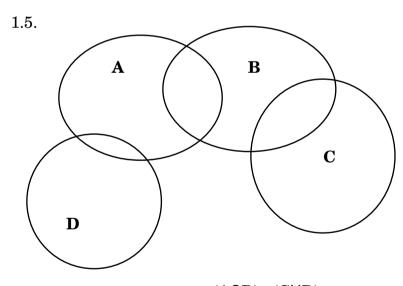
[7 marks]

1.3. Let  $S = \{x \mid x \subseteq \{1,2,3\}\}$ . Make a list of all possible elements of S.

[5 marks]

1.4. What is the cardinality of the set  $\{\{1,2,3\}, \{4,5\}, \{7,6\}\}\}$ ?

[3 marks]



(A∩B) - (CUD)

- a. Mark in black the final result of the above operations.
- b. Cross out the redundant sets, which can be removed from the expression without changing the result.

[5 marks]

Continued

2.1 Prove the following identities.

a: 
$$\sin^2 \alpha + \cos^2 \alpha = 1$$

b: 
$$1 + \tan^2(\alpha) = \frac{1}{\sin^2(\alpha)}$$

[4 marks]

2.2 Find the exact values of the trigonometric functions  $\cos{(\alpha)}$ ,  $\sin{(\alpha)}$  and  $\tan{(\alpha)}$  the following angles (do not use your calculator to find the values)

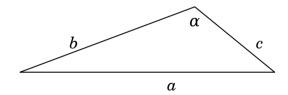
a. 
$$\alpha = 45^{\circ}$$

b. 
$$\alpha = 60^{\circ}$$

c. 
$$\alpha = -30^{\circ}$$

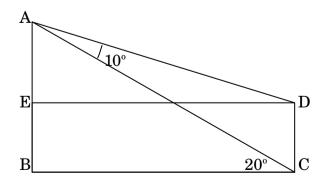
[6 marks]

2.3 Use the following diagram to prove that  $a^2=b^2+c^2-2b\cos(\alpha)$ .



[7 marks]

2.4 In the following diagram, find the distance AB, given that: CB=DE; EB=DC=25; Angle EDA=10°; angle BCA= 20°



[8 marks]

3.1 Given the vectors **a**, **b** and **c** compute the following vector equations.

$$\mathbf{a} = \begin{bmatrix} 5 \\ 4 \\ 2 \end{bmatrix}; \mathbf{b} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}; \mathbf{c} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

$$a: a-b+c$$

b: 
$$\mathbf{c} \times \mathbf{c}$$

[4 marks]

3.2 If  $\mathbf{a} = 3\mathbf{j} + 4\mathbf{k}$  and  $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} - 5\mathbf{k}$  calculate the following.

$$\mathbf{c}: \|\mathbf{a}\|\mathbf{b}$$

[6 marks]

3.3 Given  $\mathbf{r} = a_r \mathbf{i} + b_r \mathbf{j} + c_r \mathbf{k}$  and  $\mathbf{s} = a_s \mathbf{i} + b_s \mathbf{j} + c_s \mathbf{k}$  and  $\mathbf{r} \cdot \mathbf{s} = ||\mathbf{r}|| ||\mathbf{s}|| \cos \alpha$ , where  $\alpha$  is the angle between  $\mathbf{r}$  and  $\mathbf{s}$ , show that  $\mathbf{r} \cdot \mathbf{s} = a_r a_s + b_r b_s + c_r c_s$ .

[5 marks]

3.4 Using the scalar product calculate the angle between  $\mathbf{r}$  and  $\mathbf{s}$  where  $\mathbf{r} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$  and  $\mathbf{s} = \mathbf{i} - 4\mathbf{j} - 2\mathbf{k}$ . [5 marks]

3.5 Describe how the scalar product is useful in identifying back-facing polygons.

[5 marks]

4.1 Give the algebraic equivalent of the following matrices.

a: 
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\mathbf{b} \colon \begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} -2 & 0 & 2 \\ 0 & -1 & 3 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$\mathbf{c} \colon \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

[4 marks]

- 4.2 Describe the following 2D matrices and give an example of each.
  - a: a scaling matrix
  - b: a rotation matrix
  - c: a shear matrix
  - d: a translation matrix.

[8 marks]

4.3 Describe how homogeneous coordinates provide a mechanism for combining scaling and translation matrices. Illustrate your answer with an example.

[5 marks]

4.4 Derive a single matrix to undertake the following collective 2D transformations. A scaling by a factor of 2 about the point P(1,-1), followed by a translation by 5 in the x-direction and 3 in the y-direction.

[8 marks]

5.1 Compute the value of  $X_b$  for the following where the subscript represents the base of the number.

a: 
$$X_3 = 32_9$$

b: 
$$X_4 = 3_{10} \sqrt{100_5}$$

c: 
$$X_{16} = 27_{10}$$

d: 
$$X_5 = 121_5 + 101_3$$

e: 
$$X_7 = 14_{10}$$

[5 marks]

5.2 Explain briefly how to normalize a vector, and why it is useful to have unit vectors in scene calculations.

[5 marks]

5.3 Define the meaning of the following and give an example of each.

a: an irrational number

b: a vector

c: a complex number

d: 3D vertex

[5 marks]

5.4 Illustrate how  $\sqrt{-1}$  rotates a complex number through  $90^{\circ}$ .

[5 marks]

5.5 Simplify the following complex numbers.

$$a: (1+3i)+(2-4i)$$

b: 
$$(2-3i)-(1-2i)$$

$$c: (2+i)(1-i)$$

d: 
$$(2+i)^2$$

e: 
$$i^2 + i^4 + i^6 + i^8$$

[5 marks]

6.1 Describe the geometric meaning of a,b and c in the Cartesian form of the line equation ax + b = c and illustrate your answer with an example.

[5 marks]

Find the equation of the line passing through the points P(-1, -1) and Q(2, 1); write the answer in Hessian normal form

[5 marks]

6.3 Compute the shortest distance from the origin to the plane defined by equation 3x+2y-4z=10.

[5 marks]

6.4 Describe how line equations can be used to determine whether points are inside, outside, or located at an edge or vertex of a convex

[5 marks]

6.5 Find an equation of the line that passes through the point (-2, 1) and is parallel to the line x - y = 2. Write the answer in Hessian normal form

[5 marks]

20/02/2007

Originator: H. Nait-Charif (ext 66702)

Continued 26/02/08