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Abstract
This paper describes the development of an application
to simulate various artistic watercolour effects. It uses a
novel fluid flow model, the Lattice Boltzmann Method
for the incompressible Navier-Stokes Equation, to
achieve realistic effects of ink dispersion observed in
real artwork, including complex flow patterns, light
fringes and boundary darkening. Unlike most previous
watercolour simulations the presented solution is not
concerned with interactive brush stroke input but instead
creates the effect from a series of TIFF images as a post-
render process to 2D and 3D animation sequences. The
various parameters of the simulation and input/output
options are controlled through a configuration text file.

CR Categories: I.3.3 [Computer Graphics]: Picture/
Image Generation; I.6.3 [Simulation and Modeling]:
Applications; J.5.0 [Computer Applications]: Arts, fine
and performing.

Additional Keywords: Fluid simulation, ink, Lattice
Boltzmann, non-photorealistic rendering, painting,
pigments, post-render process, watercolour.

1  Introduction
As computer generated images become increasingly
photo-real, recent years perhaps as a reaction saw a
heightened awareness of the artistic possibilities of the
medium. Artists have been using traditional media to
provide information that may not be readily apparent in
photographs of real life. To achieve such expressions
with computer graphics is the motivation of a new field
of research called non-photorealistic rendering (NPR).

Watercolour like no other medium captures the sponta-
neity and unpredictable nature of life itself, when the
motion of water across the paper transports pigments
along meandering often unexpected paths, forming
streams and feathery patterns which give it its distinctive
charm.

Yet because of this watercolour is perhaps the hardest
natural medium to simulate as it depends heavily on the
motion of the pigment solution. It is not surprising there-
fore that the most convincing results have been achieved
using physically-based models simulating fluid dy-
namics.

The traditional approach to fluid simulation uses Navier-
Stokes Equation solvers which calculate a given number

of individual fluid particles to simulate an overall fluid
flow. This approach is computationally expensive as the
quality of the simulation depends on the number of
particles used with a particular challenge in the Poisson
equations calculating the pressure redistribution.

An alternative method for calculating fluid dynamics has
recently emerged, the Lattice Boltzmann Method, which
reproduces the Navier-Stokes Equation for incom-
pressible flows for small Knudsen and low Mach
numbers.

The application developed uses the Lattice Boltzmann
Method as basis for fluid physics modeling, but extends
it to simulate the physics of ink flow in absorbent paper.

Fig. 1 - Sample image created with InkPlay

Simulation of brush stroke input through a sequence of 326
TIFF images.

1.1  Related work

Early watercolour paint simulations, like Strassmann's
sumi-e images from 1986, Pham's flowers or Pudet's
system from 1994 focus only on the recreation of brush
strokes (Gooch 2001, p.31-39).

Small in 1991 and later Cockshott were the first to
simulate watercolour pigment percolation by employing
a cellular automaton which models watercolour paper as
a two-dimensional grid of cells. But complex flow pat-
terns were difficult to implement and required heavy
computations, exposing the limitations of a pure cellular
automaton approach.

Vreugdenhil in 1994 implemented a water flow model
with the basic shallow water equations. These had to be
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discretized in time and solved using for example Euler's
method (Strohotte 2002, p.126). The influence of the
paper on the flow was realized by adding conditions to
the equations.

Curtis expanded Small and Cockshott's approach and
incorporated some physically-based models but "by no
means a strict physical simulation" (Curtis et al. 1997).
But the resulting images were already much more con-
vincing than previous approaches.

At SIGGRAPH 2005 Chu and Tai (2005) presented a
real-time ink dispersion model rendering on the GPU
implementing a complete physics-based fluid simulation.
This paper is based on their work.

1.2  Overview

The next section describes the physical properties of
watercolour and ink painting and gives examples of
typical effects. Section 3 introduces the Lattice Boltz-
mann Method and section 4 discusses the implemen-
tation. Finally section 5 discusses observations and some
ideas for future research.

2.  Physical nature of watercolour and ink
Using brushes, fingers or other application methods
artists create expressive lines and shapes, exploiting the
interaction between water and watercolour to produce
flowing shades and feathery patterns.

Any simulation of watercolour on paper needs to deal
with the two basic items involved: watercolour (or ink)
and paper.

2.1  Watercolour and ink

Writing ink has been used from about 2500 BC, starting
in Egypt and China. It is typically a mixture of ground
carbon particles combined with water and a binding
agent like glue or gum. These agents provide a stable
liquid suspension of pigment particles and act as a binder
to fix the pigments during their application on paper to
prevent them from being removed by mechanical abra-
sion. The higher the glue content the more viscous ink
becomes.

Apart from carbon various natural dyes were used, made
from metals, nuts or seeds, and sea creatures like the
squid (known as sepia).

Watercolours use ground colour pigments often from
precious stones. Watercolour painting began with the
invention of paper in China shortly after 100 AD. In
Europe watercolour was introduced in the 16th century
and its earlier uses were as thin washes to colourize pen-
and-ink or pencil illustrations.

Pigments can penetrate into the paper, but once in there,
tend not to migrate far. Lighter pigments travel farther as
they stay suspended in water longer. Carbon particles are
much smaller than colour pigments and therefore seep
into paper fibres easily, giving the most prominent dis-
persion effects.

2.2 Paper

Paper is mostly air, laced with a microscopic web of
tangled fibres. It is typically produced from cellulose
fibres extracted from various woods or plants, processed
and compacted (Middleton 2003).

Chinese ink paintings typically use very thin and highly
absorbent rice paper while watercolour paper is typically
made from linen or cotton rags.

It is the structure of the paper that creates the striking ink
effects. When faced with obstacles, water branches into
streams and the flowing water carries pigments with it.
Pigment diffusion plays a minimal role.

Ink dispersion is also closely determined by paper ab-
sorbency; it is the imbibition of water that causes the ink
to flow through the paper fibres. To reduce absorbency,
the paper can be treated with alum (Chu and Tai 2005).

3.  Lattice Boltzmann Method

3.1  Historical background

Over the last few years there has been rapid progress in
the development of the Lattice Boltzmann Method
(LBM) for solving a variety of fluid dynamic problems.
The approach was first proposed 17 years ago by
McNamara and Zanetti (1988) as an alternative to the
Lattice Gas Automaton (LGA) for the numerical study of
the Navier-Stokes equation.

Although the LBM shares a common origin with the
LGA it overcomes the latter's shortcomings as it uses a
set of real-numbered particle velocity distribution func-
tions rather than single pseudo-particles with Boolean
values. As a result the LBM does not exhibit the same
noise problem as the LGA nor any of the other intrinsic
flaws of Lattice Gas Automata like violation of Galilean
invariance or the occurrence of large fluctuations.

(Galilean invariance is a principle which states that the
fundamental laws of physics are the same in all inertial
(uniform-velocity) frames of reference, i.e. all lengths
and times remain unaffected by the change of velocity.
(Anon 2005))

The initial variant suggested by McNamara and Zanetti
(1988) was still formulated as a transcript of the lattice
gas approach with a fixed fluid viscosity. By altering the
collision terms in the Lattice Boltzmann Equation (LBE)

Fig. 2 - Real watercolour effects

Left: complex flow pattern, right: boundary roughening.
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Bhatnagar, Gross and Krook achieved a single step re-
laxation scheme which replaced the discrete collision
matrix that had to be formulated in the earlier model. In
this new Lattice Boltzmann Bhatnagar-Gross-Krook
method (LBGK) the distribution is relaxed towards a
local equilibrium distribution function.

By using a Chapman-Enskog expansion it was shown
that the LBGK model reproduces the Navier-Stokes
Equation for incompressible fluids for low Knudsen
numbers (below 0.1) and low Mach numbers (below
0.15, i.e. flow speeds below 183.75km/h (114.18mph))
(Benzi 1992).

(The Knudsen number is the ratio between the mean free
molecule path and a characteristic length scale, for
example an obstacle size.)

2.2  The Lattice Boltzmann Method

The LBM follows a bottom-up approach by simulating
the evolution of particle distribution functions rather
than particles themselves.

The LBM operates on a lattice of square or cubic cells of
equal size, where each lattice site x at time t stores parti-
cle distribution functions, ƒi  (x, t), along a discrete num-
ber of velocity vectors ei. In 2D space the most common
variant uses 9 velocity vectors (8 neighbours and a zero
vector for the cell itself) and is commonly referred to as
a D2Q9 lattice. In 3D space the most common lattice
models are D3Q15 and D3Q19 with 15 or 19 velocity
vectors depending on whether the longest vectors point
to the corners of the 3D cube (D3Q15) or to the mid
point of each cube edge (D3Q19). Figure 3 shows both
the D2Q9 and D3Q19 lattice.

Each distribution function ƒi is stored as a floating point
value and represents the probability of the presence of
particles in the current cell moving in a velocity vector's
direction.

During each time step ∆t two operations are performed at
each lattice site:

1.) Streaming ƒi s to the next lattice site along their re-
spective velocity vectors.

2.) Colliding ƒi s that arrive at the same site. The collid-
ing step subsequently computes the effect of the
collisions which occur during the stream step. The

collision redistributes towards their equilibrium
distribution functions ƒi

(eq).

The two operations of streaming and collision are
mathematically described by the Lattice Boltzmann
Equation:

ƒi (x + ei Δt, t + Δt) = (1 – ω) ƒi (x, t) + ω ƒi 
(eq)(x, t) Eq. 1

where ω is the relaxation parameter.

According to the LBGK model the equilibrium
distributions ƒi

(eq) are:

3 9 3
ƒi 

(eq) = wi  ρ + ρ0 c2 ei · u +
2c4 (ei · u)2 –

2c2 u · u Eq. 2

where c equals ∆x/∆t, ∆x is the lattice spacing, wi are
constants determined by the lattice geometry, ρ and u are
fluid density and velocity respectively, and ρ0 is a
predefined average fluid density.

For a D2Q9 lattice the constants wi are set as 4/9 for the
zero vector, 1/9 for the velocity vectors pointing north,
south, east and west, and 1/36 for the diagonal velocity
vectors of the lattice.

Fluid density and velocity at each site can be calculated
from these values by simple summation:

ρ =
8

∑
i =0

 ƒi Eq. 3

1
u = ρ0

8

∑
i =1

 ei ƒi Eq. 4

A new set of distribution functions is obtained from a
weighted average of the streamed distribution functions
with the equilibrium distribution functions.

Obstacles are handled by reflecting the particle
distribution functions at the obstacle boundary, resulting
in a normal and tangential velocity of zero (bounce back
scheme).

2.3  Advantages over Navier-Stokes Solvers

Giving the same results as the Navier-Stokes Equation
(within the low Knudsen and Mach limits), Yu (2003)
pointed out the following advantages of the LBM over
traditional Navier-Stokes solvers:

1.) NS solvers need to treat the nonlinear convective
term, u · ∇u; the LBM totally avoids it as the con-
vection becomes simple advection.

2.) NS equations must solve the Poisson equation for
pressure which are computationally expensive and
involve global data communication; the LBM ob-
tains pressure through an equation of state and data
communication is always local lending itself very
well to parallel computing.

Fig. 3 - Commonly used discretization in 2D and 3D

Left: D2Q9 lattice, right: D3Q19 lattice
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3.) As the Boltzmann equation is kinetic-based, any
physics associated with the molecular level interac-
tion can be easier implemented in the LBM.

4.  Implementation

4.1 Goal and general considerations

The key aim for InkPlay was to provide a post-render
watercolour effect to existing still images or animation
sequences. It was designed specifically with Ngan-Sum
Tse's animation masters project in mind as she required
such an effect.

This is in contrast to most watercolour implementations
which usually provide some kind of graphical user inter-
face typically a paint brush simulation.

Not having to implement a graphical user interface has
the obvious time-saving advantage but there were others
as well.

Chu and Tai (2005) had to cut a few corners in their wa-
tercolour simulation to be able to provide a real-time
graphical user interface with a guaranteed response time
of at least 40-44 frames per second. To achieve these im-
pressive frame rates, they implemented the fluid
dynamic simulation on a programmable GPU using a
series of parallel rendering fragment programs. This
choice makes sense as the LBM is well suited for
parallel processing and this also leaves the CPU free to
handle the brush simulation. But the limiting factor was
the video memory. With a maximum of 256MB VRAM
they could only render a simulation resolution of up to
5122 pixel. To break this barrier for the user they
employed texture scaling resizing the image to 3 or 4
times the simulation resolution and then used real-time
edge sharpening techniques to re-sharpen the blurred
outlines.

To further preserve memory and to be able to use bi-
linear texture interpolation Chu and Tai used 16-bit float
data types (instead of 32-bit) for all simulation textures.
This resulted in some precision errors.

With the decision not to implement a graphical user in-
terface for InkPlay, real-time performance was no longer
a necessity and calculations could be performed in RAM
allowing for much higher simulation resolutions, only
limited by RAM. This was important as Ngan-Sum Tse's
animation required at least the ability to support PAL
resolution images (720x576 pixel).

And being not limited by VRAM all simulation textures
were implemented as 32-bit floats to avoid the precision
errors Chu and Tai encountered.

For the 2D fluid dynamic simulation a D2Q9 lattice was
implemented with e0 the zero vector, e1, e 2, e 3, e4 the
nearest neighbour sites (N, E, S, W) and e5, e6, e7, e8

pointing along the diagonals to the next nearest cells
(NE, SE, SW, NW).

4.2  Data input / output

4.2.1  Image input / output

Without a graphical user interface another means had to
be found for data input and output. The "Tag Image File
Format" (TIFF) was chosen for both image input and
image output for two reasons:

1.) All major animation and compositing packages sup-
port TIFFs.

2.) The flexible TIFF header framework provides addi-
tional benefits and a route for future expansion.

One such benefit is the ability to choose from a range of
compression schemes when opening or saving files. For
the latter InkPlay offers the user a choice of no compres-
sion, LZW or JPEG compression.

TIFF support was implemented with the libtiff library by
Sam Leffler.

InkPlay can be supplied with a TIFF image file name as
parameter when launched from the command line inter-
face. The file name must end in either '.tif' or '.tiff' to be
recognized as a valid TIFF image file. InkPlay will test if
the image file exists and if so analyze whether the file
name includes a padded number.

If a number is found, InkPlay will assume the image file
to be the first in a sequence of images and attempt to
load a new image of the sequence in each consecutive
simulation step. Should an image be missing in the
sequence InkPlay will simply not add any image to the
simulation during that simulation step. But it will in-
crement the reference index to try loading the next image
of the sequence in the following simulation step.

This ability to skip certain images in a sequence provides
the user with control of when an image is to be applied
to the simulation. For example when naming three
images 'image_01.tif', 'image_09.tif' and 'image_21.tif'
and when supplying InkPlay with the first image's file
name as parameter InkPlay will apply the first image to
the simulation during simulation step 1, the second
image during simulation step 9 and the third image
during step 21.

If no padded number was detected in the file name
InkPlay will apply just this image once to the simulation
and not look for further images to load. But the simula-
tion will be continuously run on that one image.

Fig. 4 - Artificial watercolour effects created by InkPlay

Left: complex flow pattern, right: boundary roughening.
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If not specified otherwise, InkPlay saves every simula-
tion step as an uncompressed TIFF file in a file sequence
starting with 'image_0000.tif'.

4.2.2  Control input

While sufficient in some cases, mere TIFF image input
does not provide enough control to direct the water-
colour simulation to achieve specific, desired results.

InkPlay therefore supports configuration files and in-
cludes a complete configuration file parser and error
checker. When launching InkPlay from the command
line, instead of a TIFF image, a text file can also be
supplied as parameter: the name of the configuration file.
If InkPlay is launched without any parameter, a default
configuration file, 'config.txt', is assumed and InkPlay
will attempt to load a file of that name from the same
folder in which InkPlay resides.

Configuration files allow full access to all simulation
parameters, a total of 47, to achieve a great variety of
effects. Support for configuration files also offers an
easy way to save different sets of settings for later reuse.

Fig. 5 - Configuration file example

# This is an example config file

'Specify the image to load:
 tiff_in, subfolder/image_00.tif

'Set fluid to average viscosity:
 omega, 0.75

'Speed up the simulation by 85%:
 speedScale, 1.85

'Set initial water velocity:
 initialVelocity, 0.05, -0.3

'Exit simulation after 200 steps:
 simStepExit, 200

Every configuration file requires at least one parameter,
tiff_in, which specifies the TIFF image or first image
of a sequence to be loaded.

InkPlay's configuration files provides the user with a
reasonable amount of syntax flexibility. Parameters can
be in any order and of any number as long as each
parameter is on a separate line with its values comma- or
semicolon-separated. Capitalisation of parameters is op-
tional so are spaces, tabs and underscores within
parameter names. Any of these variations is valid:

tiff_in, TIFF_IN, TIFFin, TiffIn, tiff in, TIFF in
q_2, Q_2, Q2, q2, q 2, Q 2

Lines can be left blank and comments can be added by
starting a line with /, *, #, ', | or !.

To get a detailed description of all configuration file
parameters and their syntax the user can launch InkPlay
specifying '-c' or '--config' as parameter:

inkplay -c

Figure 5 shows an example of a short configuration file.

4.2.3  Information output

When a simulation is in progress InkPlay provides the
user with detailed status and progress information in the
command line window.

At the start InkPlay displays the approximate amount of
RAM required and any warnings or errors during startup
followed by a reminder of allowable keyboard input
during the simulation. The ten number keys provide
insight into the status of certain simulation texture and
data maps by displaying their current status during the
following simulation step before switching the display
back to the default output. This allows the user to briefly
check these parameters.

4.3  Paper layer simulation

Chu and Tai (2005) like Curtis et al. (1997) employ a
three layer simulation model. Contrary to Curtis et al.
who use a shallow-water , pigment-deposition and
capillary layer, Chu and Tai's model uses a surface, flow
and fixture layer. Surface and flow layer each have a
data map for the water density (amount of water) and
colour pigments. The fixture layer has only a data map
for colour pigments.

4.3.1  Surface layer

Water, pigments and glue are deposited onto the surface
layer first. From here they seep into the flow layer.

As InkPlay does not use a brush simulation, water pig-
ments and glue are applied in a stamp- or stencil-like
fashion one TIFF image at a time.

TIFF images are expected to be 8-bit RGB byte values
yet all simulation data maps use 32-bit float data types
hence TIFF images are first converted from byte to float:

pixelfloat = pixelbyte / 255 Eq. 5

And since TIFF images use an additive RGB colour
model while colour pigments use a subtractive CMY
colour model, TIFF images are converted from RGB to
CMY before being applied to the surface layer:

CMY = {C', M', Y'} = {1 – R, 1 – G, 1 – B} Eq. 6

InkPlay has full alpha channel support when reading and
writing TIFF images. If a loaded image does not contain
an alpha channel, the configuration file parameter
alphaFromImage can create an alpha channel from the
image itself where black is considered fully transparent.
Alternatively the parameter maskingColourRGB can be
used to specify an RGB value to be considered the trans-
parent colour. Any existing or created alpha channel can
be inverted with the invertAlpha parameter.

Chu and Tai (2005) did not require support for an alpha
channel as theirs is a closed system. But when dealing
with animation sequences support for an alpha channel is
important. To provide this support, Chu and Tai's model
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has been extended by a fifth channel (next to C, M, Y
and glue) holding the alpha information. 'Alpha
pigments' are added in sync with pigments applied to the
surface layer and advected in sync with pigments moved
in the flow layer. When saving TIFF images the content
of this alpha layer is added as the fourth channel.

To compensate for the lack of a brush that pushes
pigments into a certain direction, InkPlay allows the
specification of a 2D velocity vector which is added to
the simulation when a new TIFF image is applied.

To model variable paper receptivity, each pixel added is
masked by the value max(1 – ρ  / λ , m) where ρ  is the
water density, λ a receptivity parameter and m  a base
mask value.

Pigments deposited on the surface layer act as a reservoir
that provides colour pigment supply to the flow layer.

4.3.2  Flow layer

Water gradually seeps in from the surface to the flow
layer depending on the existing water density in the flow
layer.

The amount of water supplied form the surface to the
flow layer calculates as such:

ϕ = clamp(s, 0, π – ρ) Eq. 7

where s denotes the water density in the surface layer, ρ
the water density in the flow layer and π the capacity of
the paper fibres.

Once ϕ is determined, s and ρ are updated accordingly
and pigments in the flow layer, pf , are updated according
to the ratio of ρ to ϕ:

pf = (pf ρ + ps ϕ) / (ρ + ϕ) Eq. 8

4.3.3  Fixture layer

Pigments in the flow layer are gradually transferred to
the fixture layer as the water dries. As real dried ink
cannot be easily washed away Chu and Tai (2005)
modelled this transfer to be a one-way process.

Watercolour pigments on the other hand are easier
washed away even after the colour dried and it was
therefore considered to change this transfer into a two-
way process. But an almost similar effect can be
achieved by preventing colour pigments from settling
into the fixture layer in the first place. As this is easily
done by changing the simulation parameters concerned
(η, µ  and ξ) extending the simulation was considered
unnecessary.

4.4  Paper structure simulation

To accurately simulate paper irregularities Chu and Tai
(2005) use three helper texture files: the paper grain
texture, the alum texture and the pinning texture map.

The LBM does not consider medium permeability or free
boundary evolution therefore Chu and Tai (2005) made
several modifications to the basic Lattice Boltzmann
implementation.

4.4.1  Permeability

Variable permeability makes the creation of interesting
flow patters possible. Permeability is realized by block-
ing the streaming process. Each site is associated with a
blocking factor κ. Varying κ allows to simulate a wide
range of media.

Chu and Tai (2005) use Succi's half-way-bounce-back
scheme during the streaming process. Blocking is
performed as if the link to each neighbouring site is par-
tially blocked with a blocking factor κ–i which is set to be
the average of the blocking factors of the two linked
sites. The streaming step with bounce-back is mathe-
matically described as:

ƒi (x, t + 1) = κ–i (x) ƒk (x, t) + (1 –  κ–i (x)) ƒi (x – ei , t) Eq. 9

where ƒk is the distribution function pointing in the op-
posite direction of ƒi.

4.4.2  Viscosity

In the Lattice Boltzmann Equation viscosity is given by
(1 / ω – 1 / 2) / 3 assuming that ∆t = c = 1. The lower the
value for ω the higher the viscosity.

4.4.3  Paper grain texture

Voids in the paper fibres and alum deposited determine
the paper permeability.

Fibre voids, or paper thickness patterns can simply be
simulated by scanning a paper grain texture. This
approach works better than trying to procedurally re-
create paper structures. A very thin paper, e.g. rice paper,
was scanned against a black background and the
resulting image contrast enhanced and finally cropped to
PAL resolution (720x576 pixel). This texture image,
'graintexture.tif', is provided with InkPlay. For different
image resolutions another paper grain texture file needs
to be prepared. In case InkPlay finds no suitable texture
file, a new, blank (white) texture image is created and
used. The texture file provided had been setup for tiling
so that seamless stitches of any size can be created
quickly if needed.

4.4.4  Alum texture

The alum texture file is used to simulate alum concen-
tration. It can easily be created procedurally by
sprinkling random white dots onto a solid black image.

InkPlay would not have to use a separate alum texture
file as it could generate it afresh every time it is
launched. But this would mean that exact repeatable
recreations of watercolour effects become impossible.
Therefore the alum texture, once created, is preserved so
that InkPlay can use it the next time it is launched.
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The blocking factor κ at each site is defined as:

κ = k1 + k2 G + k3 A + k4 g + k5 h Eq. 10

where G  and A  are values from the grain and alum
texture, ki are weights that define the blocking, g and h
the glue concentration in the flow and fixture layers.

4.4.5  Boundary and advection

Since the effect of air is negligible, a single-phase model
for water is used.

The LBM for single-phase models was originally
designed for the fluid to fill the whole domain. To over-
come this limitation movable boundaries are introduced,
where any site can become a boundary site and vice
versa. A boundary site is a wet lattice site (i.e. ρ > 0)
with at least one dry site amongst its eight neighbours.

As the LBM model can cause negative water density for
empty sites Chu and Tai (2005) reduce the advection
when the water density gets low. This is done by intro-
ducing the factor ψ into equation 2:

3 9 3
ƒi 

(eq) = wi  ρ + ρ0 ψ 

c2 ei · u +
2c4 (ei · u)2 –

2c2 u · u Eq.11

ψ = smoothstep(0, α, ρ) Eq. 12

where α is a parameter for adjusting this effect.

4.4.6  Pinning texture

Boundary roughening, or so called 'toes', are caused by
the spreading front being pinned at different points. A
front is depinned when there is enough water pressure to
overcome the pinning.

Chu and Tai use simple local rules to model pinning and
depinning which can be efficiently integrated into the
LBM.

A site is a pinning site if it is dry and the water density
ρ  at each of the site's eight neighbours is below a
specific threshold. The four nearest neighbours (north,
east, south, west) share the same threshold, denoted by
σ, and the four diagonal neighbours (NE, SE, SW, NW)
use √–2 σ. 

The actual pinning is achieved by setting the blocking
factor κ  to a very high number to fully block all
neighbouring links.

To model the effect of paper disorder, a third helper
texture map is introduced. It is procedurally created by
sprinkling light, short lines on a black background.
Modulating s with this texture gives the effect of easier
ink flow at certain locations and directions.

Furthermore σ is also made dependent on the glue con-
centration in the flow layer:

σ = q1 + q2 h + q3 lerp(G, P, smoothstep(0, θ, g)) Eq. 13

where G  and P are values from the grain and pinning
textures, qi are weights that define the roughening behav-
iour, and θ controls the effect of glue concentration on
the appearance of toes. The lower θ the lower the glue
concentration needs to be at which point the result equals
the pinning texture (i.e. with no contribution from the
grain map any more).

Like with the alum texture map InkPlay preserves this
procedurally created map for later re-use to allow identi-
cal reproduction of its watercolour effects, if desired.

4.4.7  Pigment advection

The movement of pigments is calculated differently
whether a site is becoming wet in the current simulation
step or was already wet before.

For the former pigment concentration newly advected to
site x is:

1
pf *(x) = ρ

8

∑
i =1

 ƒi pf (x – ei ) Eq. 14

For the latter the velocity is back-traced to find out from
where the pigment arrived:

pf *(x) = pf (x – u(x)) Eq. 15

At first look back-tracing might not seem like the best
approach, but at closer inspection it does make sense:

Every lattice site has exactly one velocity vector as-
signed, which is the averaged, overall fluid movement
derived from all ƒi s. Tracing these vectors forward
would break this 1:1 relationship as not every site will
have one vector pointing to it. Several vectors could
point to one site leaving other sites as 'holes'. How to fill
them? And with what pigment colour? And if several
vectors point to the same site likely some kind of equi-
librium distribution equation would need to be called
first, which could result in velocity vectors pointing at
yet another site, and so on.

By back-tracing the velocity vectors after the ƒi s were
streamed the 1:1 relationship between a vector and a site
is guaranteed and every site can be assigned pigments
from some other site, guaranteeing no holes.

Back-tracing will likely point to an origin somewhere in
the middle between four lattice grid points. To find out
that positions exact pigment concentration a triple linear
interpolation is done:
Given the regular 2D lattice grid points A, B, C and D
(counter clockwise from bottom left) and their respective
pigment concentrations a, b, c and d, and a point X
somewhere within those four grid points, the back-traced
pigment concentration x for point X is:

temp1 = lerp( d, c, X.x - D.x);
temp2 = lerp( a, b, X.x - A.x):
x = lerp( temp1, temp2, X.y - A.y);
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To allow the user to enhance the effect of pigments
moving, an additional parameter, pfBackDistribution,
was introduced which is a factor for further redistribu-
tion of back-traced pigments.

5  Conclusion

5.1  Pigment advection speed

Once InkPlay was implemented it soon became apparent
that the pigment movement was rather slow and did not
produce the desired, feathery flow patterns as the equi-
librium state was reached too quickly.

Merely increasing the velocity or water density did not
work as most values are clamped between 0 and 1 for the
calculations to work and any increase would be clamped.

To allow for more speed it was decided to decouple the
velocity u  and streaming ƒ i s from the rest of the
calculations. A new parameter was introduced,
speedScale, which is used to:

1.) Clamp u and ƒi s
Instead of clamping values between -1 to 1 or 0 to 1,
values are clamped between -speedScale to
speedScale or 0 to speedScale.

2.) 'Translate' between u and ƒi s  and other parameters
When deriving other parameters from u or ƒi s like ρ,
u  or ƒi s are divided by speedScale to bring their
values back down to the 0 to 1 range.

This decoupling allows for higher pigment advection
speeds and dramatically improved the visual appearance
of the simulation. But it was also found that values
above 1.85 - 2.0 tend to leave visual gaps between
simulation steps. Values > 2.0 tend to give even less
pleasing results.

In effect the speed gain of the decoupling is only in the
85-100% range, yet it is still considered a worthwhile
improvement.

Fig. 6 - Still image from the title sequence of 'Spill + Gush'

Watercolour effect rendered by InkPlay.

5.2  'Spill + Gush'

A main goal for InkPlay was to provide ink spill effects
for Ngan-Sum Tse's masters animation project.

She was very pleased with the final result and used many
InkPlay-created effects in her masters animation project

5.3  Future Work

5.3.1 Support for random numbers

InkPlay currently does not support any random values
for configuration file parameters.

This was deliberate to allow for reproducible effects. Yet
in certain instances a more random approach might be
desirable.

5.3.2 Normal render support

Any velocity currently applied to a TIFF image is
applied as a one directional vector to the whole image. It
might be desirable to have a more topologically accurate
velocity vector, which matches the object depicted.

With 3D animation normal renders could provide the
directional information required. But an initial test only
resulted in unwanted, radial artefacts where normal
vectors are too close to each other. More testing would
be needed to find a good application for normal renders.
Perhaps applying only the rim vectors might work better.

Figure 7 gives an example of an early normal test render.

Fig. 7 - Initial test: using a normal render

Radial artefacts appearing when applying the X and Y vector
coordinates of a normal image as velocity vectors to the
simulation.

5.3.3  Individual advection for each C, M and Y pigment

Currently all colour pigments are advected at the same
rate and therefore pigments will never 'split' to blend into
new colours. Potentially great looking effects could be
created if CMY pigments would be allowed to advect
individually.
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As a drawback, the memory footprint would almost
triple as each pigment will require its own LBM
simulation.

Likely the Kubelka-Monk model would have to be used
to perform the optical compositing of glazing CMY
layers.

At that point it might be useful to consider switching the
colour model to CMYK instead of CMY for added
effects.
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