LIGHTING AND CREATING
COMPUTER GENERATED HAIR

MASTERS THESIS

GERARD KEATING BA PG Dip

N.C.C.A BOURNEMOUTH UNIVERSITY
September 10, 2007

Contents

1 Introduction

1.1 Overview e

1.2 Previous Work e
2 Real Hair

2.1 The Anatomy of a Hair Strand

2.2 The Difference between Human and Animal Hair

2.3 Dual Highlights
3 The Pipeline

3.1 Software Used

3.2 Pipeline Overview

4 Hair Modeling
4.1 RiCurves .

4.2 The OTL interface

4.3 The Houdini

Network

4.4 TIssues with the Previous Modeling System

4.5 Future Work

5 Interpolation System Gerrycurl

5.1 Explanation

5.2 Control Hair Description File
5.3 Algorithm and Implementation
5.4 Limitations and Future Work

6 Shading and Composting

6.1 Kajiya Kay Shading Model
6.2 Hair Normals
6.3 Deep Shadows.
6.4 Colour e
6.5 Implementation and Composting

6.6 Conclusion

7 Conclusion

12
12
13
16
16
18

19
19
19
20
24

26
26
28
28
29
29
30

32

CONTENTS

A Some Rendered Examples

ii

36

List of Tables

5.1 A table describing the information saved to the control hair file.
The columns describe the name of the data that is being saved,
whether it is saved per triangle or point, the data type and a
description of it respectively. As can be seen, the data is split
into two types. Those agsociated with the triangle and those
associated with control hairs referred to as "Point" in the table.
The triangle data is used to calculate the number of hairs that
will exist on the triangle and its id. The rest of the data is used
for the hair properties. L.

iii

List of Figures

21

2.2

3.1

4.1
4.2

5.1
5.2

6.1

6.2

Al

A cross section of a human pubic hair showing the elliptical nature
of hair and the scattering of pigment granules which is quite dense
here, except for the very centre known as the medulla. Taken
from [Rob99] L 6
An image taken by an electron microscope of a hair showing over-
lapping scales of a hair shaft. The image is orientated so that the
root of the hair is at the bottom of the image and the tip of the
hair is at the top. It was taken from [MJCT03] 6

A diagram showing the pipeline used in for this project. Cylinders
represent files and boxes represent programs 10

A screen shot of the fur modeling system being used in Houdini. 14
A screen shot of the Houdini node network used for visualizing
the hair in the viewport and rendering the hairs directly to a rib
file . . o 17

An UML class diagram demonstrating the fur interpolation system. 23
Demonstrating how, in one dimension, one hair’s random change
in direction can change surrounding hairs. The hairs at both ends
of the line are control hairs. This problem is exasperated in the
actual system since a control hairs are shared by any number of
triangles. oL 25

A diagram taken from [KH84| showing a hair as a cylinder and
the specularity cone used. L 27
Part of the node view taken from Shake used for the creating the
final composite. The final node shows this part of the network is
before it is "overed" with the skin. This is just an example of how
the passes could be composited. A more experienced compositor
may know better methods. 31

The diffuse pass of the hair with the underlying skin as a holdout
matte e e 37

iv

LIST OF FIGURES

A2

A3

A4

A5

The specular pass of the hair with no colour with the underlying

skin as a holdout matte
The shadow pass of the hair with the underlying skin as a holdout

matte. The parts in shadow are in black and the parts in white

areinshadow L L oo
The shadow casted onto the skin from the hair without the hair

being visible. White parts are in shadow.
All the passes composited together in the Shake package.

LIST OF FIGURES

Chapter 1

Introduction

1.1 Overview

The creation of photo realistic or visually appealing simulated hair is one of
the most difficult endeavours in modern computer graphics today. The success
of some modern motion pictures has actually depended in part on the simula-
tion of aesthetically pleasing hair. Movies such as the groundbreaking Stuart
Little[SL199] and Stuart Little 2[SL202] and the more recent King Kong[Kon05]
had their main characters covered in simulated short hair. Films such as Final
Fantasy: the Spirits within[ff001] and The Incredibles[Inc04] had simulated hu-
man characters with long dynamic hair. Therefore even though hair simulation
is difficult it has been fundamental to the success of the above films. The diffi-
culties of hair simulation according to[MTHKO02| can be broken down into three
large areas: hair modeling, hair rendering and hair dynamics/animation. As op-
posed to solving one particular problem this project looked into the many issues
that occur in hair model ling and hair rendering but due to time constraints
hair dynamics/animation were not researched but left for future work.

This project was originally conceived to focus primarily on hair rendering
with some references to a previous project [Kea07] on hair model ling created
by the author. While researching this master thesis superior interpolation and
model ling techniques were found. Also during the implementation and testing
of the hair shading, deficiencies were found in [Kea07] and these will be discussed
in Chapter 4 and Chapter 5.

This project focuses on production ready hair rendering and creation. Hence
production ready software is used. The project also presents a production
pipeline that was used to create the images and videos in this project. This
is presented in Chapter 3.

The two greatest challenges facing hair rendering is the unique nature of
hair and the sheer amount of hair a regular character will have. Hair can be
viewed as infinitesimally thin tubes since the diameter of human hair ranges
from 17 to 181um (millionths of a meter) hence it can described as rendering

CHAPTER 1. INTRODUCTION 3

one dimensional models in a three dimensional world whereas most rendering
algorithms focus on the rendering of polygonal surfaces. As will be seen in
Chapter 2 real hair is far more complicated then this . Rendering and creating
shaders for such complex geometry is covered in Chapter 6.

Modeling this type of geometry is different then modeling surfaces. An artist
will never be able to model every individual strand of hair by hand so techniques
have been developed to allow them to create and control all these hair strands.
These techniques and an example system are described in Chapter 4.

The human head has approximately 100000 to 150000 hairs and many crea-
tures have more then this covering their body. Even with the simplistic nature
of individual hairs this can lead to long render times. In Final Fantasy: the
Spirits within[ff001] approximately 25% of the rendering time was used for the
main character’s hair' and furthermore ninety percent of the memory used for
storing the main characters geometry contained her hair[Bjo01]. Hence hair is
expensive both in terms of computations and memory. The memory can be
reduced using a render-time interpolation system such as the one implemented
for this project which will be discussed in Chapter 5 and this can also improve
render times since there is less disk access.

1.2 Previous Work

The issue of rendering photo-realistic hair has been a concern of computer graph-
ics research for long time. [CHP 79| is often considered to be the first attempt
at rendering such complex geometry. The first major break through in the
area came with [KK89]. The specular shading model created in that paper
is still the basis for most modern hair shaders including the one presented in
this project. It is discussed in more detail in Section 6.1. The model has been
criticized and superseded in [MJC'03] which presents a shading model that is
based on actual physical recordings of how light interacts with hair. The re-
sults of theses findings are discussed in Section 2.3. Research done on real hair
came from medical anatomy books such as [Cre92]. An even better source for
information about hair can be found in forensic research such as [Rob99]. As
stated in [HDKT06], Marschener’s results can be "faked" without using the ray
tracing model he proposes. These fakes allow the artist more intuitive control
over the final image. These are discussed in Section 6.1. Hair self shadowing
is an important visual aspect of actual hair. Even though this can be achieved
using standard depth based shadowing[RSC87], the deep shadowing technique
described in [LV00] greatly enhances and speeds up the process as described in
Section 6.3.

The first major attempt of photo-realistic hair in production was Stuart
Little[SL199]. The pipeline and techniques used on this film is explained in
[Bre00] and is the major inspiration for the pipeline for this project. Many more
films, commercials and even television shows now have computer generated hair

L Actually 30% of all render cycles where for the main character Aki and 80% of her render
time was dedicated to her hair which works out to be approximately 25%.

CHAPTER 1. INTRODUCTION 4

in them. Productions of note are Final Fantasy: the Spirits within [{f001]. The
description of their hair system can be found in various articles, the most useful
description can be found in [Bjo01]. The explanation of how the hairy creatures
were rendered in [nar05] in [HDK 06| were also invaluable. The use of "visual
programming" at Weta Digital for [Kon05] hinted at in [PHO06] for creating even
dirty hair is the current bleeding edge of hair creation and rendering. Even
though it was not implemented in this project it does merit future research.

Chapter 2

Real Hair

2.1 The Anatomy of a Hair Strand

Before trying to replicate any existing natural objects one should study real ob-
jects so that measurements of how 'real’ it looks can be made. Many animators
and artists study subjects such as anatomy to better interpret the human or an-
imal form. Another motivation for studying real hair is that many early renders
of hair appeared like synthetic hair. To counteract, this research into real must
be done to find the difference. Aside from phenomenological research, including
collecting human hair clippings and handling pet rats, the author looked into
scientific research done in the area.

Even though many shading models assume hair is perfectly round in cross
section, it is in fact more elliptical and irregular as can be seen in figure2.1.

Furthermore, according to [Cre92], how elliptical or "flat’ hair is, is propor-
tional to how curly the hair appears. Even though this property of hair can
only be seen under a microscope, it does mean that hair looks different when
viewed from different angles.

The outer layer of the hair known as the cuticle is not smooth but scaly
as shown in figure 2.2. These overlapping scales have a surface tilted towards
the root end of the hair by an average amount of three degrees according to
[MJC*03]. [MJC*03] uses this microscopic scaling to explain part of the strange
specular properties of hair.

The pigment of hair is mainly caused by the presence of pigment granules
in the hair shaft|OT87]. Dark hair has a large amount of these granules, red
hair has a medium amount, blonde hair has a little amount and white has very
little to no pigment in it. In terms of hair shading this makes lighter hair more
difficult to accurately render in a photo-realistic way since the colour is due
more to light that passes through the hair or light that is internally reflected.
These are more difficult to calculate then reflective rays which contribute most
of the lighting of darker hairs.

CHAPTER 2. REAL HAIR 6

Figure 2.1: A cross section of a human pubic hair showing the elliptical nature
of hair and the scattering of pigment granules which is quite dense here, except
for the very centre known as the medulla. Taken from [Rob99]

L 8

Figure 2.2: An image taken by an electron microscope of a hair showing over-
lapping scales of a hair shaft. The image is orientated so that the root of the
hair is at the bottom of the image and the tip of the hair is at the top. It was
taken from [MJCT03]

CHAPTER 2. REAL HAIR 7

2.2 The Difference between Human and Animal
Hair

The main difference between humans and other mammals is the lack visible hair
on most humans in comparison to many other mammals even though there are
exceptions such as whales which have no hair follicles. Non-human hairs usually
have more variation in their hair colour from hair to hair.

One can visibly see guard hairs and under hairs in fur or peltage. The
former being longer, coarser and less frequent then the finer under-hairs. Of
course every creature has certain unique properties to their hair which would
have to be studied on a creature to creature basis.

2.3 Dual Highlights

In [MJCT03] they point out that the Kajiya, Kay model used in this project
and explained in Section 6.1, is a phenomenological model, not based on any
scientific recording of how light interacts with hair strands. In creating their
own hair lighting model they ran tests to record exactly how light interacts with
hair strands. The method of finding the results can be seen in the paper but
here we only present the findings.

Two specular highlights exist, a primary and secondary one. This is due to
the reflectance from the surface of the hair and the internal reflectance of light.
Internal reflectance is caused by light entering the hair strand because hair is
semi-transparent and then being internally reflected back out.

As was said in Section 2.1 hair is not a smooth surface so this second re-
flectance is at a different angle then the first this means that for real hair as
opposed to synthetic hair the primary specular highlight is shifted slightly more
towards the root.

Light coloured hairs such as blond, brown, gray and white look very bright
when lit from the back. This is due to light passing through these hairs which
are more transparent then darker hairs. Marschener proposes a ray-tracing
method to accurately simulate these and other properties but adaptations to
the current shading model and compositing methods can also recreate them
quicker and with more artistic control. Such methods are discussed in Section
6.1.

Chapter 3

The Pipeline

3.1 Software Used

When RenderMan is referred to in this documents it refers to Pizar’s Render-
Man Pro Server 13.0.2 which is a RenderMan compliant renderer. The reason
the term RenderMan is used is because many of the features of the renderer that
are used are contained in the RenderMan technical specification! and hence are
available in other renderers that are fully compliant with the RenderMan spec-
ification. The author will endeavour to point out features used that are not in
the RenderMan specifications. The reason for using RenderMan is as follows:

o [t is widely used in the visual effects industry

Having been used on ground breaking films such as Stuart Little[SL199]
and King Kong[Kon05] to name but a few, RenderMan has proven to
be able to handle rendering of complex scenes and hair in a production
environments.

o Complete control over how the render happens

Every aspect of how one wants a scene to be rendered can be controlled
which is a great benefit when one is trying out new techniques of rendering.
Also unlike other renderers ray tracing and global illumination features are
optional and turned off by default in RenderMan which primarily uses a
form of Reyes scan-line rendering architecture[CCC87]. This is very useful
when one is trying to render complex geometry such as hair.

o Renderer independence

As mentioned above, RenderMan uses the RenderMan Interface Specifi-
cation and therefore other renderers that are RenderMan compliant can
render the same scenes and use the same shaders created for this project.

1See http://renderman.pixar.com/products/rispec/rispec_ pdf/RISpec3 _2.pdf for the en-
tire specification

CHAPTER 3. THE PIPELINE 9

Sidefr’s Houdini Master version 8.2.13, which has been and will continue to
be referred to as Houdini in this document, was used to model the fur and
other tasks such as placing camera and lights in this project. Reasons for using
Houdini are:

o Previous work

The system explained in this document was built on a previous system
created described in [Kea07] which used Houdini.

o Compatibility with RenderMan

Houdini’s integration with RenderMan is superior to any other 3d package
currently available. Its ability to render to RenderMan is built in to the
core package as opposed to other 3d packages such as Autodesk’s Maya
which require a plugin to render to RenderMan. This compatibility also
makes attaching RenderMan shaders to objects and creating batch renders
extremely easy without the need to write a bespoke systems.

o Used in the production

Houdini has been used to create visual effect features for many projects
such as Superman Returns, Spider-Man 3, Monster’s House and many
more?. Framestore CFC even use it for their fur system for projects such
as as the "Go Wild" project for the Rexona deodorant brand[Boy07]. This
proves that Houdini is a production ready tool and is capable of the task.

e It is a procedural package

Houdini was originally designed for procedural modeling and animation.
Hair modeling is a procedural method. Also its Operator Type Library
(OTL) system makes plugin creation extremely simply which makes it
perfect for fast prototyping.

o Attribute Transfer System

Houdini has a long history of being used for particle simulations and this
maybe why it has such an advanced attribute transfer system. This sys-
tem allows one to create, change and transfer attributes of a geometry
efficiently and easily. For hair this means attributes such as hair length
can be easily added to geometry and then transferred to curves to define
the actual Length with ease and efficiency.

3.2 Pipeline Overview

Adding hair to a model, which is normally an animated creature, is usually one
of the last parts of a linear computer animation pipeline. The pipeline used for
this project, which can be seen in figure 3.1, takes place after the animation
has been complete and the only thing left is to composite the images together

2See www.sidefx.com http://www.sidefx.com for a more extensive list

CHAPTER 3. THE PIPELINE 10

. M
Houdini

)_<§IL Conﬂol
Hair Files

" Rib Files

with RunProgram calls

Hair ™
Interpolator ‘ ’ RenderMan

I Hair Shader

EX Texture ﬁlﬂ rf"lal lma&fj

Figure 3.1: A diagram showing the pipeline used in for this project. Cylinders
represent files and boxes represent programs

CHAPTER 3. THE PIPELINE 11

in a compositing package such as Shake. The animations for this project were
loaded in as a series of obj geometry files. Due to the ubiquitous nature of the
obj file format, the animation can be created by many applications such XSI’s
SoftImage which was used to create the polygonal model and animations for the
rat model used for most of the examples in this project. The modeling of the fur
is done on the "t-pose" of the model and hence can be done once the creature
model has been created and the uv co-ordinates mapped to the model. This
means it can be done parallel with the rigging and animation of the character
which is extremely useful in a large production.

After loading in the creature model and modeling the hair, which is discussed
in more detail in Chapter 4, Houdini creates an XML file which contains all
the information needed by the fur interpolation program to interpolate the fur
across the surface. The fur interpolation program which is named ‘gerrycurl’
is discussed in more detail in Chapter 5. A rib file is then created by Houdini
which ordinarily contains the following;:

o The underlying skin or model as a matte object

There is an option in Renderman to create a 3d holdout matte (see page
76 of [AG99]). This matte object does not render in the final image and
removes all the objects behind it. The rendering in this project is done in
layers. The use of a matte skin makes it easier to composite the skin and
the hair which is discussed in greater detail in Section 6.5.

e A call to "RiProcedural” of type "Run Program.”

RenderMan has a an riprocedural call of type run program which executes
a program that emits RIB commands on its standard output stream at
render time. An ASCII data block or a command line argument can be
passed to this program. The only draw back is that a bounding box must
also be declared that will be big enough to contain all the geometry cre-
ated. Making this box too big is efficient but making it too small could
lead to some geometry being clipped. In this project the ‘gerrycurl’ pro-
gram is called and the XML file containing information about the control
hairs is passed to it. The bounding box is calculated by Houdini based on
the control hairs. See Chapter 5 for more information.

o Guard hairs and other sparse hairs such as eyelashes

As mentioned in Section 2, fur contains sparse long course hairs called
guard hairs which are similar to eyelashes on a human. Since these hairs
are sparse and long it is simpler and more efficient to put these directly
into the rib file from Houdini bypassing the interpolation system.

o Reqular information such as camera position, lights and surface shaders.

This information exists in nearly every rib. See [AG99] for more about
creating a scene.

Chapter 4

Hair Modeling

4.1 RiCurves

The curve primitive also known as ricurve has existed in PRMan since version
3.7[app]. This primitive was used exclusively in this project to represent indi-
vidual hair strands. This is because hair strands appear as very thin curves
to the naked eye and ricurves are extremely efficient to render which is an im-
portant requirement when hundreds of thousands of them must be rendered.
RenderMan renders the curves as ribbons defined by a curve called the spine.
The ribbon is always orientated towards the camera which entails rendering less
polygons then with a true generalized cylinder. The curve extends along the
v direction. This property (which is useful during shading) means that v at
the root or start of the curve is zero and at the tip or end is 1. The specific
curve used in this project is a cubic non-periodic curve with four control points.
Non-periodic means the curve does not wrap around in the v direction. Four
is the minimal number of control vertexes for a cubic curve but is sufficient for
short hair. The first and last point lie on the curve which is useful for modeling.

Two width values of type varying float are attached to the curve, one for the
tip width and one for the root width. This width along the curve is defined by
the user and is defined in object space. It is useful to have a higher width value
for the root then for the tip. Even though real hair does not usually taper to a
point like this it does make the hair appear more plentiful and in experiments
were a constant width is used the hair appeared more synthetic. Increasing the
width value and decreasing the number of hairs is one of the simplest controls
for level of detail. Level of detail is an area of computer graphics that allows
objects that are far away from the camera to be rendered in lower quality and
hence faster but still appear to be as detailed as those objects that are closer
to the camera. More work would be needed to implement a full level of detail
system into this project, for example, to avoid popping when going from one
level of detail set of values to another. [CHPRO7| explains a more advanced
method that uses this simple idea and also see [JC00] for more details on level

12

CHAPTER 4. HAIR MODELING 13

of detail. Similarly two colour values are passed to the renderer which can be
overridden by the shader by using a texture to define the colours and passing
this directly to the shader. Normals for the hairs are calculated by the shader
as explained in Section 6.2. For more information on RenderMan curves see
pages 84-85 of [Pix05] and pages 123-125 of [AG99].

4.2 The OTL interface

Note:This section uses some terminology unique to Houdini. The au-
thor has tried to make it accessible to non-Houdini users but access to
the Houdini user guide would be helpful. Also see [WCO06] for a good
introduction to Houdini.

To create these properties and generate control hairs a Operator Type Li-
brary, referred to as an otl, was created in Houdini called "Gerrycurl." After
installing the otl and loading in the animation and their model in a t-pose, the
user is ready to add hair to it. First they select the animated model and rest
model they wish to put hair on. The rest model is the model in a t-pose or
equivalent. This is required to calculate the area of the model for scattering
the model. The rest model also must contain normals that are not combed.
The direction of the normals of the animated model can be used to define the
direction of the hairs since Houdini contains a comb node that supplies a good
user interface for defining hair direction. The normals of the underlying sur-
face are still required for the shader so this why they must still be contained in
the rest model. Also the direction of the normals can be saved and read from
most 3d file formats meaning that the normals could be "combed" in an other
application but this was not researched.

Once the model is correctly loaded in then the hair attributes can be defined.
The visualization of the hair in the viewport must give the user visual feedback
of what the hair will finally look like but also give immediate results. To control
how approximate this visualization is, there is the visual speed parameter. This
value is actually the number of hairs that appear on the model in the viewport
and value assigned to it should be related to the speed of the end-users computer
system. An example of this can be seen in figure 4.1.

The length of the hair is set by the maximum length parameter. As stated
in [Boy07], for hair to look natural some noise or randomness needs to be added
to it. In lieu of this there is an option to make the length random. This
pseudo randomness is controlled by the randomness frequency parameter which
is a value between zero and one. If set to zero then all the hairs will be the
maximum hair length. The formula used is:

Lma:r - (fr(p + S) * Rfreq * Lmaz)

fr(p+S) is a pseudo random number generator which returns a real number
between zero and one inclusive. Houdini’s rand expression is used to calculate
this. p+ S is a seed number and p is a point id. The point id is an arbitrary

14

CHAPTER 4. HAIR MODELING

‘TUIPNOY UT posn Sutoq mwe)sAs SUIfpomt InJ oY) JO 0Ys U9aIds ¥ :1'§ 2Indi]

I
-
[

|ElRREEE R EREEEEEEE

1 & Al

1SE I pno R = dit)sisanagellni/sadujan e /Buneaz b osif

F A E b=

L (=1 = =0

CHAPTER 4. HAIR MODELING 15

unique number created by Houdini for every point that does not change between
frames even when the model is being deformed but it can be changed by a sort
SOP. S is a seed set by the user. This value can be useful if, for example, one
is creating two characters from the same model and they want them to appear
different then they can simply set a different value for S for each character’s hair.
Lypazis the maximum Length set by the user. Ry.q is the random frequency set
by the user. The maximum hair length can also be defined by a texture. The
black areas of the texture will contain hairs of zero length and white areas will
have hair of maximum length defined above. Similarly the user can paint the
black and white colours directly onto the model and select this node to define
the length.

The amount of hair on the final model is controlled by the hair density
parameter. If one is bypassing the interpolation system this figure will be exactly
the number of hairs on the final rendered model. Otherwise it represents a
density value. The amount of hair for a given triangle must be proportional
to the area of the triangle otherwise complex parts of the model will have a
disproportionate amount of hair on them since hair is created per triangle.
Therefore the amount of hair for a given triangle is calculated as a result of the
hair density for that triangle and its area. This is why a rest model is defined.
When a character is animated its topology will not change but the area of the
individual polygons on its surface will. This change in area will lead to hairs
being created or desttoyed between frames. Visually this will appear as popping
of hairs. Like the length attribute, hair density can also be defined via a texture
or paint node.

Root and tip colours are defined in same way i.e. they can be constant,
defined by a texture or painted on. Root and tip widths of the hair are constant
values. These values can be overridden by passing a texture to the shader. Noise
is added to the colour by the shader at render time as explained in Section 6.4.
To shape the hairs, Houdini’s twist node is used. The twist node in Houdini
is used to deform geometry in a number of different ways. The deformation
used for the gerrycurl system is the bending type. To put this in context, a
hair is initially a Bezier line. It is then deformed and transformed in its own
object space before being copied to the surface of the model. The bending
is controlled by bending strength which is self-explanatory and a bending roll
off. Bending roll off is described as the attenuation of the deformation by the
Houdini documentation. For the bending deformation it seems to rotate the
curve around the pivot of the deformation. The exact algorithm that Houdini
uses to do this deformation is unknown. The bending strength can be made
random in the same way as length. Once the hair is bent it can be orientated
that is to say rotated around its origin in object space. It can also be twisted
adding a form of curliness. The twist parameter also has an attenuation factor
called roll off and these parameters can be randomized.

Once the user is happy with the general look of the hair he then creates
the node that will be used to render the hair. First he decides where the node
should go in Houdini. A geometry node is created which must go into an obj
level. The user then decides the name of the new node. For convenience the

CHAPTER 4. HAIR MODELING 16

user can also set the surface shader used even though this can also be set once
the node is created. If generating a rib file the name and location of the rib
file is set. Similarly for interpolation system the control hairs’ file names and
location is set.

4.3 The Houdini Network

Figure 4.2 shows the Houdini network used in this project. The animated
model and the rest model described in Section 4.2 is loaded in. The area is
calculated from the rest model. The surface normals and area are transferred
to the animated model. The density attribute is then added and the UV co-
ordinates of the surface are saved. The scatter function is now applied. This
scatters points across the surface of the geometry. The scattering is based on
the area multiplied by the density. In this network two scatter nodes are used.
One for the viewport display and one used for when the rib is generated. The
colour, orientation, bending strength and widths are then copied. A copy node is
used to copy hair curves to every point. Bending, twisting and transformations
are done to the curve based on values "stamped" from the points. The surface
normal attribute is remapped to the rib format "uniform normal". Surface u
and surface v are remapped to uniform floats.

A similar network is used for creating the control files but it does not contain
remapping for the rib file nor does it contain the scatter nodes. The network
does contain a triangulate node which triangulates the polygonal mesh. This is
needed since the interpolation described in Chapter 5 is baed on trianlges.

4.4 Issues with the Previous Modeling System

As mentioned in Section3.1, this modeling system is based on the system cre-
ated in [Kea07]. One of the design decisions made in [Kea07] was that the
otl should encapsulate the entire modeling and rendering process of hair cre-
ation. The reasoning behind this were sound but while using this system it
became unworkable and the decision was ultimately a wrong one. Houdini is a
very powerful tool with many useful features. This became more apparent as
the project progressed. Encapsulating fur creation and rendering meant many
features were unusable without editing the OTL. Another problem with the
encapsulation method is that every conceivable option that an end user would
want must be included in the parameters window. This means a lot of unneces-
sary development and an unwieldy user-interface or restricting the users ability.
A more modular approach using Houdini’s own user interface paradigms means
that the system is a lot more flexible and adaptable. The adding of new fea-
tures is quicker, more efficient and less prone to bugs and errors. One of the
first and most noticeable changes that the overturning of this decision has been
is the separation of rendering and the modeling system. Before the rendering

CHAPTER 4. HAIR MODELING 17

Figure 4.2: A screen shot of the Houdini node network used for visualizing the
hair in the viewport and rendering the hairs directly to a rib file

CHAPTER 4. HAIR MODELING 18

happened within the otl. Now the otl creates a separate geometry node that
containg a procedural call to the gerrycurl program or uses read archive to open
a rib file. This conveniently allows a number of rman output nodes to render
the fur, for example a separate node for every light could be created as was
done in the example files. It also works better when working within a group.
In many production environments the modeler will not light and render a shot.
This new system allows the modeler to pass his work onto a lighting technical
director with greater ease. Another noticeable difference is the removing of the
guard hairs tab. Before, internally the features of the interpolated hair had to
be copied to the guards hairs and changed slightly. This became tedious and
error prone work. If the user wishes to create separate guard hairs that bypass
the interpolation system then they can just create another node and change the
node purpose option to create a rib file. Taking this modular approach to its
extreme means that no otl should exist so obviously some compromise has to
be made.

4.5 Future Work

There is a number of features that the modeling system is lacking. One of which
is the clumping option. As noted and implemented in [Bre00] hair can have a
tendency to clump together especially when wet.

Individual hair collision is not very important for hair as it is nearly im-
possible tell the difference between two hairs that are intersecting or merely
touching. It could be an issue for dynamic hair but this depends on what kind
of dynamics system is used. Hair colliding with the underlying geometry is an
issue since this can lead to a popping affect as hairs disappear and reappear
around the moving geometry such as at a shoulder joint. Combing and other
modeling techniques could be used to lessen the issue. A better solution would
be to use a dynamic collision detection system.

Houdini does have a fur node which was a prototype in version 8.2 and
Houdini version 9, which was released during the completion of this project,
has a full fur creation system. The features and usage of this new version is an
area of further research. Comparisons and contrasts with other fur modeling
systems such as Joe Alter Inc.’s Maya plugin, "Shave and Haircut'" or Worley’s
Sasquatch system? would also be an interesting area for research.

1See http://www.joealter.com/ http://www.joealter.com/ for more information about
this system. The website was last accessed in September 2007
23ee http://www.worley.com/ http://www.worley.com/ . Last accessed in September 2007

Chapter 5

Interpolation System
Gerrycurl

5.1 Explanation

A hair interpolation system is defined, for this project, as a program that creates
hair geometry at render time based on user defined control hairs as opposed to
it being created by a program or user and then passed to the render to be
rendered. There is many reasons for using such a procedural system. Firstly
there is the memory consideration. Hair saved directly to a rib file can easily
reach 100 or more megabytes in size. This may not seem like much but when
one considers that this is per frame and there can be as many as 25-30 frames
per second of the final film.! Therefore over 2 gigabytes are needed for a single
second and this is before other elements of the scene are included. This does
not only waste memory resources but also slows down the pipeline. As pointed
out by [HSO1] generating a file of that magnitude takes time as does reading a
file of that magnitude. The problem is exasperated by the fact that reading and
writing to disk is one of the most expensive processes in modern computing.

Another reason that an interpolation system is used is because a modeler can-
not hand animate 300,000 individual curves 2. Therefore a procedural method
must be used at some stage during the hair creation and it is more efficient to
do this at render time then any other time during the pipeline.

5.2 Control Hair Description File

The hair is interpolated based on user data files. In this project the data files
are XML data files. XML (Extensible Mark-up Language) is a general-purpose

I This project use the PAL format which uses 25 fps as opposed to the American system,
NTSC which uses 30 fps.
2300,000 is the number used for a number of example renders in this project.

19

CHAPTER 5. INTERPOLATION SYSTEM GERRYCURL 20

specification for creating custom mark-up languages. XML was developed by the
World Wide Web Consortium®. Originally a bespoke file format was used that
simply listed numbers. This became unwieldy as the project progressed since
it was inflexible and difficult to extend. The XML format is useful because it
is human readable which greatly aides debugging. It also has a number of free
resources for efficient and simple file parsing and access. TinyXML* was used
as the parsing tool for this project. XML also allows data to be stored in a tree
like structure. This was an advantage for this project because each triangle has
three control hairs associated with it.

Using XML can be inefficient for larger files since it adds a number of su-
perfluous characters to the file. In our model control hairs and there values are
copied numerous times since they can be shared by numerous triangles. Also the
format is not natively supported by Houdini. The current method for saving the
control information from Houdini is to use a hscript, which is Houdini’s native
scripting language similar to Mel and Autodesk’s Maya. The ability to redirect
the output of an echo command to a file is used to create the XML files. This
method is extremely easy to implement but very slow. A better method would
be to create a bespoke output driver for Houdini using its software development
kit known as HDK. Writing a python script for Houdini version 9 is also an
extremely easy yet efficient method for this but Houdini 9 was unavailable for
the completion of this project. An alternative method is to write to a rib file.
Houdini writes to a rib file very efficiently and one can add any properties to ge-
ometry in Houdini using the ROP geometry node and attribute node. Then one
would need to use a rib parser such as the one written by Peter J Lewis® to read
in the information by the interpolator. One issue with this approach is that the
rib file does not have a built in tree structure and hence a completely different
structure and evaluation method would need to be used. The information that
is saved to the file is shown in table 5.1.

5.3 Algorithm and Implementation

To interpolate across a single triangle, first one must calculate the number of
hairs that are required which is simply the hair density of the triangle multiplied
by the rest area of the triangle. A Barycentric coordinate system is used to
interpolate the hair across the given triangle which is based on the system used
for NVIDIA’s Nalu Demo which is documented in [PF05]. The system works
by finding three values bA, bB and bC' that add up to one. The algorithm is
best explained by the following pseudo code shown on page 5.3.

These three values are then used to create the control hairs by weighting
the values defined as geometry type point in table 5.1. For example if the

3See http://www.w3.org/ for more about the World Wide Web Consortium. The site was
last accessed 7 September 2007

4See http://www.grinninglizard.com/tinyxml/ for more information. Site last accessed on
the 7th September 2007

5see http://www.pjblewis.com/ for more about this software. Site last accessed on the 7th
September 2007

21

CHAPTER 5. INTERPOLATION SYSTEM GERRYCURL

‘sorpredoad Jrey oyl I0J posn ST vIRp oY)
JO 1s01 9Y, 'PI SI1 PUR d[SURLI}) UO ISIX0 [[IM ey} SIfey JO IoqUINU oY) 9)R[NO[ed 03 Pasn SI eyep o[3UeLI} 9UJ, '9[qR} oY3 Ul
LTI, S 0} PolIvJol SITRY [0IJU0D UM PIIRIJOSSE 9SO} pPuR 9[3URLI] oY} YILM PaIeIdosse asot], ‘sod4A) om) ojur 11ids s1 e)ep
oY) ‘Uoas oq uwd sy "A@A11dadsal 11 Jo uorydiisep & pue odAy eyep oy ‘qurtod Io o[sueLr} Iod poaes ST 11 IoYloyMm ‘poaes Juleq SI
1e7) BIRP 9} JO SUWIRU S} SYLIISOP SUTIN[OD O], "O[Y IRy [0IJU0I 9Y) 0} POARS UOTJRULIOIUT 9} SUIGLIISOP 9[qR) V :T°C 9[qel,

“Irey 9y) 91esId M eyl sjutod [OIIuod Inog (y)suonsoq
oY1 jo suorisod oy, o[y oy2 Jo esodind urewr oy, (gyeop) ymod pg wied TUI0J [0IIUO))
“Jopeys oY} Aq USPPLIIOAO q
oq wed Yorym dry 91 9o Irey 9y) JO INO[0D YT, ([g]veop)moroo iod 10D AL
“Iopeys 9y} £q USPPLIIOAO
9q UBD UYDIYM 100 ST Je ITer] o) JO INO[0d YT, ([g]yeop)moroo iod OO 100U
"dry sy ye Jrey 9y JO YIpIm oy, 1eoyg uod TPIM diT,
‘oseq S Je By 9y) JO [IPIM 9y, 1eog uod TIPIM 1004
"aseq Irey lzleon o S9)RUIPIO0D
[OIJU0D B1[} e 9JBIINS 91} JO SIJRUIPIO0d A YT, AL 9oemng
"durpeys 10 posn SIY T, “Irey (] veop) rewwiou yaog S[RTLION
[0I3U0D 97} JO 9seq o} 1B [RUWLIOU 99BJINS oY J, 90rJING
"90RJINS 9Y) UO SITRY
JO Ioquunu S} SUIIRINI[RD I0J POS() "99eIS IRJIUIIS 7e07} a[SueLIy, ALY 180Y
10 950d-) @ Ur ST 91 USYM S[3URLI) Y1) JO eI YT,
"9[3ueLI} STY) 10} ¢ PINOYSs Irey oY} asieds MO} R0 o[dueLt, Aysua(Ireq
“I0JRIOULS IOqUINU WOPURI 9Y)
SUIposs 10J pos[) "SRl UsamIs(q aFuryD J0U S80p Jogoqur o[dueLt, (11 o8ueLLy,
1e7[) S[3uRLI) S} JO S0RLINS SY) I0J (J[onbrun y
omre N
uonydriose (] odAT, ere(q odAT, A130m100%) fysedorg

CHAPTER 5. INTERPOLATION SYSTEM GERRYCURL 22

bA=getRandNumber(seed);
bB=getRandNumber(seed);
sum=DbA-+bB;
if(sum>1) then
if(bA>bB) then
bA=1-bA;
else
bB=1-bB;
end if
sum—bB+bA;
end if
bC=1-sum;

base points of the control hairs are P1, P2 and P3 respectively then the newly
created control hair’s point is calculated by:

Pl +bA+ P2xbB + P3*bC

All the other values for the new hair are calculated in the same way. The newly
created hair is then passed directly to the renderer and overwritten by the next
hair. The implementation of this system is done in C++.

Figure 5.1 is a class diagram of the code used. Main reads in the control hair
XML data file name either from the command line or from the standard input
stream. The file is opened and then for every triangle encountered a triangle
class is created. Triangle repeats the algorithm from page 22 for every hair
on its surface to be created. Triangle then creates a hair object that dumps
its values onto the standard output stream in the rib format. No more then
one triangle object or hair object exists in memory at one time since they are
overwritten in every loop. The advantages of this interpolation system is that
it is extremely fast. Calling a random number is the most expensive procedure
and this is only done twice for every hair created. Speed is a very important
factor since this procedure will be called hundreds of thousands of times per
frame. The interpolation works in two modes. The command line version is
called as such:

gerrycurl f controlHairsFile.xml

Were controlHairsFile.xml is the name of the XML file that contains the
file. The program then precedes to print out the resulting rib code to the
standard output. This is extremely useful for debugging the code. It also is
useful if one wishes to cache the rib information. The rib file can be read in
using RenderMan’s read archive function. Caching the rib information in this
way can be extremely useful for a number of shots were the hair does not move
and the underlying skin does not deform in anyway. An example of when this
occurs is short hair on a human head. This method was used extensively in Final
Fantasy: Spirits Within [BjoO1]for the male characters. The main purpose for
gerrycurl is for it to be run at render time. The following example from a rib
file shows its use:

CHAPTER 5. INTERPOLATION SYSTEM GERRYCURL 23

Main

Triangle

Hair

Figure 5.1: An UML class diagram demonstrating the fur interpolation system.

CHAPTER 5. INTERPOLATION SYSTEM GERRYCURL 24

Procedural” RunProgram” [” gerryCurl” control HairsFile.xml”] [010101]

The list of the numbers at the end are the bounding box. This is required by
RenderMan to set aside a 3d volume during the clipping phase of its rendering
process. Hence a bounding box that is too big is very inefficient but to have
one too small leads to parts of the newly created geometry being clipped from
view. For this project the bounding box was created by Houdini and is based
on the control hairs.

5.4 Limitations and Future Work

A number of optimizations could be added to this system. One of the most
glaring ones is that it writes to the standard output. A more efficient method
would be to make it a DSO (dynamic shared object). This means that the
renderer will call it once the subdivision routine is called and then it will be
called as if it is statically linked. This removes the overhead of interprocess
communication. See page 120-121 of [AG99] and [HSO01] for more in depth
information regarding DSOs.

The interpolation system works on a flat polygonal surface. For the Nalu
demo this is not noticed since the hair is long and dynamic but for hair combed
tight to the surface of the object the model can appear faceted. That is one
can see the underlying simplicity of the polygonal model. A solution to this
issue would be to use Non-Uniform Rectilinear B-Splines (NURBS) models and
interpolating across a NURBS patch rather then a triangle. This requires your
model to be a NURBS model or converted to a NURBS model which many fur
systems require. This solution was used for Stuart Little[Bre00].

Randomness is an important part of fur [Boy07]

Randomness can be added to nearly every attribute of the hair. For example
in the modeling system the artist can add randomness to the bending strength
(see Section 4.2) but there is an issue with this and the current interpolation
system. Lets suppose a hair is randomly bent while surrounding control hairs
are straight. The interpolated hairs will be linearly interpolated from straight
to bent as demonstrated in figure 5.2.

This may not be what the artist wants. To work around this one could make
the control hairs change very gradually and have another set of hairs added to
the rib file that are completely random and bypass the interpolation the system.
Another solution would be that instead of interpolating control points one could
interpolate the properties used to generate the hairs including the randomness
properties. The hairs would then be deformed and transformed at render time.
Basically doing what Houdini does to create the control hairs but doing it at
render time. This would mean more work needs to be done at render time by
the interpolation system but it would lead to more reliable results for the artist.

CHAPTER 5. INTERPOLATION SYSTEM GERRYCURL 25

Figure 5.2: Demonstrating how, in one dimension, one hair’s random change in
direction can change surrounding hairs. The hairs at both ends of the line are
control hairs. This problem is exasperated in the actual system since a control
hairs are shared by any number of triangles.

Chapter 6

Shading and Composting

6.1 Kajiya Kay Shading Model

In the 1989 landmark paper [KIK89] James T. Kajiya and Timothy L. Kay
proposed a method for rendering furry objects. There method extended work
done in [Bli&82] and [KH84]. The majority of the paper describes a method
for ray-tracing hair but what has made it famous is the method it uses for
calculating the specular highlight of a strand of hair. The model is based on
the Phong model and has become known as the ‘Kajiya, Kay model’.

The hair is assumed to be cylindrical. The specular light is reflected at
a mirror angle to the tangent of the hair. Assuming the cylinder has normals
pointing in all directions perpendicular to the tangent, this reflected light creates
a cone as shown in figure 6.1 . The actual formula for the highlight intensity is:

U, = kg cosP (e, ef)

ks is the specular co-efficient, e is the vector pointing to the eye, e/ is specular
reflection vector closest to the eye and p is the Phong exponent. The formula
is basically the cosine of the angle between the specular reflection and the eye
vector raised to the power of Phong exponent. The Phong exponent is in many
specular models. It is a measure of the smoothness of the surface or put another
way, it is the inverse of the roughness of the surface. Many shaders use the latter
definition.

If we say that 6 is the angle e makes with the hair and 6/ is the angle that
e/ makes with the hair then we can rewrite the formula as:

Wy = kg cosP(p)(0 — 0r)

= ks(cos 6 cos 0/ + sin 0 sin 67)

= ky((t-1t-e)+sin(t,1) sin(t, €)?)

26

CHAPTER 6. SHADING AND COMPOSTING 27

Figure 6.1: A diagram taken from [KH84| showing a hair as a cylinder and the
specularity cone used.

CHAPTER 6. SHADING AND COMPOSTING 28

From line 1 to line 2 is a simple trigonometric definition. t is the tangent
of the hair and [is the light vector. If the two vectors are normalized then the
dot product of the two vectors is equal to the cosine of the angle between them.
This fact is used to derive line 3.

The "Kajiya, Kay" specular model is extremely useful. It has been used
extensively because it is extremely fast, it has even been used in real time
applications[Sch04]. It is simple to implement in a number of different rendering
models such as scan line or ray-tracing system. The model can also be adapted.
One adaptation used in [Sch04] is to move the tangent vector along the normal
to the hair. Using the formula:

Thew =T+ S*N

S is a scalar value, which is the shifting amount. This can be used to break
up the specularity of the hair so it appears more random and allows the artist
more control of the specular highlights. The normal in this case is simply
perpendicular to the hair tangent. A dual highlight can be added by having two
different values for S.

6.2 Hair Normals

The diffuse component of the hair for this project is found by calculating the dot
product of the normalized light vector and the normal of the hair. Kajiya-Kay
had a similar method for the diffuse component which was sin(¢,1). Depending
on the relation between t and n, the two methods could be equivalent.

The method for working out the normal of the diffuse component is based on
method used in [Bre00]. One finds the cross product of the surface normal and
the hair tangent then linearly interpolates between that value and the surface
normal. The linear interpolation is weighted by the angle between the tangent
of the hair and surface normal. The formula for this is as follows:

a = 5T (6.1)

N=aS+(1—-a)(SxT) (6.2)

This means that if the hair is parallel to the surface, its normal will be
the same as the surface normal and if it is perpendicular the normal that is
perpendicular to the hair is used. This makes the hair lighting much more
intuitive for people used to lighting regular surfaces.

6.3 Deep Shadows

Shadows add depth and complexity to any model. They are particularly impor-
tant for hair since hair has a significant amount of self shadowing. The regular

CHAPTER 6. SHADING AND COMPOSTING 29

method for creating shadows involve either ray tracing or z-depth[RSC87]. For
complex geometry, like hair, ray tracing is too computationally expensive for
production. The z-depth method for RenderMan involves rendering a z file from
the light source. That means using the light as the camera. The z file contains
the distant from the light to the shading point for every pixel. At render time
the distant from the camera is compared to the distance stored in the z file by
transforming the light to the camera co-ordinate space. If the distances match,
the point is not in in shadow but if the point is further away in the camera
then in the z file then the point is in shadow. This is because something is
occluding the point in the z-file. For a better explanation of this method and
for implementation tips see page 235 to 241 of [AG99].

For accurate shadowing of hair the resolution of the z-file must be ex-
tremely big. This causes issues both for memory and also look up time. Deep
shadows[LV00] alleviates these two problems by storing fractional visibility through
each pixel at all possible depths or put another way, a visibility function for each
depth. It is also uses pre-filtering which has faster look up times and uses less
memory. From an end users point of view, deep shadows appear to be the same
as z files but have better quality. One big difference is that with deep shadows
they can have many samples per pixel.

The RenderMan Interface[Pix05] does not include any references to deep
shadows but it is supported by PRMan and is relatively easy to implement so
it is supported by many other renderers.

6.4 Colour

As was said on page 24 hair is defined by its randomness. Due to this, noise
is added to the hair colour. Noise can be viewed as a method for generating
pseudo-random numbers. For this project two types of 2d noise, which uses the
u and v co-ordinates of the underlying surface, were used. One type is of high
frequency which means the noise changes significantly from hair to hair and a
low frequency noise which means that vast areas of hair have the same noise
applied to them. The exact number for these two frequencies are user defined
shader parameters. These noise functions create colour that is then mixed with
hair colour defined by the user. The mix is weighted by a user defined shader
parameters.

6.5 Implementation and Composting

Rendering in passes is essential in production rendering. It allows changes to be
made to the final images interactively and is essential for shot integration(see
pages 256 to 271 of [Bir00]). Rendering multiple passes was achieved using
arbitrary output variables in the surface shader. Applying these allows one rib
file and one shader to output any number of images. For this project a specular
pass was outputted which outputted the result of the Kajiya, Kay specular

CHAPTER 6. SHADING AND COMPOSTING 30

described in Section6.1. The diffuse pass which outputs the results explained in
Section 6.2. The shadow pass which outputs the shadow information described
in Section 6.3. The shadow pass is slightly counter intuitive. If a point is in
shadow it has a value of one but if it is fully illuminated it has a value of zero.
The colour pass which outputs the colour of the object and the alpha pass
outputs the opacity of the object but these are superfluous since the default
output contains these values.

Many of the shading parameters can be defined by maps as was used for
Aslan’s fur in Narnia described in [HDK106].

More passes could trivially be added to the shader but this would require
a lot more work in compositing. The images generated were rendered in the
OpenExr format which allowed for full 32 bit floating point values. This is a
great benefit in compositing since it allows more changes to be made without
doing a re-render. Doing gamma correction in post rendering for example would
mean losing information for most formats but no information is lost when using
floating point.

The compositing was done using Shake which is a standard industry com-
positing package. The compositing tree can be seen in Figure 6.2.

As per standard the diffuse pass is multiplied by the colour. The specular
is then added to this and the shadow pass is used as a mask for the bright-
ness. There is various other alterations that can be done to the passes in the
composition such as changing their brightness and colour.

6.6 Conclusion

The shading has worked extremely well with some exceptional results. More
time could lead to more tweaking of the many parameters both of the shader
and in composition. Some more work could be done to research how it can be
integrated into a live action scene.

CHAPTER 6. SHADING AND COMPOSTING 31

Figure 6.2: Part of the node view taken from Shake used for the creating the
final composite. The final node shows this part of the network is before it is
"overed" with the skin. This is just an example of how the passes could be
composited. A more experienced compositor may know better methods.

Chapter 7

Conclusion

The creation and rendering of short hair and fur is a large area for research.
Pipeline creation, modeling, interpolation systems, shading and rendering hair
are all large areas that were only touched on in this project. Each of these areas
could easily take up an entire master thesis but the goal of this project was to
present an entire system.

The area that needs the most work is the interpolation system which has
a number of deficiencies described in Section 5.4. This is a major bottleneck
in the pipeline and an area with the most detrimental affect on renders. This
could be remedied by any of the methods described in Chapter 5 such as a
better Houdini control file exporter and interpolating across a NURBS patch.

Houdini has proved to be a good tool for fur modeling and it will be inter-
esting to see how future versions of the software will advance the fur system.

It was said in the introduction that this project did not use dynamics system.
Adding dynamics to the system presented here would be an interesting area for
further research.

The results shown in Appendix A are reasonably good but the focus of the
project has always been to give artists as much control over the creation of the
final image as possible. Getting more artistic input and seeing the system being
used for an actual production would be a true test of its value.

The project has created a full working system and using that criteria it has
been a success.

32

Bibliography

[AG99]

[app]
[Bir00]
[Bjo01]

[Blig2]

[Boy07]
[Bre00]

|cCesT]

[CHP*79]

[CHPRO7]

[Cre92]

Anthony A. Apodaca and Larry Gritz. Advanced RenderMan: Cre-
ating CGI for Motion Picture. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1999.

Using the ricurves primitive. PhotoRealistic RenderMan Applica-
tion Note #19.

Jeremy Birn. Digital Lighting and Rendering. New Riders Publish-
ing, Thousand Oaks, CA, USA, 2000.

Kevin Bjorke. Advanced renderman 3:render harder. pages 123-125,
August 2001.

James F. Blinn. Light reflection functions for simulation of clouds
and dusty surfaces. SIGGRAPH Comput. Graph., 16(3):21-29,
1982.

Andy Boyd. Fur real. 3d World, (89), February 2007.

Rob Bredow. Advanced renderman 2:to ri infinity and beyond. pages
89-104, July 2000.

Robert L. Cook, Loren Carpenter, and Edwin Catmull. The reyes
image rendering architecture. In SIGGRAPH ’87: Proceedings of
the 14th annual conference on Computer graphics and interactive
techniques, pages 95-102, New York, NY, USA, 1987. ACM Press.

C. Csuri, R. Hackathorn, R. Parent, W. Carlson, and M. Howard.
Towards an interactive high visual complexity animation system.
In SIGGRAPH ’79: Proceedings of the 6th annual conference on

Computer graphics and interactive techniques, pages 289-299, New
York, NY, USA, 1979. ACM Press.

Robert L. Cook, John Halstead, Maxwell Planck, and David Ryu.
Stochastic simplification of aggregate detail. ACM Trans. Graph.,
26(3):79, 2007.

Joan G. Creager. Human Anatomy and Physiology Second Edition.
WCB, 1992.

33

BIBLIOGRAPHY 34

[£F001]
[HDK+06]

[HS01]

[Inc04]
[JC00]

[Kea07]

[KH84]

[KKS89)

[Kon05]
[LVOO]

[MJC+03]

[MTHK02]

[nar05]

[0T87]

Final fantasy: The spirits within, 2001.

Brad Hiebert, Jubin Dave, Tae-Yong Kim, Ivan Neulander, Hans
Rijpkema, and Will Telford. The chronicles of narnia: the lion,
the crowds and rhythm and hues. In SIGGRAPH ’06: ACM SIG-
GRAPH 2006 Courses, page 1, New York, NY, USA, 2006. ACM
Press.

Christophe Hery and Douglas Sutton. Advanced renderman 3:ren-
der harder. pages 73-96, August 2001.

The incredibles, 2004.

M Reddy A Varshney B Watson J Cohen, D Luebke. Advanced
issues in level of detail, 2000. Course Notes #41 of SIGGRAPH
2000.

Gerard Keating. A fur interpolation system using houdini and ren-
derman. A Master’s project created at the NCCA under the tuition
of J Macey, June 2007.

James T. Kajiya and Brian P Von Herzen. Ray tracing volume den-
sities. In SIGGRAPH °8j: Proceedings of the 11th annual conference
on Computer graphics and interactive techniques, pages 165-174,
New York, NY, USA, 1984. ACM Press.

J. T. Kajiya and T. L. Kay. Rendering fur with three dimensional
textures. In SIGGRAPH ’89: Proceedings of the 16th annual confer-
ence on Computer graphics and interactive techniques, pages 271—
280, New York, NY, USA, 1989. ACM Press.

King kong, 2005.

Tom Lokovic and Eric Veach. Deep shadow maps. In SIGGRAPH
’00: Proceedings of the 27th annual conference on Computer graph-
ics and interactive techniques, pages 385-392, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

Stephen R. Marschner, Henrik Wann Jensen, Mike Cammarano,
Steve Worley, and Pat Hanrahan. Light scattering from human hair
fibers. ACM Trans. Graph., 22(3):780-791, 2003.

Nadia Magnenat-Thalmann, Sunil Hadap, and Prem Kalra. State
of the art in hair simulation. 2002.

The chronicles of narnia: The lion, the witch and the wardrobe,
2005.

J. P. Ortonne and J. Thivolet. Hair melanin and hair color. Hair
Research, pages 146-162, 1987.

BIBLIOGRAPHY 35

[PF05]

[PHO6]

[Pix05]
[Rob99]

[RSC87]

[Scho4]

[SL199]
[SL202]
[WC06]

Matt Pharr and Randima Fernando. GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-Purpose
Computation (Gpu Gems). Addison-Wesley Professional, 2005.

Martin Preston and Martin Hill. Grooming, animating & rendering
fur for king kong: In SIGGRAPH ’06: ACM SIGGRAPH 2006
Sketches, page 43, New York, NY, USA, 2006. ACM Press.

Pixar. The renderman interface version 3.2.1, November 2005.

James Robertson, editor. Forensic Examination of Hair. Taylor
and Francis, 1999.

William T. Reeves, David H. Salesin, and Robert L. Cook. Ren-
dering antialiased shadows with depth maps. In SIGGRAPH '87:
Proceedings of the 14th annual conference on Computer graphics and
interactive techniques, pages 283-291, New York, NY, USA, 1987.
ACM Press.

Thorsten Scheuermann. Practical real-time hair rendering and shad-
ing. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Skelches, page
147, New York, NY, USA, 2004. ACM Press.

Stuart little, 1999.
Stuart little 2, 2002.

Jason Iversen Dave Johnson Will Cunningham, Peter Bowmar. The
Magic of Houdini. Thomson Course Technology, 2006.

Appendix A

Some Rendered Examples

Hair applied to the Cave Troll model created by Ritchie Moore.

36

37

APPENDIX A. SOME RENDERED EXAMPLES

919ew JNOP[OY ® se URs SUIA[IOpPUN o1} Yiim JIret] oy Jo ssed osnJIp o[, 'V 2INSIq

38

APPENDIX A. SOME RENDERED EXAMPLES

992U JNOP[OY © e U{S SUIA[IOpPUN o) YIIM INO0d OU)M Iret] oy Jo ssed remoads oy], gy omn3ig

39

APPENDIX A. SOME RENDERED EXAMPLES

MOpeYS Ul are 9TyMm Ul syred o1
pue oe[q Ul oIe MOpeYs Ul sjred oy], "93)eul INOpoY © st un(s Suld[Iepun o1} YIm Irey o) jo ssed mopeys ayJ, :€'V 9InSr

40

APPENDIX A. SOME RENDERED EXAMPLES

‘mopeys ul ore sired 9TYA\ "O[qISIA SUTe(ITRY oYY JNOYIM ITR o1} WOIJ UL{S o) OJUO PoIsed MOpPeYs o[, F'y oIngi

41

APPENDIX A. SOME RENDERED EXAMPLES

ofexoed oyeyg oy Ul Ioy3e80) poysodwon sassed o) [y Gy oINS

