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Chapter 1

Introduction

Computer generated images are being used more every day to represent reality

in photo-realistic and stylised ways. The mathematical models used in the

process of synthesis of these images are usually simpli�cations of the phenomena

in the complex reality. A common problem associated with this fact is that

these images are usually too smooth, clean and simple, in other words: too

perfect. Although the real world is more rough and �less perfect� than the

images synthesised in a computer, its �imperfections� follow physical rules that

originate patterns familiar to the human eye. Computer Graphics evolution

tries to implement models capable of generating these imperfections.

Real objects are exposed to an environment that changes their shape and ap-

pearance through time. For example, buildings are exposed to rain carrying

substances that stains their walls, rocks are exposed to rain and wind that

erodes them, etc. All these weathering phenomena related with the natural

interactions between objects and the environment are a source of visual im-

perfections that, when considered in the images synthesis, can produce more

convincing results. Although the patterns generated by weathering phenom-

ena don't look totally random, they are usually fuzzy, which allows the use of

non-physically based techniques to produce them in a convincing way.

A common approach to solve this problem is the use of the skills of texture-

painting artists who paint these e�ects. When the scale of the models is high

(for example, a full city) this approach may not be feasible and some automated

processes can be used. An example of this is the �lm King Kong by Peter

8



CHAPTER 1. INTRODUCTION 9

Jackson, in which a particle driven weathering system was used to generate

stains in the walls and snow in the rooftops of a procedurally generated New

York of the 1930's [15]. Such a system must be able to generate weathering

e�ects in a e�cient way. A particle system is a good way of simulating the

e�ects created by rain and wind hitting the surfaces of the objects.

In this Masters Project, a weathering system was developed based on a parti-

cle system that interacts with the model. In its development, the problem of

the possible large scale of the models was taken into account, and a fast way

of calculating the collision detection between the particles and the model was

implemented. This collision detection is based on implicit representation of the

geometry using depth maps rendered by cameras deployed in the scene. The

time-e�ciency of this approach doesn't depend on the amount of geometry, since

the input data size and type doesn't change between di�erent 3D models. The

output of the system is a texture containing a mask of the weathering e�ects

that can be camera-projected back into the geometry. This mask can be used in

the change of appearance of the models, by changing the colour of the surfaces

in the compositing stage (to produce staining, moss accumulation, rustiness,

etc.) or as a displacement map, to deform the geometry (to produce erosion

and sedimentation e�ects).

The developed system was designed to be plugged into any pipeline. For this

reason a full particle system was implemented. As a proof of concept, it was

also developed a Autodesk Maya's plugin that uses all the code of the system,

integrating it in Maya's interface.



Chapter 2

Previous Work

2.1 Weathering Systems

Due to the speci�city of the topic of automatically generated weathering e�ects,

the amount of previous research and development is less than in other areas of

Computer Graphics. Yet, some work from other researchers and developers was

studied before the development of this project.

One of the main inspirations for the project was concentrated on one paragraph

of a one page ACM Siggraph 2006 Sketch by Chris White (Wetta Digital) [15].

In this sketch the weathering system used by Wetta in the production of King

Kong is shortly explained, although no details about the actual implementation

is shown. It is based in depth maps and normal maps rendered by cameras

positioned roughly close to the actual camera used in the shot. It uses Maya

Particles to stain the walls of the buildings of New York and to deposit snow in

the scenes. The particles are driven by a custom force �eld capable of calculating

the collisions between the particles and the depth/normal maps. The collisions

increase the brightness of a mask texture that could be camera-projected onto

the buildings and composited afterwards.

Another important source of inspiration was the paper published by Yanyun

Chen et al [3] in which an artist-friendly (rather than a physically correct)

weathering system is speci�ed. It was inspired by the photon tracing in Pho-

ton Mapping [8, 9, 4]. An entity similar to a photon (the gamma-ton, which

is in this case a particle that carries a certain amount of dirt) is emitted by

10



CHAPTER 2. PREVIOUS WORK 11

sources and collides with the surfaces. Each collision is stored in a gamma-ton

map (similar to the photon map) that is used on a second pass to synthesise

textures to be used as colour pass or displacement maps of the weathering ef-

fects. Since the emission of gamma-tons is an iterative process, the weathering

e�ects produced can be animated. Upon a collision, a gamma-ton can either be

re�ected, bounced (same as being re�ected, but being a�ected by gravity), �ow

on the surface or settle (or absorbed). The particle simulation is di�erent from

the classic approach of integrating the positions and velocities according to the

forces, since it uses ray-tracing to explicitly calculate the impact positions of the

gamma-tons without having to travell through the space between sources and

surfaces. The surfaces have properties (similar in concept to shaders in photon

mapping) that control the way particles react on each collision. This involves

probabilities of mechanical behaviour of the particle (re�ect, bounce, etc.) and

also exchange of dirt values between the particles and the surfaces. The sys-

tem is capable of generate convincing dirt maps, stain bleeding (transport of

dirt, rust or moss collected by the particles upon a collision and consequent

deposit on other surfaces) and e�ects like patina (chemical compounds formed

in metallic surfaces) without using a physically correct process.

Physically correct models for weathering processes were researched before. Julie

Dorsey et al. developed a model to weather stone [5] in which both the appear-

ance and the shape of the stone is altered by interactions with the environment.

This model considers phenomena like the transport of minerals and other sub-

stances by water that �ows and evaporates inside the volume of the stone,

crystallisation of minerals and erosion. A slabs system (a set of volumetric

data-structures aligned with the surfaces) is used to delimit the space where

the environment interacts with the objects. After the simulation of the physical

and chemical processes, the rendering of the results uses some techniques like

subsurface scattering. Julie Dorsey et al developed also a model of water �ow-

ing on surfaces [6], which is one of the most important phenomena related with

surfaces weathering. In this model the water drops are modelled by a particle

system that implements physically accurate movements of �owing drops as well

as the calculation and chemical interactions with the surfaces. This are achieved

by a set of surface parameters and a it uses a couple some di�erential equations

to implement a physically based absorption and sedimentation processes.

Texture synthesis approaches were also researched and developed in order to

generate textures with dirt, stains or other patterns with the objective of make
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the appearance of the surfaces less perfect and clean. One of the most famous

approach is the noise model developed by Ken Perlin [12, 1, 7] that imple-

ments a 1/nf noise (which occurs in natural processes) that can be used to

synthesise noisy, organic textures. This textures can be used to create a less

perfect and less smooth appearance of the objects. Witkin and Kass developed

the Reaction-Di�usion approach [18] which generates weathering patterns on

textures according to natural (specially biological) processes that generate, for

example, the visual patterns on some animals (like the zebra stripes ), patterns

in sand ripples. The patterns can be used to generate weathering features (like

moss generation) on the surfaces.

2.2 Particle Systems

The �rst particle system used in a real production was designed by William

Reeves [13] for the movie �Star Treck - The Wrath of Khan�. This particle

system had all the basic characteristics of the modern ones: emitters, particle

life duration, forces, etc.

Particles-surfaces collisions is an important feature that usually is the bottleneck

of the computation of the particle system. A. Kolb et al [10] developed a particle

system to be used in real-time in the GPU. In order to accelerate the collision

detections the geometry was represented implicitly using depth maps. This

an extremely e�cient way of solving the problem (meant to be implemented

in real-time simulations). Their paper shows how to calculate such a collision

detection.



Chapter 3

Technical Background

This section presents some Computer Graphics principles, techniques and tech-

nologies that were used in the development of the project. The way these topics

were actually used, as well as the reasons why they were used, will be presented

in section 4 on page 22.

3.1 Particles Systems

Particles systems are widely used in Computer Graphics to produce di�erent

e�ects. The basic idea behind them is to have particles �ying around the 3D

scene. These can be rendered directly using di�erent techniques (to create e�ects

like debris of explosions being projected or �uid-like objects using metaballs,

for example) or used in more indirect ways, making them interact with the 3D

models (which is the case of the implemented Weathering System). Usually the

user deploys particle emitters in the 3D space. The particles contain a position

in space and velocity along with other optional values (acceleration, applied

forces, life time, mass, amount of transported dirt, etc.). The user can also

deploy force �elds that change the movement of the particles by applying them

some kind of forces. The particles can also collide with the objects in the scene,

which can change their properties. The movement of the particles is usually

driven by a physical model that calculates the positions and velocities on each

step (or frame) of the simulation, taking into account forces being applied to

the particles. This is achieved by using an integration of the accelerations into

13
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velocities and velocities into positions. There are several techniques to do this

integration, one of the simplest one is the Euler Integration (which was used in

this project). Other Techniques like the Verlet Integration [17] or Runge-Kutta

[11] can also be used.

3.2 Euler Integration of Particles Movement

Newton's Second Law of Motion states that a force is directly proportional

to the mass times the acceleration Since the mass of a given particle and the

resulting force being applied are known, its acceleration on a certain moment

can be calculated:

F = ma ⇔ a = F
m

(Newton's Second Law of Motion)

Knowing the acceleration of the particle, its velocity and position can also be

calculated (which is the goal of each iteration of the simulation). Newton also de-

�ned the relationships between acceleration, velocity and position in an analytic

way using calculus (actually, his research on this area lead to the co-invention

of calculus itself by Newton). These are the relationships between acceleration,

velocity and position between the interval of time [t0, t1]:

v(t) =
∫ t1

t0
a(t)dt

x(t) =
∫ t1

t0
v(t)dt

In a simulation these integrals must be calculated between t=0 and t=current

frame's time, once per simulation step. The numerical methods usually applied

in the computation of these integrals are iterative and use the calculations from

previous frames to infer the next values. In this method the acceleration is

calculated on time t+∆t (in which ∆t is the duration of a frame o simulation

step) using Newton's 2nd law then the velocity is calculated using the velocity

on t (from the previous simulation step) and �nally the position in a similar

way [16]. These are the formulas to do this:
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1. a(t + ∆t) = F (t)
m ;

2. v(t + ∆t) = v(t) + ∆t a(t + ∆t);

3. x(t + ∆t) = x(t) + ∆t a(t + ∆t);

For each simulation step and for each particle these formulas are applied to

calculate the new position on the new step. Between steps, both the velocity

and the position of the particle must be stored (in order to have the v(t) and
x(t) of the 2nd and 3rd formulas).

3.3 Depth Map

A depth map is a rendered image of a 3D model containing in each pixel (or

texel) the value of a distance to the corresponding rendered point in the surface

of the model. This value can be stored on any channel of the image and can be

a measurement of the a distance in any unit. In this project it was assumed that

the channel that contains it is the RED channel of the image and the distance

is measured in the unit used in the world space.

3.4 Normal Map

A normal map is a rendered image of a 3D model containing in each pixel (or

texel) the normal vector of the corresponding rendered point in the surface of

the model. This normal can be in any coordinate system (world space, object

space, camera space, etc.). In this project it was assumed that all the normal

maps represent the normals in world space.

3.5 Bresenham line drawing Algorithm

In order to draw correct particle �owing streaks it was necessary to connect

consecutive particle positions in texture space using a line drawing algorithm.

Bresenham Algorithm [2] was chosen due to its e�ciency, since it uses only inte-

ger calculations. The basic algorithm draws a line in a raster space connecting

two points P and Q, being the X and Y coordinates of Q higher than P and
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with a slope between 0 and 1 (for all the other cases, the same algorithm is used

mirroring the coordinates or swapping the X and Y coordinates of the calculated

points). Such a slope guarantees that there will be only one pixel of the line for

each column of the image.

In this basic case the algorithm starts at P iterates through all the columns

between Px and Qx and on each step, instead of explicitly calculating the Y

value of the pixel using the line equation, the algorithm decides if the current Y

value should be decremented by 1 or not. The decision is made using an error

variable (integer) that is initialized with half the distance in X between P and

Q:

error = −Px−Qx

2

And on each iteration error is incremented with the Y distance between P and

Q:

error = error + (Qy − Py)

Whenever error is larger than zero, then the current Y position is decremented

by 1. Here is a pseudo-code version of the basic algorithm:

Algorithm 1 Bresenham's Basic Line Drawing Algorithm

BasicBresenham( P, Q, colour )

deltaX = Qx - Px;

deltaY = Qy - Py;

error = - deltaX / 2;

y = Py;

for (x = Px to Qx) do

error = error + deltaY;

if( error > 0 ) then y = y + 1;

drawPixel(x, y, colour);

end for

end

The idea behind this algorithm is to use integer values instead of using the real

(�oating point) numbers calculated with the line equation. These integers can

be seen as the corresponding �oating point values scaled with deltaX.
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3.6 Photon Mapping - 2nd Pass

In the development of the Weathering System a technique similar to the Photon

Mapping's 2nd pass was used to gather the �nal dirt texture. The original

Photon Mapping [8, 9, 4] is a Global Illumination rendering algorithm which is

able to implement e�ects such as caustics and colour bleeding. This algorithm

is divided into two passes.

In a �rst pass, photons (particles containing a certain amount of radiant power

moving in a certain direction) are emitted from the light sources into the scene,

bouncing on the surfaces on every contact (detected using raytracing). All

these contacts are stored in a space partitioning data structure (usually a KD-

Tree) with the positions, direction and amount of radiant power of the colliding

photons.

In the second pass, a gathering technique is used to soften the light in�uence of

each element stored previously on the surfaces of the scene. The �nal image's

pixels are iterated and, for each, a standard raytracing calculation is done. On

each ray-surface hit point, the density of indirect light is calculated searching

the surrounding photons stored in the KD-Tree using a range search technique.

The calculation of the light density is done with list of closest photons using the

following formula:

Lr(x,w) ≈
∑n

p=1 fr(x,wp, w)∆φp(x,wp)
π r2

In which:

Lr = indirect radiance on that point;

fr = BRDF on that surface;

∆φp(x,wp) = radiant power of each photon;

r = maximum distance between the point and the photons in the list of closest

photons;

A �ltering might be used to attenuate the in�uence from photons farther away

from the point. This �ltering is done using a weight that is multiplied with the

power of each photon, and is usually a function of the distance r. For example,

to implement a cone �lter, the following weight can be multiplied by each photon

power:
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weight = 1− dp

k r

In which k > 1 is a value that characterizes the �lter, dp the distance between

the rendered point and the current photon and r is the distance to the farthest

photon in the list.

3.7 Perlin noise / turbulence

In this project a turbulence force �eld was developed to add a more chaotic, yet

organic, movement of the particles. The force is calculated using Perlin noise

[12, 1, 7]. This noise was developed by Ken Perlin in order to create realistic

noisy, organic textures. The calculated noise can be generated in spaces with

any number of dimensions as well and can be used not only to produce textures,

but to drive any value in space. The basic idea is to have a noise function in

4D space (X, Y, Z, time) with an extra variable, the frequency (that drives the

size of the noise grain), that returns a noise value (usually between 0 and 1):

noise(x, y, t, freq) : R4 → R

This functions usually use a set of random values that can be used in di�erent

positions in space and then interpolated to �ll all space with values. The density

of these random points in space is proportional to the given frequency. In order

to increase the quality of this noise, a turbulence function can be implemented.

The idea is to calculate di�erent noises with di�erent frequencies and blend all

the values so that the result becomes more irregular in terms of frequency, yet

organic. Usually the frequencies are scaled by a factor of 2 between themselves,

and because of this each noise is called octave (like the musical scales, in which

the frequency of the notes of the next octave have twice the frequency of the cur-

rent one). The blending between octaves uses an weighted sum that attenuates

more the high frequencies.
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Figure 3.1: Perlin noise: a) low frequency; b) high frequency; c) turbulence

3.8 Planar Texture Projection Mapping

A possible way of mapping a texture into a 3D model is to use a planar pro-

jection. This technique uses a projection matrix similar to the one used in

a camera projection. In a camera, the projection matrix when multiplied by

a vector or point in world space, transforms its coordinates into NDC space

(Normalized Device Coordinates, a coordinate system in which the X and Y

components align with the camera plane with values between 0 and 1 and the

Z axis is perpendicular to them).

PNDC = Pworld M

in which:

PNDC , Pworld: the point being transformed (in NDC and World coordinates)

M : the projection Matrix

The planar texture projection uses a similar approach to apply a texture to an

object during its rendering. If a camera is pointed towards an object, it can

project a texture on it in render time by transforming the world space position

of each rendered point on the surface into texture image space, returning the

colour stored on the corresponding texel.
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3.9 Maya API / Mel

Maya is a node-based 3D computer graphics software package extensively used in

the Computer Animation and Visual E�ects Industry. It presents a framework

that allows software developers to add new features to the existing ones. Maya

version 8.0 was used in the development of this project and presents two main

ways of develop new features and plug-ins: the MEL scripting language (which

is a high level simple scripting language that allows to manipulate virtually any

node in Maya) and the Maya C++ API (which allows the develop new nodes

or MEL commands).

3.9.1 Locator Nodes

A relatively simple way of developing a node that is able to show visual in-

formation on a OpenGL Maya 3D viewport is to use a Locator Node in a

plug-in developed using the Maya C++ API. This is done extending the class

MpxLocatorNode , a child of the standard node's class: MpxNode . The MpxLocatorNode

provides the function draw(), which allows the developer to add OpenGL code

that can be rendered in the Maya viewport. All the 3D visualisations of the

Weathering System in Maya were developed using Locator Nodes.

3.9.2 Mel Utility and Interfaces Scripts

Mel is useful to do set-up work, such as creating new nodes, connecting existing

nodes, etc. In this project it was extensively used to do all the weathering scene

set-up work. Another useful feature provided by the Mel library is the user

interface (UI) creation. This was also used in this project for all the interfaces

related with the Weathering System in its Maya integration.

3.10 Open EXR image format and API

The only image format used by the Weathering System is the open source Open

EXR format, developed by ILM. This format allows to store an arbitrary number

of channels (not only the standard RGBA like in most of the formats) and may

store the information in �oating point values. ILM released not only the format,
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but also a C API that allows to integrate this format in any software. It presents

two sets of functions to read and write images:

1. Simple: that assumes that the existing channels are RGBA and deals

with the values in half-precision (16bit) �oating point format. This set of

functions is simpler to use due to these assumptions;

2. Advanced: which allows the developer to specify an arbitrary set of chan-

nels and other values formats (16 bit integer, 16 bit - half precision �oating

point and 32 bit -full precision �oating point).

Due to the necessity of representing very precise Z-depth values, in this project

the latest set of functions was used, in order to use the full precision �oating

point.



Chapter 4

Implementation

4.1 Main Objectives

The main idea of the developed Weathering System is to generate several weath-

ering e�ects such as dirt/moss/patina/rust accumulation (surface appearance

change), erosion and sedimentation (geometrical changes) on the surfaces of a

model. This system was designed to allow to automatically generate these ef-

fects on any kind of model, no mater its scale. A common application of such a

automation is in models of large procedurally generated cities, in which it would

be impossible to paint by hand all these e�ects in a reasonable time frame. The

main goal was not to create a 100% physically correct system, but to create con-

vincing weather e�ects to be added both to photorealistic and non-photorealistic

productions. The weathering e�ects are very fuzzy but follow some patterns,

such as dirt and rust sliding in vertical planes, patina accumulation in more self

occluded areas of the surfaces, etc. Another important objective was to develop

a system that could be easily integrated on di�erent 3D Software and Pipelines.

4.2 The Approach

The developed system can work as a standalone program that can also be inte-

grated on di�erent 3D packages. To demonstrate this, an integration on Maya

was also implemented. The weathering e�ects are achieved by bombing the sur-

faces of the model with particles that change the properties of these surfaces.

22
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A scalable particle system was developed from scratch, with di�erent types of

particles emitters that can be deployed on the scene and di�erent force �elds

that can a�ect and drive the particles movements.

4.3 System Outputs

The output of the system is simply a texture with a mask that shows where

a certain weathering e�ect occurs on the surfaces. This texture indicates the

amount of interaction between the particles and the surfaces. For the e�ects

that involve geometrical alterations of the surfaces (erosion and sedimentation)

the resulting texture can be used as a displacement map. In the cases in which

the e�ects a�ect only the surfaces appearance, the resulting mask can be used

in compositing to reveal dirt, moss, rust, etc. The actual look of these types of

e�ects must be rendered separately and premultiplied by the mask, for example.

The output mask is camera-projected into the geometry by a camera previously

speci�ed by the user.

4.4 System Inputs

The inputs of the system are a description of the particle system's set-up and a

set of maps containing information about the geometry and the surface proper-

ties. These maps are rendered from a set of orthogonal Input Cameras deployed

on the scene by the user. Each camera renders the following maps:

• Depth Map: implicitly representing the positions of the surface points;

• Normal Map: with the normals on those points;

• Impact Map: with probabilities of di�erent mechanical reactions of the

particles upon the impact with those surface points;

• Dirt Map: with information of amount of accumulation of one weathering

element (dirt, for example) and some depositing/removal rates of that

element on the surface;
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Each camera projection contains a 2.5D information of the surface (with the

Depth Map), and several cameras can be added together to recreate the ge-

ometry of the model using only these projected maps. No polygon meshes or

parametric surfaces are passed to the system. All the inputs information are

described in an XML �le plus the image �les with the maps. The output mask

is generated from the point of view of another Output Camera, which contains

only the depth and normal maps.

4.5 System Process

The particles collisions are calculated using only the re-generated 3D model from

the projected maps. Each particle transports a certain amount of a weathering

element (for simplicity, lets call it just dirt) and upon a collision it interacts

chemically with the surface according to the parameters speci�ed in the Dirt

Maps, depositing or collecting dirt from the surface. After this chemical inter-

action there is a mechanical reaction of the particle according to the value in

the Impact Maps. There are 3 types of reactions:

1. Absorption: in which the particle dies after the collision;

2. Bounce: the particle is re�ected on the surface and continues its move-

ment;

3. Slide: the particle �ows along the surface.

Both the bounce and the slide reactions are in�uenced by the particle's velocity,

the forces applied to it and the surface normal (given by the Normal Maps).

After the simulation the information about the dirt in the di�erent Dirt Maps

are accumulated by the output camera (from its point of view) into the output

map. At the end, a process similar to the Photon-Mapping's 2nd pass is used

on the resulting texture using also the depth and normal maps rendered from

the output camera to create a smoother �ltered output taking the surface shape

into account.
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4.6 Justi�cation of Relevant Decisions

a) Development of an independent Particle System instead

an existing one (ex: Maya's Particles):

The development of a particle system from scratch was both an opportunity to

gain some experience on the area of physical simulations and a way of allowing

the inclusion of this system on any pipeline, detaching it from a speci�c Software.

b) Collisions against Depth/Normal maps and not the ge-

ometry itself:

As seen before, such a system is commonly used in large procedurally gener-

ated models. Particles collision detection is one of the most time-consuming

processes in a particle simulation, this approach may not be 100% accurate, but

is very fast and its execution time doesn't depend on the amount of geometric

information. For example, it can take the same time to calculate collisions with

a single house and a full city. The lack of some accuracy can be immensely

reduced with a good input cameras placement.

c) Not totally implemented on an existing 3D environment

(like Maya):

With this approach the design was initially concentrated on the computer graph-

ics principles rather than on the technological challenges of developing for a

speci�c package. Anyway, the integration on Maya allowed some work on this

area. At the beginning of the project some tests were done with Maya particles

driven by the API with a new Force Field Node, but it was soon realised that

the problems of struggling with Maya API's would be bigger than the design of

the system itself.

d) Use of Mental Ray as renderer of the projected maps in

the Maya Integration:

Maya Software Renderer is fast, but Mental Ray has more nodes that can be

easily used to generate the depth and normal maps, for example. Another rea-

son is the lack of support by Maya Software Renderer for the Open EXR image
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format, which was chosen format due to its �oating point data and its growing

popularity in the Industry. Other renderers, like Renderman, were not chosen

because some extra pipeline between it and Maya would be needed, which was

out of the scope of this project.

e) Use of orthogonal planar projections:

Any kind of projection could be used by the system (any projection matrices

can be supplied to the system), but Orthogonal cameras are preferable due to

the simplicity of generation of their projection matrices and because perspective

projections would create di�erent resolutions of the depth and normal maps at

di�erent camera Z distances. Without a constant resolution through all the

model, the exchanges of dirt between the particles with the surfaces would have

to be compensated for di�erent Z depths (in collisions farther from the camera

the amount of deposited dirt on the Dirt Map would have to be less than in

closer collisions).

4.7 The Usage Work�ow

4.7.1 Generic Work�ow

The system contains a set of core classes that can be compiled into a standalone

program. In a simple and generic work�ow for the Weathering System this

standalone application can be used. To operate the system, the user must

provide:

• a set of input projection maps with the corresponding projection matrix;

• one output projection (with a depth and normal maps and the �le name

of the output texture �le which will contain the dirt mask);

• the information about the particles system set-up (positions and parame-

ters of the emitters and the force �elds).

After running the particles simulation (which can be seen in a OpenGl viewer

in the standalone version of the system) the output is an image �le with the dirt

mask to be camera-projected back into the geometry using the output camera's
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projection matrix. Any renderer or 3D software could be used in this pipeline,

since the input format is very generic (maps using the Open EXR �oating point

format).

Figure 4.1: Generic Weathering System Usage Work�ow

4.7.2 Maya Integration speci�c Work�ow

A Weathering Plug-In containing several scripts and nodes was developed in

this Maya integration. A main Weathering Simulation node contains all the core

classes contained also in the standalone version of the system, which means that

no re-writing of the system was necessary in this integration. The user just have

to have a clean polygon mesh version of the geometry (other types of surfaces

can be easily converted into polygons) and then follow these steps:

1. Set-up the Scene (which creates all the shaders, render layers and renderer

settings);

2. Create the input and output cameras;
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3. Render the input maps;

4. Create and place the Particle Emitters (which are di�erent from the ones

provided by Maya);

5. Export the scene into the XML format;

6. Create a Weathering Simulator node and specify the XML scene �le;

7. Run the Simulation;

8. Generate the output mask using the Weathering Simulation Node;

9. Camera Project the mask into the geometry using wither a Surface Shader

or a Displacement Shader (depending on the type of weathering e�ect);

10. Render the scene from any camera (which can output the dirt maps pass

which can be composited with the actual render of the scene);

Figure 4.2: Maya Integration Usage Wok�ow

Although the list of steps in this process is relatively extensive, most of them

are automated by the scripts of the Weathering Plug-in, which means that the
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user has only to click one button from most of these steps, as will be shown

later in this document. Mapping this work�ow with the generic one presented

before:

• Steps 1 to 5: correspond to the Inputs preparation;

• Steps 6 to 8: correspond to the actual running of the simulation by the

core;

• Steps 9 to 10: corresponds to the usage of the output mask back into the

scene.

4.8 System's Core Implementation

In this section the most relevant C++ classes that implement the core of the

Weathering System will be described. The implementation of each class can be

found in the .h and .cpp �les with the same name of the classes. The class dia-

grams presented in this section contain only the most relevant classes, member

variables and methods. Along with this Thesis, the code and the correspond-

ing documentation generated with Doxygen is handed in, where more detailed

information about the classes can be found.

4.8.1 High Level Design

From a high level point of view, the code can be seen as black box containing

the set of classes that implement the particle system, which includes also the

weathering processes happening between the particles and the surfaces. This

set of classes has connections with two external classes:

• WeatheringScene : responsible for the parsing of the XML �le with the

scene description;

• OpenGLViewer : responsible for the rendering (on a OpenGL window) of

the particles simulation, to be used by the standalone implementation.
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WeatheringScene

loadXML(filename : string) : void

OpenGLViewer

Particle System

ParticleSolver

simulationStep(timeStep : float) : void

Figure 4.3: High Level Class Diagram

4.8.2 Particle System

The core of the particle system is relatively detached from the rest of the system,

which allows its use on other applications as well. New particle emitters, force

�elds and particle-surface colliders can be easily integrated extending the ab-

stract classes ParticleEmitter , ParticleForceField and ParticleCollider

respectively. Figure 4.4 on the next page shows the class diagram for this part

of the code.

ParticleEmitter class and its childs are responsible for the generation of new

particles in the simulation. The emitParticles(float currentTime) method

checks the amount of particles that must be emitted since the last simulation

step, given by the emission rate multiplied by the deltaT of the simulation step

and generates those particles. Two implementations were provided:

• PointParticleEmitter : emitts particles from a point in space in all the

directions randomly selected in a uniform way each time a new particle is

created.

• HemisphereParticleEmitter : emitts particles from an hemisphere with

a speci�ed radius and center. The hemisphere is uniformly sampled gener-

ating a random point in a cube (randomizing the X, Y and Z coordinates

between -1 and 1), if the point is outside the unit sphere (calculating the
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distance of the point to its center) then this point is discarded and a new

one is sampled, until a valid point is found. If the resulting point is in the

negative Y direction, then it is mirrored to have a positive value in this

axis. Finally the vector de�ned by the point is normalized, scale by the

radius of the emitter and translated according to the hemisphere center.

Particle

ParticleSolver

simulationStep(timeStep : float) : void

0..*

ParticleEmitter

emitParticles(currentTime : float) : list<Particles>
createParticle() : Particle
drawGL() : void

ParticleForceField

forceAt(point : Vector3d,currentTime : float,mass : float) : void

0..* 0..*

ParticleCollider

collide(... : ...) : bool
detectCollision(... : ...) : bool
processCollision(... : ...) : void
drawGL() : void

BBox

GravityForceField WindForceField TurbulenceForceField PointParticleEmitter HemisphereParticleEmitter

Figure 4.4: Particle System Class Diagram

ParticleForceField and its child are responsible for the generation a force on

each particle during the simulation. The force is function of the particle's posi-

tion and the current time of the simulation. Three force �elds implementations

are provided:

• GravityForceField : generates a vertical force with a constant accel-

eration magnitude provided by the user and with a direction along the

negative Y;

• WindForceField : generates a force with a magnitude and direction pro-

vided by the user;

• TurbulenceForceField : generates a force using a Perlin Turbulence cal-

culation (as shown in section 3.7 on page 18) using the X, Y, Z of the parti-
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cle and the current time. The user can specify the frequency and the num-

ber of octaves of the turbulence. The function latticeNoise(...) re-

turns the random numbers lattice value for the given position, noise3d(...)

generates a Perlin noise octave value for each point in space and time and

turbulence(...) mixes the values between octaves with the weighted

sum, as explained before.

The core of the simulation is the class ParticleSolver , responsible for the

Euler Integration and the coordination of the particle emitters, force �elds and

colliders. This class has the simulationStep(float timeStep) method that

calculates one simulation step using the parameter timestep as the deltaT .

One simulation step consists in the following set of actions:

1. For each Particle:

2. Accumulate the total force applied to the particle in that position by

summing the forces produced by the force �elds;

3. Invoke the collide(...) method from the ParticleCollider (which

checks for collision between the particle and the surfaces adjusting its

velocity/position if necessary);

4. For each Particle Emitter, invoke its emitParticles(...) method and

appends the newly emitted particles to the particles list.

The Particle Solver stores the list of particles under its control in the particles

list. An STL linked list was chosen to allow fast removals of particles that die

during the simulation.

4.8.3 Particle Data

A single particle, implemented by the class Particle , contains the following

data:

• Position in world-space;

• Position in world-space in the last simulation step;

• Velocity vector;
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• Mass: used to calculate the acceleration created by the resulting force

applied to it;

• Alive �ag: boolean that speci�es if the particle is dead or alive;

• Collisions Count: used to kill the particle after a certain number of colli-

sions;

• Maximum Collisions: the maximum number of collisions until the particle

gets killed;

• Last Impact Type: speci�es if the particle bounced or slide in the last

collision;

• Dirt: amount of dirt being transported by the particle (a �oating point

value);

4.8.4 Particle Collider and Output Dirt Mask Generation

The particle-surface collision detection is implemented by extending the ParticleCollider

abstract class. The particle collider has the followings responsibilities:

• Check for collision events between particles and surfaces;

• Processing of the mechanical reaction of the particles, implemented in the

collide(...) method (this method is not virtual because the mechanical

reactions don't depend on the ;

• Processing of the chemical interaction between the particle and the surface

calculating the dirt transferences in the collision point;

• Gathering of the generated dirt in the surface and generation of the output

maps.

ParticleCollider is abstract, which allows several implementations of this im-

portant part of the system. One implementation was developed, the ProjectedMapsCollider ,

providing the projected maps (depth map, normal map, etc.) collision approach.
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ParticleCollider

collide(... : ...) : bool
detectCollision(... : ...) : bool
processCollision(... : ...) : void
drawGL() : void

ProjectedMapsCollider

ProjectedMaps

NDC_To_World : Matrix
World_To_NDC : Matrix

Map

DirtMap

ImpactMap

DepthMap

NormalMap

1..*

inMaps

outMap

DirtProperties ImpactProperties

Figure 4.5: Particle Collider Class Diagram

4.8.4.1 Collision Detection

The collision detection is done by extending the virtual method detectCollision(...)

in ParticleCollider . This method returns true when a collision is detected

and also returns (using the arguments passed by reference) the position, sur-

face normal, impact probabilities (used in the decision of which mechanical

reaction will the particle have) and the dirt properties (used to calculate the

dirt chemical transferences between the particle and the surface) of that point

in the surface where the collision occurred. In the provided implementation

(ProjectedMapsCollider ) these values are read from the depth maps, normal

maps, impact maps and dirt maps respectively. This type of collider uses several

of these sets of maps (implemented by the class ProjectedMaps ), one per or-

thogonal camera deployed in the scene by the user. This technique was inspired

by the depth-map technique presented in [10].

One ProjectedMaps instance exists per input and output cameras. This class

contains the four maps (depth, normal, impact and dirt), a world to NDC

projection matrix, a NDC to world projection matrix and the �le name and path

for the output map (used only if this is used in an output camera). The matrices

allow to project the positions of the particles into NDC coordinates in map space

and vice-versa. A position in NDC space contains also the Z component, which

corresponds to the depth value measured as a distance in world space from the

camera to the point being projected. The collision detection between a particle



CHAPTER 4. IMPLEMENTATION 35

and the ProjectedMaps is done using the following algorithm:

1. Project the Particle's position into NDC space (plus the Z depth);

2. Get the Depth Map's value in the resulting (X, Y) coordinate in NDC

space;

3. Compare the point's Z depth with the Depth Map value. If the later is

shorter(closer to the camera):

4. Return Collision True

5. Else:

6. Return Collision False;

This process veri�es if the particle is behind the surface. If it is, then a collision

is identi�ed.

Figure 4.6: Collision Detection With One Depth Map

Using more than one input camera (i.e. ProjectedMaps instance) at the same

time allows the user to cover a bigger area of the model's surface, but the

collision detection algorithm must be adjusted:
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1. For each camera:

2. Check if the particle collides with it. If there is at least one in which no

collision occurs then:

3. Return Collision False;

4. Else:

5. Return Collision False in the camera with a smallest distance between the

depth map value and the particle collision.

In some cases, a particle may be behind the surface seen from a certain camera,

but there is no collision (the particle can be behind the all object, for example).

In these cases, an extra point of view from another camera can detect that the

particle is outside the boundaries of the object, this justi�es why one camera

detection of a non-collision is enough to infer a non collision at all.

Figure 4.7: Collision Detection With Several Depth Maps

Choosing the camera with a smaller distance between the particle's position and

the surface point (given by the depth map value) makes sure the known surface

point closest to the particle is chosen as a hit point (Figure 4.8 on the next

page).

Upon every collision an new entry of the hitPoints list (member of the collider

that simply contains points in space) is created to allow the visualisation of all

the occurred collisions.
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Figure 4.8: Collision Detection - Choosing The Closest Depth Map

4.8.4.2 Mechanical Reaction

After a collision, a particle will react in one of three possible ways: bounce, slide

or be absorbed. This mechanical reaction is processed in the ParticleCollider

abstract class in the processCollision(...) method . This is not a virtual

method, like in the rest of the collision event implementation, because no matter

how the collider works internally, the particle movement after the collision is

always the same, depending only on on the normal and the impact probabilities

on the collision point, which is provided by the detectCollision .

The impact reaction probabilities are implemented in the class ImpactProperties .

This class contains the probabilities of the particle being absorbed, bounce or

slide. These probabilities are stored in two �oating point values:

• absorption : the probability of absorption by the surface (between 0 and

1);

• bounceOrSlide : if the particle is not absorbed then it will either bounce

or slide, this value contains the probability of the bouncing event.

The ProjectedMapsCollider reads these values directly from the Impact Maps

(red and green channels respectively). After getting the correspondent value for

the detected collision, a Russian Roulette method is used to decide which event

will occur:
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Algorithm 2 Impact Type Russian Roulette
a = random number between 0 and 1;

if ( a <= absorption) then

return Absorption;

endif

b = random number between 0 and 1;

if ( b <= bounceOrSlide ) then

return Bounce;

else

return Slide;

endif;

After calculating the event the particle will either be marked as dead (and conse-

quently removed from the list of particles by ParticleSolver ) if an absorption

occurs or its velocity will change if it bounces or slides along the surface. The

processCollision(...) method decomposes the velocity of the particle into

normal and tangent in relation to the surface using two dot products. The nor-

mal component of the velocity is inverted, which corresponds to the mechanical

reaction on a collision.

vt = v.T ;

vn = −v.N ;

Figure 4.9: Decomposition of the Velocity Vector into Normal and Tangent
Velocities
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The normal vector is known and the tangent one is calculated using a double

cross product:

T = N ∗ (v ∗N)

in which:

N : the tangent vector;

T : the normal vector;

Then the resulting velocity is calculated by multiplying a resilience factor with

the normal component and a friction factor to the tangent one. These two

values are members of the ParticleCollider class. In the case of a bounce,

the friction factor is overridden and forced to be 0 (eliminating the tangent

component of the velocity). In the sliding the resilience is overridden and set

to 0 (eliminating the normal component of the velocity). The resilience and

friction factors specify the amount of absorbed energy after the collision in he

normal and tangent components:

v = vnR + vtF

in which:

R: resilience factor

F : friction factor

An extra adherent force is applied to the particle if a slide occurs to keep the

particles in contact with the surface, even if an external force pulls it away.

This force is applied along the negative normal direction (pushing the particle

against the surface) and its magnitude calculation uses an adherence factor (also

member of the ParticleCollider class). In this case, an Euler Integration is

also used to calculate the resulting velocity for this force:

v = v − A N timestep
massparticle

in which:

A: adherence factor;

N : the normal;

4.8.4.3 Chemical Interaction

The implemented model of the chemical interaction between particle and surface

upon a collision is not meant to be chemically nor physically correct. It simply
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allows the user to con�gure the amount of dirt being transmitted from the

particle into the surface and vice-versa, according to the values present in the

Dirt Map. In this map the RGB channels are used to store the following data:

• Red Channel: the amount of dirt in the surface;

• Green Channel: the percentage of dirt in the particle that must be trans-

ferred to the surface point where the collision occurred (deposit value);

• Blue Channel: the percentage of the dirt in the surface that must be

transferred to the particle (erosion value).

After some tests, it was noticed that the particles �owing in the surface may not

follow a completely continuous path due to the nature of their motion integration

(Euler Integration) which, above a certain velocity, makes the particle jump

several pixels. To avoid this the type and position of the last impact type of

the particle is stored in the particle itself. If both the current and the previous

impact type are of the type Flow, then the system assumes that the particle

travelled on the surface linearly between the two points. I order to keep a

certain visual continuity, Bresenham Line Drawing algorithm is used to draw

the correspondent Dirt Map texels. This is implemented in the class DirtMap ,

method addLine(...) (Figure 4.10 on the following page);

After a collision, the calculations of amount of dirt being transferred between

the particle and the surface are calculated in the class DirtProperties , method

calculateDirt(...) . The resulting particle dirt is written in the particle and

the surface dirt in the red channel of the dirt map in the corresponding texel.

The following formulas are used for this transfer during a collision:

dirtparticle = dirtparticle [1− (D depositsurface) (1 + (E erosionsurface)];

dirtsurface = dirtsurface [1 + (D depositsurface) (1− (E erosionsurface)];

in which:

dirtparticle: dirt transported in the particle;

dirtsurface: dirt in the surface, stored in the Dirt Map;

D: a global Deposit multiplier de�ned in the collider class;

E: a global Erosion multiplier de�ned in the collider class;
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a) Without Bresenham Algorithm

b) With Bresenham Algorithm

Figure 4.10: Cave Troll Dirt Map without and with Bresenham Line Algorithm
(In the left image some particle paths are drawn with a sequence of dots, in the
right one when a particle �ows along a surface, a line connects two consecutive
positions.)
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depositsurface: the deposit value read from the Dirt Map;

erosionsurface: the erosion value read from the Dirt Map;

This bi-directional dirt transfer allows not only the deposit of dirt in the sur-

face, but also allows the particle to collect dirt in certain areas and trans-

port it into others. The global erosion and deposit variables stored in the

ParticleCollider class are used to scale all the erosion and deposit values

from the Dirt Maps.

4.8.4.4 Output Textures Generation

The generation of the output texture with the dirt mask from the point of view

of the output camera is implemented in the method saveDirt(...) of the class

ProjectedMapsCollider and is done in two steps:

1. For each texel of the output texture, gather the correspondent dirt values

from the Dirt Maps of the input cameras visible from the output camera;

2. Use an approach similar to the Photon Mapping's second pass to get

a more blurred result. This is done because a particle collision occurs

only on one texel of one of the input Dirt Maps. This results in a very

high frequency result with isolated pixels, instead of a more scattered and

blurred dirt. Using the information in the normal and depth map a blur

along the surfaces can be achieved, which is better than simply do a 2D

blur on the resulting texture.

In the �rst step, for each texel of the Output Map the corresponding depth

value from the output camera Depth Map is get. The texel coordinates and

this depth value are converted into world space and then converted into NDC

space for each input dirt map, then the dirt values of all these input maps is

summed and the value is written in the output map's current texel. With this

operations, the dirt present on the input Dirt Maps is collected for each point

on the surface visible through the output camera.
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Figure 4.11: Gather of Dirt Values of All Input Cameras From The Ouput
Camera Point of View
The ouput depth values are used to transform them into world space (1), and
then from world space into the input dirt map space (2).

The result usually has a very high contrast and with high frequency noise, since

each collision was recorded in the Dirt Maps in only one texel at a time (or with

lines with a width of 1 texel).

Figure 4.12: Output Dirt Mask Texture Without the Second Pass (Noisy)
(Airplane Model provided by Michael Garrett)

In order to solve this, an approach similar to the second pass of the Photon

Mapping is performed. In Weathering System, this algorithm is adapted to its

data structures and data values:
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• Dirt values on the surfaces seen from the output camera are gathered

instead of radiance.

• Instead of using a space search acceleration structure, like a KD-Tree, the

search is done querying the output map's surrounding texels.

The texels of the output map are iterated another time. For each one of them,

the dirt of the surrounding texels is summed. Using the directional and posi-

tional information on the output normal and depth maps, a gathering formula

similar to the one of Photon Mapping can be used:

dirtq =
∑n

p=1

dirtp(NqNp)(1−rpq)

r

in which:

p: each texel surrounding the current texel with a distance < r;

q: the current texel;

dirtp: the dirt amount in the texel p;

dirtq: the dirt amount in the texel q;

Np: the normal in the texel q;

Nq: the normal in the texel p;

rpq: the distance between p and q;

r: the maximum distance allowed between p and q;

Comparin with the Photon Mapping formula, the dirtp is similar to the photon

radiant power (φ) the dot product between the normals is similar to a lambertian

BRDF in the and the
(1−rpq)

r is similar to a cone �lter being applied to the result.

The results are much smoother, taking the directional and positional information

into account, to avoid blurring certain points into areas where these points

shouldn't have in�uence (Figures 4.12 on the previous page and 4.13 on the

following page).
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Figure 4.13: Same Output Texture, but with the Second Pass
(Airplane Model provided by Michael Garrett)

4.8.5 Particle System OpenGL visualisation

All the colliders and emitters have a drawGL() method in which some OpenGL

code is used to show these objects in the viewport. In the only implemented

collider, ProjectedMapsCollider , the input and output cameras are presented

as rectangles in space, representing where the maps are projected from, and

also some samples of the depth maps are shown in world space, which shows the

shape of the objects of the scene. The point emitter renders a box with a large

point inside and the hemisphere emitter uses two curved lines to represent the

hemisphere itself. An example is shown in Figure 4.14 on the next page.

The particle system itself is also drawn using points for each particle. The hit-

points list in the collider is also iterated and each point is drawn, which shows

all the positions in space where collisions happened. This gives an idea of how

the �nal output texture will look (Figure 4.15 on the following page).

This OpenGL visualisation code is used in both the standalone program (in a

glut window) and in the Maya viewport (through the draw(...) method of

the Locator Node class).

4.8.6 XML Scene Description Language Parsing

The XML scene description language was parsed using the open source C++

XML parser TinyXML , a simple XML parser developed by Lee Thomanon [14].

The language speci�cation will be described later in this document.
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Figure 4.14: Collider and Emitters being drawn with OpenGL in Maya viewport
In this scene, the collider draws the depth map samples of the Cave Troll and two
cameras. A point emitter and an hemispherical emitter are also being drawn.

Figure 4.15: Particles and hit-points being drawn with OpenGL in Maya view-
port
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4.9 Maya Integration Implementation

4.9.1 Overview

The C++ classes described before in this chapter were totally reused in the

Maya Integration. This integration consisted only in the implementation using

Maya's API of a new node to contain these classes, plus one Locator Node for

each particle emitter (to allow the user to place the emitter in the scene) and a

set of Mel scripts that help the automation of the set-up process and to provide

a user graphical interface integrated in Maya.

The Mel code is divided into three �les:

• WeatheringUI.mel : contains all the Graphical User Interface code;

• WeatheringSceneSetup.mel : contains all the code that con�gures the

Maya scene (shaders set-up; render layers set-up; main Weathering and

particle emitters nodes creation and render properties set-up);

• WeatheringXMLScene.mel : contains the code responsible for the creation

of XML Scene Description �le with the information about the scene setup.

4.9.2 Input Maps Rendering in Mental Ray

The depth, normal, impact and dirt maps are rendered using Mental Ray. The

Mel procedure weatheringSetupScene() sets up the scene for this render by

performing the following tasks:

• Create the four shaders;

• Set the Renderable �ag to true for the input and output orthogonal cam-

eras;

• Create four render layers (to allow the rendering of the four maps per

camera);

• Sets some Mental Ray properties (like switching the output format to

32bit precision �oating point).



CHAPTER 4. IMPLEMENTATION 48

4.9.2.1 Depth Shader

This shader uses Maya's SamplerInfoNode to get the Z value in camera space

and outputs it as the RGB of a Surface Shader

Figure 4.16: Depth Shader Setup

4.9.2.2 Normal Shader

This shader uses a small trick to render the normals in word space, it uses Men-

talRay'sMib_amb_occlusion (Ambient Occlusion) texture node with 0 samples

and output mode 2 (render bent normals). Since there are no samples, the bent

normals are the same as the original normals. Output 2 returns the normals in

world space.

Figure 4.17: Normal Shader Setup
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4.9.2.3 Impact and Dirt Maps

These shaders are similar. Both use MentalRay's mentalrayVertexColor node

to output the vertex colors painted previously by the user. The node must be

connected to each individual geometry object.

Figure 4.18: Impact Map Shader Setup (similar to the Dirt Map Shader)

4.9.3 WeatheringNode - Main Locator Node

The C++ classes that implement the Weathering System's core are packaged

into the node called WeatheringNode , implemented in the class MayaWeatheringNode .

This is an locator node, which provides the ability of drawing in Maya's OpenGL

viewport. Internally it contains a reference to an instance of ParticleSolver ,

which gives it access to the particle system.

This node provides the following input attributes:

• Time: connected to the scene's time node. Whenever it changes (for

example, when the play animation is pressed), the node asks internally to

the Particle Solver to calculate one simulation step;

• SceneFile: a string with the XML scene �le to be loaded;

• Reload: when set with 1 it loads the XML scene �le and the input maps

(depth, normal, impact and dirt); when set with 2 reloads the XML scene

�le, without reloading the input maps (useful to change only the particle

emitter possitions, for example);

• Save: when set with 1 it generates the output dirt mask texture and save

it in the �le path speci�ed in the XML scene �le;
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• Several values of the Force Fields, to be written in the XML �le.

4.9.4 Particle Emitter Nodes

Two simple locator nodes were developed in order to allow the user to place the

particle emitters in the scene:

• MayaPointEmitterLocator

• MayaHemisphereEmitterLocator

The user can translate them in the scene and set the emission parameters in the

Attribute Editor.

4.9.5 XML Scene Export

The procedure weatheringCreateXML(...) iterates through the selected nodes

in the scene, searching for input and output cameras (being the output camera

the last one being selected) and particle emitters to generate the XML scene

description �le and save it.

4.9.6 GUI Elements

The main GUI interface is a window implemented in WeatheringUI.mel . This

window allows the user to set-up the scene and generate the output dirt mask

texture. Most functionalities present in the work�ow (section 4.7.2 on page 27)

can be accessed from this window and are organized vertically from top to

bottom (Figure 4.19 on the following page).

Each Locator Node's attributes can be accessed in the Attribute Editor in the

Extra Attributes tab (Figure 4.20 on page 52).
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Figure 4.19: The main Maya Plugin Window
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Figure 4.20: An example of an Attribute Editor (WeatheringNode's attributes)

4.10 XML Scene description Language Speci�ca-

tion

The XML Scene description Language represents all the settings of the particle

system as well as the information about the input cameras and their correspon-

dent maps, output camera and output dirt texture. The XML code is delimited

by the tag:

<Weathering>

...

</Weathering>

Inside this tag any of the sub-tags can appear once in any order.

4.10.1 Solver Tag

This tag con�gures the particle system solver's basic parameters (only imple-

mented one is actually the bounding box of the system). Example:
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<Solver>

<BoundingBox size="100" centerX="0" centerY="0" centerZ="0"/>

</Solver>

4.10.2 Emitters Tag

Inside this tag any number of any kind of particle emitter tag can appear.

Example:

<Emitters>

<Point start="0" end="10" rate="100" mass="1"

dirt="0.3" initialVelocity="7"

x="0" y="0" z="0"/>

<Hemisphere start="0" end="10" rate="100" mass="1"

dirt="0.3" initialVelocity="7"

centerX="0" centerY="0" centerZ="0"

radius="1"/>

</Emitters>

4.10.3 Collider Tag

This tag contains inside another tag with the information about the actual

collider type. The only implemented collider is the Projected Maps Collider,

hence the only available tag is ProjectedMaps . Inside this last tag, any number

( > 1) of cameras may exist. The only type of camera projection implemented

is the orthogonal one, so the only available camera tag is: Ortho . This tag

contains sub tags for the world-to-NDC and NDC-to-world projection matrices

and for the depth, normal, impact and dirt maps. If the camera is an output

one, then the out="true" attribute must be used. In this case the OutputMap

sub-tag must be present, containing the path of the output dirt texture and its

dimensions in pixels. Example:
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<ProjectedMaps>

<Ortho cameraName="inCamera1">

<CTWMatrix matrix="1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 "/>

<WTCMatrix matrix="1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 "/>

<DepthMap file="depth.exr"/>

<NormalMap file="normal.exr"/>

<ImpactMap file="impact.exr"/>

<DirtMap file="dirt.exr"/>

</Ortho>

<Ortho cameraName="outCamera" out="true">

<DepthMap file="depthOut.exr"/>

<NormalMap file="normalOut.exr"/>

<OutMap file="depthOut.exr" width="1024" height="1024"/>

</Ortho>

</ProjectedMaps>
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Results And Future Work

5.1 Rendered Examples

5.1.1 Dirty Building: Weathering in Appearance

a) Without weathering b) With weathering

Figure 5.1: Dirty Building: Weathering applied only to the colour

For this render, a point emitter was used with light turbulence and some wind

pushing the particles against the front wall of the building. Two input cameras

(one in the front and another in the back of the building) were used to capture

55
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the geometry. The output texture was camera-projected back into the model

using a Maya planar projection with the same transformation of the output

camera that generated the output texture. The mask was multiplied by a green

colour and composited on top of the clean building image. All the input and

output maps had a size of 2K (2048 x 2048 pixels).

5.1.2 Eroded and Rusty Cave Troll: Weathering in Dis-

placement

a) Without weathering b) Applied in colour

c) Applied in displacement d)Applied in Both

Figure 5.2: Eroded and Rusty Cave Troll: Weathering applied in displacement
and colour
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The set-up for this rendering was very similar to the previous one: one point

emitter and two input cameras registering the model's geometry. The output

texture was projected into the model as a displacement value and was also

composited against the model's original colour. All the input and output maps

had a size of 2K (2048 x 2048 pixels). The circular banding in troll's belly is

due to the use of depth maps. These don't have a totally smooth representation

of the geometry (its texels may generate some discontinuity in the surface).

5.2 Set-up Time

Each model was weathered in around 30 minutes. The rendering of all the

input passes for all the cameras (during which the artist might have to wait

without doing anything else) took around 8 minutes. Larger models (with more

triangles) may take more time to render the normal and depth passes, but all the

rest of the set-up process doesn't get much a�ected by the number of triangles,

unless if more particle emitters must be deployed.

5.3 Critical Analysis on the Results

5.3.1 Visual Quality

Although it is di�cult to imagine how the output masks look in a totally photo-

realistic production, the results were interesting enough. Unfortunately it was

not possible to have the the help from an experienced artist who could com-

posite the output dirt masks in a more professional way. The expected e�ects,

both in terms of appearance and geometry shape were achieved with satisfac-

tory results, although some improvements could be done, as shown later in this

chapter. The �ow of particles on the surfaces seem convincing in most of the

cases (for example, the lack of dirt bellow the windows due to the accumulation

of dirt on the window geometry), but it also looks too streaky. The �ow paths

are very random instead of merging into bigger streams. This could be imple-

mented using a more accurate �owing model, using capillarity of the water, that

combines water drops together when they get close to each others. The erosion

e�ect is interesting and can be used to generate rougher geometry.
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5.3.2 Maya Plugin Usability

Although the user can have full control on every step, since most of the features

use standard Maya nodes, setting up the scene can become a tedious task. Each

time any change is done, the XML �le must be saved and reloaded. For example,

after changing the position of a point emitter, the XML �le must be saved and

reloaded in order to re�ect that in the weathering node.

Another problem is when the input cameras change the maps must be re-

rendered, so the camera positioning must be done with some care to avoid

this.

The painting of the mechanical and chemical probabilities in the surfaces can be

a tedious process. This can be overridden using textures applied to the model

with the correct values in the RGB components (overriding the provided vertex

colour shader). Another problem is that the painting colours can be visually

di�cult to distinguish when the probabilities of two close areas in the surfaces

are not very di�erent, which can be visually confusing for the user.

5.4 Possible Improvements

• In order to solve the XML reloading usage-overhead, this can be either

automated (writing the XML �le whenever a relevant change in the scene

is done) or overridden (using more Maya Nodes Plugs to communicate

faster between nodes, avoiding the need of using an XML �le);

• The painting of probabilities interface can be improved using some other

way of specifying the surfaces properties using a similar approach to [3],

in which this properties are set using entities similar to shaders that can

be applied to the geometry;

• The chemical model could be more chemically-based in order to create

di�erent results for patinas, moss, rust, etc. For this approaches similar

to [6, 5] could be used;

• The sliding model could be improved, it has some imperfections due to the

nature of the geometry used (depth maps) and to the simple integration

used (Euler Integration);
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• Depth Map �ltering when reading the depth map values to represent

smoother surfaces. This would avoid some banding problems, like the

ones in the Cave Troll renders. This can also be solved using a higher

resolution depth map;

• Camera projecting the result can have some problems. For example, some

areas more perpendicular to the camera plane will be more stretched, and

in models with lots of detailed geometry, there may exist the problem of

self occlusion from the camera point of view. To workaround this, the used

should always use camera projection as close as possible to the shot real

camera, in which the occluded and perpendicular areas will be roughly

the same. Another possible solution would be to use the UV layout of the

models to write directly in the UV texture.
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Conclusions

Although some features could be improved (as seen in section 5 on page 55),

the Weathering System produced satisfying results that can potentially be used

by experienced compositors to produced interesting images. Some interesting

weathering e�ects like humidity sliding down the walls and staining them, ge-

ometry changes by erosion, and rust/patina accumulation in eroded areas of the

models are produced by the system.

The development of this Weathering System approached several areas of Com-

puter Graphics (di�erent geometry representations, particle systems, physical

simulations, collision detection, rendering, texture synthesis, etc.) which al-

lowed its author to consolidate a vast array of Computer Graphics Principles.

The choice of implementing a non pipeline-dependent system core proved to

be an interesting approach, since it allowed its development to be concentrated

only on the referred principles on a �rst stage. The Maya integration, done in a

second stage of the development, isolated the technology-speci�c problems from

the �rst stage. It also proved to be a good proof of concept and an opportu-

nity to learn and be comfortable with this speci�c software broadly used in the

Industry.
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Appendix A

Full Size Colour Rendered

Images

Building Cave Troll

Figure A.1: Original Images
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Figure A.2: Dirty Building
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Figure A.3: Rusty and Eroded Cave Troll


