Master Thesis

Using High-end Lighting/Rendering and Procedural/Dynamic

Animation Tools and Techniques in Production:

To Create a Short Film with a Convincing Portrayal of the
Interaction of Light with a Melting Effect.

Joe Gaffney

Thanos Topouzis

MSc Computer Animation and Visual Effects
NCCA 2009

Joe Gaffney, Thanos Topouzis Master's Thesis Page 1

Table of Contents

1. Introduction — INitial ATMS.......cccviiiiuiiiiiiieciie et e e e e 3
2. Pre-production / CONCEPE ATtccecueieeiiiieeiieeeiieecieeesteeesteeeee et eesteeeseree e veeenseeenaeenns 3
2.1 Constants and Variables..........cccoouiiiiiiiiiiiiiieie e 3

2.2 The wife that was once beautiful............cccceeviriiiiiiiniine, 6

2.3 Storyboard and ANIMALIC.........ceevieiiierieeiieeie et erie et eeee e see e esaeessreesseeeaseens 9

2.4 Melting ReSearch..........ccuieiiiiiiiiiiiieeeee e 15

3. Production TOOIS ...c..ccouiiiiriiiieiieciieieetet ettt sttt ettt 17
3.1 Procedural and Dynamic ANImMation...........cccueeeeuieeeiieescrieeeiieeeieeesveeesevee e 17

3.2 Grass Generator Digital ASSEt.......ccueeriiiiieiiiiiieie e 18

3.3 Grass Generator 2 Digital ASSETcoevcuieiriiieeiiieeiiie e 25

3.4 The Dandelion Digital ASSEtccevviieiieeeiiieeiieeeie e e s 28

3.5 Melting GEOMEIIY ..c.vveeevieiieeiieeiie et eiee ettt et e et e e eteesae bt e ssaeenseessseesseenens 32

3.5.1 OVETVIEW. ...ttt ettt ettt ettt sa et sb et st e e e 32

3.5.2 Smooth Particle Hydrodynamics............coccueeviiniiinieniieiecieeeeee 32

3.5.3 Working in SOPS........cooiiiiiiieiieiecieeeeeee e 34

3.5.4 Working in POPS.......cccuiiiiiiieiieeeeeeeeeeee e 35

3.5.5 Melting Geometry Digital ASSEtccceeeviieriiirieiiieieeieeeeeeeeee 35

306 SIMOKE ... 45

3.7 L- Systems PLantc.ooeeiiiiiiiieeie e e 46

4. Pipeline, scene management, RenderMan Python Api.........cccoccvvviiieniieiienienciicnieeeenee, 47
5. Shaders, RenderMan Shading Languageccccceevueeeiienieniiieniecieeee et 48
5.1 Grass ShAdET........oouiiriiiiiiiiece et 52

5.2 Rocks and Ground Shadersc.ccooeeviriiniiiiniinieeeeeeeee e 58

5.3 Multi-Purpose Shaderc..coccviiiiiiiiiiie et 62

5.4 Magnifying glass Shaderccccooiiiiiiiiiiii e 63
5D Sy ettt ettt ettt et ettt ees 63

5.6 Statie ShAETeiiiiiiiiiii e e 63

0. CAITIETASeveiueieeiieeit ettt ettt et et ettt e e bt e et e sae e st e e bt e et enbeesateenbeeeaneeaee 68
T LAGREINE. ..ottt ettt et e e et e st e et e e sabeenbeestaeeabeentaeenbeenseeensaennnaans 71
8. REINACTING ..ttt ettt et e st e bt e sab e et aesbeenbeesnbeenbeesnseenees 73
0. COMPOSIEINE ...ventieiiieiieeiteetteeiteeteeeeteetee st e eteesateesseessseesaesateenseassseenseesnseenseessseenseennseenns 75
9.1 Look Development process showing end result for an example shot................. 76

1O, CONCIUSIONeviieiiiieeiieeeiee ettt ettt e et e e et e e st e e tteeetbeeeabeesnsaeeessaeesssseessseeessseeensseeensseeanes 80
| 23 0) e a1)1 U RRRUSRRTR 81
12. Appendix Python and RSL Code..........cooviiiiiiiiiiiieciieee et 82

Joe Gaffney, Thanos Topouzis Master's Thesis Page 2

Introduction - Initial Aims

Our aim was to use high-end Lighting/Rendering and Procedural/Dynamic Animation tools and
techniques in production with the final outcome of producing a short entirely CG animated film.
Also a by product from this aim was the generation of numerous tools and techniques that would
aid in this production pipeline. We aimed to utilise the power of software and techniques for their
strengths in the process of production(for example Houdini for its powerful ability for procedural
animation and effects, RenderMan for its ability to handle complex scenes and geometry which
where required in the project) to create a short film with a convincing portrayal of the interaction of
light with a melting effect. Finally to work successfully as a team with the pipeline and to uphold

the aims.

Pre — Production/ Concept Art

Constants and Variables

In order to proceed with our plan for our Master Thesis we had to find a concept that would fit
our requirements. We had a lot of initial concepts but the one we prefered the most, was one that we
were going to have a statue that was going to be melted by a magnifying glass. At that stage we
were approaching the concept as a set of “constants” and “variables” in which the constants were
the statue made of wax and the magnifying glass, and the variables were the scale of the statue and
the environment that was going to be in.

Initially we though that the statue can be at an outdoor place, the scale of it it would be large and
the magnifying glass could be -with a lateral way of thinking - “the hand of god”. For that reason
early on in the process we started doing some tests to see the look of this concept. However we soon
decided that this approach had a lot of potential problems in terms of which exactly was going to be
the location and how we were going to recreate the environment which in this case it, most
probably, had to be a texture projection, something that would have given us limitations on the long

run.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 3

Fig. Research on outdoor environments for statues

(source http://getwonder.com/07/top 14-14-biggest-statues-in-the-world.html)

Fig. Early tests with the statue in an outdoor environment

The next idea that we had was the statue to be under construction in an indoor place and to have
scaffolding around it. The limitation of this idea was that we wouldn't have the sun as the main light

source with which the magnifying glass would melt the statue..

Joe Gaffney, Thanos Topouzis Master's Thesis Page 4

Fig. Research on indoor environments and scaffolding (google images)

The idea that we prefered the most was the scale of the statue to be really small and the
environment to be a garden. That wouldn't give us any limitations in the shots that we were

planning to do, and it would be an interesting task to develop the elements of the garden.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 5

Fig. Research on having the statue in a garden.

(source google.com)

The wife that was once beautiful

After having decided what the concept for the environment would be we had to find the statue
that would “tell a story” and fit our artistic needs. Before researching about the statue we already
had in our minds that we wanted the statue to represent colours of the human nature and not to deal
with any historical persons or to have to do with religion, civilizations and mythology.

One of our favourites sculptures was Auguste Rodin's “The gates of Hell”, which comprises 186
figures[1], amongst them the famous figure “The Thinker”. Studying the sculpture and its
symbolism we found out some very interesting figures. One that drawn our attention was a
sculpture called 'Celle qui fut la belle heaulmiére' which is also known as 'The old Woman', 'The old
Courtesan' and "Winter'. Rodin modeled it after a 82 year old woman named Caira, because he was
fascinated by the inevitable decline of human beings with its different mouldings of ugliness and
personality. Rodin founded that what we call commonly “ugliness” in nature can in art become full

of great beauty. In art, only that which has character is beautiful. Character is the essential truth of

Joe Gaftney, Thanos Topouzis Master's Thesis Page 6

any natural object [2].

Picture 8. Auguste Rodin's sculpture “The old Woman” (google images)

Paul Gsell associated the sculpture in his 'Conversations with Rodin' with the poem of Frangois

Villon - a monologue of the old helmet-maker's wife about her expired beauty:

"Ah, wicked old age
Why have you struck me down so soon?
[You] have stiffened me

so that I cannot strike

And with that kill myself!

When I think, alas! of the good times,
What [I] was, what [I] have become,
When [I] look at myself completely

naked
And I see myself so changed.
Poor desiccated thin, shriveled,

I nearly go mad!

What has happened to

Joe Gaffney, Thanos Topouzis Master's Thesis Page 7

my smooth brow,
My blond hair... .

My slender shoulders,
Small breasts, firm tight
High, clean, perfectly made
For love's pleasures; (.....)
This is the fate of human beauty!
Shrunken arms and clenched hands
[And] completely hunchbacked.
What breasts! All wizened
Like my hips... ."

Having studied this sculpture we got inspired for our own project idea. We though about
modelling the statue but that would be unnecessary because we wanted to focus on different areas.
So we started searching for some free models of this statue. We didn't find any free models of the

statue but we were able to purchase it from gnomology.com.

www.anandpgindia.com

www.anandpgindia.com

Fig. The Zbrush model from gnomology.com

Having the statue we had our main element in the scene and we were ready to move on the next

Joe Gaftney, Thanos Topouzis Master's Thesis Page 8

stage which was the storyboards and animatic. Adopting Rodin's symbolism we decided to name the

piece as “The wife that was once beautiful”.

Storyboard and Animatic

Before we do the final animatic we though about going back a few steps and test how this statue

would look on our first concept. So we did a first rough animatic.(fig 10).

Fig. First Animatic

Nevertheless for one more time we weren't satisfied enough with the results so we decided to
follow the concept that we had agreed in. At that point we started researching so as to start having a

better idea of how the look of the garden would be, and what shots we were going to use.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 9

Page 10

Joe Gaftney, Thanos Topouzis Master's Thesis

Fig. Reference images (google images)

To get some inspiration we watched some films that they had similar subject like “The Ant

Bully” (fig), “Bug's life” (fig) and “Honey I shrunk the kids”.

Fig. Reference screen-shots from “The Ant Bully”

Joe Gaffney, Thanos Topouzis Master's Thesis Page 11

Fig. Reference images from “bug's life”

After gathering all these informations and ideas we were ready to create our animatic. Our goal
was to create a short piece trying to achieve “quality over quantity”. For that reason we chose to
have not more then six to seven shots. We also tried to achieve high cinematography standards

choosing the framing of each shot carefully. The storyboards were as follows:

Joe Gaffney, Thanos Topouzis Master's Thesis Page 12

Shotl — Long Shot
This is the master shot. We start looking at

the top of the grass and then we pan down until

we reach the ground, and see the statue.

Shot2 — Medium Long Shot

The camera is tilt and we see the

magnifying glass approaching.

Shot 3 — Medium Long Shot

The camera comes back to the statue
and we see a strong light beam

melting part of the statue.

Shot 4 — Medium Close-Up

We are moving closer to the action
with a medium CU to the shoulder
of the statue that is melting.

Shot 5 — Medium Long Shot

The camera comes back to the statue
and we see the light beam changing
its focus point from the shoulder to

the arm.

Shot 6 — Medium Close-Up

The camera cuts closer so that we see

the arm melting.

Joe Gaftney, Thanos Topouzis Master's Thesis Page 14

Shot 7 — Long Shot

The camera pans-out while the
statue is left alone, so as to give
a sense of loneliness and

insignificance.

During the process of developing the piece we had to change some of our initial storyboards in
order to improve it.

We decided that we were going to use Maya to set-up the scene. We were mainly going to use an
analysis of a plant arrangement done by Bill Fleming in his book “Digital Botany and Creepy
insects” in which the usual arrangement is: one or two large tall plants in the background, several
medium-sized plants in the middle ground, about one third of the height of the larger plants and

surrounding the larger plants, and several smaller plants in the foreground, usually grass.[8]

Melting Research

Having finished with the animatic we started doing some research on the melting effect. Initially
we were going to approach melting wax as a highly elastic and viscous material. One of the papers
that were studied was Particle-based Viscoelastic Fluid Simulation

by Simon Clavet, Philippe Beaudoin, and Pierre Poulin..[9] In this paper they implement a method

of fluid stickiness by adding an attraction term to the particles that are close to an object.

Joe Gaftney, Thanos Topouzis Master's Thesis Page 15

Fig Stickiness implemented in the paper particle-based Viscoelasticity by Clavet, Beaudoin, Poulin

However we were mainly planning to use the nodes provided by Houdini to implement methods
and ideas. We where also planning to make a shooting under the same conditions to see how it

works physically.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 16

Fig Melting research

After hiring a DV camera and gathering all the props(wax candle, magnifying glass) we filmed
one hour of footage in time-lapse so that we could capture how a wax candle lighten by a
magnifying glass would melt. The results we got were accurate but at the same time not very
interesting. So, early on in the process we decided that in order the short piece to look visually
interesting we had to be creative and mainly follow our initial plan of having a highly visco-elastic

surface.

Production Tools

Procedural and Dynamic Animation

From the beginning of our Masters Project we had clear in our minds that all the animation would
be procedural and dynamic. For that reason we had to choose between Maya and Houdini as our
main 3D software. Early on though we were quite sure that we were going to use Houdini so as to
benefit from its procedural-ism and its powerful features in Fluid Dynamics and Particles. Also the
task of creating a melting effect it would be rather difficult if instead of fluid dynamics, particles
were used, as the “surfacing” of particles its supported in Maya 2009 which has the nucleus engine
implemented in particles(the nparticles). That was a big drawback as Maya 2009 is not included in

our available resources in the university. Another main reason for using Houdini is the ability to

Joe Gaffney, Thanos Topouzis Master's Thesis Page 17

create digital assets. This is a very powerful feature that would give us the ability of creating a fully

parametrable scene.

Grass Generator Digital Asset

In the process of developing the garden we applied what we initially planned: create digital assets
that would model procedurally all the asset and they would also be procedurally animated. The first
asset that we had to develop was an asset that would generate grass which would be placed
according to a pattern that the user would import. That way we could generate large amounts of

varied grass geometry that would fill the area around the statue and make the scene look realistic.

Fig. Grass Digital Asset

The options that are given to the user are:

Choose Pattern

The user has two options so as to choose the pattern. He can either use a default grid or he can
import his own pattern. When the user selects this option a the option browse get enabled and the

user can browse to find his image.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 18

Scale X, Z

The user can scale the pattern in the X and Z axis

Number of Plants

The user can define the number of plants(or grass chunks) he wants to be copied to the selected

pattern.

Bend Direction

The direction where the grass is bending can be either “random” either “all in one side”

Bend Control, Twist Control

These values define how bended and how twisted the grass is. They can take positive and

negative values. There is randomization value that gives slightly different bendings to each grass

chunk but the values stay always close to what the user choose.

Height Control, Width Control/ Random Distribution

The user can choose the height and the width of the grass. The random distribution value defines

how big the variation would be.

The algorithm

The process that was followed in order to give this functionality to the digital asset is the

following presented in pseudo code:

Begin
Define the pattern
If (pattern == Import Image) then

Joe Gaffney, Thanos Topouzis Master's Thesis Page 19

enable the file browser so as the user to use an image as a pattern
trace the image so as to get a geometry representation of the image.
Set the X, Z scale according to user's preferences
Scatter as many points on as the user defines as his desired number of plants
Model a master leaf for the grass.
Create an instance of the master leaf
Assign the values to the following variables according to user's input
bend_control, bend_direction, heigh control, height_random_distribution,
width_control, width_rand_distribution, twist _control
For (1 to points) do
randNumlLeaves = floor((rand($PT))*10) // assign a random number to
// define how many leaves each
// grass chunk will have
For (1 to randNumLeaves) do
Modify the instance of the master leaf as follows
randomScale = 4*rand($CY)/5 //random leaf scale
randomBend = if($CY%2==1,rand($CY)*(-10), rand($CY)*(10))
//random bending of the leaf
Scale the X,Y, Z value of the leaf according to randomScale
Bend the leaf(X,Y axis) according to the randomBend value
Merge the modified leaf with the master leaf creating the grass
End
Modify the grass as it follows:
[width = rand($PT) * width_rand_distribution / width control
// Define the width of the grass
[_height = rand($PT)*height random_distribution")/ /height control"
// Define the height of the grass
[_twist = if(rand($PT)>0.7, rand($PT)*twist_control,rand($PT)*twist control
// Define the amount of twist
[_bend = rand($PT)*bend_control // Define the bending amount
base rotation if(bend_direction ==0, $PT*45, 0)
uv_offset = if($PT%2==1,rand($PT)*5, rand($PT)*(-5)) //sets the uv X osffet
uv_offsetY = §PT%20+rand($PT) //those two steps offset the uv's so

// their positions in UV space can be

Joe Gaffney, Thanos Topouzis Master's Thesis Page 20

// randomized so as a procedural shader
//is applied
End
End

At that point a procedure overview will take place based on images to the key points of the

algorithm:

Fig. Import a Pattern

Fig. Trace the image

Joe Gaffney, Thanos Topouzis Master's Thesis Page 21

Fig. Scatter points on the surface

.

® o ¥y @,

Joe Gaffney, Thanos Topouzis Master's Thesis

Fig Model a leaf

Page 22

>
=

r Internalatinn

neratorl

nerator

1 copy copys

+ Stamp Inputs
3140 4150
1 randonscale

2 randonBend

Fig. Create an instance of the leaf, make random copies of it and give them

random scale and bending

¥L copy copy3
¥ Stamp Inputs
2130 3140 4150
ble 1 randonScale

randonBend

ratorl

enerator

Fig. Merge the master leaf with the copies

Joe Gaffney, Thanos Topouzis Master's Thesis Page 23

® Transform

Fig. Bend and Twist, define the Height and the Width it according to user's preferences giving some

randomization to them

Import Ima;

$HOME/Desktop/ randon/showreel stuff/d

Bend Direction

Fig. Copy the grass to the points

Joe Gaffney, Thanos Topouzis Master's Thesis Page 24

The grass then was animated using a lattice deformer and a spring and then it was exported to
Maya (which was the main software we were using for scene management) as an FBX sequence..
Although the asset was giving good results, managing to procedurally model relatively convincing
low-polygon grass, when the grass was imported to Maya there were some issues with the UV
coordinates as well as some geometry issues, with slight geometry penetrations. So we decided to
keep this asset and use it for the background grass where we wanted less details and no variation to
the shader and modify the tool so as, instead of procedurally modelling the grass, to be able to take
grass geometry(with proper uvs) place them like before and randomize the uvs. Having to work on
this Digital Asset again, we though about taking it one step further by implementing the motion
source (lattice and spring deformer) in build to the digital asset. The new asset was simply named

as Grass Generator 2.

Grass Generator 2 Digital Asset

This digital asset keeps most of the functionality of the Grass Generator but it has some extra

controls.

Geometry Tab

8 Grass Generator 2

Pattern

Fig. The geomety tab
In the Geometry Tab there are five geometry imports where the user can import his own grass

geometry.

Pattern Tab

Joe Gaffney, Thanos Topouzis Master's Thesis Page 25

Fig. The Pattern Tab

The pattern tab has the same functionality as the Grass Generator.

Grass Properties Tab

Fig. Grass Properties Tab
This tab has the properties of bending, height and width control, twist, number of plants, that

there are available at the Grass Genarator.

Force Tab

Fig. Forces Tab

This tab is linked to the lattice deformer and the spring. This way the user gets options about

Joe Gaftney, Thanos Topouzis Master's Thesis Page 26

external forces, wind, turbulence, mass, drag and spring constant. By putting expressions (for
example the fit function) or by key framing the user can procedurally animate the grass and get a

good looking result. That's what was used to the piece to animate the grass.

Algorithm

The algorithm is almost the same. Nevertheless we will present algorithmically the extra features

of it.

Randomizing the Uvs

For 1 to number_of points do

uv_offset = if($PT%2==1,rand($PT)*5, rand($PT)*(-5))

uv_offsetY = $PT%20+rand($PT)

Transform the Uvs on the X by uv_offset and on the Y axis by uv_offset
End

Fig. Random Uvs

Joe Gaffney, Thanos Topouzis Master's Thesis Page 27

Lattice Deformer and Spring

Fig The Lattice deformer network

A lattice Deformer is used to animate one chunk of grass using a spring. These data are than feed

to each grasses lattice.

The grass was animated with the lattice in Houdini, than exported to Maya as an FBX sequence

The dandelion Digital Asset

L
i iy
s e
oy Sy vy

Rt

=

R

R - T e
S

Continuing with developing the assets for the garden we created an asset that would procedurally

Joe Gaffney, Thanos Topouzis Master's Thesis Page 28

model a dandelion flower. By that time we weren't sure how many flowers we would have in the
scene. To produce the dandeline asset similar methods to the Grass Generator asset were used using
variables and for loops (by copy stamping) to give randomness to the pedals(scale, width) and

bounding boxes for the height of the stem and the positioning of the ovary.

The options that are given to the user are as follows:

General Controls Tab

M-. Dandeline Dandelinel

trols Stem Controls

Random Pedals

nd Bends

Random Bends and Twi

Fig General Controls Tab

Number of pedals: the number of pedals the dandeline has.

Density Bias: how dense are the pedals.

Strech Control: with this option the user can squash or strech all the pedals.
Random Pedals: the amound of randomness at the pedals

Twist Bias: How twisted the pedals are overall

Bend Bias: How much bended the pedals are overall

Random Leaves Twist: Randomly twists the leaves at the bottom

Random Leaves Bend: Randomly Bends the leaves at the bottom

Pedal Control Tab

Joe Gaftney, Thanos Topouzis Master's Thesis Page 29

q Dandeline Dandelinel

Third

Fourth P

Fifth Pedals

Sixth Pedals

Fig Pedal Controls

This tab, has individual controls over the ten rows of pedals. In every row of pedals the user is

given the following controls:

First Pedals: Controls the amount of bending of the row of pedals

Scale, Translate, Rotate: Scales, translates. rotates the row of pedals

Joe Gaffney, Thanos Topouzis Master's Thesis Page 30

Ovary Controls Tab

lﬁ Dandeline Dandelinel

Stem Controls Le:

Fig Ovary Controls

Transform Ovary: Transforms the ovary

Scale Ovary: Scales the Ovary

Stem Control Tabs

q Dandeline Dandelinel

General Controls Pedal Controls [

Eend Pivot

Fig Stem Controls Tab
Translate: Translates the stem
Scale Stem: Scale sthe stem
Bend Strength: How bended the stem is
Bend Pivot: Define the pivot of the stem

Leaves Tab

“ Dandeline Danc

eral Controls Pe trols s Controls

Randomn

Joe Gaffney, Thanos Topouzis Master's Thesis Page 31

Lea

Fig. Leaves Tab
Number of Leaves: the user can define the number of leaves
Density Bias: How dense they are
Bend X,Z: Bends the leaves in X and Y position
Randomness Bias: How random the leaves are
Width: Width of the leaves
Height: Height of the leaves
Fix Translation: In case the user needs to fix some translation errors in the leaves is provided

with this option.

The dandelion was exported as an Obj file from Houdini and imported into Maya. It was then
animated using a bend deformer for the stem and a lattice deformer turned into a soft body for the

pedals.

Melting Geometry

Overview

Our aim was to create a visually interesting melting effect and produce a digital asset than could
be used in many cases for melting geometry. It also had to be efficient in terms of speed but mostly
the visual outcome had to be good so it could be used in production. In order to find the right

method to use we had to do a lot of tests and try different methods.

Smooth Particle Hydrodynamics

Our first approach was to use Smooth Particle Hydrodynamics(SPH) for the task. Using SPH we
would have the ability to use the attributes of elasticity and viscosity. That would give us a nice
looking result. One of our initial problems were that when we were converting the polygon surface
to a particle fluid surface, the statue was loosing details. So we had to go at high levels of particle

density.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 32

Fig a) Original Statue, b)Statue with 0.1 particle Density and c) statue with 0.03 particle Density

Although we were getting good looking results, at that level of particle density the simulations
were very slow making the task almost impossible to finish we amount of time we had.
Nevertheless the things we learned by studying the particle fluid solver, by diving in the network to
get as more low level information as possible, they helped us a lot to adopt part of this knowledge

later on in the process.

Fig. Test with Particle Based Fluids

Joe Gaffney, Thanos Topouzis Master's Thesis Page 33

Working in SOPs

Our second approach was to try working in Surface Operator (SOPs) trying to deform the surface
based on the normals information. The normals were painted using the Comp SOP node(a node that
is mainly used for hair) and then the geometry was deformed based on the color information and the

normals.

Fig Deformation according to normal information and color

Another node we could use to deform the geometry in SOPs was the Magnet SOP. Some
metaballs instanced in particles would fit inside the statue using the Ray SOP an d than combining
those two element we could get the melting effect. Nevertheless the method although quite cheap(in

term of speed) it wasn't producing convincing results.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 34

T
T
X
=

NN

i)
HTT

Fig Test result using SOPs

Working with POPs

Our next step was to try using POPs in order to achieve a cost effective result and at the
same time would give us a visual outcome close to what we were having with the particle based
Fluid Dynamics. The advantage was that we could use many of the features of the SPH without
using any microsolvers but the disadvange was that we couldn't use the visco-elastic features. So we
had to find a wake to reach as close to this particle behaviour as possible by only using the nodes
available in POPs. Early tests showed us that we could count on this method and we proceeded to

create the Melt Geometry Digital Asset.

Melting Geometry Digital Asset.

The melting digital asset works by following a volume with points, than surfacing the volume,
using another geometry enables the selected particles checking for collisions. It has three inputs.
The first input is the geometry the user wants to melt, the second input are the collision objects and
the third the geometry who selects which particles are going to be moving. The options given to the

user are the following:

Joe Gaffney, Thanos Topouzis Master's Thesis Page 35

Surface Attributes

Melt meltl
Physical Attributes

olume Type

1.5

Metaball

1

¥ Filtering

Filter
Filter

Filter Tightness

Fig Surface Attributes

Fill Volume Type: the user specifies the way the volume will be filled. It can either be

tetrahedral(more dense volume) either grid.

Particle Density: This parameter controls the interaction distance between particles in

the created Particle Fluid Object.

Polygonal Size: The polygon size to use when polygonizing the surface.

Point Radius Scale: Each particle in the input has associated with it a radius of influence in
which it can affect the surface which is established by each particle’s
“pscale”. Pscale scales the particle’s radius of influence. Increasing this
parameter causes each point on the generated surface to be sampled from a
larger set of a particles and decreasing it causes each point on the generated

surface to be sampled from a smaller set of particles.[3]

Method: Average position or Metaball

Joe Gaftney, Thanos Topouzis Master's Thesis Page 36

Weight: The weight of the metaball

Surface Distance: Controls the thickness of the surface around the particle field, This

parameter is scaled internally by the Point Radius Scale parameter.[3]

Surface Tightness: The tightness of the surface

Filtering: It is used to smooth the surface.

Filtering Steps: Filtering is an iterative process. The smaller the particle radius scale is, the

the more iteration it needs to smooth the surface.

Filter Width: To filter the surface, values from each grid cell and some number of
adjacent cells are blended. This parameter controls the number of grid cells

involved in each blend operation.[3]

Filter Tightness: This parameter control how close the surface is to the particles that create

the surface.

Physical Attributes

Melt meltl
Surface Attributes Physical Attributes Forces
Mass 31
@, 0%

Effect Radius 0.5

Fig. Physical Attributes Tab

Mass: The mass of the particles

Joe Gaffney, Thanos Topouzis Master's Thesis Page 37

Viscosity: Not having the ability to use the viscosity microsolver we had to find something
that would make the particles — and furthermore the surface- like they are viscus. To
do that we had to use an interact POP node Setting the particle radius to “Use
particle size/instance size” the like Radius of the particle is equal to a sphere big

enough to enclose the instanced geometry object [4].

Effect Radius: The applied force decreases slowly up close, quickly in the middle, and then
slowly at the outside edge.

This value lets you scale the computed radius.

Cling: Cling is implemented as a force that acts to counter forces pulling the particle away

from the surface[5].

Forces Tab

i, Melt meltl

Surface Attributes Physical Attributes Forces

Force
Scale

Turbul
Seed

Rough
Noise Freguency
Moise Amplitude
Drag

Speed Limit

Fig. Forces Tab

The forces that are implemented are the usual forces that can be used in POPs. One thing to

point here is that the tool works better with a high value of drag (for example 10).

Joe Gaffney, Thanos Topouzis Master's Thesis Page 38

The algorithm

Constants geometry to_melt
melter
collision
Begin
Create a volume of points of the geometry to be melted
Emit in the first frame as many particles as the points generated.($SFF==1, $NPT)
Stop all the particles
Group the particles that are included in the melter geometry and its animation
Preserve group
Enable all the particles that belong to the group
Set the collision as “slide on collision”
Set the mass according to user's preferences
Apply forces,drag and cling according to user's preferences
Apply viscosity according to user preferences
Adjust the speed limit according to user preferences
Set the pscale value to pscale*2 so as the surface is smoother
If (method == metaballs) then
enable metaball weight
set metaball weight according to preferences
else
enable surface distance
enable surface width
set surface distance according to preferences
set surface width according to preferences
If (filtering==1) then
enable filter tightness
enable filter width
set filter tightness according to preferences
set filter width according to preferences

End

Joe Gaffney, Thanos Topouzis Master's Thesis Page 39

Follows a description of the algorithm with screenshots:

BEEERE ccoverrv o e ver [NNIREEN -

II _I pointsfromwolume2

I I “I I popnetl

Fig the 3 inputs of the tool:geometry to melt, colision, melter

Fig. A sphere as the geometry to be melted and an object and the ground as collisions

Joe Gaffney, Thanos Topouzis Master's Thesis Page 40

Fig. Filling a volume with points

=

Fig. Emiting I particle from each point at the first frame, and using the melter to group the enabled

particles

Joe Gaffney, Thanos Topouzis Master's Thesis Page 41

Fig the object, after is surfaced and filtered

Fig The geometry melted

Joe Gaffney, Thanos Topouzis Master's Thesis Page 42

Melt Geometry — The Execution

Having the tool ready we were ready to use it in production for the piece. While using it we were
getting feedback for the tool and we were constantly going back to improve it(either its
functionality or its speed and efficiency).

In order to start simulating we created a plan of which parts were going to melt.and at which
time. Our initial idea was to start melting the statue from its main body. For that reason we created
an outline of the process. In order for it to look realistic we had to have a focus point. That focus

point is the red area as it is seen in the following picture.

Fig. Areas to be melt starting from the red one.

However later on we had to change the plan to make it look more interesting and realistic.

So we change the outline as it can be seen in the next figure.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 43

New Melt simulation

D
-

Frame 450 - 700

—

]
|
-
.

pr =

Fig The final outline

The way to achieve the dripping down and sliding to the surface behaviour was by making
each “colour” as a separate geometry, converting it to a fluid surface and than using the next
“colour” geometry as a collision surface. Then having the particles cached we were filling the
whole statue with points and surfacing the simulated particles with the points all together so they
seem that they are all at the same (implicit)surface.

The statue after being simulated was exported as rib archives from Houdini to RenderMan.
The size of the files was big because of the large amount of geometry and we needed a lot of time
for exporting them, so we had to be very careful and that everything was working good. Any
mistake could seriously affect the end result of the project. Because the scene set up was done in
Maya, initially we though about exporting the statue as FBX sequence in Maya. But the problem

was that the FBX sequence cannot calculate the geometry properly when it comes to geometry that

Joe Gaffney, Thanos Topouzis Master's Thesis Page 44

its points positions are changing(or/and added) over the time.

Smoke

The smoke used in the project was done in Maya using fluid dynamics. In order to achieve the
smoke emiting from the surface that's been melted and because we wanted to be precise and achieve
a nice visual result, we exported these geometries as FBX sequences from Houdini and imported
them to Maya. In order to match the cameras in maya we imported a .jpg sequence of the statue
melting in maya and build a camera rig grouping the camera and the sequence together so we can
match the position of the geometry melting and the geometry emiting. A short MEL script had to be

written to solve a problem with the .jpg sequence:

string $file name = “.jpg”;

filel.frameExtension = $file_name;

Flo Edt_woify creats Display Window _lighing/Shading Textiring _Reer Toon _Pan Effects el
IH&!:H\E*-(,Z.E*D?ﬂ’m|m?°-%o|ED’E|i£ﬁﬁ|vExDszD BEE

Shading _LUghting _Show _ Renderer List_Selocted _Focus _Attributes Holp

Make 2 selection to view atiibutes

(3

|2 | — Sl | loadpuaributes | Guwte |
L S (Y Y Y (Y Y Y Y 0T O O O I M M NS O S S A S S] 1S] e e
oo |[o.00 o &0 I [50.00 | [600.00 | | [haracter | 0| &
s =]
eyt

Fig Maya camera rig for matching the smoke

Joe Gaffney, Thanos Topouzis Master's Thesis Page 45

L-System Plants

Following our aim of experimenting with techniques through out the project we tried to create
some secondary geometries for the garden. One of the things we tried was to create an L-systems

plant. L-systems were conceived as a mathematical theory of plant development [6].

Premise : F(1)X
Rulel: X = F[-F[-(15)FI][+(15)FIJ]F[-(15)FK][+(15)FM]fFJ]F[+F[-(15)FJ][+(15)FM]F[-(15)FJ]
[+(15)FM]FFJ]X

Fig. L-System Plant

However in order to get better results we had to study L-Systems more so we decided to

leave L-Systems implementations.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 46

Pipeline scene management RenderMan Python api

Geometry and effects are created and positioned in Maya and Houdini to allow them to match
with each other in terms of scale and position they are then exported into RIB archives which can be
read used RenderMan.

Many books and document-ion was refered to for information about RenderMan as it is difficult

software to learn and use and has a massive range of features. These include :

PrMan docs, Jon Macey's on-line documentation [hitp.//nccastaff.bournemouth.ac.uk/

jmacev/Renderman/index.html], The RenderMan Shading Language Guide, The RenderMan

Companion, Texturing and Modeling: A Procedural Approach, Advanced RenderMan: Creating
CGI for Motion Picture, [http://www.fundza.com] Also the Escape studios RenderMan course-

ware.

These are mentioned here as knowledge from all these sources has been absorbed during the
course of the project to increases familiarity in using RenderMan and shaders as an Animation and
rendering tool.

All of the rest of the scene management and scene descriptions is done using the Python
RenderMan api. All geometry is loaded in with RIB archives(these would have been generated
from Maya or RenderMan) which contain RIB data which describes the geometry. Shaders and
parameters are applied to objects and translations to fix positions via python. Also the frame
number is taken into account when reading in the RIBs to allow animation by loading in associating
RIBs file.

An example of a function that loads in a object fixes translations and assigns shaders and allows a
new rib to be loaded in each frame. Also as the ribs are loaded in in a loop it allows multiple objects
to be loaded in with random parameter assigned to each individual shader. That is assigned to the

object.

def Grass forground(ri, frame,point cloud check,out filename,rendertype) :
random.seed (20)
ri.TransformBegin ()
ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

ri.TransformBegin ()

for i in range(l, 19):
ri.AttributeBegin ()
ran_diffuse=random.uniform(0.9,1.1)
ran opacity=random.uniform(1, 3)
ran_tex=random.uniform(1l, 3)

Joe Gaffney, Thanos Topouzis Master's Thesis Page 47

http://nccastaff.bournemouth.ac.uk/
http://www.fundza.com/
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html

ran diffuse front=[random.uniform(1.0,1.1),random.uniform(0.8,0.9), random.uniform(0.8,0.9)]

ran_diffuse back=[random.uniform(1.0,1.0),random.uniform(0.9,1.1),random.uniform(1.0,1.1)]
ran specular=random.uniform(1.2,1.3)

ran_spec_colour=[random.uniform(0.4,0.5), random.uniform(0.5,0.6), random.uniform(0.5,0.6)

if (rendertype == 1)
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float
Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string
texture_ front":["./sourceimages/grass/grass_front_high vl.tx"],"string texture back":
["./sourceimages/grass/grass_front high v%01ld.tx" % (ran tex)],"color opacity":[1.0,1.0,1.0],"float
roughness":[8.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass opacity high v%01ld.tx" %(ran opacity)],"float Kenv":[0.2],"string
EnvironmentMap": ["./sourceimages/hdr/Meadow non float.tx"],"float oren roughness":[5.0]})
ri.Displacement ("./shaders/grass/grass_displacement shader vl r3",{ "float
freq layer one":[100], "float freg layer two":[40], "float depth one":[0.025], "float depth two":
[0.0411})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float
sphere":[0.2]11})
ri.Attribute ("identifier",{"name": "grass_foreground"})
ri.ReadArchive ("./Archive/grass/new foreground grass/grass sperate/OCgrass piece
$02d_.%04d.rib" %((i), (frame)))

ri.AttributeEnd ()
ri.TransformEnd ()

ri.TransformEnd ()

ri.TransformEnd ()

All of the rendering lighting, camera movement, order of events, shader loading and numerous
other tasks are handled through Python shader writing is done with the Renderman Shading
language. Apart from the modeling, grass animation and effects(which were completed in Houdini
and Maya and made into RenderMan usable formats). This was a challenging task to complete as
the Python documentation is very limited. A thorough understanding of RenderMan and lighting
and rendering techniques was needed, the drive to experiment and to try to go about things in a way
to makes things work for the production. As the pipeline was an unusual one and was more low
level than a conventional animation production a great deal was learnt about the core of lighting and
rendering and pipeline issues. A lot of useful tricks were discovered along the way and as every was
done through code and scripts complete control was available and certain tasks were made more
achievable. and the documentation should be of great value with the accompanying python scripts

for anyone wanting to produce animation and rendering in this fashion.

Shaders RenderMan Shading Language

Numerous shaders needed to be developed to meet the needs of the project because of the

complex variation of objects in the environment and the unusually juxtaposition of different

Joe Gaffney, Thanos Topouzis Master's Thesis Page 48

materials. Also many objects needed the power of procedural shading methods to give them life and
to increase there realism.

Shaders are wrote in the Renderman Shading Language (RSL) which has a C like syntax which
some added functionality and built in data types (points,normals,vectors) to help with the shader
developing process. Shaders need to be compiled and turned into machine readable code. The
shading language extension for the files is .sl when complied this turn into .slo files which are
object code which then allows the shaders to be executed by RenderMan.

Individual shaders are essentially small sub-routines (functions) that allows users to extend the
creative possibilities of the renderer; allowing endless ways of controlling the appearance of a 3D
scene through the use of custom shaders. The only limit is the imagination, ability to write new, or
adapt existing shaders and the creative flare at adjusting the parameters that control the visual
outcome of the shader. [15]

Some pre-made shaders are used in the project as they suited our needs already, and because of
the scale of the project it would be insensible and non-logical to write every shader for every object
when it isn't necessary.

Shaders are divided into six types The In’s & Out’s of a Shader

rib data renderer data
- Light source shaders B
- Surface shaders Shader
local
- Displacement shaders variables
- Volume shaders output values

- Transformation shaders

+ Imager shaders.

Fig (http://www.fundza.com/rman_shaders/overview/overview.html)

Only custom surface, displacement and light shaders were used/modified in the project more
information on these are on the detailed analysis of the shaders.

Shaders calculate specific values at regular intervals (dependant on shading rate)across the
surfaces being shaded by a renderer. RenderMan sub-divides each object in a 3D scene into a fine

mesh of micro-polygons. Which pixel value is defined from the shading calculations of the

Joe Gaffney, Thanos Topouzis Master's Thesis Page 49

http://www.fundza.com/rman_shaders/overview/overview.htmlfig

shader(which ever they might be a complex algorithm for lighting and reflections etc, or a simple
maping of a colour). When Renderman is processing a rib file, or some other source of rib
information, it makes data available to the shader so that the shader can calculate specific values eg.
Light, camera positions etc. For example a displacement shader, calculates a displaced location and
orientation for each micro-polygon by modifying the surfaces P value which is the current point
being shaded. A surface shader, determines the apparent colour and opacity of each micro-polygon.

[15]

The Shading Language data types:

+ float

. string

+ point, stores the xyz coordinates of a location in 3D space,

+ normal, stores the xyz coordinates of a surface normal,

- vector, stores the xyz coordinates of a vector,

« color, represents the color and opacity of a light source or a surface,

+ matrix, a list of 16 floats.

Integers are not supported by the language. [15]

Variables accessible from with inside the surface and displacement shaders that are given from
the object shaded or from the scene camera view etc. These are mostly essential for the shader to

have access to in order to calculate the surfaces appearance.

point P

Position of the point you are shading, Changing this variable displaces the surface

normal N
The surface shading normal (orientation) at P. Changing N yields bump mapping The true surface
normal at P. This can differ from N; N can be overridden in various ways including bump-mapping

and use-provided

normal Ng

normals, but Ng is always the true surface normal of the facet your are shading

Joe Gaffney, Thanos Topouzis Master's Thesis Page 50

vector I

The incident vector, pointing from the viewing position to the shading position

color Cs Os

The default surface colour and opacity, respectively

float u, v

The 2D parametric co-ordinates of P (on the particular geometric primitive you are shading)

float s, t
The 2D texturing co-ordinates of P. These values can default to u, v but a number of mechanisms

can override these values

vector dPdu

The partial derivatives (tangents) of the surface at P

vector dPdv time

The time of the current shading sample

float du dv

An estimate of the amount that the surface parameters u and v change from sample to sample

vector L, color CI
These variables contain the information coming from the lights and may be accessed from inside

illuminance loops only

color Ci, Oi
The final surface colour and Opacity of the surface at P. Setting these two variables is the primary

goal of a surface shader

[RenderMan Prman doc, Shader Execution Environment]

With access to these values and through use of your own algorithms it is possible to do an

infinitesimal amount of operations on to surfaces, and to produce rich and detailed photo-realistic

Joe Gaffney, Thanos Topouzis Master's Thesis Page 51

results. Unless specified as being wrote developed or modified shaders are not are own.

Grass shaders

A shader was developed for the grass as it is a prominent objects in the piece and a variation was
needed between the grass blades and a high degree of physical accuracy of the properties of the
grass had to be reproduced or made to look convincing to the viewer.

As grass was studied quite closely in the pre production stage we had a good idea of the

properties needed to create convincing grass. Details of all the important components of the grass

surface and displacement shaders follow.

Random holes to show-ware & parts eaten controlled by modifying the opacity

Influenced by the RenderMan spatter shader which ships with RenderMan as a standard shader.
Noise is created in shader space using the 3d point position P. Controlling its influence by a scale
factor and checking if the value of the current influence noise on a point is greater than a threshold
if its is it is applied an opacity value 0.0 else it is kept its default value of 1.0 opaque. There is also
a similar check with an offset to the threshold which modify the colour value of the point. This

gives the effect of having a hole on the surface with a surrounding colour gradation.

Code segment of grass surface shader
// sets holes opacity
opacity holes = color(1.0,1.0,1.0) * opacity;
for (size=l; size<=max size; size +=1)
{
hole = noise(transform("shader",P) *scalefac);
if (hole > threshold)
{
opacity holes = hole opacity;
break;
}
if (hole > (threshold+threshold adjust))
{
color holes = color holes value;
break;
}
scalefac /= 2;

}

Joe Gaffney, Thanos Topouzis Master's Thesis Page 52

Fig. Example of shader transparency's based on noise

Unfortunately this feature could not be used in the actual production of the animation as the
noise gave many issues because of issues of getting noise values in certain spaces. As the grass was
animated and there was camera movements the transparent holes would always flicker because of
the noise threshold checking, despite testing getting the noise in different combinations of spaces,
shader, object,world, there was no right combination found. The shader could be fine if there was no
camera move and animated but not together it was either one or the other. This was a very
importing learning process in developing shaders for animation production. As the shaders may
look fine in a still but many problems may occur during motion such as aliasing problems and
texture swimming, unwanted noise etc.

A solution to avoid this problem and to still get the same perhaps better results was to use
textures to define the opacity of the grass.

The opacity is define values based on a user created texture to define the alpha of the object

based on U,V coordinates.

Code segment of grass surface shader
// sets holes opacity
opacity holes = color(1.0,1.0,1.0) * opacity;
if (texture opacity !="")
{
opacity holes = texture (texture opacity);
}
// set opacity

Joe Gaftney, Thanos Topouzis Master's Thesis Page 53

out opacity = opacity holes;

Diffuse and pattern calculation

Initially noise patterns were used for the bases of the shader but these gave unsatisfactory results
when viewed from close up and because of the shear amount of grass the noise patterns were

noticeable. In stead a combination of photographic and hand painted texture maps were used instead

as these gave a greater realism for the surface as the grass needed to hold up to close ups.

Fig. early shaders

Also when using the RenderMan txmake facility to convert textures into the RenderMan texture
file format (.tx) you can have the added functionality of mip mapping having the Textures stores in
various resolutions. So Renderman picks the appropriate resolution texture based on the objects
distance from the camera. Which saves a lot of memory and is clever optimisation to have. Using
the texture filter sinc when converting to .tx was found to be the best to use to retain the most detail

and reduced aliasing of the textures.[insert tex example]

A more complex diffuse model was used to allow the model to hold in close up scenes and to

give a more organic feel to the grass. Oren-Nayer diffuse model was used.

Joe Gaftney, Thanos Topouzis Master's Thesis Page 54

A nextra diffuse calculation of the non facing normal of the object to fake the effect of
subsurface scattering was also implemented. This does too lighting calculations on the object one
for the diffuse part of the shader. The diffuse for the front and back of a surface are calculated
separately by feeding the front facing normal in one calculation and the back facing normal in to the
other. Different Textures can also used to give an even greater realism. Then some of the values of
the back are added to the front(visible part of the surface) which gives the illusion of light passing
through.

Code segment of grass shader

/// Load textures if available
// texture data

if (texture front != "")

{

texture front colour = texture(texture front);

}

if (texture back != "")

{

texture back colour = texture (texture back);

}

/// Calculates the diffuse for both sides

//front face diffuse = diffuse (Nf) * ((texture front colour += color holes)) *
front colour;
front face diffuse = LocIllumOrenNayar (Nf,V,oren roughness) *

texture front colour * front colour;

//back face diffuse = diffuse(-Nf) * ((texture back colour += color holes)) *
back colour;
back face diffuse = LocIllumOrenNayar (-Nf,V,oren roughness) *

texture back colour * back colour;

The non facing and front facing sides are also modified by a colour multiplier. There is also a
different component of the diffuse applied to each side of the object surface this works well on

single planed geometry which gets viewed from both sides to give variation ideal for grass.

/// MODIFY ALTERNATE SIDE
[0 11T
I/ 77777777777777
// front side
if (Nf.N>0)
{
// Final colour applied
//out_diffuse = mix (front face diffuse,back face diffuse,0.7);
out diffuse = front face diffuse + (back face diffuse * 0.2);
lelse
// back side
{
// Final colour applied
out diffuse = (front face diffuse * 0.9) + (back face diffuse * 0.3);
//out_diffuse = mix (back face diffuse,front face diffuse,0.7);

Joe Gaffney, Thanos Topouzis Master's Thesis Page 55

Specular environment reflections

The Grass needed to have some reflective and specular quality, but initial tests into using ray

tracing reflections proved to be much to slow particularly on a large scale.

Fig. Specular environment reflections

So an alternative solution had to be found. As when studying grass it was found that they mainly
reflected diffused elements of the sky environment weight towards the tint of blue. With also

standard while specular high lighting when exposed directly in strong light sources.

So an environment map was used and loaded in with an environment map loading function
which can load in latitude longitude environment maps. This is then multiplied with a weighting of

its influence to the standard RenderMan specular function. To give the result.

Code segment from grass shader
color out environment = color (1.0,1.0,1.0);
if (EnvironmentMap != "")

{
out_environment = envmapping (N, I, EnvironmentMap, envspace, Kenv);

}

(specularcolor * out environment * Ks * specular (Nf,V, roughness))

Joe Gaffney, Thanos Topouzis Master's Thesis Page 56

Horizontal lines displacement

Displacement was used to give the illusion of lines and ridges runing up the surface of the grass
and to add greater detail of geometric believability to the object. It was developed with influence
and modification of the RenderMan cloth shader.

Noise is calculated in one direction s and used to generated vertical repeating tiling lines which

are used to modify the surface to produce interesting effect, with good results.

d one = noise(freq layer one*s) -1;

d two = noise(freqg_ layer two*s) -1;

PP = transform("shader",P);

sN = normalize (ntransform("shader",N));

P = transform("shader","current",PP + sN*((depth one*d one)+ (depth two*d two)));

Parameters of the shaders which can be modified by the user

Can be randomised on a per object basis by imputing random values with some sort of random
changing value based on each iteration of what number object is being loaded. Very useful for large
amounts of grass. The shader is adaptable for shading many other organics surfaces such as plants
and flowers, and was used for this purpose in the project. But it is designed mainly to create
realistic grass which is relatively cheap to render when dealing with large amount of objects.

A header files is included which contains additional shading model functions and environment

maping functions wrote by others as they are tried and tested but don't come as default with RSL.

#include "shading models vl rl.sl"

Surface

surface new grass_surface shader v3 rl(
/// Contol multiplers

float Ks=1.0, Kd=1.0, Ka=1.0;

/// for opacity calulations
float hole size = 0.01;

float max size = 10.0;
float control threshold = 0.8;
float threshold adjust = -0.05;

color opacity = color (1.0,1.0,1.0);

color hole opacity = color (0.0,0.0,0.0);
color color holes value = color (0.8,0.8,0.8);
string texture opacity = "";

/// for diffuse/pattern calulations

float oren roughness = 5.0;
color front colour = color (0.8,0.9,0.7);
color back colour = color (0.7,0.9,0.8);

Joe Gaffney, Thanos Topouzis Master's Thesis Page 57

string texture front = "";
string texture back = "";

/// for specular
color specularcolor = color(1.0,1.0,1.0);
float roughness = 0.2;

/// for environment reflection calulations
float Kenv = 0.3;

string EnvironmentMap = "";

string envspace = "world";

)

Displacement

displacement grass_displacement shader vl r3(
float freq layer one=300;

float freq layer two=80;

float depth one=0.02;

float depth two=0.04;

)

Finally the summed out colours and opacity as computed in the shader

Oi out opacity * opacity;
Ci =01 * (((Kd* out diffuse) + (Ka*ambient())) +(specularcolor *
out environment * Ks * specular (Nf,V,roughness)));

Rocks and ground shaders

Shader was developed to suit the need for the rocks and the ground in the piece the shaders
needed to be able to create a wide to be able to have variation as it shades prominent and different
objects.

A high degree of physical accuracy of the properties of the ground and rocks had to be
reproduced or made to look convincing to the viewer.

Rocks were studied quite closely in the pre production stage as this was needed to create
convincing shader. Details of all the important components of the ground and rock surface and

displacement shaders follow.

Pattern texture generation

The RenderMan marble shader was looked into modified and parts were used to create a marble

veining on the rock although subtle effect in the end it does add procedural variation.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 58

/// for marble viening

point PP;

float width, cutoff, fade, f, turb, maxfreq = 16;
PP = transform("shader", P) * veining;

width = (max(sqgrt(area(PP)), le-7));

//width = PP/2;

cutoff = clamp (0.5 / width, 0, maxfreq);

1; £ < 0.5 * cutoff; f *= 2)

turb += abs((noise (PP * f) * 2 - 1)) / f;
}

fade = clamp(2 * (cutoff - f) / cutoff, 0, 1);
turb += fade * abs((noise (PP * f) * 2 - 1)) / £f;

turb *= 0.5;

layer color = (spline(turb,

color (0.9, 0.9, 0.9),

color (0.8, 0.8, 0.8),

color (0.5, 0.5, 0.5),

color (0.4, 0.4, 0.4),

color (0.6, 0.6, 0.06),

color (0.3, 0.3, 0.3),

color (0.2, 0.2, 0.2),

color (0.1, 0.1, 0.1)))*color multi one;
layer opac = layer color;
surface color = ((surface color) * (1 - (layer opac)) + (layer color) *

(layer opac));

The RenderMan spatter shader and the theory behind it was looked into modified and parts were
used to create a repeating spots of colour to the surface to add procedural variation. Also a
modification offer the specular component of the shader was achieved with his effect to be used as a

multiplier during the specular component calculation stage

/// spots

varying float spot,size,scalefac,threshold = Threshold;
float layer,temp layer, max size = sizes;

surface spec = color (0.0,0.0,0.0);//specularcolor;

for (layer = 1; layer <= Layers_ of spots; layer += 1)
{
/// add variation of colours to the spots
scalefac = 1/specksize;
for (size=l; size<=max size; size +=1)
{
spot = noise(transform("shader",P) *scalefac);
if (spot > threshold)
{

surface color += ((color

Joe Gaffney, Thanos Topouzis Master's Thesis Page 59

(max(0.7,1.0) ,max(0.7,1.0) ,max(0.7,1.0))) * (spattercolor * (layer *0.5)) *
1.0);

if (layer >= 2)

{

surface spec += ((color
(max(0.1,0.3),max(0.1,0.3),max(0.1,0.3)))) * float random();
}

break;
//}
}

scalefac /= 2;
}
max_size /= 2;
threshold *= 0.8;
scalefac /= 2;

}

surface color *= spattercolor;

Textures are also used as a multiplier with the procedural patter generated to add additional
variation and realism to the shader this combination of procedural components and texture

components worked really well in the end to add a greater detail of realism and randomness.

Finally the summed out colours and opacity as computed in the shader

Oren-nayer was used for diffuse calculations to add a more organic clay like feel and
environment reflection mapping was used as a multiplier to the reflections.
surface color *= texture front colour;
0i=0s;

Ci = ((Kd * (LocIllumOrenNayar (Nf,V,roughness)*surface color)) + (specularcolor
* specular (Nf,V, spec_roughness) * envcolor * Ks)* 0Oi);

Procedural displacement

A simulation of turbulence or fractal noise was used to create the bumpy and protruding surfaces
of rocks and a great amount of detail using displacement can be achieve on relatively low resolution
geometry.

This be achieved by using the noise() within a loop. On each iteration of the loop the value
returned from noise() is added to the result of the previous iteration. Successfully higher frequencies

but smaller amplitudes are used for iteration. The visual result is richer because the shading can

Joe Gaffney, Thanos Topouzis Master's Thesis Page 60

appear to mimic natural surfaces ie. large bumps have small bumps which in turn have even

smaller[16]

/// initialise variables

float proc_displace = 0;

normal n = normalize (N);

point p = transform(space, P);

float j, £ = Freq, amplitude = Amplitude;

/// loop that calculates the noise displacement in layers
for(j = 0; j < Layers; j += 1)
{
proc _displace += (noise(p * f) -0.5) * amplitude;
f *= 2;
amplitude *= 0.5;
}
[16]

Parameters of the shaders which can be modified by the user

Can be randomised on a per object basis by imputing random values with some sort of random

changing value based on each iteration of what number object is being loaded.

Surface

surface rock surface v2 r4(

float Ka= 0.5;

float Kd= 1.0;

float roughness= 10.0;

float spec_roughness = 2.0;

float Ks= 0.5;

float veining = 40.0;

color diffusecolor = (0.7,0.7,0.6
color color multi one =
color color multi two =
color specularcolor =
float Threshold = 0.7;
float Layers of spots
float specksize = 0.01;

float sizes = 5;

color spattercolor = color (1,1,1);
float Kenv = 0.3;

string envname = "";

string envspace = "world";

string texture front = "";)

—~ |

O~ —~
o
~ . .
o o w
o -

BN

Il
=
~

Displacement

displacement ground displacement v2 rl(
float Km = 0.02;

float Freq = 5;

float Amplitude = 30;

Joe Gaffney, Thanos Topouzis Master's Thesis Page 61

float Layers = 8;

string space "object";)

Multi purpose shader

A multi purpose shader was developed to deal with the none organic objects in the scene such as
the house and fence in the back ground of the image, although a lot of the detail is not seen in these

objects as they are often heavily out of focus in the piece.

It relies on texture for pattern generation and uses a environment map as a multiplier to the
specular calculations. Simple diffuse calculations as used to speed up the shading process as the

object this shader is used for are in the distance of the scene.

normal Nf;
vector V;

Nf = faceforward(normalize(N), I);
V = -normalize(I);

color texture one colour, texture opacity colour, texture two colour,
out environment = color(1.0,1.0,1.0);

// texture data
if (texture one !="")

{

texture one colour = texture (texture one);

}

if(texture_two | = nn)

{

texture two colour = texture (texture one);

}

color out diffuse = ((texture one colour * texture two colour) * diffusecolor);
/// Opacity

if (texture opacity !="")

{ texture opacity colour = texture (texture opacity);

}

/// ENVIRONMENT LIGHTING

if (EnvironmentMap != "")

{ out environment = envmapping(N, I, EnvironmentMap, envspace, Kenv);
}

0i = 1;//texture opacity colour * opacitycolor;

Ci = (((Ka*ambient () + Kd*diffuse(Nf) * out diffuse)) +

Joe Gaffney, Thanos Topouzis Master's Thesis Page 62

((specularcolor * out environment) * Ks *
specular (Nf,V, roughness))) * 0i;

Parameters of the shaders which can be modified by the user

Can be randomised on a per object basis by imputing random values with some sort of random
changing value based on each iteration of what number object is being loaded. For example this

was sued to give variation to the individual fence planks.

Surface

surface multi surface vl rl(float Ks=.5, Kd=.5, Ka=1l, roughness=.1;
color diffusecolor=1;
color specularcolor=1l;
color opacitycolor=1l;
string texture one = "";
string texture two = "";
string texture opacity = "";
float Kenv = 0.3;
string EnvironmentMap = "";
string envspace = "world";)

Magnifying glass shader
The shader used for the magnifying glass was the RenderMan “shinymetal” shader and for the
lens to get refractions the RenderMan “glassrefr” shader was used. For this shader to work ray

tracing had to be used as this shader relies on the functionality of ray-tracing being turned on for

trace samples. As ray-tracing is expensive the magnifying glass was rendered separate.

Sky

The shader was rendered with a shader that ignores lighting calculations and applies a texture out

as the colour(Ci) and gives the opacity(Oi) a value of 1.0.

Statue shader
The statue shader was very important as the statue it the most important object in the piece and

Joe Gaffney, Thanos Topouzis Master's Thesis Page 63

requires a lot of light interaction. For the look of the statue we wanted it to look wax like and have
quality's of wax such as translucency but in a more stylised way as to better fit the piece and
environment.

Subsurface scattering was essential was essential for the shader and various methods were
looked into to achieve this method, and various techniques were looked into to find the optimum
method. The shader also needed to work well on dynamically deforming geometry.

The method that gave the best results computational and look wise was a two step process that
utilised RenderMan's ability to generate point cloud data which can be read from shader to preform
various task such as ambient occlusion, colour bleeding, sub-surface scattering(SSS).

Normally this to be generated through RenderMan ans this is the fastest method to generate point
clouds. Steps involved generating a point cloud turning this into a brickmap which can be read

through shaders.

Unfortunately as we were using the python Api as a interface to RenderMan(it is a relatively
new addition to RenderMan only coming out in 2008), the point cloud api for is not yet fully
supported. This presented a problem which required a work around.

The solution was to use a shader that generates a point cloud on a per object bases this case being
the statue. This needs to be done once per frame if the camera or object moves. The shader used to
do this follows. Data management was also a problem as point cloud data files can be relatively
large and care not to run out of disk space was also a careful consideration in the project particularly
when rendering the project.
surface bake radiance t (string filename = "", displaychannels = ""; color Kdt =
})

color irrad, rad t;

normal Nn = normalize (N);
float a = area (P, "dicing"); // micropolygon area

/* Compute direct illumination (ambient and diffuse) */
irrad = ambient () + diffuse (Nn);

/* Compute the radiance diffusely transmitted through the surface.
Kdt is the surface color (could use a texture for e.g. freckles) */
rad t = Kdt * irrad;

/* Store in point cloud file */
bake3d (filename, displaychannels, P, Nn, "interpolate", 1,
" area", a, " radiance t", rad t);

Ci rad t * Cs * Os;
0i = Os;

[from PrMan doc,Illumination, Translucency and Subsurface Scattering]

Joe Gaffney, Thanos Topouzis Master's Thesis Page 64

This generates a point cloud in .ptc file a function was created in python to read in geometry that
needed have a point cloud generated, and also read in the file name and frame number. This also
would load in the camera and lights of the scene that effect are wanted to affect the point cloud, this
is quite important as some lights need to be omited from affecting the point cloud. Also if shadow
maps are used in the lights they need to be calculated before the point cloud generation step as
shadows from the lights are needed to block light to retain the believability of the lighting in the

scene.

def create point cloud(Name, SceneFunc, frame)
print "Rendering point cloud %s.rib" % (Name)# + frame number
ri.Begin("_ render")

ri.Display("temp point cloud file.%04d." % (frame) + Name + ".tif", "file",
"rgba™)

#ri.Display (Name + ".rib", "file", "rgba")

ri.Clipping(1,100)

Specify PAL resolution 1:1 pixel Aspect ratio

ri.Format (res x,res y,1)

ri.PixelSamples(4,4)
ri.ShadingInterpolation ("smooth")

ri.Attribute ("visibility", {"int transmission": 1})
ri.Attribute ("trace", {"int displacements" : [1] , "bias" : [.01]1})
ri.Attribute("cull", {"hidden" : [0]}) # don't cull hidden surfaces
ri.Attribute("cull", {"backfacing" : [0]}) # don't cull backfacing
surfaces
ri.Attribute("dice", {"rasterorient" : [0]}) # turn viewdependent

gridding off

ri.DisplayChannel ("float _area")
ri.DisplayChannel ("color radiance t")

#Will be loaded as funciton defintion
ri.Projection(ri.PERSPECTIVE, {ri.FOV:37.7777})

#loads cameras into scene
cameras (ri, frame)
ri.WorldBegin ()

ri.ShadingRate ([11])

scene lights(ri, 3)

ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",0)
ri.Illuminate ("Ambient", 0)
ri.Illuminate (Fg distance light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",1)
ri.Illuminate ("Light backlight",1)
ri.Illuminate (fg SpotName 01,1)
ri.Illuminate (fg SpotName 02,1)
ri.Illuminate (mag_ SpotName, 1)
ri.Illuminate (shad inner mag SpotName, 1)

Joe Gaffney, Thanos Topouzis Master's Thesis Page 65

ri.Illuminate (shad outter mag SpotName, 1)

ri.AttributeBegin ()

ri.Surface ("./shaders/sss/bake radiance t",{ "string filename":
[out filename + Name + ".%04d.ptc" %(frame)], "string displaychannels":
[" area, radiance t"]})

print Name

SceneFunc (ri, frame,point cloud check,out filename, rendertype, shot)

ri.AttributeEnd ()

ri.WorldEnd ()
ri.End()
print " Done make brick %$s.ptc" % (Name)

The next step involves reading the point cloud file from a shader. The shader follows that reads

in the point cloud. This is also a really good feature to this shader as it avoid the conversion of the

point cloud into a brickmap which is a slow process it is very optimised. It also has a smoothing

option that allows you to smooth the data of the point cloud if it is not dense enough to still achieve

good effect. The shader has a lot of parameter that allow control of colour and amount light can

travel through the shader.

surface render ssdiffusion(uniform string filename = "";

color albedo = color(0.830, 0.791, 0.753); // marble

color dmfp = color(8.51, 5.57, 3.95); // marble
float ior = 1.5; // marble
float unitlength = 1.0; // modeling scale

float smooth = 0; // NEW for PRMan 14.0 !! (see sec.
float maxsolidangle = 1.0; // quality knob: lower is better

float Ka = 1, Kd = 0, Ks = 1, roughness = 0.1)

normal Nn = normalize (N);
vector V = -normalize (I);
color amb, diff, spec, sss = 0;

// Compute direct illumination (ambient, diffuse, and specular)
amb = Ka * ambient();

diff = Kd * diffuse (Nn);

spec = Ks * specular (Nn, V, roughness);

// Compute subsurface scattering color
sss = subsurface (P, N, "filename", filename,
"albedo", albedo, "diffusemeanfreepath", dmfp,
"ior", ior, "unitlength", unitlength,
"smooth", smooth,
"maxsolidangle", maxsolidangle) ;

// Set Ci and Oi

Ci = (amb + diff + sss) * Cs + spec;
Ci *= Os;
Oi = Os;

}

[from PrMan doc,Illumination, Translucency and Subsurface Scattering]

This is read in and applied to object which is rib archived geometry file in the following way this

also show the final parameter used on the shader. The statue is also applied a version of the

Joe Gaffney, Thanos Topouzis Master's Thesis Page 66

ground/rocks displacement shader with a high frequency and low amplitude to give it richer look

when viewed up close and to diffuse the and high lights better.

ri.Surface("./shaders/sss/render ssdiffusion", { "uniform string filename":
[out filename + Name + ".%04d.ptc" % (frame)],
"color albedo": [0.746, 0.741, 0.428],
"color dmfp": [6.96, 6.40, 1.50],
"float ior": [1.5],
"float unitlength": [1.0],
"float smooth": [17,
"float maxsolidangle": [1],
"float Ka": [0.4],
"float Kd" : [0.35],
"float Ks": [0.4],
"float roughness": [0.2]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl", { "float Km" :

[0.004], "float Freqg":[100], "float Amplitude":[2.5], "float Layers":[8],"string
space": ["shader"]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.2]})
if (statue type == 1):

ri.ReadArchive ("./Archive/statue/statue shot three four/first an
d second hole ribs.0001.rib™")

Another note that is important is that the effect of the subsurface scattering changes based on the
distance of the object form the camera and size on screen even if the lights don't move(scene
dependent). This meant that the lights that effected the statue had to be modified for each shot to
match which was a challenging lighting task.

spot light fg one

fg coneAngle 01 intensity default shot 01 = 50000
fg coneAngle 01 intensity statue shot 01 = 12000

if (shot == 1)

fg coneAngle 01 intensity statue scatter shot 01 = 20000
if (shot == 2)

fg coneAngle 01 intensity statue scatter shot 01 = 65000
if (shot == 3)

fg coneAngle 01 intensity statue scatter shot 01 = 33000
if (shot == 4)

fg coneAngle 01 intensity statue scatter shot 01 = 50000
if (shot == 5)

fg coneAngle 01 intensity statue scatter shot 01 = 25000
if (shot == 6)

fg coneAngle 01 intensity statue scatter shot 01 = 23000

Joe Gaffney, Thanos Topouzis Master's Thesis Page 67

Cameras

As the camera had to be used by various function as well as in the main scene loop it made sense
to make them in there own function. And as there need to be movement to some of the shots with
precise control interpolation, smooth interpolations had to wrote in python to control the movement
these functions take in a start value, and an end value and interpolate them based on the start and
end frame of when we wanted to specify the movement. If the start frame is not reached the start
value is reached and value remains static and will only start to change once the start frame is

reached. If it is after the end frame the the end value is returned.

¥

| |
X X

(yb - ya.)

y:yﬂ—i_(x_i:ﬂ}(xb_xﬂ)

Fig. Linear Interpolation (http://en.wikipedia.org/wiki/Interpolation#Linear_interpolation)

def lerp(start value,end value,start frame,end frame, frame) :
if (frame < start frame):
return start value
if (frame > end frame) :
return end value

else
frame range = end frame - start frame
t = (frame - start frame*1.0) / frame range
return ((1-t)*start value) + (t*end value)

A smooth interpolation was also needed to blend in the motion of the cameras beging and end
movement. Cubic interpolation was chosen for this as it stops the sudden sudden start stop motion

in the gradient.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 68

00 0.5 1.0

Cubic interpolation function

k() = k(0) *(2u’-3u?+1) + k(1) *(3u-2u”
(http://www.gamedev.net/reference/articles/article1497.asp)

def smoothstep(start value,end value,start frame,end frame, frame) :
if (frame < start frame):
return start value
if (frame > end frame):
return end value

else
frame range = end frame - start frame
t = (frame - start frame*1.0) / frame range
print "S$f" % (t)
x = start value * (2*(t*t*t) - 3*(t*t) + 1) + (end value * (
(3*(t*t)) - (2*(t*t*t))))

return x

A noise function was also generated to have subtle motion on the cameras if needed, this was

greatly reduced in the final piece however as we prefered the more smooth controlled cameras.

def noise (amount, frame) :
return ((math.sin(frame + random.uniform(l,100)) * amount))

Example of the camera function and how different values are assigned to each shot and shows
the interpolation functions in action, also how motion blur is set for shots with movement by
evaluating the movement of the camera a frame ahead as well and putting them in a motion block.
Depth of field is applied out of the camera function as it is only needed in the main pass and is not
need in the point cloud and shadow passes. Setting up the cameras to produce good cinematography
inside RenderMan was rather a challenge (without the visual luxuries you get inside of Maya of
actually being able to visualise your scenes with out rendering), lots of tweaks were needed to get

satisfactory results but as the project progressed moving round the scene with out any visuals and

Joe Gaffney, Thanos Topouzis Master's Thesis Page 69

just values seemed almost intuitive.

def cameras (ri, frame) :
#fixes rotation of scene
noise tran x = noise(0.002, frame)
noise tran y noise (0.002, frame)
noise tran z = noise(0.002, frame)

noise rot x = noise(0.002, frame)
noise rot y noise (0.002, frame)
noise rot z = noise(0.002, frame)

ri.Rotate(180,0,1,0)
if (shot == 1)
cam_x = 1.0

cam_y = smoothstep(45,1,200,500, frame)
cam_y nf = smoothstep(45,1,200,500, frame+1)

#cam y = 1

#cam y nf =1

print "3f" % (cam y)

cam_z = -36.4

ri.Shutter(0,1)

ri.MotionBegin ([-0.5,117)
ri.Translate(cam x,-cam_y,cam_ z)

ri.Translate(cam x,-cam_y nf,cam z)

ri.MotionEnd/()
ri.Rotate(-6,1,0,0)
ri.Rotate(-1,0,1,0)

if (shot == 2):
cam x = 3
cam y = 5
cam z = -8

ri.Translate(cam x,-cam y,cam z)
#ri.Translate(0,-3,-45)
ri.Rotate(-40,1,0,0)
ri.Rotate(-85,0,1,0)

if (shot == 3)
cam x = 0
cam y = 4

cam z = -15
ri.Translate(cam x,-cam y,cam z)
ri.Rotate(-15,1,0,0)
ri.Rotate(-3,0,1,0)

if (shot == 4)
cam x = 1.3
cam y = 6
cam z = -5

ri.Translate(cam x,-cam_y,cam_ z)
ri.Rotate(-9,1,0,0)
ri.Rotate(-1,0,1,0)

if (shot == 5)
cam x = 2.1
cam y = 0.0
cam z = -6
ri.Translate(cam x,-cam y,cam z)
ri.Rotate(-6.5,1,0,0)
ri.Rotate(6,0,1,0)

if (shot == 6) :
cam x = -0.3

Joe Gaffney, Thanos Topouzis Master's Thesis Page 70

cam y = smoothstep(-3.5,-4.5,700,950, frame)

cam_z = smoothstep(-14.5,-17.5,700,950, frame)
cam_z nf = smoothstep(-14.5,-17.5,700,950, frame+1)
ri.MotionBegin ([-0.5,117)
ri.Translate(cam x,cam y,cam Zz)
ri.Translate(cam _x,cam y,cam z nf)

ri.MotionEnd/()

ri.Rotate (-25,1,0,0)

ri.Rotate(-3,0,1,0)

Lighting

Lighting was a challenging aspect as lights needed be placed mainly and a lot of work needed to
be done manually that is taken for granted when using an animation system as an interface to
RenderMan(for instance setting up shadows). But using the Python api did allow more fidelity in
control once everything had begun to be set up.

Using ray trace lighting was avoid as it is slow and less optimised and would not be able to
handle the complexity of the scenes. Conventional lights with some having shadows enabled
through depth maps. Shadow maps for the lights need to compute each from for the lights which
effect moving lights. However we did reuse shadow maps on shots were possible as optimisation.

A function was made to compute shadow maps as this allow extensibility if more show emiting

lights were needed.

def ShadowPass (Name, From, To, coneAngle, SceneFunc, frame, res)

frame number = str (frame)

print "Rendering Shadow pass %s.z" % (Name) + frame number
ri.Begin("_ render")

ri.Display (Name + ".%04d" % (frame) + ".z", "zfile", "z")

ri.Clipping(0.01,6000)

Specify PAL resolution 1:1 pixel Aspect ratio

ri.Format (res,res, 1)

now set the projection to perspective

ri.Projection (ri.PERSPECTIVE, {ri.FOV:coneAngle* (360/math.pi) })
#now move to light position

ri.Hider ("hidden", {"jitter" : [0]})

ri.ShadingRate (1)

ri.PixelFilter(ri.BOX ,1.0, 1.0)

ri.PixelSamples(1,1)

direction = map(lambda x,y : x-y , To,From)
AimZ (direction)

ri.Translate (-From[0],-From([1l],-From[2])

now draw the Scene

ri.WorldBegin ()

SceneFunc (ri, frame, point cloud check,out filename,rendertype, shot)
ri.WorldEnd ()

ri.MakeShadow (Name + ".%04d" % (frame)+ ".z", Name + ".%04d" % (frame) +

Joe Gaffney, Thanos Topouzis Master's Thesis Page 71

".shad")
ri.End()
print " Done MakeShadow %s.shad" % (Name)

[http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html]

The lighting set up for the seen required some of the lights values/names to be declared global as
to allow other functions to have access to certain information easier. There is also a scene light
function which generates the all the lights. This function makes use of the previous interpolation
and noise functions generated to animate the camera on certain lights.

There is also a control value to decide what value the lights have, as certain objects had to have
different amounts of values from the light particularly the statue as it has a subsurface scattering
lighting information added in the the point cloud calculation as-well as the usual diffuse specular
calculations. So these each have different values depending on what the light was currently shading.
For instance a default light value for the rest of the scene (a value of 1 is passed in), the statue

diffuse specular light(a value of 2 is passed in), and sss calculation lights(a value of 3 is passed in).

The whole function is in the appendix but some segment showing one light follows to demonstrate

def scene lights(ri,value):
Light_control = value

some missing

Spot light

if (Light control == 1):

fg coneAngle 02 intensity = fg coneAngle 02 intensity default shot 01
if (Light control == 2):

fg coneAngle 02 intensity = fg coneAngle 02 intensity statue shot 01
if (Light control == 3):

fg coneAngle 02 intensity = fg coneAngle 02 intensity statue scatter shot 01

ri.LightSource("shadowspot", {ri.HANDLEID:fg SpotName 01,"point from" : fg SpotFrom 01, "point

to" : fg SpotTo 01,"float intensity" : fg coneAngle 01 intensity,"string shadowname" :out filename +
fg SpotName 01 + ".%04d" % (frame) + ".shad","float coneangle" : fg coneAngle 01,"float
conedeltaangle" : [0.05], "color lightcolor": fg coneAngle 01 colour, "float beamdistribution":

[2],"float samples":[128],"float width":[32]})

The lighting is set up with two direction lights with low intensity on for a front fill with a blue
tint and a back lighting fill with a red tint this gives a good base lighting of the scene. There are two
spot lights that effect the fore ground with strong intensity and falloffs that produce also use show
maps to cast shadows. These lights essentially represent the sun light. A lot of work was done in
developing the lighting look off the scene and this set up seemed to work the best.

For the magnifying glass light there was a lot of trickery involved to fake the look. The set up

has is made up of three spot lights which have the same point too and from position so they work

Joe Gaffney, Thanos Topouzis Master's Thesis Page 72

together. The first light has a narrow cone angle and a high intensity to produce the bright focal
point area. The second has a wide cone angle to produce additional light but with a lower intensity
and the third light has an even wide cone angle and has a negative intensity value to cheat the effect

of shadows. These lights also work with the subsurface calculations.

magnifying glass light
mag_SpotName="mag Spot"

mag SpotFrom=[-20,20,25]
#mag coneAngle=0.0075
mag_coneDeltaAngle=0.05
mag_colour=[1.0,0.9,0.8]
mag intensity default=600

magnifying glass shadow lights

shad inner mag SpotName="shad inner mag Spot"
shad inner mag colour=[0.75,0.7,0.7]

shad inner mag coneAngle=0.14

shad inner mag coneDeltaAngle=0.21

shad inner mag intensity default=1850

magnifying glass shadow lights

shad outter mag SpotName="shad outter mag Spot"

shad outter mag colour=[1.0,1.0,1.0]

shad outter mag coneAngle=shad inner mag coneAngle+0.02
shad outter mag coneDeltaAngle=0.21

shad outter mag intensity default=-1100

Rendering

Was controlled with user input to control the file name, frame range, resolution, shading rate,
pixel samples, shot number, computer shadows/ point clouds, and render layer eg foreground mid-
ground.

For example to render a shot for high resolution for a the first hundred frames you would run the

script with these flags proceeding it

./scene v9 4 begining of shot 2 etc.py final vl rl shot 01 fg beauty 1 100
1024 576 0.3 16 11 21

Images were rendered out in 32 bit floating point with the exr file format, Mitchell filtering was
used as this gives the sharpest aliased free result. Depth of field was set with on a per frame basis by
setting the focal distance and f stop. Objects in the scene were split into layers of the statue,
foreground, mid-ground back ground sky, occlusion, environment and masking elements to add in

compositing this can be controlled with the render layer flag mostly. Shadows and point clouds are

Joe Gaffney, Thanos Topouzis Master's Thesis Page 73

produced before the main rendering begins and can rendered on there own first with out the scene
being rendered. It is easy to control the quality of the images as you have access to the resolution
shading rate and pixel samples from the flags in the script so you can do quick test previews or high
res tests. Or set a batch of renders off by by loging in to multiple machines using ssh or manually
loging in and runing the scripts over the required frame range and shot. Render directly from the
python script instead of making the script convert to a RIB files as this would be a relative hit on
disk space resources and little gain is given as the RIB wouldn't really needed to be modified at this

point. Also with the render controls of the scripts it is easy to distribute renders.

Compositing

Compositing was mainly done in Shake with Nuke for support for certain features. Some colour
correction and post adjustments/enhancements was done and of course combining layers and passes
of the renders and smoke which was rendered separately in Maya. Shake was also used for the
editing as it allowed us to keep the images in 32 bit colour space and limited degrading the quality
of the image by putting it through other software as the we would have had to convert to 8 bit prior
to the final export.

Look Development process showing end result for an example shot from animation

Various tests an experiments on the look development of the piece.

Joe Gaftney, Thanos Topouzis Master's Thesis Page 74

Joe Gaffney, Thanos Topouzis Master's Thesis Page 75

Final Stills from Animation

Joe Gaffney, Thanos Topouzis Master's Thesis Page 76

Joe Gaftney, Thanos Topouzis Master's Thesis Page 78

Joe Gaffney, Thanos Topouzis Master's Thesis Page 79

Conclusion

Using the aforementioned tools and techniques we managed to get very comfortable using the
pipeline between RenderMan, Houdini and Maya which we tested in production. We also broaden
our knowledge and skills and in the end we produced a visually interesting project from an artistic

view and a technical standpoint having created, what we believe, a unique result.

Joe Gaffney, Thanos Topouzis Master's Thesis Page 80

Bibliography

[1] Rodins Works: The Gates of Hell, Wikipedia The Free Encyclopaedia
http://en.wikipedia.org/wiki/The Gates of Hell

[2] Rodin Works:She Who was the Helmet-Maker's once beautiful Wife http://www.rodin-web.org/

works/1884 helmetmakers wife.htm

[3] Houdini Documentation: Particle Fluid Surface

[4] Houdini Documentation: Interact Node

[5] Houdini Documentation: Property Node

[6] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, The Algorithmic Beauty of Plants , Springer;

1 edition (October 11, 1991)

[7] Graig Zerouni, Houdini On The Spot: Power User Tips and Techniques, Focal Press, ElseVier,
First Edition, 2007

[8] Bill Fleming, Digital Botany and Creepy Insects, Mastering 3D Graphics, Wiley Computer
Publishing John Wiley & Sons, Inc, First Edition 2000

[9] Simon Clavet, Philippe Beaudoin, and Pierre Poulin, Particle-based Viscoelastic Fluid
Simulation, LIGUM, Dept. IRO, Universit¢ de Montréal, Eurographicss ACM SIGGRAPH
Symposium on Computer Animation (2005) K. Anjyo, P. Faloutsos (Editors) #

[10] PrMan docs, JonMacey's online documentation http://nccastaff.bournemouth.ac.uk/

jmacey/Renderman/index.html

[11] Rudy Cortes, Saty Raghavachary, The RenderMan Shading Language Guide, Thomson Course
Technology, 2008

[12] Steve Upstill, The RenderMan Companion : A programmer's guide to realistic computer

Joe Gaffney, Thanos Topouzis Master's Thesis Page 81

http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://www.rodin-web.org/works/1884_helmetmakers_wife.htm
http://www.rodin-web.org/works/1884_helmetmakers_wife.htm

Graphics, Addison-Wesley Professional 1990.

[13] David S. Ebert, E. kenton Musgrave, Darwyn Peachey, Ken Perlin, Steve Worley, Texturing
and Modeling : a procedural approach, Morgan Kaufman Publishers, Third Edition, 2002

[14] Antony A. Apodaca, Advanced RenderMan: Creating CGI for Motion Pictures, Morgan
Kaufman Publishers, First Edition, 1999

[15] http://www.fundza.com/rman_shaders/overview/overview.html
[16]http://www.fundza.com/rman_shaders/displacement/index.html
Notes: The model of the house in the background was a model that was created and used by Joe

Gaffney for a previous project. The model of the statue in created by Anand Gopinath and

purchased from www.gnomology.com. Some textures was used from www.cgtextures.com

Joe Gaffney, Thanos Topouzis Master's Thesis Page 82

http://www.fundza.com/rman_shaders/displacement/index.html
http://www.fundza.com/rman_shaders/displacement/index.html
http://www.fundza.com/rman_shaders/displacement/index.html
http://www.fundza.com/rman_shaders/overview/overview.htmlfig
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html

Appendix
Python scripts

scene v13 2 final.py

#!/usr/bin/python

#Joe Gaffney MSc 2009

for bash we need to add the following to our .bashrc

export PYTHONPATH=$PYTHONPATH:S$SRMANTREE/bin

FH A A S S R R R S
#HEFEER S

Main python script which handles scene management and lighting and rendering of the project etc

RN 5
iiddaddsddi

#

Parameters

#scriptname (filemname) test render vl rl (start frame) 1 (end frame) 1 (resolution x) 720
(resolution y) 404

(shading rate) 5 (pixel samples) 2 (shot) 1 (compute shadows point clouds) 1 (rendertype) 1
(renderlayer) 1

TO RUN

LOW QUALITY

./scene v13 2 final.py final vl rl shot 01 fg beauty 1 100 720 404 10 4112 1

HIGH QUALITY HD

./scene_v13 2 final.py final vl rl shot 01_fg beauty 1 100 1024 576 0.3 16 1 1 2 1

ER
R

RN E 3 R R i i i
FHEHHER A

IMPORTED MODULES

A R S S R R S R R
FHEHHERHE"

import getpass,time, random,math,os,sys,fileinput, prman

from archive v6_rl final import *

R R R R R R R R R R R R R
FHEHHE RS

READ IN VALUES

FHA A R R R R R
LR 235 AR

out filename = sys.argv [1]
start frame = int(sys.argv [2])
end frame = int(sys.argv [3])
res x = int(sys.argv [4])

res y = int(sys.argv [5])
shading rate = float(sys.argv [
pixel samples = int(sys.argv [7
current shot = int(sys.argv [8]
compute shadows = int(sys.argv [9])
in rendertype = int(sys.argv [10])
renderlayer = int(sys.argv [11])

61)
1)
)

rendertype = 1
R R R R R R R R R
FHEH AR

Create an instance of the RenderMan interface

FHA A R R
L 245 A

ri = prman.Ri() #

ri.Option("rib", {"string asciistyle": "indented"})

U R R R R R
A

Asign global varibles

B R R R R S
LRSS S 2 A

cam move_y = 0

shot = current shot

point_cloud check = 0

AN i ssiisasaiissaaaisssasiisisagaiisaaaiiisaaaiiisaaaiissaaaiisaaaiiisaaniiisagRiisnnRtdssdi

Joe Gaftney, Thanos Topouzis Master's Thesis Page 83

FHEH A

Lights

FHEF R R R R
EEE 2235 A

RS ssaisasisaisanssaiiasisaisaniaiatiaaisatiaaiiatsaaisasiaisasiaisasiaisan gt nsns]
A A3 A A

Foreground lights
idddssasssassasissisassssssassssdsasdsadisassssisasssaisasissisasisaisasiasssassgisatasaisaiiagisaisi
AR A 52 AN

Back light

Back light default shot 01 = 0.4

Back light intensity statue shot 01 = 0.2

if (shot == 1)

Back light intensity statue scatter shot 01 = 0.3
if (shot == 2) :

Back light intensity statue scatter shot 01 = 0.45
if (shot == 3)

Back light intensity statue scatter shot 01 = 0.45
if (shot == 4) :

Back light intensity statue scatter shot 01 = 0.15
if (shot == 5) :

Back light intensity statue scatter shot 01 = 0.45
if (shot == 6)

Back light intensity statue scatter shot 01 = 0.45

Front light
Front light default shot 01 = 0.4
Front light intensity statue shot 01 = 0.4

if (shot == 1)

Front light intensity statue scatter shot 01 = 0.3
if (shot == 2)

Front light intensity statue scatter shot 01 = 0.45
if (shot == 3)

Front light intensity statue scatter shot 01 = 0.45
if (shot == 4) :

Front light intensity statue scatter shot 01 = 0.15
if (shot == 5)

Front light intensity statue scatter shot 01 = 0.45
if (shot == 6)

Front light intensity statue scatter shot 01 = 0.45

spot light fg one
fg coneAngle 01 intensity default shot 01 = 50000
fg coneAngle 01 intensity statue_shot 01 = 12000

if (shot == 1)

fg _coneAngle 01 intensity statue scatter shot 01 = 20000
if (shot == 2)

fg coneAngle 01 intensity statue scatter shot 01 = 65000
if (shot == 3)

fg coneAngle 01 intensity statue scatter shot 01 = 33000
if (shot == 4)

fg coneAngle 01 intensity statue scatter shot 01 = 50000
if (shot == 5)

fg coneAngle 01 intensity statue scatter shot 01 = 25000
if (shot == 6)

fg coneAngle 01 intensity statue scatter shot 01 = 23000

spot light fg two
fg coneAngle 02 intensity default shot 01 = 44000
fg coneAngle 02 intensity statue shot 01 = 10000

if (shot == 1)

fg coneAngle 02 intensity statue scatter shot 01 = 16000
if (shot == 2)

fg coneAngle 02 intensity statue scatter shot 01 = 60000
if (shot == 3)

fg coneAngle 02 intensity statue scatter shot 01 = 30000
if (shot == 4)

fg coneAngle 02 intensity statue_ scatter shot 01 = 46000
if (shot == 5)

fg _coneAngle 02 intensity statue scatter shot 01 = 25000
if (shot == 6)

fg coneAngle 02 intensity statue scatter shot 01 = 25000
Forground lights

fg SpotName 01="fg Spotl"
fg SpotFrom 01=[-70,110,110]

Joe Gaftney, Thanos Topouzis Master's Thesis Page 84

fg SpotTo 01=[0,-5,0]
fg_coneAngle 01=500
fg_coneAngle 01 colour=[0.9,0.8,0.85]

fg SpotName 02="fg Spot2"
fg_SpotFrom 02=[-60,100,80]

fg SpotTo 02=[0,-5,-10]
fg_coneAngle_02=500

fg coneAngle 02 colour=[0.8,0.9,0.85]

magnifying glass light
mag_SpotName="mag Spot"
mag_SpotFrom=[-20,20,25]
#mag coneAngle=0.0075
mag_coneDeltaAngle=0.05
mag_colour=[1.0,0.9,0.8]
mag intensity default=600

magnifying glass shadow lights
shad_inner mag SpotName="shad inner mag Spot"
shad_inner mag colour=[0.75,0.7,0.7]

shad inner mag coneAngle=0.14

shad inner mag coneDeltaAngle=0.21
shad_inner mag intensity default=1850

magnifying glass shadow lights

shad outter mag SpotName="shad outter mag Spot"

shad outter mag colour=[1.0,1.0,1.0]

shad outter mag coneAngle=shad inner mag coneAngle+0.02
shad outter mag coneDeltaAngle=0.21

shad _outter mag intensity default=-1100

U
FHEH S

Lights background
R
LR S 555 A

Foreground distance shadow light

Fg_distance_light = "fg distance_light"

Fg _distance light From=[-80,200,150]

Fg _distance light To=[0,0,0]

Bg distance light = "bg distance light"
Bg _distance light From=[-80,200,150]
Bg _distance_light To=[0,0,0]

foreground light

Fg distance intensity default shot 01 = 2.1

Fg distance intensity statue shot 01 = 0.15

Fg _distance intensity statue scatter shot 01 = 0.5

background light

Bg distance intensity default shot 01 = 1.7

Bg _distance intensity statue shot 01 = 0.15
Bg_distance_intensity statue scatter shot 01 = 0.5

RN 55
iiddddkdai

Jon Maceys funciton code to reorientate the camera for shadow map calculaitons
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html

A R R R R S R

LR 235 AR
def AimZ (direction)
if (direction[0]==0 and direction[l]==0 and direction[2]==0)
return
#

The initial rotation about the y axis is given by the projection of
the direction vector onto the x,z plane: the x and z components
of the direction.

xzlen = math.sqgrt (direction[0]*direction[0]+direction[2]*direction([2])

if (xzlen == 0) :
if (direction[1l] <0)
yrot = 0
else :
yrot =180

Joe Gaftney, Thanos Topouzis Master's Thesis Page 85

yrot = (direction[1l] < 0) ? 180 : O
else :
yrot = 180*math.acos(direction[2]/xzlen) /math.pi;

The second rotation, about the x axis, is given by the projection on
the y,z plane of the y-rotated direction vector: the original y
component, and the rotated x,z vector from above.

yzlen = math.sqgrt (direction[l]*direction[l]+xzlen*xzlen)
xrot = 180*math.acos (xzlen/yzlen) /math.pi # yzlen should never be 0

if (direction([1l] > 0)
ri.Rotate (xrot, 1.0, 0.0, 0.0)
else :
ri.Rotate (-xrot, 1.0, 0.0, 0.0)
#The last rotation declared gets performed first
if (direction([0] > 0)
ri.Rotate(-yrot, 0.0, 1.0, 0.0)
else :
ri.Rotate(yrot, 0.0, 1.0, 0.0)

U R
iidddkkgai

Modified from jon Maceys notes on Renderman and python
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html

FHEH A R
SR A A

def DistanceShadowPass (Name, From, To, SceneFunc, frame)

frame number = str(frame)

print "Rendering distance Shadow pass %s.z" % (Name) + frame number
ri.Begin("_render")

ri.Display (Name + ".%04d" $(frame) + ".z", "zfile", "z")

ri.Clipping(1l,6000)

Specify PAL resolution 1:1 pixel Aspect ratio
ri.Format (1024,1024,1)

now set the projection to perspective
ri.Projection (ri.PERSPECTIVE, {ri.FOV:37.7777})
#ri.Projection (ri.ORTHOGRAPHIC)

#now move to light position

create a vector for the Spotlight to and from values
ri.Hider ("hidden", {"jitter™ : [0]})
ri.ShadingRate (1)

ri.PixelFilter(ri.BOX ,1.0, 1.0)
ri.PixelSamples(1l,1)

#ri.ScreenWindow(-2, 1.3, -1.8, 2.2)

#ri.Option("limits", {"bucketsize": [32,32]})
#ri.Option("limits", {"gridsize™ :[32]})
#ri.ShadingInterpolation ("smooth")

to do this we subtract each of thelist elements using a lambda function

this is the same as doing the code below I will leave it to you as to which you
find more readable

#direction =[To[0]-From[0],To[l]-From[1l],To[2]-From[2]]

direction = map(lambda x,y : x-y , To,From)
AimZ (direction)

ri.Translate (-From[0],-From[1l],-From[2])

now draw the Scene

ri.WorldBegin ()

SceneFunc (ri, frame,point cloud check,out filename,rendertype)
ri.WorldEnd()

ri.MakeShadow (Name + ".%04d" % (frame)+ ".z", Name + ".%04d" % (frame) + ".shad")
ri.End()
print " Done MakeShadow %s.shad" % (Name)

TR R A R A R R R
iiddddkdai

Modified from jon Maceys notes on Renderman and python
http://nccastaff.bournemouth.ac.uk/jmacey/Renderman/index.html

FHA A R R R R A
SRR A

def ShadowPass (Name, From, To, coneAngle, SceneFunc, frame, res)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 86

frame number = str(frame)

print "Rendering Shadow pass %s.z" % (Name) + frame number
ri.Begin("__ render")

ri.Display (Name + ".%$04d" % (frame) + ".z", "zfile", "z")
ri.Clipping(0.01,6000)

Specify PAL resolution 1:1 pixel Aspect ratio

ri.Format (res,res, 1)

now set the projection to perspective

ri.Projection (ri.PERSPECTIVE, {ri.FOV:coneAngle* (360/math.pi) })
#now move to light position

ri.Hider("hidden"™, {"jitter" : [0]})

ri.ShadingRate (1)

ri.PixelFilter(ri.BOX ,1.0, 1.0)

ri.PixelSamples(1,1)

direction = map(lambda x,y : x-y , To,From)
AimZ (direction)

ri.Translate (-From[0],-From[1l],-From[2])

now draw the Scene

ri.WorldBegin ()

SceneFunc (ri, frame,point cloud check,out filename, rendertype, shot)
ri.WorldEnd/()

ri.MakeShadow (Name + ".%04d" % (frame)+ ".z", Name + ".%04d" % (frame) + ".shad")
ri.End()
print " Done MakeShadow %s.shad" % (Name)

R T
FHAFEEHEH
Function that generates point clouds
FHEFEEHEH AR A R R R R R
#HEHEHE
def create point cloud(Name, SceneFunc, frame) :

print "Rendering point cloud %s.rib" % (Name)# + frame number

ri.Begin("__render")

ri.Display("temp point cloud file.%04d." %(frame) + Name + ".tif", "file", "rgba")
#ri.Display(Name + ".rib", "file", "rgba")

ri.Clipping(1,100)

Specify PAL resolution 1:1 pixel Aspect ratio

ri.Format (res_x,res y,1)

ri.PixelSamples (4,4)
ri.ShadingInterpolation ("smooth")

ri.Attribute("visibility", {"int transmission": 1})

ri.Attribute ("trace", {"int displacements" : [1] , "bias" : [.011})
ri.Attribute("cull", {"hidden"™ : [0]}) # don't cull hidden surfaces
ri.Attribute("cull", {"backfacing" : [0]}) # don't cull backfacing surfaces
ri.Attribute("dice", {"rasterorient" : [0]}) # turn viewdependent gridding off

ri.DisplayChannel ("float _area")
ri.DisplayChannel ("color _radiance t")

#Will be loaded as funciton defintion
ri.Projection (ri.PERSPECTIVE, {ri.FOV:37.7777})

#loads cameras into scene
cameras (ri, frame)
ri.WorldBegin ()

ri.ShadingRate([1])

scene_lights(ri, 3)

ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",0)
ri.Illuminate ("Ambient",0)

ri.Illuminate (Fg_distance_light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",1)
ri.Illuminate ("Light backlight",1)
ri.Illuminate (fg SpotName 01,1)
ri.Illuminate (fg_SpotName 02,1)
ri.Illuminate (mag_SpotName, 1)
ri.Illuminate (shad_inner mag_SpotName, 1)
ri.Illuminate (shad outter mag SpotName, 1)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 87

ri.AttributeBegin ()

ri.Surface("./shaders/sss/bake radiance t",{ "string filename": [out filename + Name + ".
%04d.ptc" % (frame)], "string displaychannels": [" area, radiance t"]})

print Name

SceneFunc (ri, frame,point cloud check,out filename, rendertype, shot)

ri.AttributeEnd()

ri.WorldEnd ()
ri.End()
print " Done make brick %s.shad" % (Name)

VU R R R
HEHESES RS
Linear interpolaiton function
A R R R
LSS 2 A
def lerp(start value,end value,start frame,end frame, frame) :
if (frame < start frame):
return start value
if (frame > end frame):
return end value

else :
frame range = end frame - start frame
t = (frame - start frame*1.0) / frame range
return ((1-t)*start value) + (t*end value)

U R R R R R R R R R R R R R R R R R
EEHASESEE
Cubic interpolation function
idssasssssasaisssasaiiisaasisisaasiissasaiiisagiisssaaiiisaaaiiisaaaiiisaaaiissaatiiisasRiiisnniiddi
LSS S S A
def smoothstep (start value,end value,start frame,end frame, frame):
if (frame < start frame):
return start value
if (frame > end frame) :
return end value

else :
frame range = end frame - start frame
t = (frame - start frame*1.0) / frame range
print "S$f" % (t)
x = start value * (2*(t*t*t) - 3*(t*t) + 1) + (end value * ((3*(t*t)) -
(2% (t*t*t))))

return x

R R R R R R R R R R R
FHEH RS HE
Noise function
FH R R S S R S R S R
FHEHHER"
def noise (amount, frame) :

return ((math.sin(frame + random.uniform(1,100)) * amount))

R R R R R R R R R
FHEH AR AE
Camera definiton function
FH A R R R R R R R R R R
FHEHHEE"
def cameras (ri, frame) :

#fixes rotation of scene

noise tran x = noise(0.002, frame)
noise tran_y = noise(0.002, frame)
noise tran z = noise(0.002, frame)

noise_rot_x = noise(0.002, frame)
noise_rot_y = noise(0.002, frame)
noise rot z = noise(0.002, frame)

ri.Rotate(180,0,1,0)
if (shot == 1)
cam x = 1.0

cam_y = smoothstep(45,1,200,500, frame)
cam_y nf = smoothstep(45,1,200,500, frame+1)
#cam y = 1

#cam y nf =1

Joe Gaftney, Thanos Topouzis Master's Thesis Page 88

print "Sf" % (cam y)
cam_z -36.4
ri.Shutter (0,1)
ri.MotionBegin([-0.5,1])
ri
ri
ri

.MotionEnd()
ri.Rotate(-6,1,0,
ri.Rotate(-1,0,1,

(shot == 2):
cam x =
cam_y 5
cam_z -8
ri.Translate (
#ri.Translate (0,-3,-45)
ri.Rotate (-40,1,0,0)
ri.Rotate(-85,0,1,0)

(shot == 3)
cam_x
cam y
cam_z

0)
0)
if
3

if
0
4
-15

ri.Translate (cam x,-cam_

ri.Rotate(-15,1,0,0)

ri.Rotate(-3,0,1,0)
(shot == 4)

cam_x

cam_y

cam z

if
1.3
6
-5

ri.Translate (cam x,-cam

ri.Rotate(-9,1,0,0)
ri.Rotate(-1,0,1,0)
(shot == 5)
cam x =
cam y
cam z

if
2.1
= 0.0

-6

ri.Translate (cam x,-cam |

ri.Rotate(-6.5,1,0,0)
ri.Rotate(6,0,1,0)
(shot == 6)

cam_x
cam_y
cam z
cam_z nf smoothstep (-1
ri.MotionBegin([-0.5,11)
ri
ri
ri
ri
ri

if
-0.3
smoothstep (-3.5,

.MotionEnd ()
.Rotate (-25,1,0,0)
.Rotate (-3,0,1,0)

.Translate (cam_x,-cam_
.Translate (cam_x,-cam_

cam_x,-cam_

y,Ccam_z)
y _nf,cam_z)

y,cam_z)

y,cam_z)

y,Ccam_z)

y,cam_z)

-4.5,700,950, frame)

smoothstep (-14.5,-17.5,700, 950, frame)

4.5,-17.5,700,950, frame+1)

.Translate (cam_x,cam_y,cam_z)
.Translate(cam x,cam y,cam z nf)

U R

EEHASESEE

Scene light defintion function

idssasssssasaasssasasiisaasisssaasiissasaiiisagiisssaaiiisaagiiisaaaiiisaaaiissaaniiisas i nnitddi

L 245 A

def scene lights(ri,value):
Back light intensity = 0
Front light intensity

0

fg _coneAngle 01 intensity = 0
fg coneAngle 02 intensity = 0
Fg_distance_intensity = 0
Bg_distance_intensity = 0

mag intensity=0

mag intensity scatter=0

Light_control value

Distant light fg

if (Light control == 1):
Fg distance_intensity

if (Light control == 2):
Fg distance intensity =
if (Light_control == 3):

Fg _distance_intensity

Distant light bg
if (Light_control == 1):
Bg_distance_intensity

Joe Gaftney, Thanos Topouzis Master's Thesis

Fg distance_intensity default shot 01
Fg _distance intensity statue shot 01

Fg distance intensity statue scatter shot 01

Bg distance intensity default shot 01

Page 89

if (Light control == 2):

Bg distance intensity = Bg distance intensity statue shot 01

if (Light control ==)t

Bg distance intensity = Bg distance intensity statue scatter shot 01

Back light
if (Light control ==) :

Back_light_intensity = Back_light default_shot 01

if (Light control == 2):

Back light intensity = Back light intensity statue shot 01

if (Light_control == 3):

Back light intensity = Back light intensity statue scatter shot 01

Front light

if (Light control == 1):
Front light intensity =

if (Light control ==)t
Front light intensity =

if (Light control == 3):
Front light intensity =

Spot light

if (Light control == 1):
fg coneAngle 01 intensity
if (Light control == 2):

fg coneAngle 01 intensity
if (Light control ==)t
fg coneAngle 01 intensity

Spot light
if (Light control ==)t
fg_coneAngle 02 intensity
if (Light control ==)
fg coneAngle 02 intensity
if (Light_control == 3):
fg coneAngle 02 intensity

Front light default shot 01
Front light intensity statue shot 01

Front light intensity statue scatter shot 01

fg coneAngle 01 intensity default shot 01
fg coneAngle 01 intensity statue shot 01

fg coneAngle 01 intensity statue scatter shot 01

fg_coneAngle 02 intensity default shot 01
fg coneAngle 02 intensity statue shot 01

fg coneAngle 02 intensity statue scatter shot 01

FHEHH AR R R
#Light defintions
FHEHFE A AR AR AR H AR AR R
ri.LightSource ("./shaders/occlusion/occlusionlight vl rl", {ri.HANDLEID:"occlusion light",
samples": [128], "float maxvariation":[0.002], "float maxdist™:[10]}
#ri.LightSource("./shaders/occlusion/environmentlight vl rl1",
{ri.HANDLEID:"environment light", "float samples": [64], "string envmap":
["./sourceimages/hdr/Meadow non float.tx"]})

ri.LightSource ("./shaders/occlusion/environmentlight vl rl",

"float

{ri.HANDLEID:"environment light", "float samples": [32],"float maxvariation":[0.02], "float
maxdist":[10], "string envmap": ["./sourceimages/hdr/Meadow non float.tx"]})
#ri.LightSource ("./shaders/occlusion/environmentlight vl rl",
{ri.HANDLEID:"environment light", "float samples": [32],"float maxvariation":[0.002], "float
maxdist":[50], "string envmap": ["./sourceimages/hdr/Reno non float.tx"]})

ri.LightSource (
from":Fg distance light From,
Fg _distance_intensity, "color lightcolor":

"shadowdistant", {ri.HANDLEID:Fg distance light, "point
"point to":Fg distance light To, "float intensity":
[0.9,0.9,0.85], "string shadowname" :out filename +

Fg distance light + ".%04d" % (frame) + ".shad", "float samples":[64],"float width":[2]})
ri.LightSource("shadowdistant", {ri.HANDLEID:Bg distance_light, "point

from":Bg distance light From, "point to":Bg distance_light To, "float intensity":

Bg distance_intensity, "color lightcolor": [0.9,0.9,0.85], "string shadowname" :"", "float samples":

[32],"float width":[1]})

ri.LightSource("distantlight", {ri.HANDLEID:"Light front fill", "point from":[10,10,10],
"point to":[-10,-10,-10], "float intensity": [Front light intensity], "color lightcolor":
[0.45,0.65,0.851})

ri.LightSource (
"point to":[0,100,1007,
[0.95,0.95,0.751})

"distantlight",
"float intensity":

{ri.HANDLEID:"Light backlight", "point from":[0,-100,-100],
[Back light intensity], "color lightcolor":

ri.LightSource ("ambientlight", {ri.HANDLEID: "color

lightcolor": [0.9,0.9,0.85]})

"Ambient","intensity" :[0.15],

Foreground shadow lights

ri.LightSource("shadowspot", {ri.HANDLEID:fg SpotName 01,"point from" fg SpotFrom 01,
"point to" fg SpotTo 01,"float intensity" fg coneAngle 01 intensity,"string shadowname"
:out filename + fg SpotName 01 + ".%04d" % (frame) + ".shad","float coneangle"

fg coneAngle 01,"float conedeltaangle" [0.05], "color lightcolor": fg coneAngle 01 colour, "float

Joe Gaftney, Thanos Topouzis Master's Thesis Page 90

beamdistribution":[2],"float samples":[128],"float width":[32]})

ri.LightSource("shadowspot", {ri.HANDLEID:fg SpotName 02,"point from" : fg SpotFrom 02,
"point to" : fg SpotTo 02,"float intensity" : fg coneAngle 02 intensity,"string shadowname"
:out filename + fg SpotName 02 + ".%04d" % (frame) + ".shad","float coneangle"
fg coneAngle 02,"float conedeltaangle" : [0.05], "color lightcolor": fg coneAngle 02 colour, "float

beamdistribution":[2],"float samples":[128],"float width":[32]})

Magnifying glass control and movement
mag_pos_x= 100
mag_pos_y= 100
mag_pos_z= 100
mag_coneAngle=0

if (shot == 3)
mag_intensity scatter=23000
mag_coneAngle=0.0075
mag_pos_x= smoothstep (-8, -
mag _pos_y= smoothstep(2,5.
mag_pos_z= smoothstep (0,0
if (shot == 4)
mag_intensity scatter=smoothstep (20000,27500,200,300, frame)
mag_coneAngle=smoothstep (0.0075,0.009,430,600, frame)
mag_pos_x= smoothstep(-1.2,-1.2,300,500, frame)
mag_pos_y= smoothstep(5.6,5.6,300,500, frame)
mag_pos_z= smoothstep(0,0,300,500, frame)
if (shot == 5) :
mag intensity scatter=29000
mag_coneAngle=smoothstep (0.009,0.009,430,600, frame)
mag _pos_x= smoothstep(-1.2,-1.2,300,500, frame)
mag_pos_y= smoothstep(5.6,5.6,300,500, frame)
mag_pos_z= smoothstep(0,0,300,500, frame)
if (shot == 6) :
mag_intensity scatter=smoothstep(20000,12000,50,400, frame)
mag_coneAngle=smoothstep(0.01,0.011,50,400, frame)
mag pos_x= smoothstep(-1.0,-2.1,50,405, frame)
mag_pos_y= smoothstep(4.75,1.4,60,390, frame)
mag_pos_z= smoothstep(0,1.2,50,350, frame)
if (frame > 410):
mag intensity scatter=smoothstep(20000,21000,410,500, frame)
mag_coneAngle=smoothstep(0.011,0.011,410,500, frame)
mag_pos_x= smoothstep(-2.1,-1.0,410,510, frame)
mag _pos_y= smoothstep(1.4,4.15,410,500, frame)
mag_pos_z= smoothstep(1.2,0,410,500, frame)
if (frame > 720):
mag_intensity scatter=smoothstep(21000,18000,725,825, frame)
mag_coneAngle=smoothstep(0.011,0.011,725,825, frame)
mag_pos_x= smoothstep(-1.0,-4.1,725,825, frame)
mag_pos_y= smoothstep(4.15,7,725,825, frame)
mag_pos_z= smoothstep(0,0,725,825, frame)

1.2,1,110, frame)
6,1,110, frame)
1,100, frame)

’

if (Light control ==)t

mag intensity = mag intensity default
if (Light control == 2):

mag intensity mag intensity default
if (Light control ==) :

mag_intensity = mag intensity scatter

noise tran x noise (0.001, frame)
noise tran y = noise(0.001, frame)
noise tran z = noise(0.001, frame)

mag SpotTo=[mag pos x+noise tran x,mag pos y+noise tran y,mag pos z+noise tran z]

ri.LightSource("shadowspot", {ri.HANDLEID:mag SpotName,"point from" : mag SpotFrom, "point
to" : mag_SpotTo,"float intensity"” : mag intensity,"string shadowname" :out filename + mag SpotName
+ ".%04d" % (frame) + ".shad","float coneangle" : mag coneAngle,"float conedeltaangle"

mag_coneDeltaAngle, "color lightcolor": mag colour, "float beamdistribution":[5],"float samples":
[128],"float width":[2]})

Magnifying light shadow inner
ri.LightSource("shadowspot", {ri.HANDLEID:shad inner mag SpotName, "point from"

mag_ SpotFrom, "point to" : mag SpotTo,"float intensity" : shad inner mag intensity default,"string
shadowname" :[""],"float coneangle" : shad inner mag coneAngle,"float conedeltaangle"
shad _inner mag coneDeltaAngle, "color lightcolor": shad inner mag colour, "float beamdistribution":

[5],"float samples":[128],"float width":[2]})

Magnifying light shadow outter

Joe Gaftney, Thanos Topouzis Master's Thesis Page 91

ri.LightSource("shadowspot", {ri.HANDLEID:shad outter mag SpotName,"point from"
mag_ SpotFrom, "point to" : mag SpotTo,"float intensity" : shad outter mag intensity default,"string
shadowname" :[""],"float coneangle" : shad outter mag coneAngle,"float conedeltaangle"
shad_outter_mag coneDeltaAngle, "color lightcolor": shad outter mag colour, "float
beamdistribution": [5],"float samples":[128],"float width":[2]})

A A R R R R R R R R
#HEFEEHEH

Main loop of program were rendering is done over the specified frame range

FHEF R
A

for frame in range(start frame,end frame):

rendertype = in rendertype
if (rendertype == 2) :
if (compute shadows == 1):
#to stop transparant objects messing shadows
rendertype = 1

#DistanceShadowPass (out filename +
Fg_distance_light,Fg _distance_light From,Fg_distance_light_ To,Foreground_shadows, frame)
#DistanceShadowPass(out_filename +
Bg _distance_light,Bg _distance light From,Bg distance light To,Background shadows, frame)
ShadowPass (out filename +
fg_SpotName 01, fg SpotFrom 01, fg SpotTo 01, fg coneAngle 01,Foreground shadows, frame, 256)
ShadowPass (out_filename +
fg SpotName 02, fg SpotFrom 02,fg SpotTo 02,fg coneAngle 02,Foreground shadows, frame, 256)
#mag light mag SpotName="mag Spot"
#ShadowPass (out filename +
mag SpotName,mag SpotFrom,mag SpotTo,mag coneAngle,SSS objects statue, frame,256)
#if (compute shadows == 1) :
ShadowPass (out_ filename +
SpotName bg 01, SpotFrom bg 01,SpotTo bg 01,coneAngle bg 01,Mid ground, frame)
ShadowPass (out_filename +
SpotName bg 02,SpotFrom bg 02,SpotTo bg 02,coneAngle bg 02,Background shadows, frame)
point cloud check =1
rendertype = in rendertype
#create_point_cloud("statue_shot_ %02d" %(shot),SSS_objects_statue, frame)
#create_point_cloud("blob", SSS_objects_blob statue, frame)
point cloud check =1
rendertype = in rendertype
#filename = out filename + "%03d.rib" % (frame)
filename = "_render"
print "processing ", frame

this is the begining of the rib archive generation we can only
make RI calls after this function else we get a core dump
ri.Begin(filename)

ArchiveRecord is used to add elements to the rib stream in this case comments
note the function is overloaded so we can concatinate output

ri.ArchiveRecord (ri.COMMENT, 'File ' +filename)

ri.ArchiveRecord (ri.COMMENT, "Created by " + getpass.getuser /()
ri.ArchiveRecord(ri.COMMENT, "Creation Date: " +time.ctime (time.time()))

ri.PixelFilter(ri.MITCHELL ,4.0, 4.0)

now we add the display element using the usual elements
FILENAME DISPLAY Type Output format
ri.Display(out filename + "out image %02d_shot %02d frame number.%03d.exr" %(renderlayer,
shot, frame), "openexr", "rgbaz", { "string filter": ["separable-catmull-rom"],"float[2] filterwidth"
[4 ,4],"int[4] quantize" : [0, 0, O ,0],"float dither": [0],"float[2] exposure" :[1, 1]1})
#ri.Display(out filename + "%03d.tif" % (frame), "framebuffer", "rgba")
#ri.Display(out filename + " mask shot %$02d %03d.tif" % (shot,frame), "file", "a")
Specify PAL resolution 1:1 pixel Aspect ratio
ri.Format (res _x,res_y,1)
ri.Clipping(0.001,7500)
if (rendertype == 1) :
ri.Clipping(0.1,1000)
#ri.Projection(ri.PERSPECTIVE, {ri.FOV:37.7777})
ri.Projection (ri.PERSPECTIVE, {ri.FOV:37})
#ri.ShadingInterpolation ("constant")
ri.ShadingRate ([shading rate])
ri.PixelSamples (pixel samples,pixel samples)
ri.Hider("hidden"™, {"jitter" : [0]})
fcatmull-rom
#ri.PixelFilter(ri.CUBIC ,4.0, 4.0)
#ri.Option("limits", {"bucketsize": [32,32]1})
#ri.Option("limits", {"gridsize"™ :[32]})

Joe Gaftney, Thanos Topouzis Master's Thesis Page 92

#ri.ShadingInterpolation ("smooth")
calls camera translation to be loaded in to the scene
cameras (ri, frame)
focal distance=0
focal_length=0
fstop=0
if (shot == 1)
focal distance = smoothstep(200,50,75,150, frame)
focal length = smoothstep(70,20,75,150, frame)
fstop=smoothstep(10,10,75,150, frame)
if (frame>250) :
focal distance = smoothstep(50,30,250,400, frame)
focal length = smoothstep(20,2.5,250,400, frame)
fstop=smoothstep (10,10,250,400, frame)
ri.GeometricApproximation ("motionfactor"”, 3)
ri.DepthOfField(fstop, focal length, focal distance)

#Hider "hidden" "aperture" [nsides angle roundness density]
#ri.Hider ("hidden", {"aperture":[4,0,-0.2,0.2]})

if (shot == 2)
focal distance = 15
focal length = 2
fstop = 40
ri.DepthOfField (fstop, focal length, focal distance)
ri.GeometricApproximation ("motionfactor", 3)

#Hider "hidden" "aperture" [nsides angle roundness density]
#ri.Hider ("hidden", {"aperture":[4,0,-0.2,0.2

if (shot == 3)
focal distance =
focal length = 4
fstop = 25
ri.DepthOfField (fstop, focal length, focal distance)
ri.GeometricApproximation ("motionfactor", 3)
#Hider "hidden" "aperture" [nsides angle roundness density]
#ri.Hider ("hidden", {"aperture":[4,0,-0.2,0.2

14

if (shot == 4)
focal distance =
focal length = 4
fstop = 35
ri.DepthOfField(fstop, focal length, focal distance)
ri.GeometricApproximation ("motionfactor", 3)
#ri.GeometricApproximation ("motionfactor", 4)
#Hider "hidden" "aperture" [nsides angle roundness density]
#ri.Hider ("hidden", {"aperture":[4,0,-0.2,0.2

5

if (shot == 5)
focal distance =
focal length = 4
fstop = 35
ri.DepthOfField(fstop, focal length, focal distance)
ri.GeometricApproximation ("motionfactor"”, 3)
#ri.GeometricApproximation ("motionfactor", 4)
#Hider "hidden" "aperture" [nsides angle roundness density]
#ri.Hider ("hidden", {"aperture":[4,0,-0.2,0.2

5.45

if (shot == 6)
focal distance =
focal length = 4
fstop = 35
ri.DepthOfField(fstop, focal length, focal distance)
ri.GeometricApproximation ("motionfactor", 3)
#Hider "hidden" "aperture" [nsides angle roundness density]
#ri.Hider ("hidden", {"aperture":[4,0,-0.2,0.2

smoothstep (15,10, 700, 950, frame)

#for occlusions environment lighting

if (rendertype == 1) :

ri.Attribute ("visibility", {"int trace": 1})

ri.Attribute ("visibility", {"int diffuse" :1,"int specular": 1,"int transmission":
1})

ri.Attribute ("trace", {"int maxdiffusedepth" :[2], "int maxspeculardepth" : [2],"int
displacements" : [1] , "bias" : [0.1],"int samplemotion" : [0]})

ri.Attribute("cull", {"hidden"™ : [0]}) # cull hidden surfaces

ri.Attribute("cull", {"backfacing" : [0]}) # cull backfacing surfaces

ri.Attribute("dice", {"rasterorient" : [1]}) # turn viewdependent gridding on

#for Beauty pass

Joe Gaftney, Thanos Topouzis Master's Thesis Page 93

if (rendertype == 2)

ri.Attribute ("visibility", {"int diffuse" :1,"int specular": 1})

#ri.Attribute ("trace", {"int maxdiffusedepth" :[1], "int maxspeculardepth"
[1],"int displacements" : [1] , "bias" : [0.1],"int samplemotion" : [0]})

ri.Attribute("cull", {"hidden"™ : [11}) # cull hidden surfaces

ri.Attribute("cull", {"backfacing" : [1]}) # cull backfacing surfaces

ri.Attribute("dice", {"rasterorient" : [1]}) # turn viewdependent gridding on

#for magnifying glass

if (rendertype == 3)

ri.Attribute ("visibility", {"int trace": 1})

ri.Attribute ("visibility", {"int diffuse" :3,"int specular": 3,"int transmission":
1})

ri.Attribute ("trace", {"int maxdiffusedepth" :[3], "int maxspeculardepth" : [3],"int
displacements" : [1] , "bias"™ : [0.1],"int samplemotion” : [0]})

ri.Attribute("cull", {"hidden"™ : [0]}) # cull hidden surfaces

ri.Attribute("cull", {"backfacing" : [0]}) # cull backfacing surfaces

ri.Attribute("dice", {"rasterorient" : [0]}) # turn viewdependent gridding on

now we start our world
ri.WorldBegin ()

#Foreground statue
if (renderlayer == 2):
ri.AttributeBegin ()
scene_lights(ri,2)
if (rendertype == 1) :
ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",1)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg_distance_light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",0)
ri.Illuminate ("Light backlight™",0)
ri.Illuminate (fg SpotName 01,0)
ri.Illuminate (fg SpotName 02,0)
ri.Illuminate (mag_SpotName, 0)
ri.Illuminate (shad inner mag SpotName, 0)
ri.Illuminate (shad outter mag SpotName, 0)

if (rendertype == 2) :
ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",0)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg_distance_light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",1)
ri.Illuminate ("Light backlight",1)
ri.Illuminate (fg SpotName 01,1)
ri.Illuminate (fg_SpotName 02,1)
ri.Illuminate (mag_SpotName, 1)

ri.Illuminate (shad_inner_mag SpotName, 1)

ri.Illuminate (shad outter mag SpotName, 1)

ri.ShadingRate ([shading rate])

#Statue (ri, frame,point cloud check,out filename, rendertype, shot)
Statue (ri, frame,point cloud check,out filename, rendertype, shot)
#Blob Statue (ri, frame,point cloud check,out filename, rendertype)

ri.AttributeEnd()

#Foreground objects
if (renderlayer == 1):

ri.AttributeBegin ()

scene_lights(ri, 1)

if (rendertype == 1)

ri.Illuminate ("environment light",0)

ri.Illuminate ("occlusion_light",1)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg distance light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front £ill",0)
ri.Illuminate ("Light backlight",0)
ri.Illuminate (fg_SpotName 01,0)
ri.Illuminate (fg_SpotName 02,0)
ri.Illuminate (mag SpotName, 0)
ri.Illuminate (shad inner mag SpotName, 0)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 94

ri.Illuminate (shad outter mag SpotName, 0)

if (rendertype == 2) :
ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",0)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg_distance_light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",1)
ri.Illuminate ("Light backlight", 1)
ri.Illuminate (fg SpotName 01,1)
ri.Illuminate (fg SpotName 02,1)
ri.Illuminate (mag_SpotName, 1)

ri.Illuminate (shad_inner_mag SpotName, 1)

ri.Illuminate (shad outter mag SpotName, 1)

ri.ShadingRate ([shading rate])

Grass_forground(ri, frame,point cloud check,out filename, rendertype)
Dandilion(ri, frame,point cloud check,out filename,rendertype)

Rocks (ri, frame,point cloud check,out filename, rendertype)

Ground foreground 2 (ri, frame,point cloud check,out filename, rendertype)
Small objects(ri, frame,point cloud check,out filename, rendertype)

#ri.ShadingRate ([1])
Fur (ri, frame,point cloud check,out filename, rendertype)

ri.ShadingRate ([shading rate*3])
Ground foreground back part(ri, frame,point cloud check,out filename, rendertype)
ri.AttributeEnd()

#Midground pass
if (renderlayer == 2):
ri.AttributeBegin ()

scene_lights(ri, 1)

if (rendertype == 1)
ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",1)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg distance light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",0)
ri.Illuminate ("Light backlight™",0)
ri.Illuminate (fg SpotName 01, 0)
ri.Illuminate (fg SpotName 02,0)
ri.Illuminate (mag SpotName, 0)
ri.Illuminate (shad inner mag SpotName, 0)
ri.Illuminate (shad outter mag SpotName, 0)

if (rendertype == 2)

ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion_light",0)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg distance light,0)
ri.Illuminate (Bg distance light,1)
ri.Illuminate ("Light front fill",1)
ri.Illuminate ("Light backlight",1)
ri.Illuminate (fg SpotName 01, 0)
ri.Illuminate (fg_SpotName 02,0)
ri.Illuminate (mag SpotName, 0)
ri.Illuminate (shad inner mag SpotName, 0)
ri.Illuminate (shad outter mag SpotName, 0)

ri.ShadingRate ([shading rate*3])

Grass _midground(ri, frame,point cloud check,out filename, rendertype)
Grass_background (ri, frame,point cloud check,out filename, rendertype)
#ri.ShadingRate ([1])

#Trolly(ri, frame,point cloud check,out filename,rendertype)

ri.TransformBegin ()

ri.Translate(0,0,-200)

#Ground foreground back part(ri, frame,point cloud check,out filename,rendertype)
ri.TransformEnd ()

ri.AttributeEnd()

Joe Gaftney, Thanos Topouzis Master's Thesis Page 95

#Background pass
if (renderlayer == 3):
ri.AttributeBegin ()

scene lights(ri, 1)
if (rendertype == 1) :

ri.Illuminate ('

("environment light",0)
ri.Illuminate ("occlusion light",1)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg_distance_light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",0)
ri.Illuminate ("Light backlight",0)
ri.Illuminate (fg SpotName 01,0)
ri.Illuminate (fg SpotName 02,0)
ri.Illuminate (mag_SpotName, 0)
ri.Illuminate (shad_inner mag SpotName, 0)
ri.Illuminate (shad outter mag SpotName, 0)

if (rendertype == 2) :
ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",0)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg distance light,0)
ri.Illuminate (Bg distance light,1)
ri.Illuminate ("Light front fill",61)
ri.Illuminate ("Light backlight", 1)
ri.Illuminate (fg SpotName 01,0)
ri.Illuminate (fg SpotName 02,0)
ri.Illuminate (mag_SpotName, 0)
ri.Illuminate (shad_inner mag SpotName, 0)
ri.Illuminate (shad outter mag SpotName, 0)

ri.ShadingRate ([shading rate])

ri.GeometricApproximation ("motionfactor"”, 1)

Fence (ri, frame,point cloud check,out filename, rendertype)
Ivy(ri, frame,point cloud check,out filename,rendertype)
ri.GeometricApproximation ("motionfactor", 3)
ri.ShadingRate ([shading rate*2])

#House (ri, frame, point cloud check,out filename, rendertype)
ri.ShadingRate ([shading rate*2])

#Tree (ri, frame,point cloud check,out filename, rendertype)

ri.AttributeEnd()

#Sky/magnifying glass pass
if (renderlayer == 4):
ri.AttributeBegin ()

scene_lights(ri, 1)

if (rendertype == 1) :
ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",1)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg_distance_light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",0)
ri.Illuminate ("Light backlight™",0)
ri.Illuminate (fg SpotName 01,0)
ri.Illuminate (fg SpotName 02,0)
ri.Illuminate (mag_SpotName, 0)

ri.Illuminate (shad inner mag SpotName, 0)

ri.Illuminate (shad outter mag SpotName, 0)

if (rendertype == 2) :
ri.Illuminate ("environment light",0)
ri.Illuminate ("occlusion light",0)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg_distance_light,0)
ri.Illuminate (Bg distance light,1)
ri.Illuminate ("Light front fill",1)
ri.Illuminate ("Light backlight",1)
ri.Illuminate (fg SpotName 01,0)
ri.Illuminate (fg_SpotName 02,0)
ri.Illuminate (mag_SpotName, 0)

ri.Illuminate (shad inner mag SpotName, 0)

ri.Illuminate (shad outter mag SpotName, 0)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 96

ri.ShadingRate([1])
#Grass forground(ri, frame,point cloud check,out filename, rendertype)

#cam_y = smoothstep (45,1,200,500, frame)
#cam y nf = smoothstep (45,1,200,500, frame+l)

#SSS_objects_statue (ri, frame,point_cloud check,out_ filename, rendertype)
if (shot == 2)

ri.TransformBegin ()

mag_x= smoothstep(0,0,1,300, frame)

mag_x nf= smoothstep(0,0,1,300, frame+1)

mag_y= smoothstep(80,0,1,300, frame)

mag y nf= smoothstep(80,0,1,300, frame+1)

mag_z= smoothstep(90,0,1,300, frame)

mag_z_nf= smoothstep(90,0,1,300, frame+1)

#ri.Shutter (0,1)

ri.MotionBegin ([-0.5,1]

ri.Translate (mag_x,mag_y,mag_z)

ri.Translate(mag_x nf,mag y nf,mag z nf)

ri.MotionEnd ()

ri.TransformBegin ()

ri.Scale(3,3,3)

ri.Translate (-20,42,20)

ri.TransformBegin ()

ri.Rotate(12,0,0,1)

ri.Rotate(3,0,1,0)

Magnifying glass(ri, frame,point cloud check,out filename, rendertype)

Lens (ri, frame,point cloud check,out filename, rendertype)

ri.TransformEnd ()

ri.TransformEnd ()

ri.TransformEnd ()

Sky shot 02(ri, frame,point cloud check,out filename, rendertype)
else

Sky shot 01(ri, frame,point cloud check,out filename, rendertype)
ri.AttributeEnd ()

#Occlusion pass
if (renderlayer == 5):
ri.AttributeBegin ()

scene lights(ri, 1)

ri.Illuminate ('

("environment light",0)
ri.Illuminate ("occlusion light",1)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg distance light,0)
ri.Illuminate (Bg distance light,0)
ri.Illuminate ("Light front fill",0)
ri.Illuminate ("Light backlight",0)
ri.Illuminate (fg SpotName 01,0)
ri.Illuminate (fg SpotName 02,0)
ri.Illuminate (mag_SpotName, 0)
ri.Illuminate (shad_inner mag SpotName, 0)
ri.Illuminate (shad outter mag SpotName, 0)

ri.ShadingRate ([shading rate])

Statue (ri, frame,point cloud check,out filename,rendertype,shot)
#Blob_Statue (ri, frame,point_cloud_check,out_ filename, rendertype)
Dandilion(ri, frame,point cloud check,out filename,rendertype)
#ri.Matte([1])

#Dandilion(ri, frame,point cloud check,out filename, rendertype)
#Rocks (ri, frame, point cloud check,out filename, rendertype)
#Ground foreground 2(ri, frame,point cloud check,out filename,rendertype)
ri.AttributeEnd()
#Environment pass
if (renderlayer == 6):
ri.AttributeBegin ()

scene_lights(ri, 1)

ri.Illuminate ("environment light",1)
ri.Illuminate ("occlusion light",0)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 97

ri.Illuminate ("Ambient",0)

ri.Illuminate (Fg_distance light,0)
ri.Illuminate (Bg_distance light,0)
ri.Illuminate ("Light front £fill",0)
ri.Illuminate ("Light backlight",0)
ri.Illuminate (fg_SpotName 01,0)
ri.Illuminate (fg_SpotName 02,0)
ri.Illuminate (mag_ SpotName, 0)
ri.Illuminate (shad inner mag SpotName,0)
ri.Illuminate (shad_outter mag SpotName, 0)

ri.ShadingRate ([shading rate])

Statue (ri, frame,point cloud check,out filename, rendertype, shot)
Dandilion(ri, frame,point cloud check,out filename, rendertype)

#Rocks (ri, frame,point cloud check,out filename, rendertype)

#Ground foreground 2 (ri, frame,point cloud check,out filename,rendertype)

ri.AttributeEnd()

#Dirt pass
(renderlayer == 7):

ri.AttributeBegin ()
scene lights(ri,1)

ri.Illuminate ("environment light",1)
ri.Illuminate ("occlusion light",0)
ri.Illuminate ("Ambient",0)
ri.Illuminate (Fg distance light,0)
ri.Illuminate (Bg_distance light,0)
ri.Illuminate ("Light front fil1l",0)
ri.Illuminate ("Light backlight",0)
ri.Illuminate (fg SpotName 01,0)
ri.Illuminate (fg_SpotName 02,0)
ri.Illuminate (mag SpotName, 0)
ri.Illuminate (shad inner mag SpotName, 0)
ri.Illuminate (shad outter mag SpotName, 0)

ri.ShadingRate ([shading rate])
Statue (ri, frame,point cloud check,out filename, rendertype, shot)

ri.AttributeEnd()

#Mask pass
(renderlayer == 8):

ri.AttributeBegin ()
scene lights(ri,1)

ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate
ri.Illuminate

"environment light",0)
"occlusion light",0)
"Ambient", 0)

Fg distance 1light,0)

Bg _distance light,0)
"Light front fill",0)
"Light_backlight",0)

fg SpotName 01,0)

fg SpotName 02,0)
mag_SpotName, 0)

shad _inner mag SpotName, 0)
shad outter mag SpotName, 0)

ri.ShadingRate ([shading rate])
ri.Matte ([0])
Dandilion(ri, frame,point cloud check,out filename,rendertype)

ri.Matte([1])
Grass_forground(ri, frame,point cloud check,out filename, rendertype)
Statue (ri, frame,point cloud check,out filename, rendertype, shot)

Rocks (ri, frame,point cloud check,out filename, rendertype)

Ground foreground 2 (ri, frame,point cloud check,out filename, rendertype)
Small objects(ri, frame,point cloud check,out filename, rendertype)

Fur (ri, frame,point cloud check,out filename, rendertype)

Ground foreground back part(ri, frame,point cloud check,out filename, rendertype)

ri.AttributeEnd()

Joe Gaftney, Thanos Topouzis Master's Thesis Page 98

ri.WorldEnd ()

point cloud check = 0
and finally end the rib file
ri.End()

archive_v6_r1_final.py

#!/usr/bin/python

Created by Joe Gaffney

For MSc Master project 2009

Python module which contains all the functions that load in the scenes gemoetry through rib
archives.

Shaders are also set up and slso function which control geometry which are effected by shadow maps
or are

used in point cloud calculaitons. Random shader parameters are set on groups of objects of the same
type

to give varation. Also differnt gemometry is loaded for certain objects based on the current shot.
Modules loaded in

import sys

import math

import getpass

import time, random

sss_type = 1

S S R
FHEHHE AR

E R i i i
FHEHHE A

Shadow and point cloud functions

FHA A R R R R
FHEHH AR R
R S R
FHEHHE A

#Foreground shadows
RN E 3 R R i i i i
FHEHHERAE
Function which contains a group of functions that load rib archives.
This is used to consolidate them into a group to allow easier specification of
which objects are effect/influence shadows
FHA A R R
L 245 A
def Foreground shadows (ri, frame,point cloud check,out filename,rendertype, shot)
Grass_forground(ri, frame,point cloud check,out filename,rendertype)
Statue (ri, frame,point cloud check,out filename, rendertype, shot)
#Base_Statue (ri, frame,point_cloud_check,out_filename, rendertype)
Ground foreground back part(ri, frame,point cloud check,out filename,rendertype)
Ground foreground 2 (ri, frame,point cloud check,out filename,rendertype)
Rocks (ri, frame,point cloud check,out filename, rendertype)
Dandilion(ri, frame,point cloud check,out filename,rendertype)
Small objects(ri, frame,point cloud check,out filename, rendertype)
#Fur (ri, frame,point cloud check,out filename, rendertype)

#Background_shadows
R R R R R R R R R R R R
FHEHHERHE
Function which contains a group of functions that load rib archives.
This is used to consolidate them into a group to allow easier specification of
which objects are effect/influence shadows
R i i i i ik
FHEHHER"
def Background shadows (ri, frame,point cloud check,out filename,rendertype)
Grass _midground(ri, frame,point cloud check,out filename, rendertype)
Grass_background(ri, frame,point cloud check,out filename, rendertype)
House (ri, frame,point cloud check,out filename, rendertype)
Tree(ri, frame,point cloud check,out filename, rendertype)
Trolly(ri, frame,point cloud check,out filename,rendertype)
Fence (ri, frame,point cloud check,out filename, rendertype)
Ivy(ri, frame,point cloud check,out filename, rendertype)

#Function to control the statues subsurface scattering geometry used in first part

Joe Gaftney, Thanos Topouzis Master's Thesis Page 99

#of the process of creating subsurface scattering effect.
T R R A R R R A R R R
#HEFERHHH
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FH A A S R R R R
#HEEEHE
def SSS objects statue(ri, frame,point cloud check,out filename,rendertype, shot)

random. seed (25)

statue type =shot

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

dddiizssssssaassssaasasasssssssssassaasssssassdssaassdsssasssssssssssassdssaasssssasssssaassssssd
#HEHEH S
Statue

iassssaassassasssassaassassasssassasisassaassassaassaiiaaisaiiasisaiiassssiiasisaisasisasiaasaiinidi
(AR EEE S
ri.TransformBegin ()
if (statue type == 1):
ri.ReadArchive ("./Archive/forground/final statue/shot 1 and 2/final statue.%04d.rib"

5(1))
if (statue type == 2):
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.0001.rib")
if (statue type == 3):
if (frame<100) :
ri.ReadArchive ("./Archive/statue/statue_shot three four/first and second hole ribs.%04d.rib"
$(1))
if (frame>=101) :
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.%04d.rib"
$ (frame-100))
if (statue type == 4):
if (frame<100) :
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.%04d.rib"
5(1))
if (frame>=101) :
ri.ReadArchive ("./Archive/statue/statue_shot three four/first and second hole ribs.%04d.rib"
% (frame-100))
if (statue type == 5):
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.
$04d.rib" %$(1))
ri.ReadArchive ("./Archive/statue/particle chunk shot five six/particle fluid wax.
%$04d.rib" % (frame))
if (statue type == 6):

#ri.ReadArchive ("./Archive/statue/statue final shot/3rd and fourth hole ribs.
%04d.rib" %(490))
ri.ReadArchive ("./Archive/statue/RIBS/3rd_and fourth hole ribs.%04d.rib" %
(frame+400))
#ri.ReadArchive ("./Archive/statue/particle chunk shot five six/particle fluid wax.
%04d.rib" %(130))
ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the statues blob present in shot 5 and 6 subsurface scattering geometry used in
first part
#of the process of creating subsurface scattering effect.
R R A R R A R A A R A A A R R
FHAFEEHEH
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF
#HEHEHE
def SSS objects blob statue(ri, frame,point cloud check,out filename, rendertype)

random. seed (25)

ri.TransformBegin ()
ri.Scale(-1.0,1.0,1.0)

R R R R R R R R R R

Joe Gaftney, Thanos Topouzis Master's Thesis Page 100

iZ333 223231
Statue

S S R R S R S S R R S
FHEHHES S

ri.TransformBegin ()

if (frame>500) :

ri.ReadArchive ("./Archive/statue/particle chunk shot five six/particle fluid wax.

%04d.rib" % (frame-500))

ri.TransformEnd ()

ri.TransformEnd ()

#Function to control the geometry to be used for the scene unfortunatly can not be used
#as point cloud api is currently not surported and the hack method of using a shader to
#generate the point cloud will not work on large amounts of geometry
A R A R A A R A R R R
FHAHEEHES
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF R R
#HEHEHE
def SSS _objects all(ri, frame,point cloud check,out filename, rendertype)

random. seed (25)

ri.TransformBegin ()
ri.Scale(-1.0,1.0,1.0)

#pulls camera back to allow render
ri.Translate(0,0,100)
ri.TransformBegin ()
#ri.ReadArchive ("./Archive/statue rib archive vl rl.rib")

ri.ReadArchive ("./Archive/grass/foreground/grass_foreground rl vl sequence_.%04d.rib" %

(frame))

#ri.ReadArchive ("./Archive/grass/midground/grass midground vl rl sequence .%04d.rib" %
(frame))

#ri.ReadArchive ("./Archive/close_up_ground_vl_rl.rib")

#ri.ReadArchive ("./Archive/rocks_rib_archive vl rl.rib")

ri.TransformEnd ()
ri.TransformEnd ()

A R
FHEFHHEFH AR
R R R
SRR A ARRASEEASESEEEEEEEEE

Foreground functions
R R
BREH RS

A R R R
FHEFHHHE R

FHA A R R R R R
FHEHHE A
#Function to control the statue
T R R R R R
FHEHHERHE
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FH G R R S S R S R R R R R S R
FHEHHER"
def Statue(ri, frame,point cloud check,out filename, rendertype, shot)

statue type =shot

random. seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

Name = "statue shot %02d" % (shot)

print Name

FEAEAF A A 3 A A A A A AR A A A A A A A A A A R R R A R R R R R AR
#HFHEHFHFH
Statue

FH A S S R R S S R R S R R R S
FHEH AR

ri.TransformBegin ()

ri.AttributeBegin ()

if (rendertype == 1)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 101

#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")

if (rendertype == 2) :
if (point cloud check == 1):

#apple
if (sss_type == 1):
ri.Surface("./shaders/sss/render ssdiffusion",{ "uniform string
filename": [out filename + Name + ".%04d.ptc" % (frame)],
"color albedo": [0.746, 0.741, 0.428],
"color dmfp": [6.96, 6.40, 1.50],
"float ior": [1.5],
"float unitlength": [1.0],
"float smooth": [1],
"float maxsolidangle": [1],
"float Ka": [0.4],
"float Kd" : [0.35],
"float Ks": [0.4],
"float roughness": [0.2]})
if(sss_type == 2):
ri.Surface("./shaders/sss/render ssdiffusion",{ "uniform string
filename": [out filename + Name + ".%04d.ptc" %(frame)],
"color albedo": [0.746, 0.741, 0.428],
"color dmfp": [4.96, 4.40, 1.50],
"float ior": [1.5],
"float unitlength": [1.07,
"float smooth": [1],
"float maxsolidangle": [1],
"float Ka": [0.4],
"float KdA" : [0.4],
"float Ks": [0.45],
"float roughness": [0.2]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[0.004],
"float Freqg":[100], "float Amplitude":[2.5], "float Layers":[8],"string space":["shader"]})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float
sphere":[0.21})
if (statue_type == 1):
#ri.ReadArchive ("./Archive/forground/final statue/shot 1 and 2/final statue.%04d.rib"

$(1))
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.0001.rib")
if (statue type == 2):
ri.ReadArchive ("./Archive/statue/statue_shot_ three_ four/first and second hole ribs.0001.rib")
if (statue_type == 3):
if (frame<100) :
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.%04d.rib"
5(1))
if (frame>=101) :
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.%04d.rib"
% (frame-100))
if (statue type == 4):
if (frame<100) :
ri.ReadArchive ("./Archive/statue/statue_shot three four/first and second hole ribs.%04d.rib"
5(1))
if (frame>=101) :
ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.%04d.rib"
$ (frame-100))
if (statue type == 5):

ri.ReadArchive ("./Archive/statue/statue shot three four/first and second hole ribs.
$04d.rib" $(1))

#ri.ReadArchive ("./Archive/statue/particle_chunk shot five six/particle fluid_wax.
%04d.rib" % (frame))
if (statue type == 6):

#ri.ReadArchive ("./Archive/statue/statue final shot/3rd and fourth hole ribs.
$04d.rib" %$(490))
ri.ReadArchive ("./Archive/statue/RIBS/3rd and fourth hole ribs.%04d.rib" %
(frame+400))
#ri.ReadArchive ("./Archive/statue/particle chunk shot five six/particle fluid wax.
$04d.rib" %(130))
ri.AttributeEnd ()
ri.TransformEnd ()

ri.TransformEnd ()

Joe Gaftney, Thanos Topouzis Master's Thesis Page 102

#Function to control the blob componet of the statue found in shot 5 and 6
T R A R A R A A A A R A R R
iiddkagai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
B i i ik ki ki
#HEHEHE
def Blob_ Statue(ri, frame,point cloud check,out filename, rendertype)

random. seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

FHAF AR A AR A R R R R R R R R R R
#HAFH RS
Statue

FHA A R R R R R
FHEHHE RS
ri.TransformBegin ()
ri.AttributeBegin ()
if (rendertype == 1)
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
if (point cloud check == 1):
#apple
if (sss_type == 1):
ri.Surface("./shaders/sss/render ssdiffusion",{ "uniform string
filename": [out_filename + "blob" + ".%04d.ptc" % (frame)],
"color albedo": [0.746, 0.741, 0.428],
"color dmfp": [8.96, 8.40, 3.50],
"float ior": [1.5],
"float unitlength": [1.0],
"float smooth": [1],
"float maxsolidangle": [1],
"float Ka": [0.4],
"float K4d" : [0.35],
"float Ks": [0.4],
"float roughness": [0.2]})
if(sss_type == 2):
ri.Surface("./shaders/sss/render ssdiffusion",{ "uniform string
filename": [out filename + "blob" + ".%04d.ptc" % (frame)],
"color albedo": [0.746, 0.741, 0.428],
"color dmfp": [4.96, 4.40, 1.50],
"float ior": [1.5],
"float unitlength": [1.07,
"float smooth": [1],
"float maxsolidangle": [1],
"float Ka": [0.4],
"float KdA" : [0.4],
"float Ks": [0.45],
"float roughness": [0.2]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[0.004],
"float Freqg":[30], "float Amplitude":[7], "float Layers":[8],"string space":["shader"]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float
sphere":[0.21})
ri.ReadArchive ("./Archive/statue/particle chunk shot five six/particle fluid wax.%04d.rib" %
(frame))
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()

#Function to control magnifying glass outter rim
A A
iiddddddai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF R R
#HEHEFE
def Magnifying glass(ri, frame,point cloud check,out filename,rendertype) :

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 103

ri.TransformBegin ()
#ri.Scale(1.3,1.3,1.3)

FHEH A R
#HEFEER A
Magnifying glass outer

FE S
FHEH AR

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Surface ("shinymetal", {"float Ka":[0.01],"float Ks":[0.2],"float Kr":[0.3],"float

roughness":[2.2],"string texturename":["./sourceimages/hdr/Meadow non float.tx"]})

#ri.Surface ("plastic", {"float Ks":[0.23],"float Kd":[0.6],"float Ka":[0.3],"float
roughness":[2.1],"color specularcolor":[1,1,11})

ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[0.05], "float
Fregq":[0.2], "float Amplitude":[2], "float Layers":[6],"string space": ["shader"]}

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.111})

ri.ReadArchive ("./Archive/new magnifying glass/OCoutter vl.rib")

ri.AttributeEnd ()

ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Funcition to control magnifying glass lens
R T
FHAFEEHEH
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF R R
A
def Lens(ri, frame,point cloud check,out filename, rendertype) :

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

FHAF AR AR AR AR A R R R R R R R
#HAFHEH S S
Lens

FHA A R R R R R
FHEHHE RS

ri.TransformBegin ()

ri.AttributeBegin ()

#ri.Surface ("aaglass")

ri.Surface("glassrefr", {"float Kr":[1.0],"float Kt":[1.0],"float ior":[1.6],"float Ks":
[1.3],"float shinyness":[30]})

ri.Displacement ("./shaders/grass/grass_displacement_ shader vl r3",{ "float freq layer one":
[10], "float freq layer two":[5], "float depth one":[0.01], "float depth two":[0.01]}

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.02]11})

#ri.Surface("glassbal", {"float Kd":[1.0], "float eta":[1.6],"string envname":
["./sourceimages/environment maps/map 02.tx"]})

#ri.Surface("./shaders/lens/lens vl rl",{"float Kd":[0.8],"float Ks":[0.5],"float
roughness":[10.4]1,"float Kenv":[0.5],"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],"float Kfrac":[0.8]})

#ri.Surface("./shaders/lens/lens vl r2",{"float Kd":[0.4],"float Kfrac":[1.5]})

ri.ReadArchive ("./Archive/new magnifying glass/OClens join vl.rib")

#ri.ReadArchive ("./Archive/new magnifying glass/OClens small vl.rib")

ri.AttributeEnd()

ri.TransformEnd ()

ri.TransformEnd ()

#Function to control the foreground grass
RN 3 6
#HAFEE R
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHAF A R R R R
FHEHEFE
def Grass forground(ri, frame,point cloud check,out filename,rendertype)

random. seed (20)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 104

ri.TransformBegin ()
ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

B R R R R
FHEH S
Grass foreground

FH AR R R R S R R R R R
FHEHHE S
ri.TransformBegin ()
for i in range(l, 19):
ri.AttributeBegin ()
ran diffuse=random.uniform(0.9,1.1)
ran_opacity=random.uniform(1l, 3)
ran_tex=random.uniform(1, 3)

ran diffuse front=[random.uniform(1.0,1.1),random.uniform(0.8,0.9), random.uniform(0.8,0.9)]

ran_diffuse back=[random.uniform(1.0,1.0),random.uniform(0.9,1.1),random.uniform(1.0,1.1)]
ran_specular=random.uniform(1.2,1.3)

ran_spec_colour=[random.uniform(0.4,0.5), random.uniform(0.5,0.6),random.uniform(0.5,0.6)]
if (rendertype == 1)
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/new grass/new grass surface shader v3 rl",{"float
Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string

texture front":["./sourceimages/grass/grass_front high vl.tx"],"string texture back":
["./sourceimages/grass/grass front high v%$01ld.tx" $(ran tex)],"color opacity":[1.0,1.0,1.0],"float
roughness":[8.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass opacity high v$%$01d.tx" $%(ran opacity)],"float Kenv":[0.2],"string
EnvironmentMap": ["./sourceimages/hdr/Meadow non float.tx"],"float oren roughness":[5.0]})
ri.Displacement ("./shaders/grass/grass displacement shader vl r3",{ "float

freq layer one":[100], "float freg layer two":[40], "float depth one":[0.025], "float depth two":
[0.0411})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.2]})

ri.Attribute ("identifier", {"name": "grass_ foreground"})

ri.ReadArchive ("./Archive/grass/new foreground grass/grass_sperate/OCgrass_piece
$02d_.%04d.rib" %((i), (frame)))
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the foreground ground
R T 5 i
FHAFEEHEH
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF R
R
def Ground foreground(ri, frame,point cloud check,out filename, rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

B R
FHEH A
Close up ground

A S R
FHEH AR

ri.TransformBegin ()

ri.AttributeBegin ()

if (rendertype == 1)

#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 105

ri.Surface("./shaders/rocks/rock surface v3 r2",{"float Ka":[0.5],"float Kd":
[0.8],"float roughness":[10.0],"float spec_ roughness":[0.2],"float Ks":[0.4],"float veining":
[200],"color diffusecolor":[1.0,1.0,1.0],"color color multi one":[1.0,1.0,1.0],"color
color multi two":[0.9,0.9,0.9],"color specularcolor":[0.7,0.7,0.7],"float Threshold":[0.7],"float
Layers of spots":[3],"float specksize":[0.01],"float sizes":[5],"color spattercolor":
[0.6,0.6,0.6],"float Kenv":[0.3],"string envname":
["./sourceimages/hdr/Meadow non float.tx"],"string texture front":
["./sourceimages/Ground/ground high res v1.tx"]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[0.2],
"float Freqg":[700], "float Amplitude":[1], "float Layers":[6]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float
sphere":[0.2]})
ri.Attribute ("identifier", {"name": "grass_01"})
ri.ReadArchive ("./Archive/forground/ground/OCground vl rl .rib")
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control alternative version of the foreground ground
TR R A R R R A R R
iiddddkdai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEH A R
SR A A
def Ground foreground 2(ri, frame,point cloud check,out filename, rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

BB R R R
FHEH S
Close up ground

FHA A R R R R R
FHEHHES S
ri.TransformBegin ()
ri.AttributeBegin ()
if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/rocks/rock surface v2 r4",{"float Ka":[0.5],"float Kd":
[0.8],"float roughness":[10.0],"float spec roughness":[0.2],"float Ks":[1.1],"float veining":
[200],"color diffusecolor":[1.0,1.0,1.0],"color color multi one":[1.0,1.0,1.0],"color
color multi two":[0.9,0.9,0.9],"color specularcolor":[0.8,0.7,0.6],"float Threshold":[0.7],"float
Layers of spots":[3],"float specksize":[0.01],"float sizes":[5],"color spattercolor":
[0.6,0.6,0.6],"float Kenv":[0.3],"string envname":
["./sourceimages/hdr/Meadow non float.tx"],"string texture front":
["./sourceimages/Ground/ground high res v1.tx"]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[0.2], "float
Fregq":[700], "float Amplitude":[1.1], "float Layers":[10]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.211})
ri.Attribute ("identifier", {"name": "grass 01"})
ri.ReadArchive ("./Archive/forground/ground/0Cground vl rl .rib")
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the foreground ground back part

RS 3 R
#HEFEE RS

Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,

Also corrects orientation of the objects that are loaded in.

FHA A R R R R A
SRR A

def Ground foreground back part(ri, frame,point cloud check,out filename,rendertype)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 106

ri.TransformBegin ()
ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

FHAF AR R R R R
iiddaddsddi
Close up ground

FH AR R R R S R R R R R
FHEHHE S
ri.TransformBegin ()
ri.AttributeBegin ()
if (rendertype == 1) :
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface ("./shaders/rocks/rock surface v2 r4", {"float Ka":[0.5],"float Kd":
[0.8],"float roughness":[10.0],"float spec roughness":[0.2],"float Ks":[1.1],"float veining":
[200],"color diffusecolor":[1.0,1.0,1.0],"color color multi one":[1.0,1.0,1.0],"color

color multi two":[0.9,0.9,0.9],"color specularcolor":[0.8,0.7,0.6],"float Threshold":[0.7],"float

Layers of spots":[3],"float specksize":[0.01],"float sizes":[5],"color spattercolor":
[0.6,0.6,0.6],"float Kenv":[0.3],"string envname":
["./sourceimages/hdr/Meadow non float.tx"],"string texture front":

["./sourceimages/Ground/ground high res v1.tx"]})

ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[0.2], "float
Freq":[700], "float Amplitude":[1.1], "float Layers":[101})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.21})

ri.Attribute ("identifier", {"name": "grass_01"})

ri.ReadArchive ("./Archive/forground/ground/OCground fg back part vl.rib")

ri.AttributeEnd()

ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the foreground rocks
RN E 3 R E R i i i i
FHEHHEHAE
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FH AR R R R S R R R R R
FHEHHER"
def Rocks(ri, frame,point cloud check,out filename, rendertype)

random. seed (20)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.Translate(0.0,-0.2,0.0)

ri.TransformBegin ()

FHAF AR R R R R R
idddadddddi
Small rocks

FH A R R R R R R R R R R
FHEHHE S
ri.TransformBegin ()
for i in range(l, 10):
ri.AttributeBegin ()
ran_tex=random.uniform(1l, 3)
ran_displace=random.uniform(0.01,0.016)
ran_vien=random.uniform(4,5)
ran_spot_colour multi=random.uniform(0.7,0.9)

ran_spot colour=[random.uniform(ran_spot colour multi,ran spot colour multi+0.05),random.uniform(ran
_spot _colour multi,ran spot colour multi+0.05),random.uniform(ran spot colour multi,ran spot colour
multi+0.05)]
ran diffuse=[random.uniform(0.6,0.7),random.uniform(0.6,0.7),random.uniform(0.6,0.7)]
ran spec=random.uniform(0.2,0.7)
ran_spot layers=random.uniform(1,1)
if (rendertype == 1) :
ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")

Joe Gaftney, Thanos Topouzis Master's Thesis Page 107

if (rendertype == 2)
ri.Surface ("./shaders/rocks/rock surface v2 r4",{"float Ka":[0.5],"float Kd":
[1.0],"float roughness":[10.0],"float spec_roughness":[1.2],"float Ks":[0.4],"float veining":
ran vien,"color diffusecolor":ran diffuse,"color color multi one":[0.922,0.922,0.922],"color
color multi two":[1.0,1.0,1.0],"color specularcolor":[ran spec,ran spec,ran spec],"float Threshold":

[0.7],"float Layers of spots":ran spot layers,"float specksize":[0.01],"float sizes":ran vien,"color
spattercolor":ran_spot colour,"float Kenv":[1.0],"string envname":
["./sourceimages/hdr/Meadow non float.tx"],"string texture front":["./sourceimages/rocks/rock v
%01d.tx" %S (ran_tex)]})

ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":
[ran displace], "float Freqg":[2], "float Amplitude":[30], "float Layers":[12]})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.2]})
ri.ReadArchive ("./Archive/forground/rocks/OCrocks small vl rl $03d.rib" %(i))
ri.AttributeEnd()
ri.TransformEnd ()

A R R R R R R R R
HEEFARR RS

Large rocks

FE A R S R R
FHEH RS
ri.TransformBegin ()
for i in range(l, 5):
ri.AttributeBegin ()
ran_ tex large=random.uniform(1l,4)
ran displace=random.uniform(0.02,0.040)
ran_vien=random.uniform(4,5)
ran_spot colour multi=random.uniform(0.8,0.9)

ran_spot colour=[random.uniform(ran_spot colour multi,ran spot colour multi+0.05),random.uniform(ran
_spot_colour multi,ran_spot colour multi+0.05),random.uniform(ran_spot colour multi,ran_ spot colour
multi+0.05)]
ran_diffuse=[random.uniform(0.8,0.9),random.uniform(0.8,0.9),random.uniform(0.8,0.9)]
ran_spec=random.uniform(0.5,0.6)
ran_ spot layers=random.uniform(1l,1)
if (rendertype == 1)
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)

ri.Surface ("./shaders/rocks/rock surface v2 r4",{"float Ka":[0.5],"float Kd":
[1.0],"float roughness":[10.0],"float spec_roughness":[1.2],"float Ks":[0.22],"float veining":
ran _vien,"color diffusecolor":ran diffuse,"color color multi one":[0.922,0.922,0.922],"color
color multi two":[1.0,1.0,1.0],"color specularcolor":[ran_ spec,ran_spec,ran_spec],"float Threshold":
[0.7],"float Layers of spots":ran spot layers,"float specksize":[0.01],"float sizes":ran vien,"color
spattercolor":ran spot colour,"float Kenv":[0.3],"string texture front":

["./sourceimages/rocks/rock v%$01ld.tx" $%(ran_tex large)],"string envname":
["./sourceimages/hdr/Meadow non float.tx"]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":
[ran displace], "float Freqg":[2], "float Amplitude":[30], "float Layers":[15]}
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float
sphere":[0.21})
ri.ReadArchive ("./Archive/forground/rocks/OCrocks large vl rl $03d.rib" % (i))
ri.AttributeEnd()
ri.TransformEnd ()

random.seed (5)

B R R S
A

Medium rocks

A S S
FHEH SRS
ri.TransformBegin ()
for i in range(l, 7):
ri.AttributeBegin ()
ran_tex=random.uniform(1l,2)
ran displace=random.uniform(0.02,0.03)
ran_vien=random.uniform(4,5)
ran_spot colour multi=random.uniform(0.5,0.9)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 108

ran_spot colour=[random.uniform(ran_spot colour multi,ran spot colour multi+0.05),random.uniform(ran
_spot_colour multi,ran spot colour multi+0.05),random.uniform(ran_spot colour multi,ran spot colour
multi+0.05)]

ran diffuse=[random.uniform(0.8,0.9),random.uniform(0.8,0.9), random.uniform(0.8,0.9)]

ran_spec=random.uniform(0.4,0.5)

ran_spot layers=random.uniform(1,1)

if (rendertype == 1)
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface ("./shaders/rocks/rock surface v2 r4", {"float Ka":[0.5],"float Kd":
[1.0],"float roughness":[10.0],"float spec roughness":[2.2],"float Ks":[0.45],"float veining":
ran vien,"color diffusecolor":ran diffuse,"color color multi one":[0.922,0.922,0.922],"color
color multi two":[1.0,1.0,1.0],"color specularcolor":[ran spec,ran spec,ran spec],"float Threshold":
[0.7],"float Layers of spots":ran spot layers,"float specksize":[0.01],"float sizes":ran vien,"color
spattercolor":ran spot colour,"float Kenv":[1.0],"string envname":
["./sourceimages/hdr/Meadow non float.tx"],"string texture front":["./sourceimages/rocks/rock v
$01d.tx" % (ran_tex)]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":

[ran_displace], "float Freq":[2], "float Amplitude":[20], "float Layers":[14]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.2]})
ri.ReadArchive ("./Archive/forground/rocks/OCrocks medium vl rl %$03d.rib" %(i))
ri.AttributeEnd()
ri.TransformEnd ()
ri.TransformEnd ()

ri.TransformEnd ()

#Function to control Dandilion and stem and leaves
R 8
#HAHEE RS
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHAF A R R R
FHFEEEE
def Dandilion(ri, frame,point cloud check,out filename,rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

A R R R R R
HEEFARR RS

dandilion

T R R R
HhEHHE RS

ri.TransformBegin ()
ri.Translate(0.0,0.0,0.0)
ri.AttributeBegin ()
ran_displace=random.uniform(0.03,0.08)
ran diffuse=random.uniform(0.7,0.9)
ran_diffuse front=[random.uniform(1.0,1.0),random.uniform(1.0,1.0),random.uniform(1.0,1.0)]
ran_diffuse back=[random.uniform(1.0,1.0),random.uniform(0.9,1.0),random.uniform(1.0,1.0)]
ran_specular=random.uniform(0.2,0.3)
ran_spec_colour=[random.uniform(0.2,0.3), random.uniform(0.2,0.3),random.uniform(0.4,0.5)]
if (rendertype == 1)
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)
ri.Surface("./shaders/new grass/new grass_surface shader v3 rl", {"float
Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string

texture_front":["./sourceimages/leaves/leaves_high res v3.tx"],"string texture back":
["./sourceimages/leaves/leaves high res v3.tx"],"color opacity":[1.0,1.0,1.0],"float roughness":
[0.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass_opacity high v1.tx"],"float Kenv":[0.4],"string EnvironmentMap":
[""],"float oren roughness":[5.0]})

ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[ran displace],

"float Freqg":[0.5], "float Amplitude":[2.5], "float Layers":[6]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float sphere":
[0.021})
ri.ReadArchive ("./Archive/forground/dandilion/OCstem v1 .%04d.rib" % (frame))
ri.AttributeEnd ()
ri.TransformBegin ()
ri.Rotate(3,1,0,0)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 109

ri.Rotate(3,0,1,0)
ri.AttributeBegin ()
ran_displace=random.uniform(0.03,0.08)
ran diffuse=random.uniform(0.7,0.9)
ran diffuse front=[random.uniform(1.0,1.0),random.uniform(1.0,1.0), random.uniform(1.0,1.0)]
ran_diffuse back=[random.uniform(1.0,1.0),random.uniform(0.9,1.0),random.uniform(1.0,1.0)]
ran_specular=random.uniform(0.2,0.3)
ran_spec_colour=[random.uniform(0.2,0.3), random.uniform(0.2,0.3),random.uniform(0.4,0.5)]
if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)

ri.Surface("./shaders/new_grass/new_grass_surface_shader v3_rl", {"float

Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string
texture_ front":["./sourceimages/leaves/leaves_high res v3.tx"],"string texture back":
["./sourceimages/leaves/leaves_high_res_v3.tx"],"color opacity":[1.0,1.0,1.0],"float roughness":
[0.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass_opacity high vl.tx"],"float Kenv":[0.4],"string EnvironmentMap":
[""],"float oren_ roughness":[5.0]})

ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[ran displace],

"float Freqg":[0.5], "float Amplitude":[2.5], "float Layers":[6]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.02]1)
ri.ReadArchive ("./Archive/forground/dandilion/OCbase vl.rib")
ri.AttributeEnd ()
ri.TransformEnd ()
ri.AttributeBegin ()
ran_displace=random.uniform(0.03,0.08)
ran_diffuse=random.uniform(0.6,0.65)
ran_diffuse front=[random.uniform(1.0,1.0),random.uniform(0.9,0.9),random.uniform(1.0,1.0)]
ran_diffuse back=[random.uniform(1.0,1.0), random.uniform(0.9,0.9),random.uniform(1.0,1.0)]
ran_specular=random.uniform(0.0,0.02)
ran_spec_colour=[random.uniform(0.2,0.3),random.uniform(0.2,0.3), random.uniform(0.3,0.4)]

if (rendertype == 1)
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")

if (rendertype == 2)

ri.Surface("./shaders/new grass/new grass_ surface shader v3 rl",{"float Ks":[0.5],
"color specularcolor":[0.2,0.2,0.2], "float Kd":ran diffuse,"float Ka":[1.0],"color
front colour":ran diffuse front,"color back colour":ran diffuse back,"string texture front":

["./sourceimages/leaves/petal high res vl.tx"],"string texture back":
["./sourceimages/leaves/petal high res vl.tx"],"color opacity":[1.0,1.0,1.0],"float roughness":
[0.2], "float max size":[5],"string texture opacity":[""],"float Kenv":[0.2],"string
EnvironmentMap": ["./sourceimages/hdr/Meadow _non float.tx"],"float oren roughness":[5.0]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[ran displace],

"float Freqg":[0.5], "float Amplitude":[2.5], "float Layers":[6]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float sphere":
[0.021})
ri.ReadArchive ("./Archive/forground/dandilion/OCflower vl .%04d.rib" % (frame))
ri.AttributeEnd ()
ri.TransformEnd ()

ri.TransformBegin ()

ri.Translate(-14.0,-0.2,0.0)

ri.AttributeBegin ()

ran_displace=random.uniform(0.03,0.08)

ran_diffuse=random.uniform(0.7,0.9)

ran diffuse front=[random.uniform(1.0,1.0),random.uniform(1.0,1.0), random.uniform(1.0,1.0)]
ran_diffuse back=[random.uniform(1.0,1.0), random.uniform(0.9,1.0),random.uniform(1.0,1.0)]
ran_specular=random.uniform(0.2,0.3)

ran_ spec_ colour=[random.uniform(0.2,0.3), random.uniform(0.2,0.3),random.uniform(0.4,0.5)]

if (rendertype == 1)
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float
Ks":ran_specular, "color specularcolor":ran spec_colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string

texture_ front":["./sourceimages/leaves/leaves_high res v3.tx"],"string texture back":
["./sourceimages/leaves/leaves high res v3.tx"],"color opacity":[1.0,1.0,1.0],"float roughness":

[0.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass_opacity high vl.tx"],"float Kenv":[0.4],"string EnvironmentMap":
[""],"float oren roughness":[5.0]})

ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[ran displace],
"float Freq":[0.5], "float Amplitude":[2.5], "float Layers":[6]}

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":

Joe Gaftney, Thanos Topouzis Master's Thesis Page 110

[0.021})
ri.ReadArchive ("./Archive/forground/dandilion/OCbase v1.rib")
ri.AttributeEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control small objects found on the ground in the animation such as small stones and
sticks
MU R
#HEFEE RS
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHA A R R A
FHAHEFE
def Small objects(ri, frame,point cloud check,out filename, rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

ri.Translate(0.0,0.0,0.0)

FREH A R R R R S
HhEH RS

Small stones

S R R S S S R R R S
FHEHHES S
ri.TransformBegin ()
for i in range(l, 6):
ri.AttributeBegin ()
ran_displace=random.uniform(0.005,0.001)
ran_vien=random.uniform(4,20)
ran_spot_colour multi=random.uniform(0.5,0.9)

ran_spot colour=[random.uniform(ran spot colour multi,ran spot colour multi+0.05),random.uniform(ran
_spot_colour multi,ran_spot colour multi+0.05),random.uniform(ran_spot_colour multi,ran_spot colour
multi+0.05)]

ran_diffuse=[random.uniform(0.5,0.6),random.uniform(0.5,0.6),random.uniform(0.6,0.6)]

ran_ spec=random.uniform(0.1,0.2)

ran_spot layers=random.uniform(1l,2)

if (rendertype == 1) :
#ri.Surface("./shaders/occlusion/occlusion vl rl1",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/rocks/rock surface v2 r4",{"float Ka":[0.5],"float Kd":
[0.6],"float roughness":[10.0],"float spec roughness":[2.2],"float Ks":[0.3],"float veining":
ran vien,"color diffusecolor":ran diffuse,"color color multi one":[0.922,0.922,0.922],"color
color multi two":[1.0,1.0,1.0],"color specularcolor":[ran_ spec,ran_spec,ran_spec],"float Threshold":
[0.7],"float Layers of spots":ran spot layers,"float specksize":[0.01],"float sizes":ran vien,"color
spattercolor":ran spot colour,"float Kenv":[0.3],"string envname":[""]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":
[ran_displace], "float Freq":[2], "float Amplitude":[30], "float Layers":[8]})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.2]1})
ri.ReadArchive ("./Archive/forground/small objects/OCstones %03d.rib" % (i))
ri.AttributeEnd ()
ri.TransformEnd ()

ddddizssasssaassssaasassasssdssasssssaasssssassdssasssdsssassssassssssassdssaasssssasssss s
#HEHEH S
Small sticks

A S S
FHEH SRS
ri.TransformBegin ()
for i in range(l, 5):
ri.AttributeBegin ()
ran_displace=random.uniform(0.005,0.001)
ran vien=random.uniform(4,20)
ran_spot colour multi=random.uniform(0.4,0.5)

ran_spot colour=[random.uniform(ran spot colour multi,ran spot colour multi+0.05),random.uniform(ran

Joe Gaftney, Thanos Topouzis Master's Thesis Page 111

_spot_colour multi,ran_spot colour multi+0.05),random.uniform(ran_spot_colour multi,ran_spot colour
multi+0.05)]
ran_diffuse=[random.uniform(0.5,0.6),random.uniform(0.5,0.6),random.uniform(0.6,0.6)]
ran_ spec=random.uniform(0.1,0.22)
ran_spot layers=random.uniform(1l,2)
if (rendertype == 1)
#ri.Surface("./shaders/occlusion/occlusion vl rl1",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)

ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float Ks":
[0.2], "float Kd":[0.5],"float Ka":[1.0],"color front colour":[0.5,0.5,0.5],"color back colour":
[0.5,0.5,0.5],"string texture front":["./sourceimages/fence/fence vl rl .tx"],"string
texture_back":["./sourceimages/fence/fence_vl_rl_.tx"],"color specularcolor":[0.4,0.6,1.0],"float

roughness": [0.3]1})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":
[ran _displace], "float Freq":[2], "float Amplitude":[30], "float Layers":[8]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float
sphere":[0.02]1})
ri.ReadArchive ("./Archive/forground/small objects/OCsticks %03d.rib" % (1))
ri.AttributeEnd()
ri.TransformEnd ()

ddddzzssssssasssssasssssaasssssssssssaasssstassdsssasss stz sasssssstssss sz aass s
#HEHEH S
Plants

S
FHEHHES S
ri.TransformBegin ()
for i in range(l, 5):
ri.AttributeBegin ()
ran_displace=random.uniform(0.03,0.08)
ran diffuse=random.uniform(0.6,0.7)

ran_diffuse front=[random.uniform(1.0,1.0),random.uniform(1.0,1.0),random.uniform(1.0,1.0)]

ran diffuse back=[random.uniform(1.0,1.0), random.uniform(0.9,1.0),random.uniform(1.0,1.0)]
ran_specular=random.uniform(0.31,0.41)

ran_spec_ colour=[random.uniform(0.3,0.4), random.uniform(0.3,0.4),random.uniform(0.4,0.5)]
if (rendertype == 1)
#ri.Surface("./shaders/occlusion/occlusion vl rl1",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)

ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float

Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string
texture_ front":["./sourceimages/leaves/leaves_high res v3.tx"],"string texture back":
["./sourceimages/leaves/leaves_high_res_v3.tx"],"color opacity":[1.0,1.0,1.0]1,"float roughness":
[0.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass opacity high v3.tx"],"float Kenv":[0.4],"string EnvironmentMap":
[""],"float oren roughness":[5.0]})

ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":

[ran displace], "float Freq":[0.5], "float Amplitude":[2.5], "float Layers":[6]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.021})
ri.ReadArchive ("./Archive/forground/plants/OCplant v%03d.rib" % (i))
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the fur found on the ground in the animation
R 8
FHAFEEHEH
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
R
FHFEEEE
def Fur(ri, frame,point cloud check,out filename,rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 112

ddddzzssssssasssssasssssaassssssssssssasssssassdsssasss szttt aass s
#HEHEH S
Small rocks

A R S R R S R R
FHEHHE RS
ri.TransformBegin ()
for i in range(l, 16):
ri.AttributeBegin ()
ran_diffuse=random.uniform(0.7,0.8)

ran _diffuse front=[random.uniform(0.47,0.53),random.uniform(0.4,0.52),random.uniform(0.4,0.5)]

ran diffuse back=[random.uniform(0.4,0.5), random.uniform(0.5,0.55), random.uniform(0.4,0.5)]
ran_specular=random.uniform(0.2,0.3)

ran_spec_ colour=[random.uniform(0.4,0.5), random.uniform(0.5,0.6),random.uniform(0.5,0.6)]

if (rendertype == 1)
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)
ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float
Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string
texture_front":["./sourceimages/fence/fence vl_rl .tx"],"string texture back":
["./sourceimages/fence/fence_vl_rl_.tx"],"color opacity":[1.0,1.0,1.0]1,"float roughness":[0.5],
"float max size":[5],"string texture opacity":[""],"float Kenv":[0.5],"string EnvironmentMap":
[""],"float oren roughness":[10.0]}
#ri.Displacement ("./shaders/grass/grass_displacement_shader vl _r3",{ "float
freq_layer one":[100], "float freq layer two":[60], "float depth one":[0.04], "float depth two":

[0.06]1})
#ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.021})
ri.ReadArchive ("./Archive/forground/small objects/OCfur %03d.rib" %(i))
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()

A R
FHEFHHEFH AR
R R R
SRR A ARRASEEASESEEEEEEEEE

Midground functions
R R
BREH RS

A R R R
FHEFHHHE R

#Function to control the midground grass
R R R R R R R R R
FHEH RS
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
R S R S R R R S R R S
FHEHHEE"
def Grass midground(ri, frame,point cloud check,out filename, rendertype)

random.seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

A R R R R R R R R R R R S R
s aEsds

Grass midground

A S R
FHEH AR

ri.TransformBegin ()

ri.AttributeBegin ()

ran_diffuse=random.uniform(0.9,1.1)

ran_opacity=random.uniform(1, 3)

ran_ tex=random.uniform(1l,1)

ran diffuse front=[random.uniform(1.0,1.1),random.uniform(0.8,0.9), random.uniform(0.8,0.9)]

Joe Gaftney, Thanos Topouzis Master's Thesis Page 113

ran diffuse back=[random.uniform(1.0,1.0), random.uniform(0.9,1.1),random.uniform(1.0,1.1)]

ran_specular=random.uniform(1.2,1.3)

ran_spec_colour=[random.uniform(0.4,0.5), random.uniform(0.5,0.6),random.uniform(0.5,0.6)]

if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")

if (rendertype == 2) :
ri.Surface("./shaders/new grass/new grass_ surface shader v3 rl", {"float

Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":

[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string
texture front":["./sourceimages/grass/grass front high vl.tx"],"string texture back":
["./sourceimages/grass/grass front high v%$01ld.tx" $%$(ran tex)],"color opacity":[1.0,1.0,1.0],"float
roughness":[8.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass_opacity high v%01ld.tx" %(ran opacity)],"float Kenv":[0.2],"string
EnvironmentMap": ["./sourceimages/hdr/Meadow non float.tx"],"float oren roughness":[5.0]}
ri.ReadArchive ("./Archive/grass/Still_midground/OCgrass_midground vl _rl_sequence_.%04d.rib"
5(1))

ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()

ri.TransformBegin ()
ri.Translate(0.5,-30.0,30.0)

FHAF AR AR AR AR A A A A R A R R R R R R R R A
#HEHEH S
Grass midground

E R i i
FHEH SRS
ri.TransformBegin ()
ri.AttributeBegin ()
ran_diffuse=random.uniform(0.9,1.1)
ran opacity=random.uniform(1, 3)
ran_tex=random.uniform(1l,1)
ran_diffuse front=[random.uniform(1.0,1.1),random.uniform(0.8,0.9),random.uniform(0.8,0.9)]
ran diffuse back=[random.uniform(1.0,1.0), random.uniform(0.9,1.1),random.uniform(1.0,1.1)]
ran_ specular=random.uniform(1.2,1.3)
ran_spec_colour=[random.uniform(0.4,0.5), random.uniform(0.5,0.6),random.uniform(0.5,0.6)]
if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float
Ks":ran specular, "color specularcolor":ran spec colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string

texture front":["./sourceimages/grass/grass front high vl.tx"],"string texture back":
["./sourceimages/grass/grass_front high v%01ld.tx" % (ran tex)],"color opacity":[1.0,1.0,1.0],"float
roughness":[8.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass opacity high v%01ld.tx" %(ran opacity)],"float Kenv":[0.2],"string
EnvironmentMap": ["./sourceimages/hdr/Meadow non float.tx"],"float oren roughness":[5.0]}

ri.ReadArchive ("./Archive/grass/Still midground/OCgrass midground vl rl sequence .%04d.rib"
5(2))

ri.AttributeEnd ()

ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the trolly not used in the final animaiton
R 5 i
FHEFEEHHH
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FH A A S R R R S
FHFEEEE
def Trolly(ri, frame,point cloud check,out filename,rendertype)

random.seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()
ri.Translate(50.0,30.0,120.0)

Joe Gaftney, Thanos Topouzis Master's Thesis Page 114

ddddzzssssssasssssasssssaassssssssssssasssssassdsssasss szttt aass s
#HEHEH S
Fence

A R S R R S R R
FHEHHE RS

ri.TransformBegin ()

ri.AttributeBegin ()

if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")

if (rendertype == 2)
ri.Surface ("plastic")

ri.ReadArchive ("./Archive/environment/OCtrolly vl rl .rib")

ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()

ri.TransformEnd ()

FHAFE S E AR R R R R R R
iidddddddddsdtaddadddaddddddii

FHEF A R
FHEFE A A A

Background functions

FHEH A R
FHEFE A

FH A A S R R R
FHAFER AR R

#Function to control the background grass
RN 3 6
iiddddkdai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF A R
FHEHEFE
def Grass_background(ri, frame,point cloud check,out filename,rendertype)

random.seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()
ri.Translate (50,10.0,30.0)

B
FHEH S
Grass foreground

R R S R R R R
FHEHHES S
ri.TransformBegin ()
ri.AttributeBegin ()
ran_diffuse=random.uniform(0.9,1.1)
ran_opacity=random.uniform(1, 3)
ran_ tex=random.uniform(1l, 3)
ran_diffuse front=[random.uniform(1.0,1.1),random.uniform(0.8,0.9),random.uniform(0.8,0.9)]
ran_diffuse back=[random.uniform(1.0,1.0),random.uniform(0.9,1.1),random.uniform(1.0,1.1)]
ran_ specular=random.uniform(1.2,1.3)
ran_ spec colour=[random.uniform(0.4,0.5), random.uniform(0.5,0.6),random.uniform(0.5,0.6)]
if (rendertype == 1)
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float
Ks":ran_specular, "color specularcolor":ran spec_colour, "float Kd":ran diffuse,"float Ka":
[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string
texture_ front":["./sourceimages/grass/grass_front_high vl.tx"],"string texture back":
["./sourceimages/grass/grass_front high v%01ld.tx" % (ran tex)],"color opacity":[1.0,1.0,1.0],"float
roughness":[8.5], "float max size":[5],"string texture opacity":
["./sourceimages/grass/grass opacity high v$%$01d.tx" $(ran opacity)],"float Kenv":[0.2],"string
EnvironmentMap": ["./sourceimages/hdr/Meadow non float.tx"],"float oren roughness":[5.0]})
ri.ReadArchive ("./Archive/grass/Still background/OCgrass back ground vl rl sequence .
%04d.rib" $(1))

Joe Gaftney, Thanos Topouzis Master's Thesis Page 115

ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()

ri.TransformBegin ()
ri.Translate(-50,-10.0,30.0)

FRE R
FHEF A
Grass foreground

FHA A R R R R R
FHEHHE RS
ri.TransformBegin ()

ri.AttributeBegin ()

ran diffuse=random.uniform(0.9,1.1)

ran_opacity=random.uniform(1, 3)

ran_tex=random.uniform(1, 3)

ran_diffuse front=[random.uniform(1.0,1.1),random.uniform(0.8,0.9),random.uniform(0.8,0.9)]
ran_diffuse back=[random.uniform(1.0,1.0), random.uniform(0.9,1.1),random.uniform(1.0,1.1)]
ran_specular=random.uniform(1.2,1.3)

ran_spec_colour=[random.uniform(0.4,0.5), random.uniform(0.5,0.6),random.uniform(0.5,0.6)]

if (rendertype == 1) :
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")

if (rendertype == 2)

ri.Surface("./shaders/new_grass/new_grass_surface shader v3 rl", {"float
Ks":ran_specular, "color specularcolor":ran spec_colour, "float Kd":ran diffuse,"float Ka":

[1.0],"color front colour":ran diffuse front,"color back colour":ran diffuse back,"string

texture front":["./sourceimages/grass/grass_ front high vl.tx"],"string texture back":

["./sourceimages/grass/grass front high v%$01ld.tx" $(ran tex)],"color opacity":[1.0,1.0,1.0],"float

roughness":[8.5], "float max size":[5],"string texture opacity":

["./sourceimages/grass/grass_opacity high v%01ld.tx" % (ran opacity)],"float Kenv":[0.2],"string

EnvironmentMap":["./sourceimages/hdr/Meadow_non_float.tx"],"float oren_roughness":[5.0]})
ri.ReadArchive ("./Archive/grass/Still background/OCgrass back ground vl rl sequence .

$04d.rib" $(2))
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the tree not used in the final animation
TR R A R R R A R R
iiddddkdai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHAF A R R
SR A A
def Tree(ri, frame,point cloud check,out filename, rendertype)

random. seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()
ri.Translate (200.0,0.0,250.0)

ddddzzssasssasssssaasassaasssssasssssaasssssassdssssssss sz sasssssstssss s s
3333323231
Tree

R R
FHEH RS

ri.TransformBegin ()

ri.AttributeBegin ()

if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)
ri.Surface ("./shaders/house/multi surface vl rl", { "float Ks": [0.8], "float
Kd": [0.95],"float Ka":[1.0], "float roughness":[1.4],
"color diffusecolor": [0.6,0.8,0.7],
"color specularcolor":[0.5,0.7,0.7],

Joe Gaftney, Thanos Topouzis Master's Thesis Page 116

"string texture one":
["./sourceimages/fence/fence vl rl .tx"],

"string texture two":
["./sourceimages/fence/fence vl rl .tx"],

"float Kenv": [0.4],
"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],})
#ri.Displacement ("./shaders/house/multi displacement vl rl", { "float Km":
[0.5], "string texname": ["./sourceimages/fence/fence vl rl .tx"]})
ri.ReadArchive ("./Archive/environment/trees/leaves type 01 vl rl .%$04d.rib" $(1))
if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2) :
ri.Surface("./shaders/ground/ground surface vl r3", {"color diffusecolor":
[0.01,0.01,0.01], "float Layers of spots":[3],"color spattercolor": [0.02,0.01,0.01]})
ri.Displacement ("./shaders/ground/ground displacement v2 rl",{ "float Km":[0.5],
"float Freq":[5], "float Amplitude":[10], "float Layers":[4]}

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.21})
ri.ReadArchive ("./Archive/environment/trees/trunk type 01 vl rl single frame.rib")
ri.AttributeEnd ()
ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

#Function to control the ivy on the fence
T R R R
FHEHHERHE
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
G R R S S R R R R R S R R R R
FHEHHER"
def Ivy(ri,frame,point cloud check,out filename,rendertype)

random. seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

ri.Translate(-50.0,0.0,80.0)

#ri.Rotate(5,1,0,0)

FHEHH AR R R
s aEsd;

Fence

FH R R S S R S R S R
FHEH AR
ri.TransformBegin ()
for i in range(l, 5):
ri.AttributeBegin ()
if (rendertype == 1) :
#ri.Surface("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)

ri.Surface("./shaders/new grass/new grass surface shader v3 rl", {"float Ks":
[0.5], "float Kd":[1.0],"float Ka":[1.0],"color front colour":[0.4,0.55,0.5],"color back colour":
[0.3,0.5,0.8],"string texture front":["./sourceimages/grass/Grass front.tx"],"string
texture_back":["./sourceimages/grass/Grass_back.tx"],"color specularcolor":[0.4,0.6,1.0],"float

roughness": [0.3]1})
#ri.Displacement ("./shaders/grass/grass displacement shader vl r3",{ "float
freq layer one":[150], "float freqg layer two":[20], "float depth one":[0.03], "float depth two":
[0.05]11})
#ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.02]1})
ri.ReadArchive ("./Archive/Ivy/OCIvy sticks v%02d.rib" % (i))
ri.AttributeEnd()
ri.TransformEnd ()

ri.TransformBegin ()
for i in range(l, 5):
ri.AttributeBegin ()
if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")

Joe Gaftney, Thanos Topouzis Master's Thesis Page 117

if (rendertype == 2)
ri.Surface("./shaders/new_grass/new_grass_surface_ shader v3 rl",{"float Ks":
[0.5], "float Kd":[1.0],"float Ka":[1.0],"color front colour":[0.4,0.55,0.5],"color back colour":
[0.3,0.5,0.8],"string texture front":["./sourceimages/grass/Grass front.tx"],"string
texture back":["./sourceimages/grass/Grass_back.tx"],"color specularcolor":[0.4,0.6,1.0],"float
roughness":[0.3]})

#ri.Displacement ("./shaders/grass/grass_displacement shader vl r3",{ "float
freq_layer one":[150], "float freq layer two":[20], "float depth_one":[0.03], "float depth_two":
[0.0511})

#ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"], "uniform float
sphere":[0.02]})

ri.ReadArchive ("./Archive/Ivy/OCIvy leaves v%02d.rib" % (i))

ri.AttributeEnd ()

ri.TransformEnd ()

ri.TransformEnd ()

ri.TransformEnd ()

#Function to control the fence in the background
TR R A R R R A R R
iiddddkdai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEH A R
SR A A
def Fence(ri, frame,point cloud check,out filename, rendertype)

random. seed (25)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()

ri.Translate(-50.0,0.0,80.0)

#ri.Rotate(5,1,0,0)

B R R R R R R
HhEFH R EEE

Fence

FE A R S S R R S R R R
FHEH RS
ri.TransformBegin ()
for i in range(l, 101):
ri.AttributeBegin ()
ran_displace=random.uniform(1.5,2.0)

ran diffuse=[random.uniform(0.9,1.1),random.uniform(1.05,1.1),random.uniform(1.05,1.1)]
ran_spec=random.uniform(0.5,0.8)
if (rendertype == 1) :
#ri.Surface ("./shaders/occlusion/occlusion vl rl",{ "float samples": [32]})
ri.Surface ("matte")
if (rendertype == 2)

#ri.Surface ("wood", {"Ks":[0.1],"point c0":c0,"point cl":cl,"float
grain":random.randint (2,20) })
ri.Surface ("./shaders/house/multi surface vl rl", { "float Ks": [1.0], "float
Kd": [1.0],"float Ka":[1.0], "float roughness":[2.4],
"color diffusecolor": ran diffuse,

"color specularcolor":[ran spec,ran_spec,ran_spec],
"string texture one":
["./sourceimages/fence/fence vl rl .tx"],
"string texture two":
["./sourceimages/fence/fence vl rl .tx"],
"float Kenv": [0.4],
"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],})
ri.Displacement ("./shaders/house/multi displacement v1 rl", { "float Km":
ran_displace, "string texname": ["‘/sourceimages/fence/fence_vl_rl_‘tx"]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float
sphere":[0.05]})

ri.Attribute ("identifier", {"name": "grass_ background"})
if (1 < 87):
ri.ReadArchive ("./Archive/fence/OCfence vl rl %03d.rib" %(i))

if (i > 88):
ri.ReadArchive ("./Archive/fence/OCfence vl rl %$03d.rib" %(1i))
ri.AttributeEnd()

Joe Gaftney, Thanos Topouzis Master's Thesis Page 118

ri.TransformEnd ()

ri.TransformEnd ()

ri.TransformEnd ()

#Function to control the background house and all its componets bricks, tiles etc
RS 3 8 R
iiddddddai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF R R
SRR A
def House(ri, frame,point cloud check,out filename,rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

ri.TransformBegin ()
ri.Translate(290.0,-225.0,1950.0)
#ri.Scale(2.5,2.5,2.5)

FREH A R R R R S
HhEH RS

House base

S R R S S S R R R S
FHEHHES S

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": [0.9], "float Kd":
[1.0],"float Ka":[1], "float roughness":[2.0],
"color diffusecolor": [1.2,1.2,1.2],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/building/house paint.tx"],
"string texture two": ["./sourceimages/building/house paint.tx"],
"float Kenv": [0.1],

"string EnvironmentMap":

["./sourceimages/environment maps/map 02.tx"],})

ri.Attribute ("identifier", {"name": "grass_background"})

ri.Displacement ("./shaders/house/multi displacement vl rl", { "float Km": [1.6], "string
texname": ["./sourceimages/building/house paint.tx"]})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.0511})

ri.ReadArchive ("./Archive/house/OChouse_base vl _rl single frame .rib")

ri.AttributeEnd/()

ri.TransformEnd ()

FHA A R R R R R
FHEHHE RS
House under roof

FHA A R R R R R
FHEH RS

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": [0.5], "float Kd":
[1.0],"float Ka":[1], "float roughness":[40.0],
"color diffusecolor": [0.5,0.5,0.5],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/fence/fence vl rl .tx"],
"string texture two": ["./sourceimages/fence/fence vl _rl .tx"],
"float Kenv": [0.4],

"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],})
ri.Attribute ("identifier", {"name": "grass_background"})
ri.ReadArchive ("./Archive/house/OChouse beams under roof vl rl single frame .rib")
ri.AttributeEnd ()
ri.TransformEnd ()

R i i i i
FHEH AR
House breast

Joe Gaftney, Thanos Topouzis Master's Thesis Page 119

FH R R R S S R R S S R R
FHEH AR

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": [0.5], "float Kd":
[1.0],"float Ka":[1], "float roughness":[10.0],
"color diffusecolor": [1,1,1],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/building/house paint.tx"],
"string texture two": ["./sourceimages/building/house paint.tx"],
"float Kenv": [0.3],

"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],})
ri.Attribute ("identifier",{"name": "grass_ background"})
ri.ReadArchive ("./Archive/house/OChouse breast vl rl single frame .rib")
ri.AttributeEnd ()
ri.TransformEnd ()

idssasssssasaisssasasiisaaaisisaasiissasaiiisagiisssaaiiisaaaiiisaaaiiisaaaiissaatiiisag i niiddi
FhEFH RS

House bricks

A R R R R R R R R R S S
FHEHHE RS

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": [0.5], "float Kd":
[1.0],"float Ka":[1], "float roughness":[2.2],
"color diffusecolor": [1,1,17,
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/fence/fence vl rl .tx"],
"string texture two": ["./sourceimages/fence/fence vl rl .tx"],
"float Kenv": [0.3],

"string EnvironmentMap":

["./sourceimages/environment maps/map 02.tx"],})

ri.Displacement ("./shaders/house/multi displacement v1 rl", { "float Km": [0.6], "string
texname": ["./sourceimages/environment maps/map 02.tx"]})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.0511})

ri.ReadArchive ("./Archive/house/OChouse _bricks_vl rl single frame .rib")

ri.AttributeEnd()

ri.TransformEnd ()

R R
S A A A A S
House flashing

FHE A R R R R
FHEH AR

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Color([1,1,11)

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": [0.5], "float Kd":
[1.0],"float Ka":[1], "float roughness":[140.0],
"color diffusecolor": [0.7,0.7,0.7],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/fence/fence vl rl .tx"],
"string texture two": ["./sourceimages/fence/fence vl rl .tx"],
"float Kenv": [0.8],
"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],})
#ri.Displacement ("./shaders/house/multi displacement v1 rl", { "float Km": [1.6], "string
texname": ["./sourceimages/building/tiles.tx"]})

#ri.Attribute ("displacementbound"”, {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.05]11})

ri.ReadArchive ("./Archive/house/OChouse flashing vl rl single frame .rib")

ri.AttributeEnd()

ri.TransformEnd ()

B R R R R R R R R R S R S
WA

House glass

R R R R R R R R R R

Joe Gaftney, Thanos Topouzis Master's Thesis Page 120

FHEHHES S
ri.TransformBegin ()
ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": "float Kd":
[0.3],"float Ka":[1], "float roughness":[0.5],
"color diffusecolor": [1,1,1],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/fence/fence vl rl .tx"],
"string texture two": ["./sourceimages/fence/fence vl rl .tx"],
"float Kenv": [0.9],
"string EnvironmentMap":
./sourceimages/environment maps/map 02.tx"],})"""
ri.Surface("glass", { "float Ks": [0.4], "float Kd": [0.1],"float Ka":[0.0], "float Kr":
[0.4],"color specularcolor":[1.0,1.0,1.0], "float roughness":[1.25],"string envname":
["./sourceimages/environment maps/map 02.tx"] })
ri.Attribute ("identifier", {"name": "grass_background"})
ri.ReadArchive ("./Archive/house/OChouse glass vl rl single frame .rib")
ri.AttributeEnd()
ri.TransformEnd ()

[1.07,

A R R R
HhEFHF RS

House tiles

FHR A R R R R R
FHEHHE RS

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", {
[0.8],"float Ka":[1], "float roughness":[3.2],

"float Ks": [0.5], "float Kd":

"color diffusecolor":
"color specularcolor"

"string texture one":

[0.4,0.4,0.47,
:[1,1,171,
["./sourceimages/fence/fence vl rl .tx"],

"string texture two":

"float Kenv": [0.45],

"string EnvironmentMap":
ri.Displacement ("./shaders/house/multi displacement vl rl", {

["./sourceimages/fence/fence vl rl .tx"],

["./sourceimages/environment maps/map 02.tx"]})
"float Km": [0.6], "string

texname": ["./sourceimages/building/tiles.tx"]})
ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.051})
ri.ReadArchive ("./Archive/house/OChouse tiles vl rl single frame .rib")
ri.AttributeEnd()
ri.TransformEnd ()

B R
FHEH A
House top tiles

S S S R S S S R S R R
FHEHHES S
ri.TransformBegin ()
ri.AttributeBegin ()
ri.Surface("./shaders/house/multi surface vl rl",
[1.0],"float Ka":[1], "float roughness":[10.0],
"color diffusecolor": [1,1,1],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/fence/fence vl rl .tx"],
"string texture two": ["./sourceimages/fence/fence vl _rl_ .tx"],
"float Kenv": [0.3],
"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],})
ri.Attribute ("identifier", {"name": "grass_background"})
ri.ReadArchive ("./Archive/house/OChouse top tiles vl rl single frame .rib")
ri.AttributeEnd()
ri.TransformEnd ()

{ "float Ks": [0.7], "float Kd":

A R R R R
HhEFHE RS

House window frames

A A R R R R R R R
HhEFH R EEE

ri.TransformBegin ()

Joe Gaftney, Thanos Topouzis Master's Thesis Page 121

ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": [0.6], "float Kd":
[1.0],"float Ka":[1], "float roughness":[10.0],
"color diffusecolor": [1,1,1],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/building/window frames.tx"],
"string texture two": ["./sourceimages/building/window frames.tx"],
"float Kenv": [0.3],
"string EnvironmentMap":
["./sourceimages/environment maps/map 02.tx"],})
ri.Attribute ("identifier",{"name": "grass_background"})
ri.ReadArchive ("./Archive/house/OChouse_window_frames vl rl single frame .rib")

ri.AttributeEnd ()
ri.TransformEnd ()

FHAF A AR R R R R R R R
iZ333 22231
Gutter

FH A R R R R R R R R R
FHEHHES S

ri.TransformBegin ()

ri.AttributeBegin ()

ri.Surface("./shaders/house/multi surface vl rl", { "float Ks": [0.9], "float Kd":
[1.0],"float Ka":[1], "float roughness":[2.0],
"color diffusecolor": [1.1,1.1,1.1],
"color specularcolor":[1,1,1],
"string texture one": ["./sourceimages/building/window frames.tx"],
"string texture two": ["./sourceimages/building/window frames.tx"],
"float Kenv": [0.3],

"string EnvironmentMap":

["./sourceimages/environment maps/map 02.tx"],})

ri.Displacement ("./shaders/house/multi displacement vl rl", { "float Km": [1.6], "string
texname": ["./sourceimages/building/house paint.tx"]})

ri.Attribute ("displacementbound", {ri.COORDINATESYSTEM: ["object"],"uniform float sphere":
[0.05]11})

ri.ReadArchive ("./Archive/house/OChouse gutter vl rl single frame .rib")

ri.AttributeEnd()

ri.TransformEnd ()

ri.TransformEnd ()
ri.TransformEnd ()

T i
#HEFE R H AR
R
FHAF A
Far Background Sky functions
FH A R S R R A
FHAFH A
FHEFE A R R R R
FHAFH R H AR R R

#Function to control the sky in shot one, three, four, five, six
RS 3 F R
iiddddtdai
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHEF A A
SRR A
def Sky shot 01(ri, frame,point cloud check,out filename,rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

R
FHEF A
Environment Sky shot 01

R R R S R R S R R R R R R
FHEHHE RS

ri.TransformBegin ()

ri.Translate (180,400,250)

ri.AttributeBegin ()

ri.Color([1,1,11])

Joe Gaftney, Thanos Topouzis Master's Thesis Page 122

ri.Surface ("./shaders/sky/clouds vl r2",{"string texture one":
["./sourceimages/sky/shot 01 sky.tx"]})

ri.Attribute ("identifier", {"name": "grass_background"})

ri.ReadArchive ("./Archive/environment/OCsky shot 01 vl rl single frame .rib")
ri.AttributeEnd()

ri.TransformEnd ()

ri.TransformEnd ()
#Function to control the sky in shot two
MU R
#HEFEE RS
Loads rib archive of geometry and assigns surface and displacement shaders and applies a
displacement bound,
Also corrects orientation of the objects that are loaded in.
FHA A R R A
FHAHEFE
def Sky shot 02 (ri, frame,point cloud check,out filename,rendertype)

ri.TransformBegin ()

ri.Scale(-1.0,1.0,1.0)

FHAFE S E AR R R R R R R
iiddadddddi
Environment Sky shot 01

dasssasssassasisaisagssaisatsssisatisaisaisssisaissaisataisaisasisaisasiaaisatiagisatisaisatingisnis;
AR EAH RS

ri.TransformBegin ()

ri.Translate (-20,20,20)

ri.AttributeBegin ()

ri.Color([1,1,11)

ri.Surface("./shaders/sky/clouds vl r2", {"string texture one":
["./sourceimages/sky/shot 02 sky.tx"]})

ri.Attribute ("identifier", {"name": "grass background"})

ri.ReadArchive ("./Archive/environment/OCsky_shot 02 vl rl single frame .rib")

ri.AttributeEnd ()

ri.TransformEnd ()

ri.TransformEnd ()

Shaders

surface rock_surface v2 r4

/*!

Shader was developed to suit the need for the rocks and the ground in the piece the shaders needed
to be able to create a wide to be able to have variation as it shades prominent and different
objects.

A high degree of physical accuracy of the properties of the ground and rocks had to be reproduced or
made to look convincing to the viewer.

*/

/// from RManNotes http://accad.osu.edu/~smay/RManNotes/index.html
/// from http://www.fundza.com/rman_shaders/subsurf_ texture/index.html

color envmapping(normal
vector
string
string
float

{

color envcolor = 0;

if (mapname != "")

{

norm;
incident;
mapname;
coordname;
kenv)

normal n = normalize (norm);
vector i = normalize (incident) ;
normal nf = faceforward(n, 1);
vector R = reflect (i, nf);

R = transform(coordname, R);

envcolor =

}

environment (mapname,

R) * kenv;

Joe Gaftney, Thanos Topouzis Master's Thesis

Page 123

return envcolor;
}
/* Code from Jon Macey
* Oren and Nayar's generalization of Lambert's reflection model.
* The roughness parameter gives the standard deviation of angle
* orientations of the presumed surface grooves. When roughness=0,
* the model is identical to Lambertian reflection.
* Modified from the advanced renderman companion notes
*/
color LocIllumOrenNayar (normal N; vector V; float roughness)
{
/* Surface roughness coefficients for Oren/Nayar's formula */
float sigma2 = roughness * roughness;
float A = 1 - 0.5 * sigma2 / (sigma2 + 0.33);
float B 0.45 * sigma2 / (sigma2 + 0.09);
/* Useful precomputed quantities */
float theta r = acos (V . N); /* Angle between V and N */
vector V _perp N = normalize (V-N*(V.N)); /* Part of V perpendicular to N */

/* Accumulate incoming radiance from lights in C */
color C = 0;
extern point P;
illuminance (P, N, PI/2)
{
/* Must declare extern L & Cl because we're in a function */
vector LN = normalize(L);
float cos theta i = LN . N;
float cos phi diff = V perp N . normalize (LN - N*cos theta 1i);
float theta i = acos (cos_theta i);
float alpha = max (theta i, theta r);
float beta = min (theta i, theta r);
C += Cl * cos_theta i *
(A + B * max(0,cos_phi diff) * sin(alpha) * tan(beta));
}
return C;

}
/// Parameters of shader

surface rock surface v2 r4(

float Ka= 0.5;

float Kd= 1.0;

float roughness= 10.0;

float spec_roughness = 2.0;

float Ks= 0.5;

float veining = 40.0;

color diffusecolor = (0.7,0.7,0.06);

color color multi one = (0.922,0.922,0.922);
color color multi two = (1.0,1.0,1.0);
color specularcolor = (0.1,0.1,0.1);

float Threshold = 0.7;

float Layers of spots = 1;

float specksize = 0.01;

float sizes 5;

color spattercolor = color (1,1,1);
float Kenv = 0.3;
string envname =
string envspace = "world";

string texture front = "";)

{

/// vector calulation

normal Nf = faceforward(normalize (N),I);

vector V = -normalize(I);

color surface color, layer color, surface opac;
color layer opac, surface spec;

color texture_front_colour =1;

/// Load textures if available

// texture data

if (texture front != "")

{

(LRI
’

texture front colour = texture (texture front);

}

/// pattern setting
surface color = (float noise(s * 2, t * 2) + color noise(s * 1, t * 1))* diffusecolor;

Joe Gaftney, Thanos Topouzis Master's Thesis Page 124

/// for marble viening
/// The RenderMan marble shader was looked into modified and parts were used to create a marble
veining on the rock although subtle effect in the end it does add procedural variation.

point PP;
float width, cutoff, fade, f, turb, maxfreq = 16;

PP = transform("shader", P) * veining;
width = (max(sqgrt(area(PP)), le-7));

//width = PP/2;
cutoff = clamp(0.5 / width, 0, maxfreq);

o

turb = 0;
for (f = 1; £ < 0.5 * cutoff; £ *= 2)
{
turb += abs((noise(PP * f) * 2 - 1)) / £;
}

fade = clamp (2 * (cutoff - f) / cutoff, 0, 1);
turb += fade * abs((noise(PP * f) * 2 - 1)) / f;

turb *= 0.5;

layer color = (spline(turb,

color (0.9, 0.9, 0.9),

color (0.8, 0.8, 0.8),

color (0.5, 0.5, 0.5),

color (0.4, 0.4, 0.4),

color (0.6, 0.6, 0.0),

color (0.3, 0.3, 0.3),

color (0.2, 0.2, 0.2),

color (0.1, 0.1, 0.1)))*color multi one;
layer opac = layer color;
surface color = ((surface color) * (1 - (layer opac)) + (layer color) * (layer opac));
/// spots
/* !

The RenderMan spatter shader and the theory behind it was looked into modified and parts were used
to create a repeating spots of colour to the surface to add procedural variation. Also a
modification offer the specular component of the shader was achieved with his effect to be used as a
multiplier during the specular component calculation stage*/

varying float spot,size,scalefac,threshold = Threshold;

float layer,temp layer, max size = sizes;

surface spec = color (0.0,0.0,0.0);//specularcolor;

for (layer = 1; layer <= Layers of spots; layer += 1)
{
/// add variation of colours to the spots
scalefac = 1/specksize;
for (size=1l; size<=max size; size +=1)
{
spot = noise(transform("shader",P) *scalefac);
if (spot > threshold)
{
surface color += ((color (max(0.7,1.0),max(0.7,1.0),max(0.7,1.0))) *
(spattercolor * (layer *0.5)) * 1.0);
if (layer >= 2)
{
surface spec += ((color (max(0.1,0.3),max(0.1,0.3),max(0.1,0.3)))) * float
random() ;
}
break;
//}
}
scalefac /= 2;
}
max_size /= 2;
threshold *= 0.8;
scalefac /= 2;
}

surface color *= spattercolor;
/// environment lighting

color envcolor = color(0.5,0.5,0.5);
if (envname != "") {

Joe Gaftney, Thanos Topouzis Master's Thesis Page 125

envcolor= envmapping (N, I, envname, envspace, Kenv);

}

/// Out colour and opacity
surface_color *= texture front colour;
0i=0s;

Ci = ((Kd * (LocIllumOrenNayar (Nf,V,roughness)*surface color)) + (specularcolor *
specular (Nf,V, spec_roughness) * envcolor * Ks)* 0i);

}
displacement ground displacement v2_ rl
/*! ground displacement shader

A simulation of turbulence or fractal noise was used to create the bumpy and protruding surfaces of
rocks and a great amount of detail using displacement can be achieve on relatively low resolution

geometry.
This be achieved by using the noise() within a loop. On each iteration of the loop the value
returned from noise() is added to the result of the previous iteration. Successfully higher

frequencies but smaller amplitudes are used for iteration. The visual result is richer because the
shading can appear to mimic natural surfaces ie. large bumps have small bumps which in turn have
even smaller[http://www.fundza.com/rman_shaders/displacement/index.html]
inflenced by http://www.fundza.com/rman shaders/displacement/index.html */
displacement ground displacement v2 rl(
float Km = 0.02;
float Freq = 5;
float Amplitude = 30;
float Layers = 8;
string space = "object";)

{

/// initialise variables

float proc_displace = 0;

normal n = normalize (N);

point p = transform(space, P);

float j, £ = Freq, amplitude = Amplitude;

/// loop that calculates the noise displacement in layers
for(j = 0; j < Layers; j += 1)
{
proc_displace += (noise(p * f) -0.5) * amplitude;
f *= 2;
amplitude *= 0.5;
}

/// calulates the out displacement
P =P - n * proc displace * Km;

N = calculatenormal (P);

}

/// libary of shading models

#define SQR(A) ((A)*(A))

// from RManNotes http://accad.osu.edu/~smay/RManNotes/index.html
/// LocIllumOrenNayar (Nf,V,oren roughness)
/// color environment refl = color environment (EnvironmentMap,Rworld) ;
// from http://www.fundza.com/rman_shaders/subsurf texture/index.html
// for environment lighting
color envmapping(normal norm;
vector incident;
string mapname;
string coordname;
float kenv)
{
color envcolor = 0;
if (mapname != "")

{

normal n = normalize (norm) ;
vector i = normalize (incident);
normal nf = faceforward(n, 1i);

vector R = reflect (i, nf);
R = transform(coordname, R);

Joe Gaffney, Thanos Topouzis Master's Thesis Page 126

envcolor = environment (mapname, R) * kenv;
}
return envcolor;
}
/* Code from Jon Macey
* Oren and Nayar's generalization of Lambert's reflection model.
* The roughness parameter gives the standard deviation of angle
* orientations of the presumed surface grooves. When roughness=0,
* the model is identical to Lambertian reflection.
* Modified from the advanced renderman companion notes
*/
color LocIllumOrenNayar (normal N; vector V; float roughness)
{
/* Surface roughness coefficients for Oren/Nayar's formula */
float sigma2 = roughness * roughness;
float A =1 - 0.5 * sigma2 / (sigma2 + 0.33);
float B = 0.45 * sigma2 / (sigma2 + 0.09);
/* Useful precomputed quantities */
float theta r = acos (V . N); /* Angle between V and N */
vector V_perp N = normalize (V-N*(V.N)); /* Part of V perpendicular to N */

/* Accumulate incoming radiance from lights in C */
color C = 0;
extern point P;
illuminance (P, N, PI/2)
{
/* Must declare extern L & Cl because we're in a function */
vector LN = normalize(L);
float cos_theta i = LN . N;
float cos phi diff = V perp N . normalize (LN - N*cos_ theta i);
float theta i = acos (cos_theta i);
float alpha = max (theta i, theta r);
float beta = min (theta i, theta r);
C += Cl * cos_theta i *
(A + B * max(0,cos_phi diff) * sin(alpha) * tan(beta));
}

return C;

[m
——==//

[e
-——=//

// SCRIPT: CookTorrance.sl

// AUTHOR: Scott Eaton

// DATE : July 3, 2007

//

// DESCRIPTION: A simple implementation of the Cook-Torrance

// shading model describe in:
// A Reflectance Model for Computer Graphics
// R. L. Cook, K. E. Torrance, ACM Transactions on Graphics 1982

/7

e
——==//
/e
——==//

/// cook torrance shading model calulations
color cook torrance (normal Nn; vector Vn; float roughness; float gaussConstant; float IOR)
{

//normal Nn = normalize (N);

//vector Vn = normalize (-I);

float F, Ktransmit;

float m = roughness;

fresnel (normalize(I), Nn, 1/IOR, F, Ktransmit);

color cook = 0;
float NdotV = Nn.Vn;
illuminance(P, Nn, PI/2){
//half angle vector
vector Ln = normalize(L);
vector H = normalize (Vn+Ln) ;

float NdotH = Nn.H;
float NdotL = Nn.Ln;

Joe Gaftney, Thanos Topouzis Master's Thesis Page 127

float VdotH Vn.H;
float D;
float alpha = acos (NdotH);

//microfacet distribution
D = gaussConstant*exp (- (alpha*alpha)/ (m*m)) ;

//geometric attenuation factor
float G = min(1l, min((2*NdotH*NdotV/VdotH), (2*NdotH*NdotL/VdotH))) ;

//sum contributions
cook += Cl* (F*D*G)/ (PI*NdotV) ;
}
cook = cook/PI;
return cook;

}

/*Velvet illuminance loop
The Stephen H. Westin velvet
illuminance loop.*/

color velvet (normal Nf; vector V; float roughness; color sheen)
{

color shiny = 0;

vector H;

vector 1n;

float cosine, sine;

illuminance (P, Nf, 1.57079632679489661923)
{
1ln = normalize(L);
cosine = max (-Nf.Vv,0);
shiny += pow (cosine, 1.0/roughness) / (ln.Nf) * Cl * sheen;
cosine = max (Nf.Vv, 0);
sine = sgrt (1.0-SQR(cosine));
shiny += pow(sine, 10.0)*1n.Nf * Cl*sheen;
}
return shiny;

}
surface new_grass_surface_shader v3 rl

#include "shading models vl rl.sl"
surface new_grass_surface_shader_v3_rl(
/// Contol multiplers

float Ks=1.0, Kd=1.0, Ka=1.0;

/// for opacity calulations
string OPACITY = " ";
float hole size = 0.01;

float max size = 10.0;
float control threshold = 0.8;
float threshold adjust = -0.05;

color opacity = color (1.0,1.0,1.0);

color hole opacity = color (0.0,0.0,0.0);
color color_holes value = color (0.8,0.8,0.8);
string texture opacity = "";

/// for diffuse/pattern calulations

float oren roughness = 5.0;
color front colour = color (0.8,0.9,0.7);
color Dback colour = color (0.7,0.9,0.8);

string texture front = "";
string texture back = "";

/// for specular
color specularcolor = color(1.0,1.0,1.0);
float roughness = 0.2;

/// for environment reflection calulations
string ENVIRONMENT = "";

float Kenv = 0.3;

string EnvironmentMap = "";

string envspace = "world";

)

{

Joe Gaffney, Thanos Topouzis Master's Thesis Page 128

/// Defines and sets vector, normal and point values used
normal Nf;

vector V;
Nf = faceforward(normalize(N), I);
V = -normalize(I);

/// OPACITY GENERATION

/*!Influenced by the RenderMan spatter shader which ships with RenderMan as a standard shader.
Noise is created in shader space using the 3d point position P. Controlling its

influence by a scale factor and checking if the value of the current influence noise on a point is
greater than a threshold if its is it is applied an opacity value 0.0 else

it is kept its default value of 1.0 opaque. There is also

a similar check with an offset to the threshold which modify the colour value of the point. This
gives the effect of having a hole on the surface with a surrounding colour gradation.*/

color out opacity;

varying float hole,size,scalefac,threshold = control threshold;
varying color opacity holes;

varying color color holes;

scalefac = 1/hole size;

// sets main opacity
opacity holes = color(1.0,1.0,1.0) * opacity;

// color holes
color_holes = color(0.0,0.0,0.0);

// sets holes opacity
for (size=1l; size<=max size; size +=1)
{
hole = noise(transform("shader",P) *scalefac);
if (hole > threshold)
{
opacity holes = hole opacity;
break;
}
if (hole > (threshold+threshold adjust))
{
color_holes = color holes value;
break;
}
scalefac /= 2;

}

opacity holes = color(1.0,1.0,1.0) * opacity;
if (texture opacity !="")
{

opacity holes = texture(texture opacity);
}
// set opacity
out opacity = opacity holes;

[/77777771777
[/71777777177777

/// Pattern diffuse calculations
[/77
[/71777777177777

/// Defines colour and texture values used in the diffuse calulations

color front face diffuse, back face diffuse, out diffuse = 1;

color texture front colour, texture back colour = 1;

/// Load textures if available
// texture data
if (texture front != "")
{
texture_ front_colour = texture (texture_front);

}

if (texture back !="")

{

texture back colour = texture (texture back);

}
/// Calulates the diffuse for both sides

//front face diffuse = diffuse(Nf) * ((texture front colour += color holes)) * front colour;
front face diffuse = LocIllumOrenNayar (Nf,V,oren_roughness) * texture front colour * front colour;

Joe Gaftney, Thanos Topouzis Master's Thesis Page 129

//front face diffuse = diffuse(Nf) * texture front colour * front colour;

//back_face_diffuse = diffuse (-Nf) * ((texture back colour += color holes)) * back colour;
back face diffuse = LocIllumOrenNayar (-Nf,V,oren_roughness) * texture back colour * back colour;
//back face diffuse = diffuse(-Nf) * texture back colour * back colour;
/// MODIFY ALTERNATE SIDE
I1D 1710707777077 7777077777777 7 7077777777777 777777777777 7777777777777777777777777777777717777
// front side
if (Nf.N>0)
{

// Final colour applied

//out_diffuse = mix (front_ face diffuse,back_face diffuse,0.7);

out diffuse = front face diffuse + (back face diffuse * 0.2);
telse
// back side
{

// Final colour applied

out diffuse = (front face diffuse * 0.9) + (back face diffuse * 0.3);

//out_diffuse = mix(back face diffuse, front face diffuse,0.7);

//out_diffuse = back face diffuse;// + (front face diffuse * 0.5);
}

I1777/777777/7/7777
1177777777777777
/// Environement map
1177777777777 777
1177171771771777777
color out environment = color (1.0,1.0,1.0);
if (EnvironmentMap != "")
{
out_environment = envmapping (N, I, EnvironmentMap, envspace, Kenv);

}

[177
1177777777777777

/// Out colour and opacity

117777777777 77
/17 7777777777777

01 = out opacity * opacity;//out opacity;

//01i = opacity;

//Ci = front face diffuse;

//Ci = texture front colour * 0i;

Ci =01 * (((Kd* out diffuse) + (Ka*ambient())) +(specularcolor * out environment * Ks *
specular (Nf,V, roughness))) ;

}
surface multi_surface_vl_ril
#include "shading models vl rl.sl"

surface multi surface vl rl(float Ks=.5, Kd=.5, Ka=1l, roughness=.1;
color diffusecolor=1;
color specularcolor=1;
color opacitycolor=1l;
string texture one = ;
string texture two = "";
string texture opacity =
float Kenv = 0.3;
string EnvironmentMap = "";
string envspace = "world";)

{

normal Nf;

vector V;
Nf = faceforward(normalize(N), I);
V = -normalize(I);

color texture one colour, texture opacity colour, texture two colour, out environment =
color(1.0,1.0,1.0);

// texture data
if (texture one != "")
{
texture one colour = texture (texture one);

}

if (texture two != "")

Joe Gaftney, Thanos Topouzis Master's Thesis Page 130

texture two_colour = texture (texture one);

}

color out diffuse = ((texture one colour * texture two colour) * diffusecolor);

/// Opacity

if (texture opacity != "")

{

texture opacity colour = texture (texture opacity);

}

/// ENVIRONMENT LIGHTING

)

if (EnvironmentMap !=

{

out _environment = envmapping (N, I, EnvironmentMap, envspace, Kenv);
}
0i = 1;//texture opacity colour * opacitycolor;
Ci = (((Ka*ambient () + Kd*diffuse (Nf) * out diffuse)) +
((specularcolor * out environment) * Ks * specular (Nf,V,roughness))) * 0i;

Joe Gaffney, Thanos Topouzis Master's Thesis Page 131

