HURA Game Production Document

(MSc Computer Animation and Visual Effects, Masters Thesis)
By Ian Thompson

Table of Contents

HURA Game Production DOCUMENTcccciiiuiiiiiniiiinniiiieniiiinnieiiemiiisseiississssssssssns 1
[0 LT 1 N 4
PrOJECE BIIES ettt et s e e 4
RESEATICH ANd DESIZN oot s bbb 4
ROLES c.eteeereet s s s s s s REEHE AR SRR R R R R R 4
UNITY OVEIVIEW .iuuiiiuiiieniiieniiiniiiniiiuisieniiiesisiesssrssssrsesssssstesssrssssssssssassssssssssssssnsssenssssnss 5
UNIWIL PIUZIN vttt ssssssss s ssss st s s sssss s sssssssssssasesssssssass st s st sesusssssssssssasesssans 5
ASSET MANAZEIMENT cuuvueueerirsesesressssesssssssssessessssssessssss st sss s ssesasessnssnssnsasessnss 5
SCTIPLING LANGUAZES.cciereererrenreeeeseire et s 6
BENAVIOUT MOGEL ..o ieeieeieeireerereereeiees et sesseessesssesse s sees st sess s ss s s n s 6
MULEIENTEAAINE cuvrvrveeereesersessesserseses s ssses s es bbb bR s 7
ANIMAtion PIPeliNe ...c...iiiiiiiiiiiiiiiiiinirinircnrreinienes s reseestenssssssnsssssensssssenssnns 7
RiggIiNg QUAAIUPEAS ..ovvveeeerreieererre e sseses s sses bbb s s s s bbb s e 8

SEDATALION Of CONEIOLS c..vorveireeeeevseeri sttt seesi s es s ssasses s s sn s sssssnsnnes 8

Problems With TRIEE-DONE CRQAINS........cvueoverseesersssssrsesssanns 8

EXPDI@SSIONS ciruitririsirsssisirssssissssisississsssissss s ssissssasssss bbb R R R 9

GTOUPING ANA SYNOPEIC cevrrvvereerieeriseeriseriseerssesissesissesissssssssesssessissssas s s sesassssasssssssssssssssssessansssssssssssssssesanseses 9
ANIimation EXPOTT PTOCESS ...t sessessesess st ses st st sessessessessssssssssessessessesssssssssens 10

PIOEEING ANA REOAUCTION c...ovoeeoeveerireriseeriseeriseesissesissssissssssssessssesissssssssssssssssssssssssssssssssssssnsssansssasssssssssssnsssansens 10

S 1 I =T LV Tl 5 Lo) DO 10

T L 254 T o OO 11
ANIMAtION IMPOTT . ses s s s s st p s Rt es 11
F T =) A 1Y/ = T === =T 4 N 12
RV=] 5 o) o T 010 0) (PSP 12
Unity Asset Management. ..t s ssanes 13
LI Yo T E3 0 T=AV7=Y Lo o 4 d = o | R 13
SPAWI POINES .ottt s s s 13
CRECRPOINES 1t iseeess s es s s s bR ARt 14
L0100 0 1] = 1 L 14

BEZIET PALN CONSEIAINT.cvrvrroerrssreesrssassssssasssassssssssssssssssssssssssssssnsssssanes 15
Collision MeSh REPIACEMENTcu e ses s ses s s sess s ns s 15
Gameplay Programming......ccccciiieeiiiiiniiiienieniensiniesiesisssisiesssssssssssssssssssssssssssnssssses 16
L0 10013 = T 000 oL 0] 1= PPN 16
Play T COMETOIIOT ittt et ssss s s s s bR R R 16
BOOSt MECRANISINcuieeeeeeeesereree e ees s s s s s s s 17

TOKEI PICK-UP corevorererereeereeriseerisesisss v esiseesis s s st R85 17
Track Boundary ChECKING ..o sssanes 18
Competitor INSTANTIAtION ... e s 18
Y 3T 4 T 1o o T 20
BIENAING ..ottt s s s s R AR R R 20

Speed Adjusting & LIMITINE ... ceeeeerreesreesseessenseessessessesssessesssessssssesssssssesssessssssessssssesssssssesssesssesssssssssssesasees 20

SYNICRT ONISATION ittt es s s bR R RS se bR 21
Artificially Intelligent OPPONENTScc.eiieeierieeiirteeniertenniertenneeeeeenseerensessenssessenssesssanne 21
AT NEEWOTK NOGES .ottt sss st ses st s s ssssssss st s s ssssssssssssssssssssssssssassasssssnssnen 21
[[T 1 T B 1 =T - TRt 22
WL REIMOLES ottt s s e e 23
Graphical User INterface.....cccceiieerieiieenieiienniereeeeereeneeteenneeeensssesesnsessenssessssnssssensssssnnne 23
DeSigN AEratioNs....cccieeiieeierieiiriirteireeerenereeerenseressernsseenssrensessssesenssrensssnssesnssssnnsnes 24
B =T A1 V- Rt 25
(070 4 ol 1] o o RN 25
L0 =T |1 3N 25
(000 =2 =T 1 25
AUATO: covvvrveesveerssisesesssssssssssssssssssssssessassessssssssassassassssassas s ssassassassas s sassassassassassassassansassanssnssssassssssnsssssesssssessassssssas 25
2 = 25
FiBUIES ceueiieeiiieeieeereeereaerenereneerneerensseenserenserenssrenssrassssnssssnsssensssensesensssansesnssennsssnnnsnen 26
L2 (=] =T 1oL OOt 27
N e OO 27
COMPUELT GAIMES cververevrirsirisisisscossissisisssissiassesssisssssassssssesssssssssassesssssssssssssssssssssansss 27
Y o] L= 27
UNPUDIISREU ..ottt esise s ees i sssss s s R0 27
I EDSITOS covvvrevssrssrisrisrisrissssssssississssssssasssssassssssssssssassassassassassassassassassassansssssnsssssssassssssessssnssnssnssessssassasssssessssessssassases 27
APPENAICES ...reeiieeirieniitecrreereeerenteresternserasseraseerassseassrensssasserassssassssassssnssssnsssensesannes 28
AppendixX A: Class INNETITANCE ...t s s ssss s s ssssssssssssssnes 28

Outline

The project has been developed in two stages: preproduction - developing the
concepts and designs behind the game; and production - the actual asset creation
and game development.

Project Brief
The core concept was to develop a “pick-up-and-play” game utilising the Nintendo
Wii motion controls. The game itself was to be a racing game based around a
fictional 1950s English village where farmyard animals are raced in an annual event.
The companion Game Design Document should be consulted for further
information.

Rather than an in depth research and development exercise this project comprises a
focus on planning, management and production. As the large project this was,
several areas were covered and many problems faced along the way. How these
problems were overcome in a team-oriented production environment was
important to the success of the project.

Research and Design

During the preproduction phase of development, the entire game was meticulously
designed. Every aspect, from character and environment design through to the
boost mechanism, was discussed and firm decisions made at this early stage. This
laid an excellent platform to allow the game in mind to be quickly and efficiently
developed and gave a clear and consistent picture of the final product. Of course,
there were changes made as alternatives were discussed and further possibilities
were explored but the central concepts have remained throughout. For a discussion
on the changes that were made, see the section Design Alterations.

Previously released games in the same genre were consulted for comparison.
Particularly racing games utilising the Wii remote and its capabilities as a driving
controller. Such games included Mario Kart (Nintendo EAD, 2008) and Excite truck
(Monster Games, 2007) along side many others that were looked at during
preproduction (Griffiths et al, 2009).

Roles
During the development of the game, the author took on all technically based roles:
* Gameplay Programmer
* Al Programmer
* User Interface and Input Controls
* Tools Development
* Animation Rigger
* Pipeline and Technical Director
The other members of the team (Sophie Shaw and John Griffiths) took on the artistic
roles:

* Character Modelling

* Environment Modelling

* UV and Texturing

* Level Design and Production

* Character Animation

* Enveloping and Weight Painting
e Set Dressing

Other roles included music composition, sound effect production and testing. Kirstie
Hewlett and Matt Kennedy took on the former two roles respectively, whilst testing

was carried out over the second half of the project by a
whole team of volunteer testers. For a full list of people
and their involvement in the project, see the section
entitled Credits. Testing is covered in more detail in the
Testing section.

Unity Overview

The engine of choice for this project was Unity, a fully-
fledged game engine and development environment,
primarily chosen for its Wii integration. Unfortunately,
with the high costs! imposed when developing and
publishing to the Wii platform we decided to take an
alternative approach. Bearing in mind that Unity has the
capability to publish to the Wii we had only to deal with
connecting the Wii motion controllers to our
development PC. This was a case of obtaining the correct
software and utilising the Bluetooth signal from the Wii
remote. We found this worked best on the iMac, which is
also Unity’s native platform?.

UniWii Plugin

Early investigation lead to the discovery of a Unity plugin
called UniWii. This plugin provided the necessary
functions to poll and interface with the Wii remotes by
utilising code from the open-source project,
DarwiinRemote.

Asset Management
Unity maintains all assets under one hierarchy, making
organisation relatively straightforward. It imports each

(3 Project
Create

v E3HURA a
v (ZiCharacters

» [faristocrat ﬂ

» [faristocrat_menu

» Lycow

_ 0

» [IMaterials

v [JTextures
2 aristocrat_skin_black
Maristocrat_skin_blond
2 aristocrat_skin_brown
aristocrat_skin_red
A cow_skin_black
. FIPR ' .

|
it | « ¢

© Inspector |

& [[cow_merged

Tag | Untagged + | Layer | Default

» -~ Transform

» (O [V Animation
v (FBXimporter)
Meshes

o
RS

Scale Factor 0.1

Generate Colliders []

Calculate Normals [_]
SMoothing Angle s m—— 60 |

Split Tangents [_]

Swap UVs []

Materials

Generation | Per Texture 4]

Each used texture creates one material. Two meshes with
same texture will also use the same material.

Animations
Generation | Store in Root 2]

Animations are stored in the scene's transform root objects.
Use this when animating anything that has a hierarchy.

Bake Animations []

Reduce Keyframes [v

Split Animations [V
[Name [start [End

I

[Loop]]
[+]

Revert || Apply

Figure 1 - Inspector in Unity

1 Unity licences start at $15,000 for WiiWare distribution (Unity, 2009 a). On top of this is the cost of

purchasing a Wii DevKit and becoming a licensed developer.

2 Unity was recently released for Windows (Unity, 2009 a), allowing for much easier collaboration

and integration with our XSI pipeline.

asset from a variety of supported formats and hides the process, exposing only
certain, specific options. Each asset therefore, like all objects in Unity, has a property
page. Everything is treated as an asset so scripts also have their own property page.
Property pages appear in the Inspector.

Public fields of any class derived from MonoBehaviour are accessible directly from
the Inspector. This is most useful for linking scripts to other objects at design-time
so that they need not be sought during execution. It also allows assets to be easily
linked into scripts. For example, the UIButton class has a public Texture field to
allow the script to be passed an image asset. Once running, this script then has
complete access to the texture instance and can draw it to the screen. See the
section on User Interface for details of how the same texture may be used at design
time to lay out the Ul components.

Scripting Languages
Unity supports three scrlptlng languages JavaScript, Boo and C# (Unity, 2009 b).

rraCteTeTTS i A A i There is little performance difference
”Z;LZ 3|2 ic class Gamesettings between these and as such the choice was
esettings.cs v left open. Having prior experience with
12| 77 Public type definitions both JavaScript and Python (on which Boo

35| oublic static enum RiderChoice is based), the choice was made to use C#

2] 1 Random - -1, to expand the author’s skill set. It is also

b poyfeoerat = possible to mix and match scripts in

. fount different languages since they share the

Figure 2 - Unitron script editor same APl under the Novell (2009)

sponsored Mono project, so the risks of
learning a new language were snuffed. C# is the language of choice for XNA and
many companies are using Mono, as Unity does, for their scripting needs (Novell,
2009).

Behaviour Model

Scripts sit atop GameObjects as behaviours for that object. Where the script
controls the underlying object, be it a camera or player, this model makes perfect
sense. However, it means that for a script to respond to events and it must be
attached to an object in the game, which in turn has transform data and so on. There
is no central script, no main method. This has lead to a set of single instance classes
to hold data for a more global context and to which the behaviours have access at all
times.

The main “global” singularity classes for this project have become:

WiiPoller Game MainGame
Settings

Figure 3 - Singularity classes

* WiiPoller - this works with the UniWii plugin to provide constant data
from a set of Wii remotes.

* GameSettings - thisis a persistent object allowing settings to be passed
from the menu scenes into each track/level scene.

* MainGame - an object recreated by each track scene to set up and maintain
game properties, such as the Competitor instances in the race.

Multithreading

While developing the singularity classes and others where data were shared among
different objects it was a concern that concurrent access would cause problems.
However, it was discovered that Unity was not written to be thread-safe and as such
uses only a single game loop. Since each object has its own behaviour, independent
of other objects, the structure would lend itself well to multithreading.

Although allowing the code to be much simpler by keeping a single game loop,
today’s computers and games consoles often have multiple cores, which would
benefit greatly from a multithreaded solution.

“In the last couple of years improvements in single processor hardware
have approached physical limits and performance gains have slowed to
become incremental. As a consequence, improvements in game engine
performance have also become incremental. Currently, hardware
manufacturers are shifting to dual and multi-core processor architectures,
and the latest game consoles also feature multiple processors. This presents
a challenge to game engine developers because of the unfamiliarity and
complexity of concurrent programming. The next generation of game
engines must address the issues of concurrency if they are to take
advantage of the new hardware.”

Tulip et al. (2006)

Unfortunately, Unity was established before this, with its first release arriving in
2005 (Unity, 2008), and the threading model has not changed since then. However,
our initial target platform was the Wii, with its single-core IBM PowerPC processor.
Despite changing to develop on a PC with multiple cores, we can gauge the
performance better for Wii due to Unity’s single-threaded architecture.

Animation Pipeline

From the initial tests done prior to production (see the Game Design Document), a
pipeline could be established that would allow the characters, modelled, rigged and
animated in XSI to be exported for use in the game engine, Unity3D.

Rigging Quadrupeds

Following on from an initial study into rigging for quadrupedal characters, a rig was
constructed for our first animal. This ensured the pipeline worked as expected and
allowed character animation to commence.

Separation of Controls

A core design decision was to separate the bone system entirely from the control
system. It was decided that the skeleton to be exported would be constrained to a
series of controls, the controls exclusively having keys set. This meant all animation
data was on the control system and the bones were affected by constraints to these
animated controls alone.

Having no animation data on the bones meant that during export we could bake out
the animation to these bones, remove the constraints and delete the control objects.
Thus leaving a much-simplified rig to affect geometry in the game.

It was later discovered that more of each bone chain could be removed while
maintaining animation. A rig-reduction script was therefore developed (see Rig
Reduction).

Problems with Three-bone Chains

The first rig contained chains of three bones, driven together by an IK effector. Using
the stiffness property of the upper bone it was possible to adjust the behaviour of
the limb on the fly. In the initial tests this worked well and provided a very realistic
motion for all four limbs of the cow model.

During animation,
however, it was
soon evident that
the chain would
not reset leaving
each limb with a
different rest pose.

The first solution
was to restrict the
rotation of the

Figure 4 - Disappearing limbs when rotation limits are put in place primary bone by
setting its rotation

limits. Both the maximum and minimum were set to the same value and constrained
(via an expression) to that of a new control object. Initially this solved the problem
but the limitations of XSI's IK chains were soon evident as the legs began to shoot off
to some phantom location (1.#QNB in XSI terms).

Any new solution at this point would need to minimise its effect on the rig and
animations that had been created so far. The bone chain, since it was not animated

itself, could be reconstructed as two chains thus giving a single and two-bone chain.
From the new controls added for the rotation limits, each hipbone could be mapped
directly. The lower, two-bone chain could then use normal IK with its effector in the
foot as before. The lesson was learnt not to use more than two bones in an IK chain
if full control (and resetting) is required.

Later an alternative IK evaluation method was discovered that does allow bones to
be reset to their “preferred angles”. This was adopted for all subsequent rigs but it
was also decided not to use IK bone chains longer than two bones.

Expressions

Certain areas of the rigs required special attention. The tail for the cow has a series
of bones whose rotations are calculated as the
sum of all rotation controls earlier in the
chain. This allows the whole chain to coil up
from one control and allows this to occur
additively at any point along the chain.

The various spines required particular
attention too. The quadrupeds have bones
constrained to curves, which are controlled
themselves by a set of nulls. The four control
points of the Bézier curve are constrained to
four nulls, the middle two of which are
parented to their respective ends. Thus, by
Figure 5 - Tail curl controls rotating either end the curve twists in an
appropriate manner and the bones follow

(without changing length as the curve does).

Spine twist was added to the pig rig (a
better solution than that which had been
found for the cow). First, the primary bone
of the chain was rolled by the rear
control’s x-rotation. By then distributing
the front control’s x-rotation over the
remaining bones’ rolls, a correct spine
twist was created.

Grouping and Synoptic

As a tool for animation it was important to

provide a consistent interface to the

animator. Presenting only the controls and
preventing editing of the bones was the first step. Second was to allow these bones
to be accessed for weighting. A series of groups was created: bones, controls, joints,
etcetera.

Figure 6 - Pig rig with spine twist

(" PigRigpiazvigl N _ x| Each group has both visibility and selectability options,

R which allowed the creation of a synoptic to control these
. properties and thus set the current toolset for the
Bone Selectability
animator. It was also used during rigging to reduce the
Control Visibity amount of information on-screen at any time.
- Animation Export Process
igging: . X .
- To function in Unity, each character had to be exported
Fuliffies Visibity into the FBX format. Unfortunately, XSI has limited
Joint Visibility support for FBX export. To work around this limitation,
Target Visibility each animated model was saved out using the dotXSI
format, the exporter for which has a number of useful
Options: options.
Reset Groups Plotting and Reduction
X-Ray Mode When exporting to dotXSI, animation can be plotted
Show Displayinfo onto bones and these bones can be converted to nulls in
one step. This essentially reduces the skeleton to its

transform data alone. The enveloped geometry is still
weighted to the skeleton since only the transform data
and hierarchy are required for this. Animations are therefore preserved whilst we
are rid of the unnecessary properties associated with bone chains.

Figure 7 - Rig synoptic

Plotting involves taking the animation from the control objects and applying it to the
bones per frame so that the bones then contain all the information they require. The
controls may then be deleted.

7 | Gl /’ Slokiad Parented
) BRGS X\ nulls
SN

ot

N A N A

Plot animation Convert to FK
with Nulls

Figure 8 - XSI animation pipeline, first stage

Rig Reduction

Under inverse kinematics, a bone chain requires a root, bones and a target (called an
effector in XSI). Once animation has been baked onto the bones, the root and
effector are no longer required (provided the roots are not themselves animated).
However this may only be done once the chain has been converted to nulls. Since
other objects may be children of the effector they must be repositioned to be
children of the last bone in the chain. The first bone of the chain has local rotation
but no translation from the root. Copying the root’s translation to this bone, and

10

adding its local rotation to all key allows the root to be safely be removed. To do this
the bone null is re-parented to the parent of the root.

A

Children parented to effector Children parented to last bone
+-- X + +---
NP &
-
Root Bone
parented parented
to parent to parent

Figure 9 - Rig reduction process

Final Export

The final step is to export to FBX. Since all that remains at this stage is a mesh (with
vertex normals, UVs, and bone weights), and a series of parented nulls weighted to
this mesh, the limited FBX support handles the scene and produces a game-
compatible animated character.

Animation Import

To minimise the number of exports, each model had all its various animations
placed onto a single timeline. Bringing this into Unity meant splitting the animation
back into clips during import. Unity makes this very easy provided the frame
numbers are known for each clip (see Figure 7).

Sometimes there would be a discrepancy between the start and end frames of a
looping animation clip. Due to the way keys are set in XSI and the export process,
the final frame of a loop was always equal to the first so fixing discrepancies usually
meant removing either the first or final frame.

Once the clips have been identified in the Inspector they may be accessed by name
inside a script by way of the Animation, AnimationClip and AnimationState
classes. For more information on how the animations were triggered and blended,
see the section, Animation.

11

ML i i

Figure 10 - Animation clips on a single timeline

Asset Management

Version Control

Bazaar was the version control system of choice
for this project. It works well on several
platforms and is relatively simple to understand,
requiring knowledge of only a small number of
commands.

v [(FBXImporter) ¥,
Meshes

Scale Factor 0.1 |
Generate Colliders [_]
Calculate Normals [

Smoothing Angle (e (60 |
Split Tangents [_|
Swap UVs []

Materials

-~

Generation | Off

| No Materials are generated. |

Animations

Generation | Store in Root &l

Animations are stored in the scene's transform root objects.
Use this when animating anything that has a hierarchy.

Bake Animations [|
Reduce Keyframes V]
Split Animations [V

Name [start [End [Loop| |
bindPose 0 5 [-]
idle1 10 iy (@ (o)
idle2 10 160 O @
idle3 170 270 O @
idle4 280 480 0O O
trot 490 512 O @
gallop o S5 @ (-
boost 540 540 NS [a] S
crash 560 590 O @
walkBackwards 601 624 M @
pivotLeft 631 680 O @
pivotRight 691 740 O @
fall 745 746 M @
punchLeft 755 77 0O @
punchRight 780 g0 O @
menu 810 i (@ (-

[+]

Preview

The server was set up to provide a persistent central repository from which each
user could maintain a working copy. The asset creation side was kept separate from
the game development to allow delayed application of assets.

Often code would have to be adjusted to support the latest change to a particular
asset. It was therefore important that these assets were not updated automatically.
To achieve this, changes to assets would appear in the asset_source folder (and
information about the change in the revision logs). The asset could then be brought
into the game engine and the code checked and adjusted as required, committing

12

this as a new revision. Ensuring the assets always moved in this one direction was
key to the success of the system.

A more advanced asset management system could aid in this process by queuing
assets that require attention before they are applied. It is certainly an interesting
problem, and one to look into as a future project.

Unity Asset Management

Since each GameObject may contain multiple scripts and child GameObjects it can
become a very complex object. It is often necessary to group such an entity for
reuse. To achieve this, the parent object may be dragged into the Project manager as
a Prefab. Once in this state instances of the prefab may be dragged back into the
scene. Each instance is highlighted in blue to show that it is connected to a prefab on
disk. Changes to a prefab may be local or applied to all other instances. This allows
for a very flexible scene set-up.

A set of assets, prefabs and their associated resources (images, etc.) can be collected
together to form a Unity package. These packages tie all dependencies into one neat
file and were the means exploited to transfer environment changes into the
development scene. Separate scenes were in use during development to ensure that
independent work could be carried out whilst exploiting the package system to
share changes.

As is evident from their construction, prefabs are instances of GameObjects. As such
they may be instantiated via scripts, which leads us to one of the simple tools
created for the game - namely ObjectSpawner.

Tools Development
Armed with the full scripting capabilities of Unity it was possible to create a whole
host of different game components with ease. The visual debugging methods and
real-time preview provided immediate
feedback and allowed for fast prototyping.

Spawn Points

As a generic prefab instantiator, the
ObjectSpawner script (and associated
class) provides a means for spawning any
prefab at a desired location and orientation.
If the instance is removed a new instance
will spawn after a specified time period.

ObjectSpawners are used to position
tokens around the map and also at the start

. Figure 11 - Spawn points for competitors and
line to spawn the players and Al opponents. & pawn b P

boost tokens

13

Checkpoints

Checkpoints allow the game to ensure players are travelling in the correct direction,
and that they are not cheating. They also act as a good debugging tool for checking
the navigation skills of the Al agents. Missed checkpoints are logged to the console
to quickly alert the developer as to issues in the track. If checkpoints are not
connected in a loop, a warning is issued.

By measuring the distance between checkpoints and the proportional distance from
the previous and next checkpoints to the player, an approximation of the lap
position may be estimated. Adding more checkpoints increases the accuracy of this
approximation. Comparing the lap position with other competitors provides the
player’s position in the race.

To make checkpoints detect when a competitor passes one, a collider is attached
and it is set to behave as a trigger by enabling its isTrigger property. Colliders
allow for a variety of physics calculations to be carried out. These calculations are
simplified by setting the isTrigger flag since no forces need to be applied. More
complex physical interactions may be triggered by adding rigid body components,
either kinematic or dynamic depending on the requirements.

A full table of interaction between physical entities may be found in the Unity
Reference Manual (Unity, 2009 b):

Collision action matrix

Depending on the configurations of the two colliding Objects, a number of different actions can occur. The chart below outlines what you can expect from two
colliding Objects, based on the components that are attached to them. Some of the combinations only cause one of the two Objects to be affected by the collision,
so keep the standard rule in mind - physics will not be applied to objects that do not have Rigidbodies attached.

Collision detection occurs and messages are sent upon collision
Static ColliderRigidbody ColliderKinematic Static Rigidbody Kinematic Rigidbody
Rigidbody ColliderTrigger ColliderTrigger ColliderTrigger Collider

Static Collider Y
Rigidbody Collider Y Y Y
Kinematic Rigidbody Collider Y

Static Trigger Collider
Rigidbody Trigger Collider
Kinematic Rigidbody Trigger Collider

Trigger messages are sent upon collision
Static ColliderRigidbody ColliderKinematic Static Rigidbody Kinematic Rigidbody
Rigidbody ColliderTrigger ColliderTrigger ColliderTrigger Collider

Static Collider Y Y
Rigidbody Collider Y Y Y
Kinematic Rigidbody Collider Y Y Y
Static Trigger Collider Y Y Y Y
Rigidbody Trigger Collider Y Y Y Y Y Y
Kinematic Rigidbody Trigger Collider Y Y Y Y Y Y

Figure 12 - Collision action matrix in Unity, powered by NVIDIA's PhysX engine

Constraints

Similar to tools found in many 3D packages constraints allow an object to follow, or
copy transformation data from another object. The first iteration of the map screen
used such a tool to have tokens follow each character. These were then rendered on
top of a simplified model of the track. This idea was replaced by GUI elements since

14

they render much faster and allow for more customisation (see the section
Graphical User Interface). However, the simple copy transform constraint paved the
way for other, more interesting behaviour scripts to be written.

Bézier Path Constraint
Using a piecewise Bézier spline, it was possible to build a path and constrain an
object to follow this path.

A linear Bézier curve is equivalent to a line, the equation for which is:

p(t)=(1- t)go +1ip,
Interpolating the two endpoints along two connected line segments provides us
with a quadratic Bézier curve. Interpolating the three control points of this curve
along three connected segments, with all interpolations using the same t value, gives
the cubic Bézier:

p(t) =

1—t)py(t) + tp)(1)

L=1)[(1 = t)p,(t) + tp, (B)] + t[(1 — 1)) (t) + tp, (t)]

1=0)[1=1)[(A =)p, +tp] +t[(1—t)p, +tp,]] +t[(1 = 8)[(1 —t)p, +tp,] +t[(1 —t)p, + tp,]]
1— t)3}_70 +3t(1 —t)°p, + 3t°(1 — t)p, + t3]33

N N

Resetting the t value for each piece of the spline allows the length to be traversed.
The PathConstraint script traverses the curve to position an object, traverses it
again slightly ahead to gain a forward vector and, using global y as the up vector,
aligns the object in the direction of the path.

Each path with constraint is made up of three components:
* (CurvePath - the object containing information about the path
* CurvePathNode - a control point on the path
* PathConstraint -the constraining script used to move and orient an object
along the path

When a path-constrained object reaches /
the end of a path, an OnPathEndReached ya
event is fired. This allows paths to be
looped or for further action to be taken

(such as starting the race, in the case of j
the track preview camera in the game). /

Collision Mesh Replacement
Each mesh imported for the environment
automatically contains a MeshCollider

component. This requires much more

processing than a simple bounding box. Figure 13 - Bézier path tool

15

Since the track bounding geometry is relatively simple, a script was written to
replace all MeshColliders with BoxCollidersrecursively from a parent.

The same script (AddChildColliders) was later adapted to add other collider
(including MeshCol1liders) wherever they were required.

Gameplay Programming

Camera Controller

A dynamic camera was required that would follow the player in a smooth manner.
To achieve this the camera was given its own velocity that would accelerate towards
its target based on the speed of the target and the distance from it. The camera was
also aligned to the target so that the racer was always visible.

V Player S o /_ Occluding

N geometry

~ N
~
\\ ~
~ ~

~
\\ ~
~ ~

Camera \ \

Figure 14 - Avoiding occlusion of the player as viewed from its chasing 3rd person camera

If a ray, drawn from the target to the camera, intersects any geometry, the
intersection (offset by the camera radius) is where the camera is positioned. This
prevents the camera from becoming stuck outside when the racer enters a building
and ensures the player is not occluded.

Player Controller

One of the more challenging aspects of the project was the behavioural controller
for competitors. The CompetitorController class forms the largest behaviour
script in the project. Not only does it move the player based on input from the
player, it also allows control by Al agents through a shared interface. The controller
handles geometry collisions and ground interaction, boosting and all game statistics
(such as air time, lap times, etc.).

As a basis for non-physical motion Unity provides a CharacterController
component. This component is ideal for most game characters but has the
unfortunate limitation that the collision model is fixed to use a capsule collider.
Worse than that, the collider it uses cannot be oriented and as such only vertically
standing models can be reasonably contained within its bounds.

The Pig/Policeman character suits the upright container quite well but the cow is

much longer than it is tall presenting a difficult problem. By increasing the radius of
the controller, the character is no longer able to move close to walls and

16

unrealistically collides with geometry to its sides that are not touching its surface.
Since the racer is viewed primarily
from behind it was important that the
silhouette at the least should closely
match the collision model in place. It
was therefore decided to sacrifice the
chance of intersecting geometry for
accurate side-to-side collisions.

Boost Mechanism

From the initial design, the boost
mechanism was intended to provide a
stepped boost bar that would fill up as
tokens were collected. For each section
of the bar a different multiplier was to
be applied to the time or speed of the
boost.

Figure 15 - Character capsule collider

It was decided have the boost empty
whatever section was currently being filled so that the player would not be able to
stop boosting until the section ran dry. This proved to be unexpected and confused
some players (see Testing). The drive behind this decision was that it would make
the game more fun, trying to avoid crashing while moving at a fast pace through the
level.

-— —

Figure 16 - Boost bar graphics

To avoid this confusion the decision was made to require the holding of the boost
button to maintain the boost. This not only made the game less entertaining but also
made it very easy to avoid crashing. A compromise was instated, having a minimum
boost period where the player could not stop but that to continue boosting the
button would have to be held down.

Token Pick-up

Spawned by an ObjectSpawner, boost tokens could easily be placed around the
track. Similarly to checkpoints, tokens use trigger enabled colliders to detect the
player. Once collected an event is triggered on the colliding racer, and if the boost
level is still within the bar it is increased and the token destroyed.

17

By destroying the token, the ObjectSpawner parent is triggered to begin counting
down until it is due to spawn another token. Thus tokens respawn.

Track Boundary Checking

To ensure the player remained on the track it was first decided to block them in by
raising the trackside wall colliders. Causing other issues and presenting an invisible
wall that confused players, an alternative was sought.

The players (and Al competitors) are now reset to the nearest track node if they
venture out of bounds. The checking mechanism uses a low-resolution black and
white texture as a mask for world coordinates that are in and out of bounds. This is
easily adjusted and has proven to be a successful solution. Players found to be out of
bounds are presented with a fading screen and are shrunk out and grown back onto
the track.

Competitor Instantiation

By constructing a prefab from which competitors could be built, the spawning
process could be made to be a reasonably automated process. The Competitor
class first ensures that all other scripts are properly attached, registers itself to gain
its race number and then proceeds to use this information, along with the global
game settings, to construct a character from the mount and rider prefabs piped in.

Figure 17 - Material selection applied

If the race number is less than the game settings player count then the racer is
assigned the rider and mount chosen in the character selection menu with the
chosen skin. Otherwise, it is assigned a random rider and mount, and a random skin.
(It is thus also a computer-controlled competitor.)

18

The skin is selected by a MaterialSelector script, which acts to set both the skin
and race number texture for the character. The race number is assigned to a
separate UV layer to allow this integration. Each character therefore has two UV
layers: one for the skin and another for the race number (or race numbered tack).
The target material indices can be set in each MaterialSelector so that it assigns
the texture to the correct UV layer.

Object
Spawner

prefab (spawned)

Competitor Cow (Prefab)
(Prefab) / Pig (Prefab)
ountPrefabs[] = ——

Competitor

riderPrefabs][]
Competitor \ Aristocrat (Prefab)
Controller Policeman (Prefab)
Competitor
Animation mountAnimation Cow / Rig
(Prefab)
Game Animation (FBX)
Settings riderAnimation |
players[]

Aris. / Polic.
(Prefab)

Player
Settings

Animation (FBX)

—

Mesh & targetMeshes[]
Animation (FBX)

: policeman_skin_blond

Material policeman_skin_ginger
> Selector |’///> :]

riderSkin S aanat
sourceMaterials[]

Figure 18 - Spawning a competitor

19

Policeman | _
(Prefab) I *

4

Animation

Animation has been key to the success of the game’s appeal. Without animation, as
was the case in the first few weeks, the game is lifeless. It was decided to have
several animations for different animal gaits and to blend between them as the
animal accelerates. The rider has a set of animations to match these gaits and extra
ones for attacking other players.

Blending

Based on the speed of the mount, a gait is chosen and speed-matched so that each
footfall lands correctly. As the speed of the mount changes a new gait must be
blended in. To achieve this an animation stack is used.

Whenever the animation is changed this new animation is pushed to the stack with
a weighting of zero, in an animation layer above the previous stack entry. Over time,
each stacked animation is increased in weight until it reaches a weight of one. At this

ybram00

L

) 4

yoeis

w0l paAoway

s

nnnnnnnnnnnnnnnnnnnnnnnn
s

Target animation

Idle Trot

Boost

dojles

Time

Figure 19 - Animation blending stack

point the stack is partially collapsed: all animations under the fully blended
animation no longer affect the output and may be removed. The layer indices for all
other animations are also reduced such that the highest layer index is equal to the
stack size.

Unity’s animation system blends all enabled animations, even those with a zero
weighting, so it was important to disable clips upon their removal.

Speed Adjusting & Limiting
To ensure the acceleration and general motion of each character remained true to
the animal’s real-life counterpart, certain restrictions were put in place. Each animal

20

had speed limits for each gait, so when accelerating the racer could only go so fast
before “changing up a gear”. Another imposed restriction was that the animal must
travel for a certain time in its trot gait before it will change up to the gallop. Boost
was the exception, allowing the player to boost from any state. This was to provide a
much more exhilarating experience.

A Acceleration on

A

3 P .
o
w

| 1
: Trot time :
: limit :
1 1
| |
1 |

Gallop speed limit

Trot speed limit

Stationary

Idle

Figure 20 - Character mount speed limiting

Synchronisation

The rider and mount were designed to be independent so that characters could be
mixed and matched. Due to time constraints the animations were not created to
cross the Aristocrat and Policeman over. However the structures remain in place for
this extension should it be desired. The mounts and riders are rigged and animated
independently and as such must be synchronised. Each clip was made to be the
same length and the mount and rider animation (excluding attack) were set up to be
triggered and blended during the same method call. The attack animation is
independent and as such can be layered on top with no adverse effects.

Artificially Intelligent Opponents

Opponents that could compete with the player were essential for single player
mode. For multiplayer mode they also added a great deal to the gameplay. A
primitive, artificially intelligent behaviour script drives these competitors to
navigate their way around a node-based network.

Al Network Nodes

Throughout the track nodes are positioned that point the direction to the next node
(or a choice of possible “next” nodes). Each Al agent will navigate through this
network to complete a lap of the track. There are various choices an agent must
make whilst travelling around the track. Some of these decisions, such as the choice
of next node when there is an option, are purely random. Other decisions, such as

21

the speed to travel, the position to take on the track and when to boost, are
influenced by hints at each node.

Figure 21 - Al node network

Agents are spread out on the track by a drift parameter. Combined with each node’s
spread value (providing the limits of drift), a target relative to the next node is
ascertained. Trying to reach this point the agent will turn and accelerate as
necessary. If the target point is in sight (not occluded in a ray cast), then boosting
becomes an option. Boosting is controlled by the speed hint, which provides a
probability that the racer should decide to boost between the current and next node.

The node’s radius controls the area that must be “hit” before a subsequent node is
chosen. While the competitor is within this area it blends towards the next node
providing a smoother transition than simply switching target from node to node.

As with all competitors, Al agents adhere to crashing and boundary standards being
repositioned on the track as necessary. Additionally, if they become stuck in one
place for a period of time greater than a specified timeout, they will be reset and an
alternative node chosen at which to respawn. Fluidity is thus maintained.

Human Interface

This game was built around the concept of using physical Wii remote controllers to
steer and otherwise interact with their character. To recover from a crash the Wii
remote’s accelerometers are exploited to detect shaking. Tilting the remote controls

22

the steering and the buttons provide acceleration, breaking, boost and attack
functionality.

Since the game was developed on a PC, keyboard alternatives were also put in place
but these are not designed to be primary controls and as such are not as
ergonomically laid out.

Pointing the Wii remote at a sensor bar during any menu screen allows point-and-
click operation with the D-pad providing alternative input. A physical sensor bar
was also built in support of this project, from four IR LEDs, some black card, wires
and a battery holder.

Wii Remotes

Access to the Wii remotes was provided via a Bluetooth connection and the Unity
plugin, UniWii (see Unity Overview). This plugin provides functions for obtaining
data from any connected remotes but does have some limitations.

Firstly, the data had to be collected, so a WiiPoller script and associated
GameObject (of the same name) were created. Calculations for cursor position,
shake count and controller buttons are all handled by this class. If no Wii remote is
connected for a particular player, the mouse is polled instead.

Data from the Wii remote accelerometers arrives as an integer value between 0 and
255. To gain a steering value, the force along the length of the remote is measured,
the midpoint (near 128) is taken away and the result scaled based on calibration
results:

// Tweaked values to read zero when flat on a table and
// +1 or -1 when standing on one end
x = -5.2f*(wd.accY-133) / 128.0f;

Shaking the remote is detected by waiting for a large positive force in the vertical
axis, and then a corresponding large negative force. Each of these forces increments
the shake counter, which is read and reset during recovery.

Graphical User Interface

Unity comes with a set of standard Ul components, such as buttons, labels, images,
etcetera. However, none of these support multiple cursors and there is no function
to position the existing mouse cursor or to simulate a click. It was therefore not
possible to use the Wii remotes’ point-and-click to “click” anything in the existing
library.

Writing a new Ul library - which makes use of the existing GUI drawing functions -
it was possible to support all that was required to enable Wii remote interaction.

23

CHARACTER SELECTION

Player 1

COO@,

CIN@

Player 2
(U]
e®@ve

Back Next

Figure 22 - Character selection Ul with multiple cursors

Design Alterations

The boost system was changed to require holding the boost button, with a short
minimum boost time to prevent animations blending too quickly.

Character changeover - that is, the aristocrat on the pig and policeman on the cow -
although supported in much of the code was abandoned due to the amount of
animation required for the existing combinations.

A jump function was originally meant to be in the game but this was deemed risky
when trying to contain the player and as such never made it in, despite the change
to allow players to leave the bounds of the track before being reset. If boost is
triggered at the correct time the player may “jump” off bridges and hillsides, and can
gain at least one bonus token in this manner.

Gestures were vastly simplified; only one is now required. There were to be more
gestures for recovery, prompting the player for a randomly selected gesture instead
of the now present “Shake!” prompt.

The idea of including mini games was abandoned early to keep focus on the quality

of the one game with associated menus and racetrack. The final product is therefore
complete without being overly complicated.

24

Special tokens were simplified to just one: the drunk token. Others would have had
more global effects (speed limits, global forced boost, etcetera) but were deemed to
be unclear in their effects and would again overcomplicate the game.

Testing
Testing was carried out on a weekly basis to gauge which aspects of the game were
most important to players, what issues there were and which parts were most
enjoyable.

Feedback from these testing sessions was collated and summarised in an online,
collaborative document. This document may be found on the accompanying DVD.

Conclusion

The project was successful in that a fun and exciting game has been produced. There
are plenty of possibilities for expansion (creating new levels, character
combinations and collectables) and there are a few areas for improvement. The
main issue at present is the need for more optimisation since frame rates are quite
low when playing in two-player mode. Otherwise, the experience has been
thoroughly rewarding and at the end of the project a playable and functioning game
has been created, with interesting characters and a well-built environment.

Credits

Core Team:

Character modelling, texturing, animation and user interface — Sophie Shaw
Environment modelling, texturing, level design and set dressing - John Griffiths
Programming, rigging, technical direction and asset management - lan Thompson

Audio:
Sound design - Matthew Kennedy
Music composition - Kirstie Hewlett

Testers:

Lead tester — Nicholas Hampshire, Michael Cashmore, Peter Agg

Tester — Andrea Miller, Ashley Morrison, Brian O. W., Chris McLaughlin, David
Schott, Finella Fan, Holly Potter, James Lewis-Cheetham, James Roberts, Jamie
Wood, Jeremy, Jessica Ott, Kirstie Hewlett, Leah Hullinger, Lucy Pike, Martin Lane,
Matt Northam, Miriam Bray, Praveen Kumar, Richie Xu Xing, Robin Chater, Susan
Sloan, Tom Lewis-Cheetham, Vanessa Salas Castillo, Will Goldstone, Yolande Clerke

Nintendo® and Wii® are registered trademarks of Nintendo Inc. USA

25

Figures

Figure 1 — INSPECtOr IN UNILY .ccucereerecereereerecessssesesssssssessesssessesesssessesssssssessesssssssessesssssssessssssssssessens 5
Figure 2 - Unitron SCriPt @AItOT ... ererierssnesseessessessssessessessssssssssssssessessssssssssssssssssssssssessessessssns 6
Figure 3 — SINGUIATILY ClaSSES .ttt s st st sssssssssessessssnns 6
Figure 4 - Disappearing limbs when rotation limits are put in placecoerereerecneene 8
Figure 5 - Tail CUIT CONEIOLS ..t sssssseasessssnns 9
Figure 6 - Pig rig With SPINE tWiSt.....crriseireesseses s ssssssss s sssssssssesssssssns 9
FIigure 7 — RiZ SYNOPLIC c.uirrcrecrreerereessessesesessessesssssssssessssssses s ssssessssssssssssssssssessssssessesssssssessessens 10
Figure 8 — XSI animation pipelineg, first Stageccnnenmnenennesenesessssssssssesssenns 10
Figure 9 — Rig redUCtiON PIrOCESSreereeriensineessessesesessessasessessesns 11
Figure 10 — Animation clips on a single timeline.........cccoonnnnsesnessnssssseeseesseseseas 12
Figure 11 - Spawn points for competitors and boost toKens........omenreneensenseeneenne 13
Figure 12 - Collision action matrix in Unity, powered by NVIDIA's PhysX engine..... 14
Figure 13 - BEZIier Path t00]. et ssssssssssssans 15
Figure 14 - Avoiding occlusion of the player as viewed from its 37 person camera 16
Figure 15 - Character capsule COIlIAETmnnineneressesesseessesesesssssssssssssssssssessesseans 17
Figure 16 - BOOSt DAl GraphiCsurereessessresnsesesessssessssssssssssssssssssessssssssssssssssssssssssessessesns 17
Figure 17 - Material selection applied........nneneneneneninsessesesessssssssssssssssssseseasesns 18
Figure 18 — Spawning @ COMPELItOTLorrererrerreresssessesesss s sessessssssssssessens 19
Figure 19 — Animation blending StacK.......ouenenenenensnssnssnsesesesessssssssssssssssssssssssesseanes 20
Figure 20 - Character mount speed lIMiting......ccccoeremermerneninenenesenesesssssssssessesessesesseans 21
Figure 21 - Al NOAE NETWOTK ...t sss s sssssssssssssssssssssessessesnes 22
Figure 22 - Character selection Ul with multiple CUI'SOTS ..o 24

26

References

Software

Unity Technologies. 2009. Unity (2.5) [computer program]. Frederiksberg, Denmark:
Unity Technologies.

Softimage. 2008. Softimage XSI (7.01) [computer program]. Montreal, Quebec,
Canada: Softimage.

Adobe systems. 2007. Adobe Photoshop (CS3) [computer program] California, US:
Adobe Systems.

Computer Games
Monster Games. 2007. Excite Truck [computer game]. Kyoto, Japan: Nintendo.
Nintendo EAD. 2008. Mario Kart Wii [computer game]. Kyoto, Japan: Nintendo.

Articles

Tulip, J., Bekkema, J., and Nesbitt, K. 2006. Multi-threaded game engine design. In
Proceedings of the 3rd Australasian Conference on interactive Entertainment (Perth,
Australia, December 04 - 06, 2006). ACM International Conference Proceeding
Series, vol. 207. Murdoch University, Murdoch University, Australia, 9-14.

Unpublished

Griffiths J. R, Shaw S. K., Thompson I. P., 2009. Hamlington Underground Racing
Association. CAPT Assignment Production Diary, (MA / MSc), Bournemouth
University.

Websites
Novell, 2009. Main Page - Mono. Available from:
http://www.mono-project.com/Main Page [Accessed August 2009]

Unity, 2008. Unity 1.0.1. Available from:
http: //www.gamesindustry.biz/articles /unity-1-0-1-3d-dev-tool-launched-for-the-
iphone-and-ipod-touch-platform [Accessed August 2009]

Unity, 2009a. UNITY: Game Development Tool. Available from:
http://unity3d.com [Accessed August 2009]

Unity., 2009b. Unity Scripting Reference. Available from:
http://unity3d.com/support/documentation/Components/index.html
[Accessed August 2009]

27

Appendices

Appendix A: Class Inheritance

AddChildColliders
AlAgent
AlIPathNode
AnimationTest
AveragePositionController
ButtonEvent
CameraController
CharacterMenu
CharacterSet
Checkpoint
CollisionTester
ColorList
Competitor
CompetitorAnimation
CompetitorController
ConstraintController
CurvePath
CurvePathNode
GameSettings
GameSounds
GameUI
MainGame
MainMenu
MaterialSelector
MeshMerger
NullMarker
ObjectSpawner
OptionsMenu
OutOfBoundsTrigger
PathConstraint
PreviewCameraController
GameSettings.PlayerSettings
Profiler.ProfilePoint
Profiler
QuickTest
RaceParameters
RaceStatistics

RiderPrefab
SimpleAnimation
SoundSampler
SoundSource
Token
BeerToken
BoostToken
UlBase
HUD
MapUI
ScoreboardUI
StatusUI
UIBackdrop
UIButton
UlCroppedButton
UISkinButtons
UIButtonBlock
UlCredits
UICursors
Ullmage
UlCroppedIimage
UlISplashScreen
UlLabel
UIManager
MenuSystem
PauseMenu
ValidityChecks
Water
WiiPoller.WiimoteData
WiiPoller

28

