
Masters Thesis

Procedural Fish Animation

Adam R.C. Gritt

MSc Computer Animation & Visual Effects

September 11, 2010

2

Acknowledgements

Jon Macey for running a fantastic course

Sola Aina for invaluable help with the Maya API

All NCCA staff for insightful and stimulating lectures throughout the year

3

Contents

1 Introduction 5

2 Previous Work 6

3 Technical Background 8
3.1 Maya . 8

3.1.1 Scripting . 8
3.1.2 C++ API . 8

3.2 Fish Biomechanics . 9

4 Methods 11
4.1 Harmonic Oscillators . 11

4.1.1 Spring . 11
4.1.2 Damping . 12
4.1.3 Muscle . 12

5 Solution 13
5.1 Spring-Mass System . 13
5.2 Data Structure . 13
5.3 Skeleton Structure . 13
5.4 Maya Integration . 14

5.4.1 Nodes and Attributes . 14
5.4.2 Node Implementation . 15
5.4.3 Dependency Graph Modification 16
5.4.4 Custom API Command . 16
5.4.5 Skeletal Mesh . 16

5.5 Spring-Mass Calculation . 17
5.6 Results . 18

6 Conclusion 20

Bibliography 22
References . 22

4

List of Figures

2.1 Simulation of a human falling down stairs using ragdoll physics (Source:
Animats, 1997). 6

2.2 The shape of a ship is formed by a shoal of fish in Finding Nemo
(Pixar Animation Studios, 2003). 7

3.1 Salmon muscles . 9
3.2 A fish using its tail as a paddle to generate forward momentum. . . . 10

4.1 Effect of damping on a harmonic oscillator (Source: Nogueira (2007)) 12

5.1 Skeleton components of the virtual fish. 14
5.2 Connectivity between components. 14
5.3 The procedurally generated spring-mass mesh in its equilibrium state. 18
5.4 The system in an animated state. Muscles on the right side have been

contracted, whilst muscles on the left are relaxed. 19

5

Chapter 1

Introduction

Computer animation remains one of the most labour-intensive areas in the visual ef-
fects industry (Ltd., 2005, p2). Our ability to perceive artificial movement is extremely
sensitive. Furthermore, even if visuals are obviously artificial (i.e. not attempting to
be photorealistic) they do not typically break the fourth wall. Contrastingly, incorrect
animation immediately reveals itself to the view, especially in the case of humanoid
characters. ’Ragdoll’ physics has long been used to simulate human animation in
video games, but it is vastly inferior to manual keyframe animation. NaturalMotion’s
Euphoria engine, ”based on a full simulation of the 3D character, including body,
muscles and motor nervous system” (NaturalMotion Ltd., 2009), is a more mod-
ern approach and achieves far more realistic results. Perhaps our visual perception’s
sensitivity is founded on an attunement to musculoskeletal constraints.

Indeed, the modern approach to animation uses a combination of musculoskeletal
constraints and manual keyframing in order to achieve the best results. A typical
example would use a skeletal rig as a basis for animation, with muscles being a
secondary and automatic approach to skin deformation. In this sense, the muscles
are not really muscles at all; they do not exert force. In order to use the muscles
in this way, you would have to fully understand the biomechanics of a real creature.
This task would be extremely expensive, and is perhaps the reason that a system
such as Euphoria only came about as recently as 2006. Why make this investment
when you could generate hundreds of hours of animation manually for the same
cost? Euphoria is principally used in video games, interactive environments where
the animation must be generated on-the-fly. Similarly a flock or birds or shoal of fish
contains hundreds or thousands of entities and generating this animation manually
would be cost-prohibitive.

Procedural animation overcomes all scalability limitations, but with the cost of
a large development overhead (Ltd., 2005, p3). It also tends to lack the uniqueness
and personality of manual animation. Its use on the big screen is usually restricted to
background elements, with the lead characters still being hand-animated to emphasize
their idiosyncracies.

6

Chapter 2

Previous Work

The first widespread use in realtime applications was the aforementioned ragdoll
physics. Its level of realism was quite poor, but it was fast enough to run in realtime on
hardware of the early 2000’s. Both ragdoll and Euphoria are designed with humanoid
figures in mind; although their principles can be applied to other creatures such as
quadrupeds, it would require significant additional work.

Figure 2.1: Simulation of a human falling down stairs using ragdoll physics (Source:
Animats, 1997).

Pixar’s Finding Nemo made extensive use of procedural animation for its jellyfish
and coral animation (Cohen, 2003, p4). Whilst animation of jellyfish ’bells’ were
”sometimes hand-animated” the vast majority of the 77,000 in the film were handled
automatically. The hanging tentacles from each jellyfish and sea anemone tentacles,
both heavily affected by the water current, were also animated procedurally. Manual
animation would have been particularly difficult because the many tentacles must
never be static or intersect with each other. In both cases the automatically generated
animation was used only for background elements. Shoaling and schooling, analagous
to bird flocking, were also handled procedurally (Teo, 2003, p6). Whilst this is not

CHAPTER 2. PREVIOUS WORK 7

creature animation in itself, each fish in the shoal must be animated individually so
that it appears to be swimming in the appropriate direction. Pixar took this a step
further by using schools of fish to form the shape of various objects (see figure 2.2).

Figure 2.2: The shape of a ship is formed by a shoal of fish in Finding Nemo (Pixar
Animation Studios, 2003).

Wu & Popović (2003) developed a method for synthesizing realistic bird flight
animation. Their work was able to produce a number of aerial maneuvers ”including
taking off, cruising, rapidly descending, turning and landing” (p1) with good accuracy.
Using 2003 hardware they were only able to achieve this at 1/3000th of realtime (Wu
& Popović, 2003, p6), which would limit the tool’s use to an artist.

Tu & Terzopoulos (1994) released a paper describing methods to mimic the
locomotion and behaviour of fish artificially. They pay particular attention to how
fish react to external factors E; R ⊆ E where R is the set of factors a fish is aware of
through its sensory perception (p4). For animation purposes, these external factors
are obstacles or prey to avoid and fish to shoal with. Tu & Terzopoulos define an
area around the fish, similar to the neighbourhoods described by Reynolds (1987, p6).
For simplicity, Tu & Terzopoulos use an area around the fish of fixed radius spanning
300 degrees, the excluded area represents an area the fish could not see due to the
position of its eyes.

8

Chapter 3

Technical Background

The goal for this project is to develop a procedural animation framework for fish move-
ment. Such a framework would remove any scale-based restrictions on animation, as
the process is entirely automated.

3.1 Maya

The framework will be built using Maya. Whilst this presents many unique challenges,
there are also significant advantages to developing with Maya. Tools developed using
one of the Maya APIs benefit from automatic save state handling integration with
other Maya tools and renderers. Maya has a complete and familiar interface and using
the API eliminates the need to develop one as would be necessary in a standalone
application.

3.1.1 Scripting

There are two distinct development methods for Maya; these are interpreted scripting,
and the C++ API. The scripting interface supports both MEL (Maya Embedded
Language) and to a lesser extent, Python. As with most scripting implementations,
Maya uses an intepreter meaning that there is a significant performance loss compared
to native code. This is offset by its ease of use; code doesn’t need to be compiled or
loaded beforehand, as must be done with C++. Use of scripting is also inappropriate
for commercial software, since the source code is required for it to run. This would
allow anyone who purchases a product to see and understand the secrets behind the
software.

3.1.2 C++ API

The alternative to scripting is the Maya C++ API, which offers maximum perfor-
mance through use of native code but has a very rescrictive development environe-
ment. Specific compilers must be used to build plugins for differing versions and
operating systems. For example, Maya 2011 for Windows x64 requires that plugins
be compiled with VC9, Visual Studio 2008’s compiler. Additional effort is therefore
required to ensure cross-platform compatibility, contrasting with the scripting API
which has no such disadvantage. Although the plugin architecture allows source

CHAPTER 3. TECHNICAL BACKGROUND 9

code to be kept hidden, this combined with the compiler restrictions means that
plugins are not future proof. A new version of Maya is likely to require the source
code for a new compilation of the software.

3.2 Fish Biomechanics

As with existing procedural animation technologies, the biomechanics of the subject
must be understood in order to generate realistic results. The most obvious method
would be to model every muscle in a fish, with the effects of contraction and relaxation
propogating around the body.

(a) Salmon (b) A single salmon myotome (Source:
Ramel, 2009)

Figure 3.1: Salmon muscles

Figure 3.1 shows the pattern of muscles in fish, in this case salmon. The white
lines in salmon meat (3.1a) show layers of fat separating individual myotomes (3.1b),
a type of muscle. There are dozens of myotomes in a single fish, and it’s clear that
these are not the simple, straight, elastic muscles found in other animals. The unusual
shape and curvature would make modelling the propogation of force extremely diffi-
cult. Even if such a model were to be produced, there would probably be significant
performance limitations due to its complexity.

Rather than engineering an accurate model of a fish, its movement must be
examined in order to produce a reverse-engineered solution. Figure 3.2a shows a fish
with at least two independent sets of muscles, allowing it produce an ’S’ shape which
increases the surface area which can be used to push water (figure 3.2b)). Other fish
can range from having hardly any visible muscle movement (e.g. goldfish) to having
even more pronounced curvature (eels).

CHAPTER 3. TECHNICAL BACKGROUND 10

(a) Movement cycle of a fish (Source: Mackean, 2010). (b) Force of a fish swimming
(Source: Buchheim, 2006).

Figure 3.2: A fish using its tail as a paddle to generate forward momentum.

11

Chapter 4

Methods

Having ruled out an accurate biomechanical model due to the complexity of myotome
modelling, an alternative approach is to use a geometric technique. This is the
technique used by Tu & Terzopoulos and uses a visually accurate model as a basis
for deformations. The model is deformed using a spring-mass system, with specific
connections defined as affectors, i.e. muscles.

4.1 Harmonic Oscillators

Newtonian mechanics defines a harmonic oscillator as a system which exhibits a
restoring force F which is proportional to the displacement from its equilibrium x.
Hookes law states:

F = −kx

Where k is a positive constant. The spring’s equilibrium position is given as
x = 0. This can otherwise be expressed as:

F = m
d2x

dt2
= −kx

The system generates a force proportionate to the amount which it is stretched.
Such a system, when displaced from its equilibrium or rest position, undergoes con-
tinual sinusoidal oscillations about this point; the system never repeats infinitely and
never comes to a rest (figure 4.1, ζ = 0).

4.1.1 Spring

A spring can be defined as a harmonic oscillator connecting two points. Each point
has a mass, although in some cases a point is treated as being immovable (infinite
mass). The mass of the spring itself is treated as being negligible. The constant k
becomes an effective ’stiffness’ measurement, with higher values resulting in a greater
restorative force, increasing the frequency of oscillations.

CHAPTER 4. METHODS 12

4.1.2 Damping

Figure 4.1: Effect of damping on a harmonic oscillator (Source: Nogueira (2007))

In reality, a spring would lose its energy through air displacement and internal friction.
To model this mathematically, a damping ratio is applied to the force at regular
intervals, eventually reducing the energy in the system to zero, at which point it will
have found a new equilibrium (figure 4.1, ζ < 1). Other cases may require the system
to return to equilibrium without oscillating (figure 4.1, ζ >= 1).

4.1.3 Muscle

In biomechanics, skeletal muscle is analagous to an overdamped harmonic oscillator
(figure 4.1, ζ > 1). Upon contraction the rest length or spring constant, k, is altered,
and the muscle quickly finds its new position. In the virtual model, the spring can be
defined as a function of the two nodes which it connects. When a spring exerts force
the two connected nodes are displaced proportionately to their mass, contrasting with
typical systems which may have an anchor such as a bone.

13

Chapter 5

Solution

5.1 Spring-Mass System

A spring-mass system can be defined by set of nodes N and springs S. Let each
node have a mass m and position p. Let each spring have a stiffness c, and have it’s
rest length l defined as the vector between two nodes l = pi − pj . Such a system is
inherently stable until some external force is applied, since all springs remain at their
rest lengths. The force applied to each node by the springs connected to it is:

F =
∑

s ∈ springs

cs(pi − pj − ls)

A damping factor should be applied proportionately to the force exerted by springs,
and also relative to the change in time between simulation updates.

5.2 Data Structure

The data structure of the nodes and springs proved to be difficult. Due to the pro-
cedural nature of skeletal construction (see 5.3), it was not possible to assign all of a
node’s springs at instantiation. Each node contains a vector of type NodeConnection,
which contains a pointer to a spring, and the other node on that spring. This struc-
ture allows maintenance of nodes to be encapsulated by their parent SkeletonSection
objects.

5.3 Skeleton Structure

The skeleton of the virtual fish is divided into segments which have predefined con-
nectivity rules and appearance. The system is designed to be fully extensible and
should allow additional segment types to be added provided that the appropriate
connectively rules are defined. Figure 5.1 illustrates the composition of each of the
predefined segments.

CHAPTER 5. SOLUTION 14

Segment Nodes Total Springs Structural Springs Multiplicity

Nose 1 0 0 1
Body 4 6 2 1 . . . n
Tail 2 1 1 1

Figure 5.1: Skeleton components of the virtual fish.

A skeleton is constructed by adding segments to it in turn. Construction of
the spring network is handled automatically, as defined by the rules of each specific
segment type.

Connection Total Springs Structural Springs Muscle Springs

Nose-Body 4 0 0
Nose-Muscle 4 0 0
Body-Body 12 8 0
Body-Muscle 12 8 0
Muscle-Muscle 12 8 4
Body-Tail 8 4 0
Muscle-Tail 8 4 0

Figure 5.2: Connectivity between components.

5.4 Maya Integration

The greatest challenge in development of the software was integration with Maya.
The Maya C++ API can be used to add functionality to Maya in two ways; through
definition of new commands which perform a certain function within the scene on
existing nodes, or through definition of a new node type. Code must follow a very
specific pattern in order to function properly.

5.4.1 Nodes and Attributes

Maya represents scenes through the dependency graph - a network of nodes, each
containing numerous attributes. This network is responsible for Maya’s ability to save
to an ASCII-based file format. The undo/redo functions are also heavily dependent
on a network representation in order to work properly. Most importantly though,
modifying a node anywhere in the scene hierarchy results in a representative change
in all child nodes; if the extrude node were to be deleted in a PolySphere-¿Transform-
¿Extrude hierarchy, the extrude operation would still function as intended.

Each node also contains a number of attributes, these are all handled internally
by Maya so that they inherit functionality such as keyframing and expressions. When
attributes are changed, the dependency graph is used to check whether any other
attributes are affected as a result. For example when a Length attribute is changed,
the Volume attribute would need to be updated; however instead of calculating the
new value, Maya marks the Volume attribute as ’dirty’. These dirty attributes are

CHAPTER 5. SOLUTION 15

then only recalculated when read, and this results in a very substantial performance
gain. For this reason it is necessary to manually describe the relationships between
attributes when using the C++ API. This is a large development overhead for a task
which would normally be taken care of by an optimising compiler.

Maya has a non-standard way of defining node attributes. Whilst in a typical
C++ program one might define use the following to define an array of doubles:

1 double m s p r i n g C o n s t a n t s [9 6] ;

Maya requires its own declaration for the template definition which allows it to
make new node instances. The following shows the equivalent code in the Maya API:

1 MObject m s p r i n g C o n s t a n t s ;
2
3 MStatus Node : : i n i t i a l i z e ()
4 {
5 MFnNumer icAttr ibute numAttr ;
6 m s p r i n g C o n s t a n t s = numAttr . c r e a t e (” s p r i n g C o n s t a n t s ” , ” s p r i n g ” ,

MFNNumericAttr ibute : : kDouble , 0 . 0) ;
7 numAttr . s e t A r r a y (t rue) ;
8 a d d A t t r i b u t e (m s p r i n g C o n s t a n t s) ;
9 }

This leads to highly verbose and somewhat cluttered code. Array attributes both
defined and processed differently than standard attributes. Further still, compound
attributes are used to define data structures which contain more than one type of
variable. This is in stark contrast with the typical approach when using an object
oriented language such as C++, which is to use objects or type definitions. In addition
to requiring a custom attribute definition procedure, Maya also presents a specific
API for reading and writing attributes. Each node has a datablock, an object which
contains the data for all of the node’s attributes. This datablock must be navigated
using the API in order to retreive and modify data.

Aside from the attributes necessary to perform updates to the simulation, two
global constants are also defined in the plugin. These are the ’speed’ and ’force’ of
the animation. A higher speed results in a higher frequency of oscillation between
left and right side muscle contractions. Similarly, a higher force results in a more
significant reduction in the muscle spring rest length, resulting in a more pronounced
swimming movement.

One of the most challenging aspects of development is full integration with Maya’s
animation controls. Maya allows the user to scrub forwards and backwards in time,
and skip to any point. This contrasts with a typical OpenGL application which plays
continuously in real-time. For algorithms which aren’t reversible, this presents a
problem; the original state must be stored in order for the scene to be reproducible.
Additionally, Maya does not supply the typical ∆t variable typically seen in OpenGL
applications, instead only the current time is supplied.

5.4.2 Node Implementation

In order to integrate with Maya’s timeline, a node must connect with a time node.
Every new empty Maya scene contains a time node, ’time1’, however additional time
nodes can be made if desired. The outTime attribute of a time node supplies data

CHAPTER 5. SOLUTION 16

in the format MTime. An attribute of this type must then be added to the custom
node in order to receive this data, an inTime attribute. Node definitions are merely
a static template which Maya uses in order to create new instances of a node. Since
the definition of a node is static, it cannot perform any operations on new instances
of the node. A dependency graph connection is required between the time node’s
outTime attribute and the new fish node’s inTime, however this cannot be done from
within the fish node definition.

5.4.3 Dependency Graph Modification

There are two methods of performing such a connection from outside the node, either
the connectAttr MEL command can be used, or a custom API command can be called
from MEL. As with all MEL, the connectAttr command is itself just an interface to
an equivalent call in Maya’s C API. For non-trivial dependency graph operations,
such as a series of connections being made procedurally, it is logical to hide this logic
within a custom API command.

5.4.4 Custom API Command

The MPxCommand API class is used as a basis for new MEL commands. A com-
bination of nodes and commands can be integrated into the same binary plugin, a
technique which allows attributes to be linked through reference rather than by their
name. Commands can also be called with an array of arguments for specifying options
such as the number of fish to be created.

For each attribute that is connected an MPlug object must be retrieved. This is a
reference to the instance of an attribute, and provides an interface for accessing data
and being connected in the dependency graph. The MDGModifier class is used to
perform operations on a scene’s dependency graph. This is then used to procedurally
connect each attribute, for example connecting the outTime attribute of the time1
node to the inTime attributes of a dozen fish nodes. Attributes can supply data to
any number of other attributes in a one-to-many relationship, but only receive their
data from a single attribute. The connection between the attributes can be thought
of as a pointer is in the C language; the inTime attribute literally refers to another
attribute and the data each contains is always identical.

5.4.5 Skeletal Mesh

The topology of the skeletal mesh does not conform to any typical mesh structures
included in Maya. The skeleton is essentially just a collection of lines, with neither
vertices nor polygons. Springs can overlap in an X-shaped arrangement, a topology
which is incompatible with normal meshes. Hence the visualisation of the skeleton
requires custom code to be written. The MPxLocatorNode class intended as the
basis for nodes of this type; shapes that are drawn on the screen but not rendered.

Maya uses OpenGL for its viewport, and any OpenGL calls from within a Maya
plugin are invoked within this viewport. The MPxLocatorNode class templates a
draw function which is automatically called by Maya when necessary. A scene redraw
occurs whenever something changes in the scene, in particular the location of the

CHAPTER 5. SOLUTION 17

camera. This function is also used as the basis for selection within the GUI, OpenGL’s
selection mechanism is used to determine whether the object gets selected by a
particular mouse event.

5.5 Spring-Mass Calculation

With the stable fish structure being defined, the system finds equilibrium at its original
position. Muscle contractions are defined by the muscle springs in the procedurally
generated spring-mass system. Muscles form two groups, one for each side of the
fish, and these are actuated as a group by the system.

The final solution for the system is:

Fi = mi
d2xi
dt2

+ ζ
dxi
dt

− si; i = 0, . . . , n

Where x is the node position, i is the set of nodes, n is the number of nodes in
the system and where:

si =
∑
j ∈ Ni

F s
i j(t)

Where s denotes the force applied to the node as a result of connected springs;
the sum of the force springs connecting node i to its set of connected nodes N . The
damping factor, ζ is applied proportionately to time.

Whilst Newton’s Second Law allows us to calculate the force applied on a mass
at any given point in time, it does not account for constantly changing variables;
variables that are a function of time. The most sigificant effect of this is easily
illustrated with a spring analogy. As a spring returns from its maximum extent, it
has both a high velocity and high acceleration. If the ∆t of the solver is too high,
the node may completely pass it’s maximum negative extent before the scene is next
updated and drawn. As this continues, the spring is calculated as having progressively
more energy. In a system of springs, this would rapidly cause the structure to break
down, as the energy of the problem spring easily outweighs any possible restoring
force by the rest of the system.

In animation, the ideal ∆t is easily calculated as the time between frames. This
results in the lowest number of updates being performed, but in some cases it is not
always possible. The default state of the procedurally generated mesh was tested
with a ∆t of 1s/FPS = 0.04s. Whilst this results in a stable mesh, the results are
neither consistent nor symmetrical. In order to alleviate this problem, the default ∆t
is broken down into several smaller time-steps. The system now performs 10 updates,
each with ∆t = (1s/FPS)/10 = 0.004s. The obvious disadvantage to this is that
the system will be nearly 10 times slower, however this is also the most efficient
solution (see chapter 6). For the same reason, the solver is not capable of directly
jumping between frames. This, again, is easily resolved by performing the equivalent
amount of updates with a smaller time-step.

Problems also occur when extreme values are used for the speed and force at-
tributes. When the spring-mass system reaches its maximum extent, i.e. when the

CHAPTER 5. SOLUTION 18

muscles which have been contracted are closest to their preferred rest position, other
springs which should maintain their structure begin to change. This is because the
system can no longer find resitution through movement in the muscle springs and
therefore does so in the weakest structural springs. This problem can be avoided
by not specifying extreme values for these attributes. This is not always desirable,
however. In Pixar’s Finding Nemo, for example, many of the characters are animated
with extreme movement to convey their personality.

5.6 Results

Figure 5.3 illustrates the system upon initialisation. The custom spring-mass mesh
is generated procedurally and remains in its equilibrium state. After a period of time
has elapsed, specified by the speed attribute, the fish will contract its muscles on the
right side. Upon the next update of the system (not the same as the next frame, see
section 5.5), the fish will being to bend as if those muscles were contracted. The
change in position is most dramatic initially; since the rest length of the muscles
have been changed but the actual length has not. Since the spring’s actual length is
farthest from it’s rest length, the associated mass (i.e. nodes) experience the most
dramatic restoring force at this point.

Figure 5.3: The procedurally generated spring-mass mesh in its equilibrium state.

Figure 5.4 shows the system in an animated state; the right side muscles have been
contracted and those springs approach their rest position. As the springs approach
their rest position, they experience the least restorative force, indeed there is hardly
any movement in the system. The values for force and speed should be specified

CHAPTER 5. SOLUTION 19

such that this period of non-movement is as desired. Most fish will have a very short
period where neither side of their myotomes has been contracted.

Upon a second elapsation of the time specified by the speed attribute, the opposite
(left-side) muscles will contract, and the right side muscles will regain their initial
values for rest length. The effect of this is two fold; the muscles on the right side of
the body will extend along the axis of the fish, and the muscles on the left side will
shrink, resulting in the characteristic curvature seen in swimming fish.

Figure 5.4: The system in an animated state. Muscles on the right side have been
contracted, whilst muscles on the left are relaxed.

20

Chapter 6

Conclusion

The procedural animation works well, with the system creating animation entirely
procedurally. The animation is quite realistic, however the fish is only able to swim
sinusoidally forward. With some additional work the system would be able to generate
animation which appears to be swimming in a particular direction.

The project was very challenging, specifically because the Maya API has a steep
learning curve. Maya has a very unique structure, and the documentation can be
hard to follow. Maya presents a very limited model of it’s internal structure through
its API. This is a result of its dependence on backwards compatibility. With less of
the internal structure exposed, the Maya developers have greater freedom to perform
internal changes without affecting the way it behaves. Instances of the class MObject
can refer to attributes, nodes, transforms, vertices, etc; one might expect a class
called MAttribute or MNode to inherit from MObject, but this is not the case. Care
must be taken during development to keep track of the true type of an MObject so
that it can be attached to the correct function set.

Even with a full understanding of the API, coding for a Maya plugin is extremely
verbose and long-winded compared to other libraries or frameworks. That said, once
completed, Maya plugins can integrate extremely well and take advantage of the vast
quantity of existing scripts, plugins and built-in functionality that Maya has to offer.
Much of Maya’s functionality is developed in the same way as third party plugins.

The implementation that was developed solves the spring-mass system using New-
ton’s Second Law. This results in the aforementioned boundary problems assosciated
with extreme input, and can prevent certain resolutions of the system from being
reached. Tu & Terzopoulos solve this problem using ”a numerically stable, implicit
Euler method”. Whilst this is an ideal solution, such a solution requires the use
of a system of ordinary differential equations (ODEs) in order to concurrently find
the equilibrium position for all springs in the system. This is a somewhat different
approach to the muscle actuation system in the procedural spring-mass system; the
approach of Tu & Terzopoulos finds a position of absolute restitution for the sys-
tem. This means that rather than changing the rest length of the muscle springs
once per real-life muscle contraction, the rest length itself must be calculated as a
function of time. Rather than allowing the system to gradually come to a new state
of equilibrium (the speed at which this occurs is limited by the damping factor), the
system is solved completely. A continually changing rest length produces the effect

CHAPTER 6. CONCLUSION 21

of animation even though the system is not in a state of flux. A system of ODEs is
also far slower than basing an implementation on Newton’s Second Law, even when
that system must be solved multiple times for each time step.

Overall the project was quite successful, however it is important to integrate the
functionality into a more complex system to make full use of it. A flocking or shoaling
system would make best use of the procedural nature of the system, facilitating the
animation of an unlimited number of fish with minimal effort. The high computational
performance of the developed system means that it would be perfect for such use.
Another major strength of the system is the modular design of the fish construction.
With little effort, the system could be adapted to produce animation for other fish-like
creatures such as sharks, whales and eels.

22

Bibliography

References

Animats. 1997. Ragdoll falling downstairs. http://www.animats.com/.

Buchheim, Jason. 2006 (June). A Quick Course in Ichthyology.
http://www.marinebiology.org/fish.htm.

Cohen, Karl. 2003. Finding the Right CG Water and Fish in Nemo. http://www.awn.
com/articles/technology/finding-right-cg-water-and-fish-inemoi.

Ltd., NaturalMotion. 2005. Dynamic Motion Synthesis. http://www.

naturalmotion.com/files/white_paper_dms.pdf.

Mackean, D G. 2010 (August). Fish Swimming. http://www.biology-
resources.com/drawing-fish-swimming.html.

NaturalMotion Ltd. 2009. NaturalMotion euphoria. http://www.naturalmotion.

com/euphoria.htm. 24th Sept.

Nogueira, Nuno. 2007 (September). Damping.
http://en.wikipedia.org/wiki/File:Damping.svg.

Pixar Animation Studios. 2003 (May). Finding Nemo.

Ramel, Gordon. 2009 (December). Fish Muscles.
http://www.earthlife.net/fish/muscles.html.

Reynolds, Craig W. 1987. Flocks, herds and schools: A distributed behavioral model.
Pages 25–34 of: SIGGRAPH ’87: Proceedings of the 14th annual conference on
Computer graphics and interactive techniques. New York, NY, USA: ACM.

Teo, Leonard. 2003. The Making of Finding Nemo. http://features.cgsociety.
org/story_custom.php?story_id=1389.

Tu, Xiaoyuan, & Terzopoulos, Demetri. 1994. Artificial fishes: physics, locomotion,
perception, behavior. Pages 43–50 of: SIGGRAPH ’94: Proceedings of the 21st
annual conference on Computer graphics and interactive techniques. New York,
NY, USA: ACM.

Wu, Jia-chi, & Popović, Zoran. 2003. Realistic modeling of bird flight animations.
Pages 888–895 of: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers. New York,
NY, USA: ACM.

http://www.awn.com/articles/technology/finding-right-cg-water-and-fish-inemoi
http://www.awn.com/articles/technology/finding-right-cg-water-and-fish-inemoi
http://www.naturalmotion.com/files/white_paper_dms.pdf
http://www.naturalmotion.com/files/white_paper_dms.pdf
http://www.naturalmotion.com/euphoria.htm
http://www.naturalmotion.com/euphoria.htm
http://features.cgsociety.org/story_custom.php?story_id=1389
http://features.cgsociety.org/story_custom.php?story_id=1389

	Introduction
	Previous Work
	Technical Background
	Maya
	Scripting
	C++ API

	Fish Biomechanics

	Methods
	Harmonic Oscillators
	Spring
	Damping
	Muscle

	Solution
	Spring-Mass System
	Data Structure
	Skeleton Structure
	Maya Integration
	Nodes and Attributes
	Node Implementation
	Dependency Graph Modification
	Custom API Command
	Skeletal Mesh

	Spring-Mass Calculation
	Results

	Conclusion
	Bibliography
	References

