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Abstract

This paper looks at the implementation of a 3D Langrangian Fluid Solver,
using a collection of SPH techniques and algorithms, with full integration into
the Houdini software package. New features such as temperature diffusion
and optimisation methods (including spatial hashing, particle velocity cor-
rection and artificial viscosity) improve on Houdini’s existing particle fluid
solver allowing for a wide range of effects to be achieved through an easy
to use interface. A new technique is also proposed that adjusts the pressure
and density fields to create more vigourous and spectacular crashing waves.
A variety of examples prove the success of this project and possible future
work is suggested.



1 Introduction

The outline of this paper follows the work surrounding the design and im-
plementation of a 3D Langrangian Fluid Solver. Using this solver, fluids are
modeled using particles that each individually hold attributes such as there
pressure and viscosity. A Langrangian form of the Navier Stokes equations
can be used to calculate these attributes over time, allowing for there new
acceleration, and hence position, to be found. Multiple 3D packages con-
tain existing particle solvers but the one presented in this paper adds extra
features from new research, and also utilises a new method to calculate the
pressure force.

In the following sections there is discussion on the previous work so far
with particle fluids and theory on how particle fluids and the Navier Stokes
equations work. From this follows a section on the design of a suitable
pipeline and program structure and a look into how this solver and pipeline
is implemented. This is followed up by a analysis of the results achieved,
including a review on the efficiency and known issues of the solver, and then
conclusion of the relative success of the project.

2 Previous Work

Smoothed Particle Hydrodynamic’s is a relatively new method that has
gained a lot more interest in recent years as an alternative to Voxel Flu-
ids. The first use was by Monaghan (1992) where he uses the method to
simulate and study astronomical events such as gas clouds coming together.
This paper introduces the first use of the SPH approximation formula’s used
to solve the Navier Stoke’s equation for weakly compressible flow. Koshizuka
et al. (1995) and Desbrun and Gascuel (1996) take Monaghan’s paper and
use it explicity for incompressible fluid flows using additional techniques de-
veloped by Monaghan (1989a). One of the first practical visual effects use of
this technique was by Stora et al. (1999) in which he used the methods devel-
oped before, along with a method to calculate temperature diffusion across
fluids, to animate lava flow. Up to this point, the research mainly focused
on Newtonian fluids which changed with the introduction of the paper by
Carlson et al. (2002) where he looks at simulating Non-Newtonian methods
using newly designed methods for melting and flowing, along with adding an
Elastic force to the calculations. Many papers followed on from this study
with more advanced viscous and viscoelastic fluids research carried out by
Mao (2006), Chang et al. (2009) and Clavet et al. (2005). Alongside these
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papers Müller et al. (2003) and Müller et al. (2005) looked at improving on
the current Newtonian Fluid techniques with the introduction of Dynamic
Air Particles and multiple fluid forces such as Interface Tension Forces. These
technqiues were optimised with multiple methods with a popular theme of
using a method of Spatial Hashing developed by Teschner et al. (2003). The
methods mentioned above are all based on solving versions of the Navier
Stokes equations. There are however other particle based fluid techniques
that depend on using functions such as the Leonard Jones Potential (Steele
et al., 2004), that represent fluid behaviour on a purely function and non-
physical level. Some current research has started to look at Viscoplastic
fluids (fluids that change viscosity with force changes) by Paiva et al. (2009)
adding a whole new dimension to Particle fluids.
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3 SPH and Fluid Theory

When looking at fluid simulations there exists a whole host of algorithms that
have been implemented, each with their own advantages and disadvantages.
In this section the most prominent of these methods, using the Navier-Stokes
Equations, is looked at and analysed. Solving these equations is then also
looked at with the SPH approximation methods. First though is a review on
the main two frameworks for representing fluid simulations.

3.1 Eulerian vs Langrangian

3.1.1 Lagrangian Method

The Lagrangian method looks at individual members of the fluid, sometimes
called particles, and follows them as they move through space and time. The
position of this particle can be plotted through time to give the pathline
of the particle (Batchelor, 1973) (Lamb, 1994). In a simulation sense this
is similar to a typical particle simulation, where each particle is assigned a
number of attributes such as velocity, temperature etc...

Visualisation:
Sitting in a boat and drifting down a river.

3.1.2 Eulerian Method

The Eulerian method on the other hand looks at fluid motion that focuses
on specific locations in space through which the fluid flows as time passes
(Batchelor, 1973) (Lamb, 1994). In a simulation sense this method uses a
grid system that divides the space into a number of rectangular cells, with
each cell storing the relevant attributes inside such as velocity, pressure, den-
sity etc... Direct attributes can be read from each cell and neighbouring cells
can be used for approximating the derivative (Win, 2007).

Visualisation:
Sitting on the bank of a river and watching the water pass a fixed location.

3.1.3 Advantages and Disadvantages of each method.

In Figure 1 is a table outlining the advantages and disadvantages of each
method
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Eulerian Langrangian
Performance is independant
of the number of particles.

Simulation size is not lim-
ited.

Advantages
Fast. Can be used for more than 1

type of fluid (water and air).
Simulation detail limited to
grid resolution.

Large number of particles
needed for realistic simula-
tion.

Disadvantages
Simulation size limited to
grid size.

Figure 1: Advantages and Disadvantages of Eulerian and Lagrangian Meth-
ods.

Priscott (2010) looked at implementing a 2D Fluid Solver using a Eule-
rian method. In this paper the alternative approach is taken using purely
Langrangian Methods and a range of SPH techniques.

3.2 Navier Stokes

The Navier Stokes equations provide a precise mathematical model for most
fluids occurring in nature’ (Stam, 2003). These equations look at solving
unknowns for a fluid, in particular its new acceleration that allows for its new
position to found. The equation in 3.2.1, is the Navier Stokes equation for
Langrangian Fluid for weakly compressible flow. At first it looks particularly
complex but when broken down into separate parts the basic principle behind
its use is not as difficult as initially thought.

ρ
du

dt
= −∇p+ µ∇2u + f (3.2.1)

The left hand side of this equation is simply the density ρ of a particle
multiplied by the acceleration du

dt
. Knowing the acceleration means being able

to integrate it to find the new position of the particle at the next timestep.
Each term on the right hand side needs to be solved. The first of these is the
Pressure term seen in equation (3.2.2).

−∇p (3.2.2)
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This term represents the gradient of the pressure field p and determines
how the fluid moves with respect to this field. In this paper this term is
referred to as the Pressure Force.

µ∇2u (3.2.3)

Equation (3.2.3) represents the Laplacian of the velocity field u multiplied
by the viscosity µ, which is used to determine the force due to the viscosity
of the fluid. In this paper this term is referred to as the Viscosity Force.

f (3.2.4)

The final term of this Navier Stokes formula is equation (3.2.4). This
term represents all the external forces. As seen later, this will include forces
such as Surface and Interface Tension forces and also forces such as gravity
and wind.

Dealing with a Langrangian method, the most popular technique to solve
these terms is using Smoothed Particle Hydrodynamics approximations, and
is the method used in this project.

3.3 SPH Theory

Monaghan (1992) was one of the first people to solve the Navier Stokes equa-
tions using Smoothed Particle Hydrodynamics (SPH). His method focuses
around solving each term of equation (3.2.1) using a collection of approxi-
mation formula’s seen in Figure 3.3.

A(x) =
∑
j

Aj
mj

ρj

W (x− xj, h) (3.3.1)

∇A(x) =
∑
j

Aj
mj

ρj

∇W (x− xj, h) (3.3.2)

∇2A(x) =
∑
j

Aj
mj

ρj

∇2W (x− xj, h) (3.3.3)
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In these formula’s A (x) represents an attribute of a particle at location
x. This attribute can be anything that the user would like to solve, and
in our case each term of the Navier Stokes equation plus terms such as the
density ρ of each particle. W represents a smooth kernel weighting function
that in simple terms adjusts each force depending on the distance between
particles. The approximation formula’s for each term, along with the Kernel
functions, are looked at in much more detail in Section 5, however a quick
look at how it works is looked at now.

For example, when solving the pressure term of Navier Stokes the Gra-
dient of the pressure field needs to be found. In this case the term to solve
is ∇p so the approximation equation (3.3.2) is used. All you have to do is
substitute p for A and solve the formula by summing over all neighbouring
particles, represented by j. This will give you the force due to pressure acting
on the particle. Divide this by the density ρ of the particle and you have its
acceleration from the pressure term. It is however important to note that
this is a simplification of the process and adaptations have been made to
solve some of these terms, so for full details please read Section 5.

3.4 Newtonian vs Non-Newtonian Fluids

When looking at simulating particle fluids a choice has to be made over
what kind of fluids you want to be simulated. There are two main types of
fluids, Newtonian and Non-Newtonian. As of yet there is no collection of
equations that can successfully produce accurate results for Newtonian and
Non-Newtonian fluids so a decision has to be made on which fluid this solver
will simulate.

3.4.1 Newtonian Fluid

In a Newtonian fluid the relationship between the shear stress and the strain
rate is linear (Mao, 2006). What this means is that the coefficient of viscosity
is constant throughout the fluid and that they obey Newton’s laws of motion,
as implied by the name. Water is a good example of this.

3.4.2 Non-Newtonian Fluid

A Non-Newtonian Fluid on the other hand has a non-linear relationship
between the shear stress and the strain rate (Mao, 2006). These fluids do
not obey Newton’s laws of motion and the viscosity of the fluid can change
across the fluid depending on a multitude of factors such as temperature.

6



An example of some Non-Newtonian fluids are paint, cornflour (mixed with
water) and some motor oil.

3.4.3 Chosen Fluid

This project looks at the implementation of Newtonian Fluids but keeps the
idea of Non-Newtonian fluids in mind to allow for further work later, in the
addition of a Non-Newtonian fluid solver to the same framework.

4 Design

When faced with designing a framework to allow for an efficient SPH simu-
lation there a few key points that needed to be addressed and catered for.

• Must allow for different multiple fluids to be simulated in the same
scene.

• Must be easily extendable to add and take away certain features in
order to simulate a wide range of fluid effects.

• Must be able to allow simple interaction with Static Rigid Bodies and
bounding areas.

• Must be efficient in passing large data structures around and force
calculations must be optimised, in order for a fast simulation time.

• Data has to be easily exported to Houdini for Rendering and OBJ’s
easily imported for creating fluids.

In Section 4.1 there is a discussion on how these points have affected the
overall design of the framework.
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4.1 Class Diagram

Taking into account the points mentioned in the previous section, a Class
Diagram was designed for the solver.

The diagram in Figure 2 shows the relationship between OpenGL and the
solver. The GLWindow class is used to control all updates that happen each
timestep. This information gets fed to the solver where the actual work gets
done. The XML class is used to provide a communication link between an
external package such as Houdini, by parsing XML files containing essential
parameter data for the solver and the fluids being solved.

The diagram in Figure 3 on the other hand shows the SPHSolver’s rela-
tionship with the other classes. As you can see, this class is the hub of all
activity for the solver. For integration this class is linked to an Integrator
class and for efficient neighbour searching this class is linked to a Spatial
Hashing class. The SPHForce class is where all the force calculations take
place, calculating the new acceleration for the solver. The implementation
of all these classes is looked at in Section 5.
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Figure 2: This class diagram show the interaction between GL Window and
the solver components. The XML class is used to read XML config files
which is then parsed by the solver. The GLWindow class controls updates
to the Open GL window and is where the main functions such as UpdateAc-
celeration() are called.
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Figure 3: This class diagram shows the SPHSolver class’s relationship with
the other important classes. Object orientation is used to allow for changes
to certain features without affecting other program fuctionality.
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4.2 Representation of Fluid and Static RBD’s

An important design decision that needed to made for this solver was how to
represent the fluids and static bodies inside the program. Steele et al. (2004)
uses a method that represents both the actual fluids and static bodies as an
array of particles. What this method allows us to do is re-use methods such
as the Spatial Hashing and Integration methods that will be implemented for
the fluids on the static bodies. Finding neighbours becomes a simple task and
allows for realistic interaction between both fluids and static bodies. This
paper uses a similiar technique and is explained in more detail in Section 5.

4.3 Pipeline outline

When looking at how to set up the pipeline for this project a number of
options are available.

• Stand alone application.

• Maya Plugin.

• Houdini Plugin/Digital Asset.

4.3.1 Stand alone application

To write a stand alone application that reads in OBJ’s, simulates the scene
and creates a rendered fluid surface is a huge task for the time period of
this project. Just creating an efficient fluid surface using point splatting and
marching cube takes a good deal of time. Therefore the option of a purely
stand alone application is not viable.

4.3.2 Maya Plugin

When using Maya a lot of the work can be cut out, compared to a stand
alone application, by writing a plugin. For example, no longer would a fluid
surface algorithm need to be written as Maya already has a blobby surface
that can create a fluid surface for you. Also, all the rendering functionality
is readily available so the work load would allow sole focus on just the solver.
However, Maya plugins are notouriously difficult to write and get working,
so within the time frame available it is not a preferable option.
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4.3.3 Houdini Plugin/Digital Asset

Using Houdini’s HOM and Digital asset system however allows for all the
benefits of Maya but with an API that is easy to utilise the power of the
Digital asset system. Using Houdini is also a clever option as Houdini’s
current particle fluid system is limited in the range of effects it can achieve,
so creating a new solver will help boost the functionality of Houdini. For
example, currently Houdini is missing any temperature control, which is
something that can be implemented with this new solver. Therefore for
this project the solver is designed around a pipeline with Houdini.

Figure 4: Flowchart representing the general outline of the pipeline.

In Figure 4 you can see an outline of the overall pipeline for the project.
Houdini plays a crucial role in the pipeline as one of the ideas behind the
project is to be able to improve the functionality of the existing particle fluids
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inside Houdini. For this to be user and artist friendly the new solver needs
to be able to be set up and run inside houdini, with the results fed back
from the external program ready for the user to render. At no point should
the user need to leave Houdini to run the solver or retrieve results. The way
that this communication between the solver and Houdini is performed will
be explained in detail in the section 6.

4.4 Pseudo-Code for program structure

The program structure for Particle Fluids plays a crucial part of how efficient
a particle fluid simulation can be. When looking at solving the forces and
retrieving neighbours the number of for loops and function calls needs to be
kept at as a minimum, which in turn will allow for faster frame rates. In
Figure 5 you can see a general outline of the whole program.

for eachFluid :
C r e a t e F l u i d P a r t i c l e s ( ) ; // Sect ion 5.2
CreateAndAddFluidToSolver ( ) ;

end

for ea chCo l l i s i onOb j e c t :
C r e a t e C o l l i s i o n P a r t i c l e s ( ) ; // Sect ion 5.2
CreateAndAddCol l i s ionFluidToSolver ( ) ;

end

I n i t i a l i s e S p a t i a l H a s h ( ) ; // Sect ion 5 .5 . 1
In i t i a l i s eAn imat i onCache ( ) ; // Sect ion 5.7

while ( s imu la t ing ) :
ClearAndRef i l lHash ( ) ; // Sect ion 5 .5 . 1
UpdateAcce lerat ion ( ) ; // Sect ion 5.3
UpdatePosit ion ( ) ; // Sect ion 5.4
T e s t C o l l i s i o n s ( ) ; // Sect ion 5.6
UpdateAnimationCache ( ) ; // Sect ion 5.7

Figure 5: This pseudo code shows the high level structure of my program.

Most of the functions are self explanatory and relatively straight forward
in terms of there inner workings (See Section 5 for a full breakdown of there
workings). The first two loops deal with creating fluid objects (static or
actual fluid). The next two function calls set up and initialise both the Spa-
tial Hashing hash table and also the structure that allows for caching of the
simulation. The next loop is where the bulk of the mathematics comes in,
and is where the particle forces are calculated and moved accordingly. These
functions are again explained in further detail in Section 5 but a quick look
is given to the layout of one of the most important functions, UpdateAccel-
eration().
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UpdateAcce lerat ion ( ) :

for eachFluid :
for e a c h F l u i d P a r t i c l e :

GetNeighboursOfCurrentParticleFromHash ( ) ; // Sect ion 5 .5 . 1
CalculateNewDensity ( ) ; // Sect ion 5 .3 . 1
CalculateNewPressure ( ) ; // Sect ion 5 .3 . 2

end
end

for eachFluid :
for e a c h F l u i d P a r t i c l e :

GetNeighboursOfCurrentParticleFromHash ( ) ; // Sect ion 5 .5 . 1
Calcu lateNewViscos i tyForce ( ) ; // Sect ion 5 .3 . 4
CalculateNewPressureForce ( ) ; // Sect ion 5 .3 . 3
CalculateNewSurfaceTensionForce ( ) ; // Sect ion 5 .3 . 5
Calcu lateNewInte faceTens ionForce ( ) ; // Sect ion 5 .3 . 6
CalculateForceFromGravity ( ) ; // Sect ion 5 .3 . 8
UpdateTemperature ( ) ; // Sect ion 5 .3 . 7

end
end

for eachFluid :
for e a c h F l u i d P a r t i c l e :

CalculateSumOfForcesAndSetAccelerat ion ( ) ; // Sect ion 5 .3 .10
end

end

Figure 6: The pseudo code for the Update Acceleration loop where the SPH
Forces are calculated for each particle. Note that the reason the density
and pressure is updated in a seperate loop is because the new density and
pressure needs to be known for all the particles before the other forces can
be calculated.

Figure 6 helps break down the inner workings of the function controlling
all force calculations on the particles. It is important to note that in the
actual program certain optimisations have been made in order to increase
efficiency, but this Figure allows for a clearer view of the inner workings.

Note also how there are two for loops that iterate over the same objects.
The reasons as you will see later are because of dependancies in the second
loop for all the particles to have updated pressures and densities.
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5 Implementation

In this section the implementation of the solver is looked at.

5.1 SPHParticles vs Particles

For a simple particle system each particle object only needs a small number
of parameters. These parameters are acceleration, velocity, position and
mass. With only these parameters and an integration method a very simple
particle system can be created. However, when dealing with fluid particles
each particle needs to contain more information than this. In this paper
inheritance is derived and used from a simple Particle class to create a class
called SPHParticle. This class inherits the basics needed for a particle system
but also includes the attributes seen in Figure 7 . In this paper, the decision
was made to store all these attributes with each particle rather than with each
fluid. This increases memory but allows for a wider variety of fluid effects to
be implemented. For example, when dealing with temperature each particle
of the fluid should have an individual temperature attribute so that diffusion
of heat can occur across an individual fluid and multiple fluids.

5.2 Creating Fluids

For a sophisticated solver, a method that allows for a range of objects to
turn into fluid needs to be implemented. By using Macey (2010)’s Graphic
Library, OBJ objects are able to be imported into the scene. The vertices
that make up this OBJ are then used as positions for the particles that make
up the fluid. Each of these particles are set up to hold the variables in Figure
7 as specified by the user. It is important to note that the OBJ’s that the
user imports should have been filled with points (by using the Points from
Volume SOP in Houdini for example (Inc., 2010)) to allow for a more realistic
fluids to be created.

When these SPHParticles have been created an SPHFluid object is cre-
ated using the array of these particles. Multiple SPHFluid Objects can be
created using this method and an array of these fluid is stored in the SPH-
Solver Object.

Setting up these parameters is discussed in the section on pipeline, Section
6.
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SPHParticle attribute Symbol Stored as Units
Position x ngl::Vector m
Velocity u ngl::Vector m/s
Acceleration a ngl::Vector m/s2

Accumalated Forces f ngl::Vector N/m3

Mass m ngl::Real Kg
Pressure p ngl::Real Pa
Viscosity µ ngl::Real Ns/m2

Temperature T ngl::Real oC
Density ρ ngl::Real Kg/m3

Rest Density ρ0 ngl::Real Kg/m3

Gas Constant k ngl::Real Nm/Kg
Colour Surface Tension cs ngl::Real 1
Colour Interface Tension ci ngl::Real 1
Diffuse Constant c ngl::Real 1
Ideal Gas Constant α ngl::Real 1
Collision Radius r ngl::Real m

Figure 7: The attributes stored with each SPHParticle. Note that the Colli-
sion Radius only applies to static objects and not fluids.

5.2.1 Calculating the mass

One of the most important parameters for the fluid is the mass of each of the
particles. In the final system however you are unable to set this parameter,
the reasons why will be explained now. You will notice that a parameter that
is not stored on a particle but a parameter you are able to set for each fluid
is the Volume. Kelager (2006) uses this Volume, the density of a particle
and the number of particles making up a fluid to calculate the mass of an
individual particle by using equation (5.2.1).

m = ρ
V

n
(5.2.1)

.
Using this method is much more practical than specifying the mass as

it allows the user to get useful results without having to adjust the mass
and calculate this equation themselves. When a fluid is being created this
parameter is easily set as the NGL OBJ class is able to calculate the total
number of vertices (particles) and the density and volume will have been
set by the user already. It is important to note that this equation is only
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calculated once on fluid creation and hence the mass of each particle will
remain constant for the rest of the simulation.

5.3 Calculating and Applying Forces

With an array of fluids the next step is to start to solve the terms of (3.2.1)
for each iteration of the solver, and eventually find the acceleration of each
particle. To do this the SPH approximation equations (3.3.1), (3.3.2) and
(3.3.3) are utilised. For example, for an attribute such as the density the
general attribute A(xi) is substituted for the density attribute ρi. The class
SPHForce is used to implement these equations and perform these calcula-
tions.

When it comes to how the smoothing kernels work and are calculated this
is left to be discussed in detail in Section 5.3.9.

5.3.1 Calculating the Density

In the SPH approximation equations you can see that the density of the
particles is used in each. Therefore it is important that all the particle
densities are updated before solving the other terms of the Navier Stokes
equation. To find the Density there are two popular approaches that can be
used. The first is called the ’density summation’ technique and can be seen in
equation (5.3.2) (Monaghan, 1992). This method works by directly applying
the SPH approximations to the density ρ itself. This method technically
ignores the Navier Stokes method for finding the density, which is where the
second technique comes in. This other technique is called the ’continuity
density’ and as the name suggests its uses the continuity equation when
making SPH approximations, see equation (5.3.1). This uses the derivative
SPH approximation to solve and then needs to be integrated in order to find
the actual density of each particle. There are benefits and disadvantages
of each approach but for the simulation that is presented in this paper the
’density summation’ works just fine (Kelager, 2006).

δρ

δt
= −ρ∇u (5.3.1)

ρ(xi) =
∑
j

mjWdefault(xi − xj, h) (5.3.2)

In this ’density summation’ equation, and also in the other force equa-
tions, j represents all the particles within the smoothing length h of particle
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xi). Finding the particles that make up j is talked about later in the section
on Optimisation, Section 5.5.1.

As mentioned briefly in 5.3 this equation has been derived from using the
SPH equation (3.3.1) and is only affected by mj as the two ρj cancel each
other out.

5.3.2 Calculating the Pressure Per Particle

When calculating the Pressure term of equation (3.2.1) the pressure pi of
every particle needs to be known before solving the force itself. Therefore,
when calculating the new density for each particle its new pressure is also
updated. Desbrun and Gascuel (1996) introduces a modified version of the
ideal gas state equation in order to find the pressure, equation (5.3.3).

pi = k (ρi − ρ0) (5.3.3)

In this equation k is a gas constant and ρ0 is the rest density of the fluid.
This equation can return negative and positive values, which allows for an
attractive or repulsive force that is minimised as the density gets nearer the
rest density. This is the exact nature needed so is perfect for the job.

5.3.3 Calculating the Pressure Force

Knowing the new density and new pressure for each particle allows us to start
solving the specific terms of the Navier Stokes equation (3.2.1). This sections
looks at solving the pressure term to find its corresponding force. Again this
can be done by utilising the SPH attribute equations and in this specific case
equation (3.3.2). This is because the gradient of the pressure field needs to be
found and not just the pressure field. Following the same method as finding
the density (a simple substitution into the SPH approximation equation)
gives us equation (5.3.4).

fpresurei = −
∑
j 6=i

pj
mj

ρj
∇W (xi − xj, h) (5.3.4)

However, using this equation leads to problems. The main problem en-
countered is that the pressure force is not symmetrical. Kelager (2006) ex-
presses this problem nicely and uses the example of looking at only two
particles. Using this equation ’the first particle only uses the pressure at the
second particle to compute its pressure force’ and vice versa for the second
particle. ’Because the pressures at the particles are not equal in general the
pressure force will be assymmetric, and the action-reaction law will not be
conserved’ (Kelager, 2006).
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To fix this problem a method is used from one of the original papers by
Monaghan (1992). In this paper Monaghan introduces the concept that it is
better to rewrite formulae with the density placed inside the operators. This
is sometimes called the second golden rule of SPH and after more mathemat-
ical manipulation a higher accuracy can be obtained on the gradient of our
pressure field using equation (5.3.5).

fpresurei = −ρi
∑
j 6=i

(
pi
p2
i

+
pj
p2
j

)
mj∇Wpressure (xi − xj, h) (5.3.5)

5.3.4 Calculating the Viscosity Force

In the same loop that calculates the pressure force the solver is also able to
calculate and update the viscosity force (equation (3.2.3) for each particle,
and find the force it exerts into the simulation. If the simple SPH approxi-
mation substitution method is used to calculate this term a similiar problem
to the pressure term is encountered, where the forces are assymetric. In this
case Müller et al. (2003) proposes a method that allows for the velocity fields
to be symmetrised, possible due to the fact that the viscosity forces don’t
depend on absolute velocities but velocity differences. The equation that is
used in this paper is equation (5.3.6).

fviscosityi = µ
∑
j 6=i

(uj − ui)
mj

ρj
∇2Wviscosity (xi − xj, h) (5.3.6)

In this equation µ is the viscosity coefficient of the fluid. The higher
this value the more viscous the fluid, and vice versa. The viscosity of a
fluid can be thought of as a fluids resistance to flow. This resistance comes
from internal friction between fluid molecules when a fluid flows, leading to
a decrease in its kinetic energy due to heat loss.

5.3.5 Calculating the Surface Tension Force

Now that the two internal forces have been solved the next step is to look at
solving the external forces. One of these forces, although not strictly part of
the Navier Stokes equation, is the Surface Tension Force (Müller et al., 2003).
This force represents how fluid particles on the surface are attracted towards
the bulk of the particles in the fluid. For viscous fluids such as honey this
force is essential for accurate simulations as honey strongly sticks together as
one and rarely splits into multiple pools of fluid. The desired result is for the
’surface tension force to act in the direction of the inward surface normals
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towards the fluid, where they bind the fluid surface together’ (Kelager, 2006).
This force ’will flatten the surface curvature by minimising the surface area’.
This can be seen best in Figure 8.

Figure 8: This shows the surface tension force f as calculated by looking at
the inward surface normals n of the fluid particles. Figure from (Kelager,
2006)

(Müller et al., 2003) proposes the formula in (5.3.7) to calculate this
Surface force. Equation (5.3.8) is used to calculate n.

f surfacei = −σ ni
‖ni‖

∑
j

mj

ρj
∇2Wdefault (xi − xj, h) (5.3.7)

n (xi) =
∑
j

mj

ρj
∇Wdefault (xi − xj, h) (5.3.8)

In these equations σ is used to represent the tension force, which should
be defined depending on the two surfaces being tested between, ie. honey
in water will have a different surface tension to honey in air. Also, what is
important to watch out for here is the fact this equation involves dividing by
the length of a vector ‖ni‖. As particles get closer together this tends towards
zero and will start introducing instability into the system, causing inaccurate
simulations. To control this a surface tension threshold β is defined that says
if ‖ni‖ ≤ β then set the f surfacei = 0.

There are similiarites here to the pressure and viscosity force equations
and you can see that the default smoothing kernel is used when calculating
the ’influence’ from neighbouring particles. This formula is implemented in
a similar light to the pressure and viscosity formula’s.
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5.3.6 Calculating the Interface Tension Force

With the introduction of multiple fluids to the simulation it is important to
also bear in mind the force between two fluids. In the real world, fluids either
mix or don’t mix depending on their polarity. Müller et al. (2005) uses this
fact to design an Interface tension force that describes how multiple fluids
behave when they coerce with each other. This force calculation is almost
identical to the surface tension force except for the introduction of one new
variable ci, as you can see in equation (5.3.9).

f interfacei = −σ ni
‖ni‖

∑
j

mj

ρj
∇2ciWdefault (xi − xj, h) (5.3.9)

This new variable controls whether the fluid is polar or non-polar and
hence determines whether two fluids mix or not. Two polar fluids will mix
together so taking into account the negative sign at the start of equation
(5.3.9) all polar fluids ci are set with the value of −0.5. This means that
positive force’s will be returned allowing the two fluids to mix. On the
contrary, a polar and non-polar fluid will not mix so a non-polar fluids colour
field ci is set to 0.5 in order for a repulsive force between these two fluids.
Note that the normal ni is calculated in the same way using (5.3.8).

5.3.7 Adding Temperature

A very basic but effective temperature solver is also implemented in this
project. Müller et al. (2005) presents a method that uses the SPH approx-
imations and the Ideal Gas Law. This method calculates the temperature
change rate using the particles temperature value and the Gradient SPH ap-
proximation, as seen in equation (5.3.10). The reasons for being able to do
this is because of equation (5.3.11), stating how an attribute evolves due to
diffusion, with the attribute in our case being temperature. This equation
is solved as before by using the Gradient SPH approximation in equation
(5.3.10).

dT

dt
= c

∑
j

mj
Tj − Ti
ρj

∇2Wdefault (xi − xj, h) (5.3.10)

dA

dt
= c∇2A (5.3.11)

The constant c in equation (5.3.10) represents a Diffuse constant that
allows for fluids that transfer heat differently. A in equation (5.3.11) simply
represents any attribute.
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Having the rate of change for the temperature, the new temperature is
calculated for the particle with a single integration using a simple Euler
Integration step. Müller et al. (2005) then uses the Ideal Gas Law with a
Ideal Gas Constant α to produce a new rest density for the particle as in
equation (5.3.12).

ρ0 ∼
1

V
∼ α

T
(5.3.12)

This means that as the temperature increases the rest density decreases,
just as in nature. For example, heating water decreases the rest density
making it turn from liquid to gas.

5.3.8 Calculating the Gravity Force

The last force that needing to be calculated is the force of gravity. To calcu-
late this force is trivial using Newtons Second Law of Motion giving formula
(5.3.13).

f gravityi = ρig (5.3.13)

5.3.9 Smoothing Kernels

For all the force equations just talked about a variety of smoothing kernel
functions with the form W (xi − xj, h) are used. This section looks at the
reason and importance for these functions.

These smoothing kernel functions are the basis behind why fluid can be
simulated using particles and the approximation methods. The principle
behind them is a function that determines how much ’influence’ a particle
has on the other particle being tested against. These functions use a distance
refered to as h and is called the smoothing length. If the distance between two
particles falls within this smoothing length then a non-zero value is returned
from the smoothing function. There are specific rules that must be followed
when designing these functions in order to have a useable function for SPH.
These rules where first introduced by Monaghan (1992) and are represented
in equations (5.3.14), (5.3.15) and (5.3.16). In the following smoothing kernel
functions r is used to represent the distance between particles xi − xj.∫

Ω

W (r, h) dr = 1 (5.3.14)

W (r, h) ≥ 0 (5.3.15)
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W (r, h) dr = W (−r, h) (5.3.16)

Equation (5.3.14) ensures that the unit integral maxima and minima are
not enhanced, and that the kernel must be normalised. Equation (5.3.15)
ensures that only positive results are returned and that the smoothing kernel
is averaging function (Koshizuka et al., 1995). The last equation that needs
to be met is equation (5.3.16). This equation ensures that the function is
even, which is important as it ensures that ’rotational symmetry is enforced.
This is useful to ensure invariance under rotations of the coordinate system.

The first SPH golden rule (Monaghan, 1992) says that if a new interpra-
tion of an SPH equation is to be found then it is best to assume the kernel
is a Gaussian. However, as seen later, the Gaussian does not always give the
best results and more accurate proposals have been made.

Bearing these 3 essential rules in mind, a collection of accurate smoothing
kernel functions have been proposed which are looked at now.

The first smoothing function that is looked at is Wdefault (xi − xj, h).
The equations for this (including the gradient and laplacian) are equations
(5.3.17), (5.3.18) and (5.3.19). This kernel function was first used and pro-
posed by Müller et al. (2003) and is also know as the 6th degree polynomial
kernel.

Wdefault (r, h) =
315

64πh9

{
(h2 − ‖r‖2)

3
0 ≤ ‖r‖ ≤ h

0 ‖r‖ > h
(5.3.17)

∇Wdefault (r, h) = − 945

32πh9
r
(
h2 − ‖r‖2

)2
(5.3.18)

∇2Wdefault (r, h) = − 945

32πh9
r
(
h2 − ‖r‖2

) (
3h2 − 7‖r‖2

)
(5.3.19)

A noticeable quality of the default kernel is its similiarity to the Gaussian,
which helps stick to the first Golden Rule of SPH. This can be seen clearly
in Figure 9 and makes it the ideal kernel function to use when calculating
the density, and also the surface and interface tension forces.

For the density for example, this simple default kernel allows for particles
that are closer to the particle being tested to have more influence the closer
they are, just as you would expect.
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Figure 9: The Default Kernel in one dimension, with its Gradient and Lapla-
cian. h is set to 1. Notice how each function tends to zero as it nears h (1 in
this case). This makes sense as it says that if a particle is further than the
smoothing length then the function returns 0 and has no ’influence’ on the
particle being tested. Figure from (Kelager, 2006)

However, when dealing with calculating the pressure and viscosity term
problems arise when using this kernel. Desbrun and Gascuel (1996) talks
about the specific problem for the pressure term. When calculating the
pressure term the Gradient of the Smoothing Kernel needs to be used seen
in equation (5.3.18). The problem occurs when the distance between particles
tends towards zero. As you can see in figure 9 the gradient function tends
towards zero as the distance between particles tends towards zero, lim‖r‖→0 =
0. This means that in high pressure regions (where there is a high density of
particles) instead of being repulsed they cluster. Müller et al. (2003) solves
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this problem with the introduction a new specific smoothing kernel for the
pressure which can be seen in equations (5.3.20), (5.3.21), (5.3.22) and also
Figure 10.

Wpressure (r, h) =
15

πh6

{
(h− ‖r‖)3 0 ≤ ‖r‖ ≤ h
0 ‖r‖ > h

(5.3.20)

∇Wpressure (r, h) = − 45

πh6

r

‖r‖
(h− ‖r‖)2 (5.3.21)

∇2Wpressure (r, h) = − 90

πh6

1

‖r‖
(h− ‖r‖) (h− 2‖r‖) (5.3.22)

Figure 10: The Kernel used for the Pressure term. It is important to note
that now the Gradient of the kernel function no longer tends towards zero,
which helps avoid clustering. Figure from (Kelager, 2006)
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Now when two particles are very close together the gradient of the kernel
function shows that lim‖r‖→0 = 45

πh6 . This ensures that clustering is avoided
by a repulsion force at zero, allowing for a better representation of how pres-
sure affects the fluid particles.

The final smoothing kernel function that is dealt with is the one used
for the viscosity term. Again, the default kernel is not suitable for our
requirements so a new kernel needs to be designed. In this case Müller
et al. (2003) proposes another kernel function, as seen in equations (5.3.23),
(5.3.24), (5.3.25).

Wvicosity (r, h) =
15

2πh3

{
−‖r‖

3

2h3 + ‖r‖2
h2 + h

2‖r‖ − 1 0 ≤ ‖r‖ ≤ h

0 ‖r‖ > h
(5.3.23)

∇Wvicosity (r, h) =
15

2πh3
r

(
−3‖r‖

2h3
+

2

h2
− h

2‖r‖3

)
(5.3.24)

∇2Wvicosity (r, h) =
45

πh6
r (h− ‖r‖) (5.3.25)

The important function here is the Laplacian of the function as this is
what is used when finding the viscosity term. As you can see in equation
(5.3.25) and Figure 11 the function will always return a positive value. This
is important as now the viscosity only acts as a damping force. If negative
values are returned then energy is introduced into the fluid, which will cause
inaccuracy and instability. For this reason both the default kernels and
pressure kernels are not useable due to the fact that there Laplacian functions
return negative values as well as positive values.
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Figure 11: The Viscosity Kernel function. The important feature of this
is that the Laplacian function is always positive meaning that the viscosity
force is only ever a damping force and does not introduce energy into the
fluid. Neither the default or pressure kernel have this feature, and hence why
this kernel is used. Figure from (Kelager, 2006)
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5.3.10 Calculating Acceleration

After running through both loops in Figure 6 for all particles a selection
of forces will have been found acting on each particle. From this the new
acceleration is able to be calculated for each particle by using the formula
(5.3.26).

a =
du

dt
=

F

ρ
(5.3.26)

This formula follows Newton’s second law of motion and is a re-arrangement
of the Navier Stokes equation found in equation (3.2.1). F represents the sum
of all the forces, ie, the sum of the viscosity, pressure, surface tension and in-
terface tension forces. The acceleration is updated like this for every particle
in our scene.

5.4 Integration Methods

Knowing the new acceleration for each particle allows us to look at integrating
this to find the new velocity and then the new position for each particle. In
this paper two method’s have been implemented, the traditional explicit
Euler Method and the implicit Leap Frog Method.

5.4.1 Euler Method

The explicit Euler method is one of the most simple integration methods
but unfortunately it is also the most unstable. Equations (5.4.1) and (5.4.2)
show the method.

u = u + adt (5.4.1)

x = x + udt (5.4.2)

In these equations x, u and a are the position, velocity and acceleration
respectively. The problem with this method is that very small timesteps dt
need to be used for the simulation to be accurate and stable.

5.4.2 Leap Frog Method

An alternative method to using Euler, and a popular method for SPH simu-
lations (Paiva et al., 2009), is to use the Leap Frog Scheme. The reason for
this name relates to the nature of how the method works, with the velocities
leaping to future timesteps to find current positions. The steps to get from

28



the acceleration to the new position can be seen in equations (5.4.3) and
(5.4.4).

ut+ 1
2

∆t = ut− 1
2

∆t + ∆tat (5.4.3)

xt+∆t = xt + ∆tut+ 1
2

∆t (5.4.4)

This method works by using future half-step velocities to find a more
accurate and stable value for the position.

As this is an implicit method a specific formula is needed to find the first
velocity at a half timestep. This is found using equation (5.4.5).

u− 1
2

∆t = u0 −
1

2
∆ta0 (5.4.5)

As this method only calculates the velocities at half-steps the actual ve-
locity at the timesteps is not known. If it is decided that this velocity needs
to be known at whole time-steps then the equation (5.4.6) can be used.

ut ≈
ut− 1

2
∆t + ut+ 1

2
∆t

2
(5.4.6)

This method proves to be much more accurate and stable at larger time-
steps than Euler. Also with its relative simplicity it is chosen to use this over
Euler in the majority of cases.

5.5 Optimisations

When dealing with a large number of fluid particles, especially when intro-
ducing multiple fluids, the simulation can be very inefficient if optimisations
are not made. The most important optimisation is how to find the array
of neighbours j of a particle. Without a method to find neighbours all par-
ticles need to be checked against every other particle, which is of course
very efficient. A naive estimate at the time complexity of how fast an SPH
Simulation is using this method is O (n2)) (Kelager, 2006). Müller et al.
(2003) suggests a grid based method, which even though increases efficiency
it constrains the simulation to a specific area. One of the benefits of using a
Langrangian method for Fluid Simulation is this lack of a bounding volume
so using this grid based method is not an advantage to us. Instead a method
is used known as spatial hashing introduced by Teschner et al. (2003), which
decreases the time complexity to O (nm)) where m is the average number of
neighbours found. The more uniform the distribution of particles the lower
m will be, and the faster the SPH simulation will run.
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5.5.1 Spatial Hashing

Spatial Hashing falls under the category of fast NNS (Nearest Neighbour
Search) algorithms and in theory is bound by O (1) as discussed earlier. The
basic idea behind how Spatial Hashing works is similiar to that of a normal
hash table. Positions in a scene are hashed to create a key, which specifies its
position in the hash table. The idea is that positions close to each other are
hashed to the same bucket in the hash table. Therefore the theory suggests
that to find the neighbours of a particle at a certain position they can be
looked up at its hashed position in the table and in the same bucket should
be its neighbours. The implementation of this is now looked at.

The first thing that is looked at is how to take a particles location and
create a hash key from it. The complexity behind this algorithm is highly
dependant on how well this hash function generates unique keys, and how
fast keys are generated (Kelager, 2006). The importance of having unique
keys is to avoid having particles at significantly different locations hashing
to the same cell in the hash table.

Teschner et al. (2003) recognises this problem and has proposed the hash
function that can be seen in equation (5.5.1)

hash (x̂) = (x̂xp1 xor x̂yp2 xor x̂zp3) mod nH (5.5.1)

At first this funtion looks quite complex but when each part is broken
down it is easier to understand. The first thing to note is the definiton of x̂.
This is a discretising function that takes a vector with floating point values
and creates a vector with integer values based on cell size l. See equation
(5.5.2).

x̂ (x) = (bxx/lc, bxy/lc, bxz/lc)T (5.5.2)

It is useful to note that here that our cell size l can be set to the smoothing
length h as particles that lie outside of the smoothing length don’t affect the
force calculation.

l = h (5.5.3)

Another unknown in equation (5.5.1) is p1, p2, p3. These are just large
prime numbers and are the same values used by Kelager (2006) and can be
found in equations (5.5.4), (5.5.5) and (5.5.6).

p1 = 73, 856, 093 (5.5.4)
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p1 = 19, 349, 663 (5.5.5)

p1 = 83, 492, 791 (5.5.6)

The final unknown in equation (5.5.1) is nH . This is the size of the table
and is calculated this using equation (5.5.7) (Teschner et al., 2003).

nH = prime(2n) (5.5.7)

In this equation n is the total number of particles in our scene and
prime(x) is a simple function that returns the next prime after x.

Knowing how to take a particle position and run it through our hash
function, the next step is to fill a hash style table for all the hashed particles.
In this project the Standard Template Library’s multimap is used. This is
perfect for the job as it allows for multiple objects to be hashed to the same
cell. This is important as all the neighbours need to be found and not just
one neighbour.

Before neighbours of a specific particle can be searched for the hash table
first needs to be filled with all the particles. For every particle the hash table
is filled using equation (5.5.8)

hash table[hash (x̂ (xi))] = Particlei (5.5.8)

Having filled the table with all our particles the neighbour particles at any
location can be found. A simple way to do this would be take the location of
the particle of which you want to find neighbours and simply run it through
the hash function and return all the particles that hash to the same cell.
However problems occur here as not all neighbours of a particle will get
hashed to the same cell. Therefore this algorithm iterates over positions of
a bounding area, returning neighbours of all the hashed iterated positions,
and finally double checking which of these neighbours is actually a neighbour
of our query particle. Equation (5.5.9) gives us the two corner points of our
bounding area (Kelager, 2006).

BBmin = x̂
(
xQ − (h, h, h)2) , BBmax = x̂

(
xQ + (h, h, h)2) (5.5.9)

The symbol xQ represents our query particle, ie. the particle that neigh-
bours need to found for. BBmin and BBmax are the two corner points of the
bounding area. The next step is to iterate over this bounding area. This can
be hard to get your head around so an example of this iteration function can
be seen in the Appendix with Figure 23
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Each iteration a position posD is used which is used to build up a dynamic
list L of all the possible neighbour particles, (5.5.10).

L = hash table[hash (posD)] (5.5.10)

As mentioned earlier, the particles that fill L are not all neccessarily
neighbours so a check is made using equation (5.5.11) to remove neighbours
that don’t lie in the smoothing length of the query particle.

‖xQ − xj‖ ≤ h (5.5.11)

5.5.2 Particle Velocity Correction

One problem that is occasionally faced when implementing SPH simulations
is particle interpenetration problems. To solve this Monaghan (1989a) pro-
posed a technique called XSPH. This method corrects the velocity for each
particle by computing an average velocity of the nieghbouring particles (Paiva
et al., 2009).

vi = vi + ε
∑
j

2mj

ρi + ρj
(vj − vi)Wdefault (xi − xj, h) (5.5.12)

The variable ε is just a global parameter that determines how much cor-
rection you want to apply. Pushing this value too high will take away from
the physical correctness of the simulation. The effect achieved is that of giv-
ing the particles a more orderly flow especially when dealing with a weakly
compressible flow (Paiva et al., 2009). This algorithm is performed between
integrating the acceleration and integrating the velocity.

5.5.3 Artificial Viscosity

Another problem that can be faced is when the accelerations being produced
are very high. An example of when this can happen could be when a fluid is
compressed by a moving static object, increasing the pressure considerably,
which in turn will mean a high acceleration away from the area of high
pressure. To help tackle this problem an artificial viscosity can be introduced.
Monaghan (1992) first presented this technique and uses equations (5.5.13),
(5.5.14) and (5.5.15).

dui
dt

=
dui
dt
−
∑
j

mj

∏
ij

∇iWdefault (xi − xj, h) (5.5.13)
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∏
ij

=

{
−2αµijc

ρi+ρj
, (ui − uj) · (xi − xj) < 0

0, (ui − uj) · (xi − xj) ≥ 0
(5.5.14)

µij =
h (ui − uj) · (xi − xj)

| (xi − xj) |2 + 0.001h2
(5.5.15)

In this paper the same method is implemented as Monaghan (1992). In
equation (5.5.14) α represents a bulk viscosity that is defined by the user
and c represents the speed of sound. The speed of sound is used as this
represents the fastest velocity of a wave propagation in that medium (Paiva
et al., 2009).

This formula is performed after the acceleration has been calculated, us-
ing the formula in Section 5.3.10, and it directly modifies this acceleration,
helping to avoid numerical instabilites by damping the oscillating velocities.

5.5.4 Storage of Fluids

Another potential bottle-neck for the program comes when looking at how the
SPHFluids are stored and passed about. For all calculations, only references
are passed to functions needing fluids, which allows for a huge amount of time
to be saved when compared to making copies of the Fluid on each function
call.

5.6 Collision Detection

This paper also implements a simple interaction of fluids with passive rigid
bodies. To do this the passive rigid body is simply represented by points
with volumes (spheres) in the same way that Fluid Particles are represented,
and these particles are even stored as SPHParticles and SPHFluids. These
particles are treated very similiarily to Fluid Particles except that forces
do not act on them. A Spatial Hash is performed on all these collision
particles, in the same way as with the fluid particles. After finding the
new position of all the new fluid particles each of these is tested against
its collision neighours(found by querying the collision spatial hash). A very
simple collision repsonse is implemented which just multiples the velocity of
the particle by a negative scalar 0 ≤ λ ≤ 1 and moves the particle to the
surface of the collision object to avoid inter-penetration. If the passive body
is moving at constant velocity this is also taken into account when calculating
the velocity change. A similar method is used by Steele et al. (2004).
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5.6.1 Calculating Collisions

To calculate the collisions a simple sphere sphere intersection method is used.
When setting up passive collision objects the user needs to set up a collision
radius. This radius is then used when testing to see whether a fluid particle
has penetrated its radius. To do this the squared distance (saves on a square
root operation) between the particle and collision particle is calculated. If
this distance is greater than the square of the collision radius then there is
no collision. However, if this distance is less then there is a pentration. If
this is the case then the penetrating particles velocity is made negative and
multiplied by the bounce factor and the particle is moved to the collision
surface. To move the particle simply involves finding the perentage distance
that the particle has penetrated the collision radius by and simply moving it
back this distance along its trajectory vector.

5.7 Exporting the simulation

When it comes to visualising the fluid after the simulation has run there
is a multitude of methods available. A very common method to use is a
combination of Point Splatting and Marching Cube methods (Müller et al.,
2003). However, as my main interest is in the simulation itself an existing tool
with this functionality is used. In this case Houdini’s particle fluid surface
is used (Inc., 2010). However, the fact that this is an external application
data needs to be exported from the C++ and openGL application to be able
to be read and used in Houdini. To do this an animation cache is used and
houdini’s native file format .geo.

5.7.1 Animation Cache

There are two options that arose when deciding how to export data from the
program. For both methods, the particle position and velocity need to be
exported (for speed stretching in Houdini), for each update. The first option
on how to do this is is to write to a file every frame. The problem with this is
that this slows down the simulation considerably (as writing to files is a slow
operation) especially when dealing with a large number of particles. Another
problem is that the simulation may not be of a desirable quality so lots of
files would be created that won’t end being used.

The second option is the use of an animation cache. Every update an
array of fluid positions and velocities is built. This gets added to an animation
array containing all the previous arrays so far. When the user is happy with
the simulation they can then press a key that will write all of this cache to
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individual files (one file per update). This ensures that the simulation is not
slowed down by the expensive file writing operations and also that un-wanted
simulation data is not written.

In this solver the user gets the option of either method, as the first is very
useful for heavy simulations where the computer may run out of memory
before the simulation is finished and losing all the cached data if the second
option is used. A flow chart of how this works can be seen in Figure 12.

Figure 12: Flowchart representing the caching and exporting process.

5.7.2 Houdini Geo Format

When the users decides to write the cache to a file this needs to be in the
.geo format which is a readable file format native to houdini. This format
is particularly useful as it allows for multiple attributes to be written to a
single file. For more information on the .geo format please see Inc. (2010).

5.8 Rendering

With the simulation now stored in a sequence of .geo files these can be
read into houdini using a file SOP. From this point (and velocity) data a
’particle fluid surface’ SOP can be attached that creates an implicit surface
representing the fluid. The surface size represented by each particle can be
controlled by using an attribute called pscale. With only these 3 nodes an
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accurate representation of the fluid being simulated is created. As seen later
in Section 6 this is done automatically with Python Script.
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6 Pipeline and usability

As mentioned in 4 the solver that is created needs to be solely controlled
from Houdini. The methods implemented to do this will be talked about in
the following sections.

6.1 Fluid Digital Asset

As the solver is dependant on these SPHFluid objects an important feature
of the pipeline is to allow the user to easily set up multiple fluids in Houdini.
Rather than pushing all the fluids into a single node in Houdini, instead a
SPHFluid Digital Asset is created.

Figure 13: Houdini Custom Digital Asset to control the Fluids.

As you can see in Figure 13 this asset allows for a SPHFluid node to
be created with a whole range of parameters to control its behaviour. A
toggle switch allows for the fluid to be defined as a static collison object
aswell, which removes the unneccesary parameters such as the viscosity and
pressure attribues. An important feature of this asset is that multiple fluids
can be created quickly, and as seen in the next section, easily plugged into a
Solver Asset.
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6.1.1 OBJ Loading

In this asset, the fluid that to be created is defined by an OBJ file that needs
to be pre-created by the user. For extra clarification on what the fluid will
look like when an OBJ is loaded into the asset a Geometry SOP is created
with a file node referencing the OBJ inside. This file node is linked to a Copy
SOP and Sphere, which pushes a sphere to each particle of the fluid, allowing
the user to see more clearly what the fluid will look like. This is done with
the use of the HOM and python script, see section 6.3.

6.2 Fluid Solver Digital Asset

Given a number of Fluid Assets, a Solver Asset needs to be created in order
to bring them together. This asset needs to control solver specific parameters
for the running of the program, the running of the external program and also
returning the results back to Houdini. In order to do this a SPHFluidSim
asset was created. Inside this asset there are a number of parameters that
need to be set to control the workings of the solver itself (such as the location
of the C++ binary), see Figure 15 for an example of the asset itself and Figure
14 for how it all fits together.

Figure 14: How the two assets are joined in Houdini

With these parameters set, and the fluid assets plugged into the solver,
the external solver now needs to be run. This means the information in the
assets needs to be transfered from them to the external c++ application
somehow. To do this the HOM and python script is used.

6.3 HOM and Python script

The HOM (Houdini Object Model) allows for execution of Houdini func-
tionality using Python script. Inside the Digital Assets in Houdini there is
a script tab, which allows for functions to be written that are executed on
callback scripts when, for example, buttons inside the asset are pressed. An
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Figure 15: Houdini Custom Digital Asset to control the Solver.

example of this was mentioned earlier, being creating guide geometry when
the user chooses an OBJ in the Fluid Asset. The more important use of
these script functions come when transfering data from Houdini to the solver
application. The method used in this project involves writing the parameter
information to an XML file, which can then be read into the C++ Solver
application.

6.3.1 XML Configuration Files

6.3.1.1 Writing When looking at getting information from Houdini to a
C++ application and back again there is a large number of possible methods.
However, the one used in this paper involves writing and reading custom
XML files.

Inside the Fluid Solver digital asset there is a button which is called
’Run Simulation’. When this button is pressed a script function inside the
asset is run. The first thing that this script does is read through all the
parameters in the fluid solver SOP and write these parameters to an XML
file under <solver> and <spatialhash> tags. For general layout of the XML
files please see Figure 22 in the Appendix.

After it has done this it needs to be able to write the fluid parameters
to the file. To do this, for each fluid that is plugged into the solver asset
it creates a <fluid> XML block containing all the parameters in the Fluid
asset.

39



After this has been done all the parameters that the C++ application
needs to run are contained in a human readable, easy to parse, file format.

After this XML file has been created, the C++ application is run, with
the corresponding XML file name passed as an argument, by a simple python
command inside the function. This application runs inside a seperate QT
window on top of Houdini. Its important to note that even though the user
specifies the save location of this file, they never have to interact with it in
anyway. It is however the best reference to what parameters a simulation
was run with.

6.3.1.2 Parsing The other end of this parameter pipeline involves the
C++ application parsing the newly created XML file inside the application,
setting up the solver, the spatial hash and the fluids accordingly. This task is
relatively trivial due to the XML tags and a collection of if statements tests
lines of the file for these tags and sets parameters accordingly.

6.4 Reloading Saved Simulations

During the running of the external C++ application the user has the op-
portunity to press a button inside the QT Window to save their simulation.
When they do this the program writes the simulation so far to a collection
of geo files, see Section 5.7.1. As the application is run from the python
script inside the fluid solver asset, when it exits it jumps back to this func-
tion. Before this function finishes, for extra help to the user any simulation
data that has just been written gets brought back into houdini by creating
a Simulated Geometry SOP. Inside this SOP contains each fluid as a file
node, a createAttribute node (to add the density parameter pscale) and a
particle fluid surface node, with metaball rendering set, to give the user a
true representation of what the simulated fluid looks like.

After this the user can either tweak the current settings of the simulated
fluid or re-run the simulation with a whole new range of settings.
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7 Results and Analysis

This section looks at examples of some of the results achieved from the solver,
along with an analysis on certain features. It also looks at some problems
that were faced and solutions to resolve them.

7.1 Example Simulations

Below is a quick look at some of varying results that can be achieved from
this solver. It is important to note here that due to the solution found
being the correct pyhsical solution, too much movement in any parameter
will cause instabilities in the solver. These examples looked at real world
values of different fluids and set the parameters accordingly. Please see the
accompanying videos to this report for the true effect of the results.

Figure 16: Passive Body and Fluid collision. 40K Particles with medium
viscosity (5000) and medium surface tension (500). Model From Ritchie
Moore.

In Figure 16 you can see the results achieved when firing a passive rigid
body body through a fluid . The passive body forces its way through the
fluid causing a hole to be created straight through it. As it leaves the fluid it
creates a suitable trail of fluid particles as it would in reality. An interesting
effect is how the exit wound is much larger than the entry wound just like in
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reality. By representing the passive body in the same way as the fluid this
way an easy result to achieve. This figure also represents the ease of creating
a fluid from any piece of geometry aslong as it can be saved into an .obj
format.

Figure 17: Multiple Fluid Collision. Same polarity fluids mixing together
after a drop. Total particle approximately 250K.

The example in Figure 17 looks at the use of multiple fluids in a scene.
A large number of particles were used in able to correctly represent the fluid
over a large surface area. As you can see in the figure, the two fluids drop and
mix together, causing waves and eruptions as they collide. An almost vortex
like motion is created with waves crashing against the bounding area. In the
video of this simulation, it is easier to see a range of different sized waves
created and not just the large ones. This is due to the very high number of
particles used, allowing for finer detail to be picked up and simulated.

Figure 18 shows a similiar result but the fluid converges to a single swirling
splash in the centre of the bounding area. The results achieved in this ex-
ample start to show closer resemblance to the behaviour of real fluid.

The results in Figure 19 show how the tool created can be used inside a
production. This particle man needed to be blown away and destroyed at the
end of Joseph Long’s (MADE) effects piece. By just using his OBJ, multiple
effects were achieved very quickly allowing the artist to keep tweaking until
a perfect simulation was found.

Other examples can also be seen with the accompanying video’s, including
a look at changing the viscosity of the fluid and also adding temperature.
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Figure 18: Multiple Fluid Collision. Same polarity fluids mixing together
after a drop. Total particle approximately 250K.

Figure 19: Integration to Real Scene. This is a model by Joseph Long turned
into a particle fluid for a dramatic ending to his final effects piece. In both
examples collision objects are used to blow holes in the particle man.
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7.2 Efficiency

It is hard to quantify the efficiency of this solver due to many parameters
controlling simulation time. The most prominent of these parameters is the
smoothing length h, the iteration step used in the Spatial Hash and the
number of particles. These all directly relate to finding neighbours that then
affects how quickly the forces are calculated for each particle. Graph 20 takes
a look at how three methods that are the most computationally expensive in
the solver. These occur each iteration and are filling the hash table, retrieving
neighbours from the hash table and calculating the force equations for all the
particles.

Figure 20: Graph comparing the efficiency of the three most computationally
expensive parts of the solver.

In this table you can clearly see that the biggest bottle-neck is when re-
trieving neighbours. When looked at in more detail it becomes clear that
the most expensive operation is creating the key from each particles loca-
tion. Filling the hash table uses this operation but only once per particle.
However, when searching for neighbours this function is used multiple times
when iterating across the bounding area, and this occurs for each particle.
Obviously, when the smoothing length is increased there are more neighbour
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particles so this operation is used more often decreasing the efficiency even
further.

This CreateKey() function, although already optimised, is not a computer
friendly function. It uses a combination of modulus and floor operations
that are expensive operations. Attempts were made at optimising the floor
function but different methods proved no quicker than the standard C++
operator.

Another test was run to prove that the Spatial Hashing increased perfor-
mance compared to a Brute Force method. For this, the same 8000 particle
example as above was run. Obviously the neighbour methods are now void
but the force calculation took a staggering 40000ms (approximate average)
to just compute 1 iteration with the same smoothing length. This clearly
proves the efficiency increase of using the Spatial Hashing.

7.3 Special Features

When implementing this solver, a new feature was discovered. As mentioned
in the implementation, to correctly implement and solve the Navier Stokes
equation (3.2.1) the individual pressure’s of each particle needs to be up-
dated before the viscosity and pressure force terms can be solved. Using
this method gives satisfying results especially for purposes relating to accu-
rate CFD simulations. However, the problem with these simulations, even
though physically correct, is that they are relatively boring for visual effects.
Instead, in this project a technique was discovered to allow for more exciting
simulations with crashing waves.

Instead of calculating all the particle pressure’s before the force loop the
pressure is updated as and when it is needed to solve the pressure term.
Doing this for the density aswell, increases the efficiency of the solver, by
removing a whole for loop iterating over all the fluids. In pseudo-code terms
what this means is that the first loop in Figure 6 is moved inside the second
loop. The most important aspect is the new visual result that is achieved.
Fluids now cause crashing waves when they meet each other, with some spec-
tacular effects achieved, see the comparison in Figure 21.

The reason for the new effect is relatively simple. When solving the pres-
sure term, the density and pressure values for the neighbouring particles are
actually the values from the previous iteration. By using these values, shifts
in the pressure field are created, exaggerating the pressure force between
low and high density area’s. This exaggeration accentuates the flow of the

45



Figure 21: Comparison of Correct Navier Stokes solution (left) and new
method (right). The correct solution has settled long before the new method,
with the new method crashing colliding parts of the fluids together. These
images have exactly the same parameters and the only difference is the solu-
tion used to solve Navier Stokes. Both taken at frame 213 of the simulation.

fluid causing more vigourous movement producing more pronounced wave
crashes. This effect can almost be compared to vigourous ocean movement
rather than fixed fluid simulations. The equation in (7.3.1) is the newly de-
signed equation to solve the pressure term. In this equation the values from
the previous iteration are specified by j − 1.

fpresurei = −ρi
∑
j 6=i

(
pi
p2
i

+
pj−1

p2
j−1

)
mj∇Wpressure (xi − xj, h) (7.3.1)

This effect really boosts the visual performance of the solver, allowing
for more spectacular results to be achieved, more efficiently than before and
without extra force calculations. To achieve this affect inside Houdini would
take a lot of work and experience in particle fluids (if possible at all) compared
to a simple click of a button inside this solver. The user can control whether
or not to simulate the forces using the physically correct solution or this new
solution, labelled ’Swirly Pressure’.

7.4 Visual accuracy and impact

As mentioned briefly before, this project falls between true physically correct
CFD simulations and non-physically correct fluid simulations. For fluids such
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as water, the true solution to the Navier Stokes equation (3.2.1) can be used
and the results are relatively convincing, although lacking in certain areas
compared to advanced CFD sims. This also holds true for viscous materi-
als such as honey but problems do arise here when dealing with very high
viscosity fluids, as the viscosity force will start to introduce energy into the
scene, causing huge instabilties. However, using the new technique presented
in Section 7.3 some spectacular visual results can be achieved. In particular,
the new crashing waves add something rarely seen in previous particle fluid
simulations, and there exciting nature make them fit right at home in a visual
effects sense (where accuracy is not as important as the visual result). The
range of effects that this solver can achieve is still relatively undiscovered
and in the hands of an effects artist, some even more stunning results could
be seen.

7.5 Known Issues

Even with the wide range of successful results achieved there are still a num-
ber of issues that this solver presents that need to be taken into account.

7.5.1 Timestep

Choosing the correct timestep is an essential process in getting a visually
effective result from this solver. Using Euler’s method for integration is
completely out of the question, as with it being a low order method the
timestep needs to be very low to achieve a result with no instability. Even
with the higher order Leap Frog Method, simulations with a high gas constant
and viscosity need quite a small timestep (around 0.004) to achieve results
that are stable. With the optimisation methods that are implemented this
proves to be less of a problem as each step is relatively efficient but preferably
a timestep of around 0.01 would be used. Paiva et al. (2009) does approach
this problem by using an adaptive timestep, which may solve some of the
problems. As this isn’t implemented though the best the user can do is run
the simulation for a few frames and check its stability, as most simulations
will be most unstable at the start.

7.5.2 Smoothing Length

Choosing the correct smoothing length h is also an important process to
achieve results that look correct. If this length is too small, the number of
neighbours of each particle is too few and the fluid will generally form 1 layer
rather than resting on itself. Issues may also arise where particles get really
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close to one another and as soon as they breach the smoothing length they
are vigourously projected away, causing a simulation that looks like the fluid
is boiling.

Choosing a value for h that is too high also causes big problems. The
problem occurs that the neighbour particles close to the particle being tested
provide less of an influence on that particle than they should as the smoothing
kernel has been stretched over a larger distance. Kelager (2006) provides a
temporary solution to this by specifiying an average number of particles s
that the kernel should support, see equation (7.5.1).

h =
3

√
3V s

4πn
(7.5.1)

This however does not really solve the problem as s still needs to be found
experimentally. This is almost as much guess work as finding the smoothing
length in the first place so in this project it is left to the user to tweak the
smoothing length until a suitable result is found.
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8 Conclusion

The aim of this study was to design and implement a 3D Particle Fluid Solver
that correctly solved the Navier Stokes equations.

In Section 4 a number of criteria were set that this project was designed
to meet.

8.1 Multiple Fluid Criteria

The first of these was that multiple fluids should be able to be simulated in
the same scene. In this project this criteria is definitely met and examples
can be seen in section 7.1.

Multiple fluids are correctly simulated individually and interact accord-
ingly, updating all forces and even fluid/fluid forces such as Surface Interface
Tension. With the Spatial Hashing technique this fluid/fluid interaction is
very efficient with multiple fluids that are far away not being tested against
each other until they get closer together.

8.2 Extendable Criteria

The second of the criteria’s that needed to be met was that the project
and framework needed to be easily extendable. This is proven to be met
by looking at the number of parameters and huge range of effects that can
be achieved. In the SPHForce class you are able to specify whether certain
forces are to be calculated or not such as the Temperature force, allowing
for simulations to be optimised depending on the user needs. As you can see
from the video’s or some of the images a very wide range of effects can be
achieved due to the large number of customisable parameters, ranging from
crashing waves to viscus bunny rabbits. Methods such as artificial viscosity
and XSPH also extend the functionality of the solver allowing for different
effects to be achieved.

From a developers point of view the Framework is very extendable as the
methods are written in such a way that they can create their own similiar
methods to meet there needs. This is made easier by the heavy use of ob-
ject orientation, allowing the developer to easily find and tweak individual
methods, such as an Integration method, without impacting on the other
components of the program. By this nature of the project, a developer could
also pick up this framework and be able to extend and add new features to
design any other particle based methods, such as a cloth simulation or an
advanced particle system, without having to rewrite code.
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8.3 Collisions Criteria

Criteria three of the design stated that the simulation should allow for sim-
ple interaction with Static Rigid Bodies and bounding areas. This project
satisfies this criteria with the modelling of static bodies as fluids (with no
update of forces) allowing for the re-using of the spatial hash methods and
easy testing for possible neighbours. This means that multiple collision ob-
jects, of any form, can be added to the scene, and with the introduction of
the collison radius parameter and bounce factor, interact successfully with
each other. Allowing the static bodies to also have velocity effects as a bullet
passing through a liquid or a ball being dropped into a bowl of water can be
achieved.

8.4 Efficiency Criteria

The fourth criteria that was set states that the solver must be efficient in
passing large data structures around and interactions between particles must
be optimised. The first part of this criteria is met by the use of only passing
fluids by reference. This greatly increases the speed of the simulation as,
especially with fluids containing a large number of particles, every fluid is
not copied when it is passed to a function. Instead, only 1 instance of a fluid
is created and is simply passed the reference to where this fluid is stored in
memory and updates the memory address accordingly.

The second part of this criteria was met with the Spatial Hashing Tech-
nique. This technique allowed for the removal of the brute force method
(testing every particle against every other particle) and the Spatial hashing
technique introduced a method that efficiently found neighbours reducing
the computational time dramatically, see Section 7.2

8.5 Further work

With only limited time to implement features there still exists a number of
them that can easily fit into the current framework with future work.

8.5.1 Dynamic Air Particles

Müller et al. (2005) presents a very nice method for the introduction of air
particles to the simulation. Normally to simulate air you would have to sim-
ulate all of the air particles, which is unfeasible for large scenes. Instead, the
method presented looks at the gradient of the particles surface (in a simil-
iar fashion to finding the surface tension) and dynamically creates particles
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where air would get trapped in the simulation. The air particles have a artifi-
cial buoyancy force which lifts them up through the fluid until they leave the
fluid, where they are then destroyed. This is relatively simple to implement
and would easily fit into the current framework.

8.5.2 Visco-Plastic and Non-Newtonian Fluids

Even though this solver can produce viscous fluids, it does not correctly im-
plement non-newtonian fluid effects. There are multiple papers that look at
solving this, with Paiva et al. (2009)’s paper currently implementing a very
effective, artist friendly solution. Non-newtonian fluids notouriously involve
a large number of parameters and Paiva’s use of a jump number simplifies a
multitude of parameters into a single one. This solution would also be eas-
ily implemented into the current framework, with multiple features already
implemented such as the artificial viscosity and XSPH Particle correction.

8.5.3 Interaction with Full Rigid Body System

An area where this solver lacks compared to Houdini’s native solver is in its
relationship with a full Rigid Body System. Currently, the solver presented
in this paper can only accept passive rigid bodies that don’t receive forces
back from the fluid. There are multiple options available in order to do
this, including writing your own Rigid Body Solver yet this is a big project
in itself so would need a considerable amount of work. Another option of
course would be to integrate an existing solver such as ’Bullet’, which would
take control of all the Rigid Body side of things (Library, 2010).

8.5.4 Multi-threading and GPU

Another area that would help boost the performance of this solver dramati-
cally would be the use of GPU programming. Many papers exist that explore
this as, by the nature of the solver, the theory behind doing this is realtively
simple. Each particle of the fluid is having the same instructions performed
on it, and do not depend on each other. Therefore, in theory each particles
instructions could be carried out at the same time, improving the simulation
x times where x is the number of machines/cores available to solve the force
equations.
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9 Appendix

9.1 XML Layout

Figure 22: Example XML file, written by Houdini and parsed by the C++
application.
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9.2 Spatial Hash Iteration Code

// Vector to s t o r e the new Key
ngl : : Vector newKey ;

for ( ng l : : Real i = BMinX; i < BMaxX; i = i + m ite ra teStep )
{

for ( ng l : : Real j = BMinY; j < BMaxY; j = j + m ite ra teStep )
{

for ( ng l : : Real k = BMinZ ; k < BMaxZ; k = k + m ite ra teStep )
{

newKey . Set ( i , j , k , 0 ) ;
// We now c a l l the CreateKey Function which hashes our po s i t i on fo r us
testKey = CreateKey (newKey ) ;
// We then ask f o r a l l the ne ighbours in t h i s c e l l
ppp = m hashNeighbours . equa l range ( testKey ) ;
// For each neighbour we t e s t to see whether the
// neighbour i s a l ready in the l i s t .
for ( std : : multimap<int , SPHParticle > : : i t e r a t o r i t 2 = ppp . f i r s t ; i t 2 != ppp . second;++ i t 2 )
{

i n L i s t = fa l se ;
for (unsigned int q = 0 ; q < neighbours . s i z e ( ) ; ++q )
{

i f ( (∗ i t 2 ) . second . GetID ( ) == neighbours [ q ] . GetID ( ) )
{

// I f we f i nd tha t the neighbour i s a l ready
// in the l i s t we break out o f t h i s i t e r a t i o n
i n L i s t = true ;
break ;

}
else
{
}

}
i f ( i n L i s t == fa l se )
{

// I f neighbour i s unique add to L i s t
neighbours . push back ( (∗ i t 2 ) . second ) ;

}
}

}
}

}

Figure 23: Iteration step of Spatial Hash
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9.3 Short User Guide

SPHFluid Asset:

The figure above is an example of an SPHFluid asset. Below runs through
a brief description of each parameter:

• Static Collision Object Toggle - If this is set then all the parameters
other than OBJ, collision radius and initial velocity will disappear. The
fluid is now configured as a collision object rather than a fluid so won’t
deform shape across the simulation or be affected any forces.

• OBJ - This specifies the location of the OBJ to turn into a fluid. A
fluid particle will placed at each vertex of this OBJ.

• Initial Velocity Sets the fluid to have this initial velocity.

• Volume The volume of the fluid to be simulated. If the simulation is
blowing up try and raising or lowering this value until the fluid is still
settled after a few frames of iteration.

• Density The density of the fluid.

• Rest Density The rest density of the fluid. Used to calculate the
pressure. Constant through out the simulation. Set to the default for
water.

• Gas constant Constant used when calculating the pressure. The higher
the value, the more gaseous the fluid.
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• Viscosity Determines how viscous the fluid is. Useful as a damping
force to the pressure although if pushed too high then energy is intro-
duced into the scene causing obvious problems.

• Diffuse Constant Determines how quickly the temperature diffuses
across the fluid.

• Ideal Gas Constant Determines how much the temperature affects the
rest density.

• Temperature The temperature of the fluid in celcius.

• Surface Tension Coefficient Determines how strongly the fluid holds
its surface.

• Surface Tension Threshold Controls the gradient at which the fluid
holds its surface.

• Interface Tension Coefficient and Threshold - Same as Surface tension
but controls tension between multiple fluids.

• Colour Interface Tension Controls the polarity of the fluid. Should be
set to -0.5 for a polar fluid and 0.5 for a polar fluid.
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SPHSolver Asset:

The figures show an example of an SPHSolver asset. Below runs through
a brief description of each parameter:

• Fluid Sim Binary - The location of the C++ binary. Take care when
changing this.

• Save Prefix - The location to save the file followed by the prefix to the
frame names.

• XML Save Location - The location to save the XML file and its name1.

• Automatic Save Toggle - Turning this toggle on means that everytime
the cache has received enough data for a frame it will save out a .geo file
of that frame, clearing the cache afterwards. If it is not toggle on then
the user needs to press the save simulation button in the QT window
to save the cache so far. Note, do not press the save simulation button
of automatic save is on as this may cause frame number errors.

• Ground Plane Height - The height of the ground plane.

• Bounding distance - The distance of the bounding walls in x and z from
0,0,0.
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• Bounding bounce factor - The bounce factor when a fluid particle hits
either the ground plane or boundin walls.

• TimeStep - The timestep to perform each iteration of the solver over.
0.004 is a good value for most simulations.

• Use Temperature toggle - Performs temperature calculations.

• Use Swirly Pressure - Implements new technique for solving the pres-
sure force. If untoggled, the correct Navier Stokes solution is used.

• Smoothing Length - The length at which particles will start affecting
each other.

• Static Collision Bounce - The bounce factor when a fluid hits a passive
collision object.

• Iteration Step Fluid - The iteration step to take over the bounding area
when finding neighbours of the fluid particles.

• Iteration Step Static - The same as above except for the collision par-
ticle rather than the fluid particles.

• Run Simulation - Runs the simulation, writing all parameters to the
xml file and creating fluid surfaces when the simulation stops.

Note that the solver asset needs fluid assets plugged in to work.
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9.4 Houdini Solver Python Script

Below is the script that is run when the ’Run Simulation’ button is pressed.

import os

de f He l lo ( ) :

hipExpand = hou . expandStr ing ( ’ $HIP ’ )
homeExpand = hou . expandStr ing ( ’$HOME’ )
p r i n t hipExpand

var = hou . evalParm ( ” xml l o ca t i on ” )
var . r e p l a c e ( ”$HIP” , hipExpand )
var . r e p l a c e ( ”$HOME” , homeExpand)
xmlLoc = var

f i l ename = var
FILE = open ( f i l ename , ”w” )

#WRITE SOLVER PARAMS TO XML

FILE . wr i t e ( ”<so l ve r >\n” )
FILE . wr i t e ( ”\ t<XMLLocation>” )
FILE . wr i t e ( s t r ( var ) + ”</XMLLocation>\n” )

var = hou . evalParm ( ” m smoothing length ” )
FILE . wr i t e ( ”\ t<m smoothingLength>” )
FILE . wr i t e ( s t r ( var ) + ”</m smoothingLength>\n” )

var = hou . evalParm ( ” ground p lane he ight ” )
FILE . wr i t e ( ”\ t<GroundPlaneHeight>” )
FILE . wr i t e ( s t r ( var ) + ”</GroundPlaneHeight>\n” )

var = hou . evalParm ( ” bounding d i s tance ” )
FILE . wr i t e ( ”\ t<BoundingDistance>” )
FILE . wr i t e ( s t r ( var ) + ”</BoundingDistance>\n” )

var = hou . evalParm ( ” bounding bounce ” )
FILE . wr i t e ( ”\ t<BoundingBounce>” )
FILE . wr i t e ( s t r ( var ) + ”</BoundingBounce>\n” )

var = hou . evalParm ( ” automat ic save ” )
FILE . wr i t e ( ”\ t<AutomaticSave>” )
FILE . wr i t e ( s t r ( var ) + ”</AutomaticSave>\n” )

var = hou . evalParm ( ”m timeStep” )
FILE . wr i t e ( ”\ t<m timestep>” )
FILE . wr i t e ( s t r ( var ) + ”</m timestep>\n” )

var = hou . evalParm ( ” s a v e p r e f i x ” )
var . r e p l a c e ( ”$HIP” , hipExpand )
var . r e p l a c e ( ”$HOME” , homeExpand)
FILE . wr i t e ( ”\ t<SavePref ix>” )
FILE . wr i t e ( s t r ( var ) + ”</SavePref ix>\n” )

var = hou . evalParm ( ” temp togg le ” )
FILE . wr i t e ( ”\ t<TemperatureToggle>” )
FILE . wr i t e ( s t r ( var ) + ”</TemperatureToggle>\n” )
var = hou . evalParm ( ” s w i r l y t o g g l e ” )
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FILE . wr i t e ( ”\ t<Swir lyPressureTogg le>” )
FILE . wr i t e ( s t r ( var ) + ”</Swir lyPressureTogg le>\n” )

var = hou . evalParm ( ” c o l l i s i o n b o u n c e ” )
FILE . wr i t e ( ”\ t<m stat i cCo l l i s i onBounce>” )
FILE . wr i t e ( s t r ( var ) + ”</m stat i cCo l l i s i onBounce>\n” )

FILE . wr i t e ( ”</so lve r >\n\n” )

#WRITE SPATIAL HASH PARAMS TO XML

FILE . wr i t e ( ”<spat i a lhash >\n” )
var = hou . evalParm ( ” m i t e r a t e s t e p f l u i d ” )
FILE . wr i t e ( ”\ t<m iterateStepFlu id>” )
FILE . wr i t e ( s t r ( var ) + ”</m ite rateStepFlu id>\n” )

var = hou . evalParm ( ” m i t e r a t e s t e p s t a t i c ” )
FILE . wr i t e ( ”\ t<m ite ra t eS t epSta t i c>” )
FILE . wr i t e ( s t r ( var ) + ”</m i t e ra t eS t epSta t i c >\n” )

FILE . wr i t e ( ”</spat i a lha sh >\n\n” )

#WRITE FLUID PARAMS TO XML

currentNode = hou . Node . path ( hou . pwd ( ) )
me = hou . node ( currentNode )
p r i n t hou . Node . inputs (me)
inputs = hou . Node . inputs (me)
numFluids = 0

for f l u i d in inputs :
FILE . wr i t e ( ”<f l u i d >\n” )
numFluids = numFluids + 1
#For the path we need to s t r i p the s t a r t

var = f l u i d . evalParm ( ” obj ” )
var . r e p l a c e ( ”$HIP” , hipExpand )
var . r e p l a c e ( ”$HOME” , homeExpand)

FILE . wr i t e ( ”\ t<LoadOBJPath>” )
FILE . wr i t e ( s t r ( var ) + ”</LoadOBJPath>\n” )

var = f l u i d . evalParm ( ” i n i t i a l v e l o c i t y x ” )
s t r v a r = s t r ( var ) + ” ” + s t r ( f l u i d . evalParm ( ” i n i t i a l v e l o c i t y y ” ) )
s t r v a r = s t r v a r + ” ” + s t r ( f l u i d . evalParm ( ” i n i t i a l v e l o c i t y z ” ) )
FILE . wr i t e ( ”\ t<m i n i t i a l V e l o c i t y>” )
FILE . wr i t e ( s t r v a r + ”</m i n i t i a l V e l o c i t y >\n” )

var = f l u i d . evalParm ( ” c o l l i s i o n t o g g l e ” )
FILE . wr i t e ( ”\ t<Stat i cObject>” )
FILE . wr i t e ( s t r ( var ) + ”</Stat i cObject>\n” )

i f var == 1 :
var = f l u i d . evalParm ( ” c o l l i s i o n r a d i u s ” )
FILE . wr i t e ( ”\ t<m co l l i s i onRad ius>” )
FILE . wr i t e ( s t r ( var ) + ”</m co l l i s i onRad ius >\n” )

e l i f var == 0 :
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var = f l u i d . evalParm ( ”m volume” )
FILE . wr i t e ( ”\ t<m volume>” )
FILE . wr i t e ( s t r ( var ) + ”</m volume>\n” )

var = f l u i d . evalParm ( ” m density ” )
FILE . wr i t e ( ”\ t<m density>” )
FILE . wr i t e ( s t r ( var ) + ”</m density>\n” )

var = f l u i d . evalParm ( ” m restDens i ty ” )
FILE . wr i t e ( ”\ t<m restDensity>” )
FILE . wr i t e ( s t r ( var ) + ”</m restDensity>\n” )

var = f l u i d . evalParm ( ”m gasConstant” )
FILE . wr i t e ( ”\ t<m gasConstant>” )
FILE . wr i t e ( s t r ( var ) + ”</m gasConstant>\n” )

var = f l u i d . evalParm ( ” m v i s c o s i t y ” )
FILE . wr i t e ( ”\ t<m viscos i ty>” )
FILE . wr i t e ( s t r ( var ) + ”</m vi sco s i ty>\n” )

var = f l u i d . evalParm ( ” m colourSur faceTens ion ” )
FILE . wr i t e ( ”\ t<m colourSurfaceTens ion>” )
FILE . wr i t e ( s t r ( var ) + ”</m colourSurfaceTens ion>\n” )

var = f l u i d . evalParm ( ” m co lour Inte r f aceTens i on ” )
FILE . wr i t e ( ”\ t<m colour Inte r faceTens ion>” )
FILE . wr i t e ( s t r ( var ) + ”</m co lour Inte r faceTens ion>\n” )

var = f l u i d . evalParm ( ” m di f fuseConstant ” )
FILE . wr i t e ( ”\ t<m dif fuseConstant>” )
FILE . wr i t e ( s t r ( var ) + ”</m di f fuseConstant>\n” )

var = f l u i d . evalParm ( ” m idealGasConstant ” )
FILE . wr i t e ( ”\ t<m idealGasConstant>” )
FILE . wr i t e ( s t r ( var ) + ”</m idealGasConstant>\n” )

var = f l u i d . evalParm ( ” m temperature ” )
FILE . wr i t e ( ”\ t<m temperature>” )
FILE . wr i t e ( s t r ( var ) + ”</m temperature>\n” )

var = f l u i d . evalParm ( ” s u r f a c e t e n s i o n c o e f f ” )
FILE . wr i t e ( ”\ t<m surfaceTens ionCoef f>” )
FILE . wr i t e ( s t r ( var ) + ”</m surfaceTens ionCoef f>\n” )

var = f l u i d . evalParm ( ” i n t e r f a c e t e n s i o n c o e f f ” )
FILE . wr i t e ( ”\ t<m inter faceTens ionCoe f f>” )
FILE . wr i t e ( s t r ( var ) + ”</m inter faceTens ionCoe f f>\n” )

var = f l u i d . evalParm ( ” s u r f a c e t e n s i o n t h r e s h o l d ” )
FILE . wr i t e ( ”\ t<m surfaceTensionThreshold>” )
FILE . wr i t e ( s t r ( var ) + ”</m surfaceTensionThreshold>\n” )

var = f l u i d . evalParm ( ” i n t e r f a c e t e n s i o n t h r e s h o l d ” )
FILE . wr i t e ( ”\ t<m inter faceTens ionThresho ld>” )
FILE . wr i t e ( s t r ( var ) + ”</m inter faceTens ionThresho ld>\n” )

FILE . wr i t e ( ”</ f l u i d >\n\n” )
p r i n t ”Gets in loop ”
p r in t f l u i d . evalParm ( ”m volume” )
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FILE . c l o s e ( )

#Run the Program

binary = hou . evalParm ( ” binary ” )
os . system ( binary + ” ” + xmlLoc )

path = hou . evalParm ( ” s a v e p r e f i x ” )
path = path + ” Flu id ”
home = hou . node ( ’ / obj ’ )
simGeo = home . createNode ( ’ geo ’ , ” S imulated Flu id ” )
c h i l d r e n = simGeo . c h i l d r e n ( )
c h i l d r e n [ 0 ] . des t roy ( )
merge = simGeo . createNode ( ’ merge ’ )
for i in range ( numFluids ) :

fileNodeName = ” Flu id ” + s t r ( i )
#p r i n t fileNodeName
f i l eNode = simGeo . createNode ( ” f i l e ” , fileNodeName )
newPath = path + s t r ( i ) + ” Frame $F . geo ”
f i l eNode . parm( ” f i l e ” ) . s e t ( newPath )
f i l eNode . moveToGoodPosition ( )
attrNode = simGeo . createNode ( ” a t t r i b c r e a t e ” )
attrNode . parm( ”name” ) . s e t ( ” p s c a l e ” )
attrNode . parm( ” value1 ” ) . s e t ( 0 . 3 )
attrNode . setNextInput ( f i l eNode )
attrNode . moveToGoodPosition ( )
f l u i d S u r f a c e = simGeo . createNode ( ” p a r t i c l e f l u i d s u r f a c e ” )
f l u i d S u r f a c e . setNextInput ( attrNode )
f l u i d S u r f a c e . moveToGoodPosition ( )
f l u i d S u r f a c e . parm( ”method” ) . s e t ( ” metabal l ” )
merge . setNextInput ( f l u i d S u r f a c e )

merge . moveToGoodPosition ( )
merge . s e tD i sp layF lag ( True )
merge . setRenderFlag ( True )
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