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Abstract

Polygonal meshes are popular in computer graphics, but have major drawbacks.
They cannot accurately represent smooth shapes and their validity can be bro-
ken with holes and self intersections. Moreover, it only de�nes the surface of an
object rather than the volume which makes certain operations very complicated
if not impossible. Implicit functions and more generally FReps can represent
volumes and perform complex operations more easily, but they are less natural
to work with and user-control is more complicated.

A signed distance �eld (SDF) function has to be generated in order to be
able to combine pre-existing polygonal meshes with FRep objects. SDF for a
mesh returns a distance between an arbitrary point in space and its closest point
laying on the surface of the mesh. Additionally, this distance value is negative
if the point is inside the surface, and positive otherwise.

The problem of SDF generation for a mesh has been partly solved in the
past, however there is still room for improvement in terms of performance of
the SDF evaluation and of resolution of the issues related to invalid meshes with
holes and inverted normals.
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Chapter 1

Introduction

Computer graphics have developed over the years many ways of representing
objects in 3D. The most developed representations are called Boundary repre-
sentations (BReps). They only de�ne the surface of the object. BReps are not
suited for all applications. CAD for example requires solid models to be man-
ufactured, but boundary representations can introduce errors because they are
inherently not solids. Boundary representations include parametric surfaces and
polygonal meshes. The latter has been the most popular in computer graphics
in the past, for many reasons. They are easy to render and very e�cient algo-
rithms have been developed to display these surfaces even on limited hardware.
Also, their memory requirements are relatively low. For these reasons, current
graphics hardware is tailored for this representation of models. The main BRep
alternative to polygonal meshes are parametric surfaces. They are resolution
independent and can de�ne smooth surfaces with very little memory. However,
they are di�cult to model with and often require a tessellation stage before
rendering.

Volumetric representations were developed very early mostly using discrete
�elds. The model becomes an aggregation of voxels holding a scalar value. How-
ever voxel representation can be memory expensive and aliasing becomes quickly
a problem. Representing a sphere for instance, is very di�cult because the ac-
curacy is limited by the number of voxels and the amount of memory required
for good accuracy is enormous even with today's computers. An alternative
to voxel representation is implicit surfaces. They are mathematical functions
mapping to R. They are resolution independent and provide more information
than BReps. They de�ne solids correctly but modelling with implicit surfaces
can be tedious and somehow inaccurate. Constructive Solid Geometries (CSG)
combines simple solid primitives together using simple operations such as union,
intersection and subtraction to build more complex shapes.

Function representation (FReps) is a model representation which can ful�ll
most of the requirements of a robust, accurate, object representation. It is res-
olution independent. The FRep framework allows us to represent a volumetric
object as a tree of basic primitives and operations such as blending, intersection,
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micro-structures and many more. The FRep tree allows to represent complex
solid models in a resolution independent form, with a low memory foot print.
The function representation de�nes objects using a function mapping to R, mak-
ing this model dimension independent. The object is perfectly de�ned with an
inside and outside. The boundary is set at the level 0. The interior of the object
is de�ned by the positive values.

Signed distance �elds representation of polygonal meshes would allow us to
include pre-existant meshes into the FRep framework. It is not the only use of
this technique, as signed distance �elds have many applications in many �elds
such as Physics, CAD-CAM, rendering.

In Chapter 2, we present the reasons for using the signed distance �eld
representation over some of the more popular representations. The discussion
extends to the main applications of the signed distance �eld representation and
how they can be computed from a polygonal mesh.

In Chapter 3, we present the main algorithms used to compute the signed
distance �elds and the process of �nding an optimal solution for the fastest
continuous signed distance �eld function from a triangle mesh. It concludes on
a comparison of the di�erent methods explored.

In Chapter 4, the geometric errors from triangle meshes are described and
how they can a�ect the signed distance �eld function. A set of algorithms to
detect the mesh defects are introduced and explained. Methods to improve or
�x the defects are introduced and their limitations are discussed.

In Chapter 5, the design of the library and its extension is presented. It is
followed by a short description of the software application based on the library
and their design.

In Chapter 6, the work is evaluated. We outline the drawbacks as well as
the advantages of this representation. Furthermore, limitations and future work
is brie�y discussed.
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Chapter 2

Related work

Signed distance �elds were �rst introduced for image processing. . More re-
cently, Green (2007) introduced a method to use signed distance �elds to render
anti-aliased sharp glyphs using alpha-testing.

Both continuous and discrete signed distance �elds of a polygonal mesh have
been increasingly popular because of their numerous applications. They are
commonly used in physics (Fuhrmann et al. 2003). They can detect collisions for
both rigid bodies (Guendelman et al. 2003) and soft bodies (Fisher & Lin 2001).
Signed distance �elds are also used for animation purposes. Metamorphosis and
space time blending can easily be done using distance �elds (Pasko et al. 2004).
They have also been used to produce melting objects (Jones 2003). Animation
application can also bene�t from signed distance �eld by generating an object's
skelton as presented in Gagvani & Silver (1999). In modelling, CSG operations
become trivial to do (Pasko et al. 1995). They also help in challenging modelling
problems such as hair modelling (Sourin et al. 1996) or �lling a model of micro-
structures (Pasko et al. 2011). Finally, signed distance �elds are also helpful for
rendering purposes as detailed in Quilez (2008). Many more applications can
be found in Jones et al. (2006) and Erleben & Dohlmann (2007).

A lot of research has be done into generating a discretized �eld especially
when accuracy is not required. Rosenfeld & Pfaltz (1966) �rst introduced a
propagation method to approximate the euclidean distance to a boundary on
a voxel grid which reduces the generation time considerably, but at the cost of
accuracy, especially as the distance to the boundary increases. These distance
transform methods were largely investigated and resulted in derived versions.
Jones et al. (2006) classify those techniques according to how the distance is
estimated, and how the distances are propagated across the volume. Even
though they are fast to generate a �eld, they are inaccurate and cannot provide
a true continuous function.

To generate an exact continuous signed distance �eld from a polygonal mesh,
the distance to each triangle of the mesh can be computed. It would quickly
become a bottleneck so Payne & Toga (1992) introduced a few optimisations
such as hierarchy trees and square distances. They are presented in Section 3.
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Another method was presented in Guéziec (2001) and builds upon a hierarchical
representation of the triangle mesh. Large parts of the mesh can be rejected
by comparing the distance to the triangles at the higher levels. Another exact
continuous representation of a polygonal mesh as a scalar �eld was introduced
by Fryazinov et al. (2011). It uses half-spaces to divide the space and uses unions
and intersections to build the objects scalar function. However, the algorithm is
slow and not viable for large meshes. A more direct approach consist of �nding
the shortest distance to the mesh and then computing the sign. Botsch &
Kobbelt (2001) introduced a method to compute accurately the signed distance
�eld to a close manifold polygonal mesh. It is an accurate method but requires
some optimisations in order to be practical.
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Chapter 3

An e�cient signed distance

�eld function

A distance �eld function provides the shortest distance to an object from an
arbitrary point in space. The sign of the function indicates whether the point is
inside or outside of the object. The signed distance �eld function can be designed
for various surface representation types. This thesis only focuses on the signed
distance �eld representation of a polygonal mesh, and more particularly of a
triangle mesh. However, the polygonal mesh needs to be manifold, to truly
de�ne an object and not self-intersecting for the same reasons.

The function is formally de�ned:

f (P ) = signΣ (P ) · distΣ(P )

where the unsigned distance of P to the mesh Σ is de�ned by

distΣ (P ) = inf
x∈Σ ‖x− P‖

and the sign function is de�ned by

signΣ (P ) =

{
−1 P ∈ Σ

+1 P /∈ Σ

The algorithm developed �rst computes the unsigned distance to the mesh
and then computes the sign. Other methods exist which compute the distance
and the sign at once using a BSP-tree (Fryazinov et al. 2011).

3.1 Distance to a mesh

Computing the shortest distance of a point to a mesh can be done by comparing
the distance from the point to each triangle. Because only the comparison is
required during the search of the closest point, the square distances are kept
until the shortest has been found and the square root is applied at the end.
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It saves many cycles and most of the distance algorithms compute the square
distance beforehand.

The distance to a triangle has three types of solutions referred to feature
type. The feature types can be face, edge or vertex. The feature type needs to
be returned by the distance function for the sign computation.

Many ways have been explored to compute the shortest distance. The most
naive way can be done by computing the distance to each vertex, then each
segmented line, and �nally projecting the point onto the plane and testing if
the projection is inside the triangle. This method is not very e�cient (Eric-
son 2004, p. 136). Another method introduced in Jones (1995) uses an a�ne
transformation to put the point in triangle space. The triangle is set at the
origin on the XY plane. The distance becomes a 2D problem. This method
has the advantage of being able to precompute most of the process in a matrix
per triangle, but costs in memory. More common approaches are using vector
calculus (Eberly 2008) or barycentric coordinates (Ericson 2004, p. 136). The
last two methods were investigated for this thesis.

3.1.1 Vector calculus

In Eberly (2008), the triangle is de�ned as a sum of a base point and a weighted
sum of the two leaving edges. T (s, t) = B+sE0 +tE1 where s+t ≤ 1, 0 ≤ s ≤ 1
and 0 ≤ t ≤ 1. It makes the distance function dependent on two variables. The
solution is then to �nd the minimum of the function Q (s, t) = |T (s, t)− P |2.
The algorithm is then a case analysis provided in pseudo-code by the paper.

The implementation results in many nested if-else instructions because the
plane made by the two variables s and t is partitioned to �nd the feature type
as seen in Figure 3.1.

Figure 3.1: Partitions of the domain by parameters s and t
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3.1.2 Barycentric coordinates

In (Ericson 2004, p. 136), the author explores a purely barycentric method
to �nd the shortest distance. The �rst step is to compute the barycentric co-
ordinates by projecting the point P onto the triangle's plane. The barycen-
tric coordinates of a point P in the triangle A, B, C are (α, β, γ) where P =
αA+ βB + γC.

Figure 3.2: Voronoi regions

The barycentric space is then divided by the edge half-spaces, and tests are
done for each Voronoi region, vertex region and edge region. See Figure 3.2. If
the projected point is not in on of the feature regions, then it is directly in the
triangle. Once the feature is found, the point on the triangle is computed using
projections.

3.1.3 Comparison

Both methods claimed to be numerically stable, and no noticeable di�erence
could be made between the two algorithms so only the e�ciency was considered.
The Table 3.1 shows the execution time of both algorithms on four di�erent data
sets. Data sets polygonal representation are shown in Appendix A.

Calculus Barycentric

Sign breaker, 125 000 samples 0.100s 0.093s
Bunny, 125 000 samples 9.658s 6.816s
Teapot, 125 000 samples 10.978s 7.736s
Buddha, 8000 samples 13.912s 9.410s

Table 3.1: Comparison of distance methods
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While the calculus method has far less operations to do, it contains many
nested if-else instructions which may damage the cache management of the CPU.
The barycentric method also uses vector operations such as dot products which
can easily be optimised by the compiler with SSE instructions. Both could
explain the di�erence between the two solutions. The barycentric method is
also more suitable for the GPU, as most of the operations used can be improved
by the built-in intrinsic functions. However, the triangle distance function does
not have a strong impact on the performance of the overall function because it
relies on acceleration structures.

3.2 Signed function

In Payne & Toga (1992), the sign of the function is computed by a scanning
method. A grid is scanned starting from a corner that is de�nitely outside the
object and if a cell is crossed by the surface, the sign is changed. However, this
solution works for a discrete function. For a continuous function, the sign can
be computed using the sign of the dot product between the surface normal at
the closest point and the vector from P to the closest point. However it does
not work for polygonal meshes because of the discontinuities. It is particularly
noticeable on sharp features.

Figure 3.3 shows why this method fails for most sharp features. The blue
cross represents the point and the red edge of the triangle the closest face found.
Because the closest feature is a vertex, the algorithm can choose both edges
connected to this vertex.

Figure 3.3: A naive computation of the sign
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3.2.1 Angle weighted pseudo-normals

The solution is to use angle weighted pseudo-normals (Baerentzen & Aanaes
2005). Pseudo-normals are computed for three feature types of the mesh. Angle
weighted pseudo normals are the average of the connected face normals weighted
by their incident angle.

1. Faces use the face normal. The face normal can be obtained using the
cross-product between two edges of the triangle.

2. Edges use the average of the two adjacent face normals. The weight here
is considered to be π/2 for each normal. This implies that one edge has
two faces on each side.

3. Vertices use the angle-weighted normal. The face normals of all incident
faces to the vertex are summed using the incident angle as a weight. The

incident angle to A of the triangle ABC is αi = arccos
(−−→
AB ·

−→
AC
)
.

Vertex normals are often computed using the sum of the normals of the incident
faces, weighted by the triangle area, which is fast to compute because the result
of the cross-product between the two edges is proportional to the area of the
triangle. However, it is not suited for the sign computation because a long
stretched face would in�uence the vertex normal too much and the sign would
break on the other side.

The results can be seen in Figure 3.4 and slices are shown in Figure 3.5.

Figure 3.4: The sign breaking shape without angle-weighted normals (left) and
with (right)

However, if the mesh is non-manifold, not only there is a discontinuity in
the �eld, but the sign can not be computed accurately because it uses the hole
border features. If the hole is reasonably small and convex, a polygonizer would
be able to �nd the zero-level, but ray-casters relying on an accurate distance
value to do bigger steps could easily skip the hole.
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Figure 3.5: The sign breaking shape slices without angle-weighted normals (left)
and with (right)

3.3 Optimisation

Computing the signed distance �eld on larger meshes can become time con-
suming. Computing the distance to every single polygon of the mesh is largely
ine�cient and does not take advantage of the spatial coherence. The algorithm
complexity is O(n) making it unsuitable for large meshes. The graph in Figure
3.6 shows the brute force performance on di�erent datasets.

Figure 3.6: The brute force method performance for 1 000 000 samples

The table 3.2 shows the number of faces per model. As expected, the time is
linear to the number of polygons. Acceleration structures are often used in ray-
tracing and physics. Signed distance �elds can bene�t from the same structures
by slightly changing the traversal methods.
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Number of faces

Tetrahedron 4
Sign breaking 40
Stanford Bunny 4968
Utah Teapot 6320
NCCA Troll 36512

Happy Buddha 100000
Stanford Dragon 100000

Table 3.2: Models used for comparison and number of faces

3.3.1 Regular grid

A regular grid splits the space into cells of equal size. Each cell then holds all
the elements that intersect with the cell. This means that some elements can
be duplicated. Figure 3.7 shows the space divided by the regular grid.

Figure 3.7: Space divided by a regular grid on the Stanford bunny (left) and
the happy Buddha (right)

Construction

Finding the size of the cells is the main issue with this method. If the cell size
is too small, then a cell will not contain enough elements or many elements will
be duplicated. On the other hand, if the size of a cell is too large, too many
elements will be contained in it. This will hardly speed up the lookup procedure.
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The most common solution is to adapt the grid so that one cell can contain any
rotation of the biggest element (Ericson 2004, p. 286). This method su�ers
from meshes with polygons varying a lot in size. The cell grids then contain
too many polygons. An alternative can be to use the average size. But in the
case of a good quality mesh with a low standard deviation, grid cells would be
too small. The solution selected was a weighted average between the average
size and the maximum size. The Figure 3.8 shows how the weighting a�ects the
performance. There is no perfect solution and depends on the data set used.

Figure 3.8: The grid accelerated method performance for 1 000 000 samples

Here is a step-by-step description of the grid construction:

1. Compute best cell size

2. Prepare an array of polygon buckets

3. For each polygon:

(a) Compute axis-aligned bounding box of the primitive

(b) For each overlapped cell

i. Use a box-triangle overlap test to check the triangle is in this
cell. This is optional, the box-box overlap is slightly faster but
will duplicate more elements.

ii. If true put in corresponding bucket

iii. Else skip
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4. For each cell

(a) Register current o�set and size in cell

(b) Append cell's polygon list to the master list

The complexity of this algorithm is O (n+m) where n is the number of polygons
of the mesh, and m is the number cells. The construction is linear and keeps
all the data in one place, the cells only store two indices and the data is kept in
one memory chunk.

Traversal

To �nd the closest point on the mesh, the easiest solution is to check each cell
individually. By keeping track of the shortest distance encountered, many cells
can be rejected by computing the shortest possible distance to the cells. To
improve on this technique, checking the cell the point P is in can help reject
many cells very quickly when the point is in a cell that contains polygons.

Here is the algorithm of a brute force traversal:

1. Find the closest cell to the point and compute the distance to all the
polygons inside it

2. For each cell in the grid

(a) If the distance between the cell and the point is smaller than the
current distance, �nd the closest distance to all the points inside it
and compare with the current distance

In order to improve the search, a propagation method would help rejecting very
early many cells, and eventually discard the rest of the grid when most of the
close cells have been checked. As soon as a distance has been found, the list
of cells in the radius of this distance is checked and the rest of the grid can be
discarded. However, the propagation method turned out to be slower than a
brute force search.

Here is the algorithm of a propagation traversal:

1. Find the closest cell. If the cell is not in the grid, project the point to its
closest cell.

2. Explore the current node

3. Explore all the nodes connected to this node

4. If a distance has been found, compute the maximum radius and explore
the cells in the radius

3.3.2 Octree

The octree structure splits an axis-aligned bounding box into eight axis-aligned
boxes. Figure 3.9 shows the space sub-divided by an octree structure.
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Figure 3.9: Space divided by an octree on the Stanford bunny (left) and the
happy Buddha (right)

Construction

The splitting position is usually set at the centre of the box. The process is
recursive and the cells are split until the box contains only a certain number
of polygons, or a maximum depth has been reached. Like most tree structures,
�nding the correct settings is not straight forward. An application was written
to test many possibilities and �nd out a guess based on the mesh complexity.
The graph in Figure 3.10 shows how the maximum depth a�ects the performance
of the tree. The maximum depth only a�ects the performance if it is too low.
Because the octree divides the space in eight new spaces, depth does not need
to be large.
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Figure 3.10: The octree accelerated method performance for 1 000 000 samples

The following describes the construction algorithm for the octree.

1. If the leaf conditions have been reached, register o�set and size in the
node, append the polygons in the master array

2. Otherwise

(a) Compute the eight children boxes

(b) Distribute polygons in buckets

(c) Build eight children nodes recursively

When building the octree, some triangles could overlap two or more boxes.
There are three common ways of handling this issue:

1. Split the polygon so that each new polygon �ts in one box.

2. Duplicate the polygon so that all the children overlapping have a copy of
the polygon.

3. Store the polygon at the node level.

The �rst solution usually results in the introduction of new issues. Numerical
inaccuracies usually add minor errors, and the build process is considerably more
time consuming. Splitting polygons also requires to store additional polygons.
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The second solution is the most common solution. The duplicated polygons
can be queried more than once during the traversal which can slow down the
process a lot if there are too many duplicates. However, it allows to have a
clear separation between nodes and leaves which makes the traversal faster and
cleaner. The box to box overlapping is usually used to decide whether a triangle
needs to go in a child box or not, however triangle-box overlapping methods as
described in Ericson (2007) can be used to limit the duplications.

The third solution avoids duplicates, but the traversal method su�ers from
it because each node has to check for possible polygons. The third solution
turned out to be the fastest, both for the build time and traversal time.

Traversal

The most naive traversal algorithm would check each node in the given order.
Nodes can be rejected if the distance from the point to the node's bounding box
is greater than the current shortest distance. Many boxes are rejected this way
along with all the polygons it includes. However, the traversal can be improved
by sorting the nodes based on their distance to the point. Using this method,
the chances of �nding a closer hit early on is higher, and helps to reject more
nodes quickly. Although this traversal seems more e�ective, in practice, the
brute force seems to be faster. The sort based on the distance is too costly, but
checking �rst the closest node, and then the others in any order can improve
the traversal greatly.

The traversal algorithm is presented below:

1. Check distance of all the polygons in this node

2. If this node has children

(a) Sort the children from closest to furthest

(b) Recursively traverse each child if the distance from the point to the
child's box is smaller than the current shortest distance

3.3.3 Bounding volume hierarchy

Bounding volume hierarchies (BVH) are a general type of tree to divide a space.
The BVH used in this thesis is an axis-aligned bounding box tree (AABB-tree).
Each level splits the box into two smaller boxes. Figure 3.11 shows the bounding
boxes of the nodes of the BVH.

Construction

Building a AABB-tree is often represented as a recursive operation. The space
of the bounding box is split in two spaces by a plane. Polygons are put in one
of them and one only. Choosing which side a polygon goes into can be done
using the middle of the polygon. Each child's node computes its bounding box
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Figure 3.11: Space divided by a BVH (AABB-Tree) on the Stanford bunny
(left) and the happy Buddha (right)

based on its polygon list avoiding duplicates to be created because bounding
boxes can overlap slightly.

Finding the split position and the split axis is a complex problem and litera-
ture is very abundant on this subject (Ericson 2004, p. 242)(Pharr & Humphreys
2004, pp. 200-214). The easiest is to alternate each axis and take the middle
point. It can largely be improved by always splitting along the longest axis,
and by using the average rather than the middle for the split position. Like the
octree, the BVH needs a maximum depth and a target number of polygons per
node. These values can be found by a program testing di�erent settings. The
graph in Figure 3.12 shows how depth and the target number of triangles per
node a�ects the performance. Overall they are all performing much better than
all the previous techniques. A target triangle count per node of roughly six with
enough depth seems to be the best options for high polygon count models.
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Figure 3.12: The BVH accelerated method performance for 1 000 000 samples

A better solution would be to analyze the cost of the distance function and
the cost of a node traversal. The most common technique uses the surface area
heuristic (SAH). It tries to split the polygons so that the total surface is roughly
equal on each side of the splitting plane.

Here is the algorithm to build the tree:

1. Compute node's bounding box

2. If it has reached the leaf conditions then append polygons to the master
array and keep the o�set and size inside the node

3. Otherwise, �nd the axis

4. Find the split position

5. Put polygons in their respective buckets

6. Build the two children recursively using the two buckets

Traversal

Traversing the tree can be done by �rst checking the closest child and following
on to the furthest node. Early rejections are the key of the traversal method. By
computing the point to box distances of the child nodes, they can be traversed
from closest to furthest, hence allowing an early rejection of the furthest box.

Traversal algorithm is as follow:
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1. If it has children

(a) Get the distance to both children's boxes

(b) Traverse the closest if the box is closer than the closest hit so far

(c) Traverse the furthest if the box is closer than the closest hit so far

2. Otherwise

(a) Compute the distance to all the node's polygons

(b) Update the closest hit if any

3.3.4 Multi-threading

Improving the algorithm complexity is the priority when optimising, but once it
has been done raw processing power can further decrease the time to compute
the distance �eld. Multi-threading is an easy way of improving the overall
performance. Modern computers provide an ever improving multi-threading
capabilities as multi-core architectures become more commonplace. However,
multi-threading of a single query would not improve the performance because of
the initial cost of creating the threads. The solution approached is to parallelise
the calls so that many queries can be handled faster.

When the list of queries is random, the work is split equally between the
available threads. This solution is very easy to implement and avoids locking
operations which are slow and could a�ect performance. The drawback of this
solution is that one thread could �nish its work earlier than another thread. It
means that at the end of the process, only one thread will be working.

The second solution used is to make smaller groups of tasks and allow threads
to grab a task, do it, and get the next one available until no task group is left.
The size of the groups should be large enough to compensate with the mutex lock
happening when a thread gets the next available group. This method works well
with a discretized �eld because each slice can be a group. Each thread processes
a full slice and then grabs the next one available. It limits the number of locks
by one per slice.

3.3.5 GPGPU of acceleration structures

GPU implementation of the signed distance �eld can be done by simply using a
brute force method. However, the performance boost will be quickly neglected
for meshes with high polygon count. So the acceleration structures have to be
implemented on the GPU. The GPU has some restrictions which can prevent
such structures to be ported so easily.

• Tree data structures usually allocate data on the �y and per-node causing
memory to be spread and segmented. Instead of using arrays per node,
a master array is used at the root, and all nodes refer to it through an
o�set and a size. This way all the tree data can be streamed to the
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GPU e�ciently, and nodes can access it very easily. This solution is also
interesting for CPU implementations because it allows to save the trees to
binary �les. It also avoids memory fragmentation and hence, boosts the
overall performance of the traversal.

• GPUs cannot do recursive functions, which are commonly used for the
traversal and construction of the tree structure. While the build pro-
cess can remain on the CPU, the traversal needs to remove the recursive
calls. It can be done by implementing a stack directly in the traversal
method. Stackless implementation have the theoretical bene�t of avoiding
call-stack over�ow, and improve performance by removing the function-
call overheads.

All the data structures presented in this section are o�set-based which allow
the structures to be sent to the GPU directly. The build functions are recursive
but are only called once at initialization, so it can be done on the CPU. The
traversal methods are usually recursive, but they can all be re-written in a
stackless manner.

The BVH structure was put on the GPU because it gave the most promising
results. The stackless traversal was implemented and tested on the CPU and
then was ported on the GPU. Stackless algorithms for kd-tree traversal have
been developed for ray-tracing (Popov et al. 2007). Based on those algorithms,
a new stackless algorithm was tailored for shortest distance look ups. Although
Popov et al. (2007) claims the CPU performance can be improved by stackless
traversal, it did not improve the CPU version of the BVH traversal.

Here is the stackless algorithm for BVH traversal:

1. Push root in the nodes to process

2. While the stack is not empty

(a) Retrieve the node at the top of the stack, and pop it

(b) If the node has children

i. Get both children and check if their box distance is closer than
the current closest record

ii. Push the furthest, then closest to the stack

(c) Otherwise

i. Compute the distance to all the node's polygons

ii. Update the closest hit if any

Notice that the order in which we push nodes to explore helps to reject them
when they are popped o� the stack.

One of the issues on the GPU is the size of the local memory, limited to
16KB. The stack takes up most of that space to handle high depth trees, which
is why at equal performance, a lower depth tree should be preferred to save
memory both on the static stack and on the node array memory.
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3.3.6 Comparison

The comparison was made by a program which normalizes the timings to get
more accurate results. Datasets are in Appendix A. For the �nal comparison
the very small models were removed because the timings were similar and non-
representative of real case scenarios. The results are shown in 3.13.

Figure 3.13: Performance comparison of the di�erent methods using a logarith-
mic base 10 axis for readability

The brute force method is only useful for very low polygon count models.
The octree and the grid perform signi�cantly worse on the teapot than the bunny
most probably because the teapot is not a good mesh. The skinny triangles do
not �t correctly into the cells or nodes.

The GPU implementations perform better overall but the CPU implemen-
tation of the BVH seems to perform better on high polygon counts. This is
due to the algorithm complexity. The GPU grid implementation and the GPU
brute force su�er from their complexity against the BVH.

The GPU BVH outperforms all the other methods on almost all datasets.
Just like the CPU implementation, the BVH structure bene�ts from its simple
traversal method.
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Chapter 4

Mesh defects

Signed distance �eld function will always succeed to produce a result but geo-
metric errors tend to give unexpected results or break continuity. Degenerated
triangles have unexpected behaviour for triangle distance algorithms because no
geometric normal exists. Non-manifold meshes produce discontinuities in the
�eld because of the sign computations. Flipped faces will also break the sign
computation, because it relies on the geometric normal, which is based on the
vertices order of the triangle. Self-intersection will also break sign computations
because the mesh is not a boundary mesh anymore.

4.1 Duplicated vertices

Vertex welding is usually applied to gather all the neighbor vertices that are
very close to each other, and should have been joined. In this project, we are
only interested in perfectly matching vertices, the ones that are not perfectly
matching will result in holes which will be detected later on. Duplicated vertices
are an issue not only because they are memory consuming but also because they
generate more errors during the next checks. For instance, the teapot model was
originally made of patches, which are tessellated and then put in a single model.
The patches boundary generate the same vertices. It causes the self-intersection
algorithm to mistakenly detect self-intersections and the hole detection to report
too many holes as seen in Figure 4.1.
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Figure 4.1: Teapot without vertex welding (left) and with (right). Red faces
are self-intersecting faces

The objective is to �nd pairs of vertices with the same value. The naive
approach would be to test all the vertices against all the others. The complexity
of this algorithm isO

(
n2
)
which makes it very slow for models with high polygon

counts.
The solution explored is using a hash map to keep track of the vertex index.

Hash maps use functions to �nd the correct position in memory. A hash function
should give di�erent values for all possible keys, but if it cannot, the di�erent
values are stored in a bucket. So the function has to correctly distribute the
keys in di�erent buckets. The hash function to to sort points in 3D space is
not straight forward. The hash function used is de�ned in Ratcli� (2006). The
coordinates are interpreted as integers, shift the bits so that the same bits do
not overlap. The function provides a good distribution so that the buckets
are evenly distributed. The expected complexity is constant making the vertex
welding of the mesh linear.

4.2 Degenerated triangles

Detecting degenerated triangles is a fairly straight forward task. If the length
of the cross-product between two of the triangle edges is null, then the triangle
is degenerated. An alternative using angles could be used but is slower and less
numerically stable.

Fixing the degenerated triangles however, cannot be done by simply remov-
ing the triangle. The degenerated triangles need to be put into two groups:
the needles and the caps as de�ned in Botsch & Kobbelt (2001). The needles
are triangles which have two vertices at the same position. The caps are three
distinct vertices aligned.

The �rst group can e�ectively be removed by simply removing the face. The
second group needs more attention because it can generate cracks in the mesh
due to T-junctions. Unlike most algorithms, no vertices should be moved and the
geometry should be exactly the same. The two triangles creating the T-junction
can be merged into one. It does not a�ect the geometry because the degenerated
triangle insures those two triangles are on the same plane. The drawback of
this solution is that it removes a valid triangle. Another solution is to split
the large triangle connected to the degenerated triangle into two triangles. The
splitting process actually only involves re-indexing the large triangle and the
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degenerated triangle. This solution has the advantage of keeping the same face
count and if the three vertices were not exactly aligned it will preserve this slight
misalignment in the shape. Another added bonus is that if any of the adjacent
triangles are missing due to a gap in the mesh, the algorithm will still work and
not change the shape.

The �gure shows the re-index process. The triangle T1 is de�ned by ACB,
T2 by ACD, T3 by AEB and �nally T4 by BEC. After the re-indexing, T1
connects BCD and T2 connects ABD, and the others are left unchanged.

Figure 4.2: Re-indexing the degenerated triangle T1 (ACB)

4.3 Holes

Checking

Checking for holes in a mesh requires a data structure capable of neighborhood
queries. The simplest method would be to have an edge map which is cheap in
memory, but the half-edge data structure is more interesting because it allows
to walk around a hole in order to generate a polygon allowing us to �ll the hole.

The half-edge data structures stores faces, half-edges and vertices. Each
element holds neighborhood information.

1. The face stores the indices and one half-edge of the face.
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2. The half-edge is a directional edge. That is an edge which goes from A to
B, the corresponding half being B to A. The half-edge keeps track of

• Its base (or source) vertex, A.

• The next half-edge in the face, going from B to the next point.

• The face it belongs to.

• Its twin, the other half-edge going in the other direction.

3. Vertices keep track of one of the edges leaving the point.

Figure 4.3 shows the di�erent elements an half-edge can access directly.

Figure 4.3: The half edge data structure.

If an half-edge does not have a twin, then the edge is a boundary edge. To
get the next boundary edge, we have to loop around the destination vertex until
we �nd a new boundary edge. The next edge around a vertex given an incident
half-edge can be found by taking the twin's next edge. If it does not have a
twin then it is a boundary edge. All the holes are found using this technique
and are gathered a single polygon hole. To �x the hole now it is only a matter
of triangulating a concave n-sided polygon. Along with the edges, we also keep
the normals of the faces adjacent to the hole. They are used to determine where
the hole faces.

Triangulating

Triangulating convex polygons is straight forward. From any vertex of the
polygon that can be used as a seed, we triangulate using a triangle fan. This
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procedure tends to generate many sharp triangles which is not optimal for the
acceleration structures and for the mesh quality in general. Another drawback
is that it cannot handle concave polygons. Concave polygons are non-convex
polygons. Convex polygons are polygons in which any segment which starts and
ends in the polygon is entirely in the polygon. The method used in this thesis
to handle concave polygons is the ear cutting algorithm.

An n-sided polygon can always be triangulated in n − 2 triangles. The
principle of the ear cutting algorithm is to remove triangles from the polygon
one by one. The triangles are made from three consecutive points Pi−1, Pi and
Pi+1. The triangle can be removed on two conditions.

• First, Pi needs to be a convex vertex. A convex vertex has an interior
angle less than π. Getting the interior angle is not required. The solution
is to compute the normal of the triangle, and comparing it with a vector
which points out of the polygon. Checking the sign of the dot product is
enough to know if a vertex is convex.

• Then, no point in the polygon must be inside the triangle. Testing if
a vertex P is inside a triangle ABC can be achieved by building three
triangles, ABP , BCP and CAP . If the normals of the three triangles
point towards the same direction, then P is inside ABC. To test the
normals against each other, the sign of the dot product can be used.

If both conditions are met, then the triangle Pi−1, Pi, Pi+1is added and the
point Pi is removed from the polygon. The operations is repeated until only
three vertices are left in the polygon.

Figure shows the bunny with the holes in the original model and �xed using
ear clipping.

Figure 4.4: The Stanford bunny with holes (left) and �xed using ear-clipping
(right) in solid (top) and wireframe (bottom)
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4.4 Flipped faces

Flipped faces are often a problem for continuous signed distance �elds. If the
sign is computed through ray-casting or scanning, �ipped faces do not generate
errors because the rays will collide on both the front and the back face. How-
ever, the angle-weighted pseudo-normals rely on the winding of the triangle to
generate normals. Detecting that at least one face is �ipped can be achieved by
comparing all the edges together, and if there is one pair which has the same
start and end, then a face is �ipped. This is good enough to discard a mesh,
however, a better feedback to the user would be to highlight those faces or to
�x those faces directly. Fixing the �ipped faces is called unifying normals. The
reason why it cannot be absolutely �xed is that the user might prefer one side
to the other. In the case of a sphere, normals could point inside and outside.
Both solutions are valid, it depends what the user really wants. The Figure
4.5 shows the Stanford bunny with �ipped faces and the same bunny after the
�ipped faces are �xed.

Figure 4.5: Flipped faces causing error in the sign and perturbing the ray-caster
(left) and after being �xed (right)

The �rst step is to bucket faces into two opposite groups. Faces cannot
be evaluated individually, because a group of adjacent triangles would not be
considered �ipped because the direct neighbors are not �ipped compared to
each other. The solution explored is to start from a seed, and propagate across
the mesh. At �rst, all the faces are set to have an unknown state. The seed
is set to be correct. Then, for each neighbor face which state is unknown, the
state is set to correct or �ipped depending on the shared edge. If the twin
half-edges of the two faces have the same source and target, then the two faces
have an opposite state. Then, the neighbor faces do the same process with their
neighbors. Although this procedure feels recursive, a recursive function would
risk a stack over�ow with big meshes. Instead, a queue is used to emulate a
custom stack.

Using only one seed is not enough. A shell sphere has two surfaces which do
not connect. The previous procedure can be easily �xed by iterating through
all the faces of the mesh, and if a face is still set to unknown, the same process
is applied. It means that the seed will be the �rst face of each disconnected
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surface.
Finally, polygonal meshes can represent non-orientable surfaces. In this case,

there are no solution. The most famous non-orientable surfaces or the Mobius
stripe or the Klein bottle. The Klein bottle is shown in Figure 4.6. In both
cases, all the faces are both �ipped and correct. Those cases are easily handled
by checking expected states with actual states. Instead of only setting the state
of the neighbors with an unknown state, neighbors with an unknown state must
match the expected state depending on the shared edge. If there is a mismatch,
then the surface is non-orientable. The policy is then to set all the faces to
�ipped and warn the user that this mesh is not a valid mesh.

In the case that a minority of faces are �ipped, normals are uni�ed following
the majority. This allows minor mistakes in modeling to be handled quickly. If
close to half of the faces are �ipped, a reasonable choice cannot be made. The
main reason of having half of the faces �ipped is when mirroring a geometry.

4.5 Self-intersections

Self-intersection is another major issue with polygon meshes because it cannot
be detected by the topology. To detect self-intersection the vertex information
(2D or 3D) needs to be available.

A self-intersection can be detected if a face collides with any other face of the
mesh. The collision between two triangles is explained in Möller (1997). The
test is made of successive simple tests. First, the triangle vertices are tested
against the other triangle's plane. If the vertices are all on the same side of the
plane, then no intersection happened. Then both triangles are projected onto
the principal axis of the intersection line between the two planes. The collision
intervals of each projection is compared and if they overlap then a collision
occurred between the two triangles.

The issue with comparing all the triangles between each other is its com-
plexity in O

(
n2
)
. Even if we can reduce it to only test against the following

faces rather than all the faces, the complexity is still similar (O
(

n2

2

)
). The

BVH developed in Sub-section 3.3.3 can be reused to detect self-intersection. A
new traversal method is implemented to detect possible collision between two
triangles. The axis-aligned box which surrounds the triangle being tested can
be tested against the bounding volumes.

1. If the node has children

(a) For each child node

(b) If the triangle bounding box intersects with the child's box, recur-
sively explore that child

2. Otherwise

(a) Test each node's triangles against the tested triangle.
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(b) Ignore any connected face

The performance can be further improved by setting both faces as intersecting.
While testing each face, those already set as intersecting can be ignored. Figure
4.6 shows the Klein bottle with the self-intersecting faces highlighted in red.

Figure 4.6: Self-intersecting faces

Fixing self-intersections is a large subject and out of the scope of this thesis.
Rather than automatically trying to �x the mesh and guessing what the user
tried to achieve, the algorithm detects it and asks the user to �x it.
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Chapter 5

Applications

Signed distance �elds can be applied to numerous areas. They can be used for
accurate collision detection, for operations combining di�erent meshes, for mor-
phing between meshes of arbitrary topology and for corrections of the topologies
of the meshes. The signed distance �eld representation can also be used for the
correct de�nition of solids for CAD/CAM application. Finally, they can be ef-
�ciently rendered and used for the creation of advanced e�ects such as ambient
occlusion or subsurface scattering in an easy way.

5.1 Modelling

Function representations allow operations which are di�cult or impossible with
a polygonal representation. For example, de�ning a micro-structure inside the
volume would be tedious and heavy using only a polygonal representation. In a
similar way, if only a surface is de�ned, and one wants to make a thick surface
out of it, FReps can help us easily achieve this result.

5.1.1 Boolean operations

Boolean operations with implicit function can be done using minimum and
maximum values of each function.

• f1 ∨ f2 = max (f1, f2) de�nes the union operation

• f1 ∧ f2 = min (f1, f2) de�nes the intersection operation

• f1 \ f2 = min (f1,−f2) de�nes the subtract operation

But these functions are C1-discontinuous where f1 = f2 Pasko et al. (2011). It
means that the �eld is not continuous anymore preventing further operations to
be applied. Better R-functions were introduced in Pasko et al. (1995) to preserve
the �eld continuity except at the joints at the zero level. The operations are
de�ned as follow:
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• f1 ∨a f2 = f1 + f2 +
√
f2

1 + f2
2

• f1 ∧a f2 = f1 + f2 −
√
f2

1 + f2
2

• f1 \a f2 = f1 − f2 −
√
f2

1 + f2
2

An example of a union is shown in Figure 5.1.

Figure 5.1: Union between a teapot and a bunny

Pasko et al. (1995) introduced blended boolean operations which builds upon
the functions previously de�ned.

• f1 ∨b f2 = f1 ∨a f2 + a0

1+
f1
a1

2
+

f2
a2

2

• f1 ∧b f2 = f1 ∧a f2 + a0

1+
f1
a1

2
+

f2
a2

2

• f1 \b f2 = f1 \a f2 + a0

1+
f1
a1

2
+

f2
a2

2

Figure 5.2: Blended union between a teapot and a bunny
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The parameters a0, a1 and a2 de�ne the blending behaviour. a0 de�nes
the blend intensity, a1 and a2 de�ne the relative in�uence of their respective
functions. A higher value of a1 would make f1 blend more than f2.

However, those operations break the distance properties which means the
new �eld does not hold the actual distance to the mesh. Keeping the distance
properties are far from trivial (Fayolle et al. 2008).

5.1.2 Transition models

To blend two models together simple boolean operations are not suitable because
the discontinuity would show exactly where it changes. A simpler method is to
de�ne a blending zone. To realize the models in Figure 5.3 and Figure 5.4,
we use a linear blend between the two functions using a plane and a threshold
distance as the parameter. The parameter is clamped in the range [0, 1].

The blending plane is de�ned by a normal
−→
N and an o�set d. If the normal

is normalized then the distance of P to the plane is dist(P ) = NxPx +NyPy +
NzPz + d. To convert this value to a transition value in the range [0, 1], the
distance is divided by the half-length, then remapped from [−1, 1] to [0, 1]

m = min

(
max

(
( 2×dist(P )

l +1)
2 , 0

)
, 1

)
Then a linear interpolation can be used between the two models f and g

t(x) = m · f(x) + (1−m) · g(x)

Figure 5.3: Blending the Stanford bunny with the mirror of itself

This method is not convenient to blend because we need to de�ne a blending
zone, and it does not produce a real blended union but rather a transform from
one model to another along a parameter.
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Figure 5.4: A bunny with a teapot head (top row), a headless bunny, a teapot-
bodied bunny and a Buddha with dragon legs (bottom row)

5.1.3 Micro-structures

Based on Pasko et al. (2011), a micro-structure suitable for 3D printing was
implemented using the signed distance function.

Let f(x) be the function de�ning the happy Buddha model as a solid. Then,
g(x) = f(x) − thickness de�nes a new solid pushed slightly inside the model.
Subtracting g(x) to f(x) will give a hollow solid model as seen in Figure 5.5.

Figure 5.5: Hollow solid model of the Buddha
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The micro-structure can be de�ned with a regular lattice.
First the repeating pattern is done using a sinus wave. For each axis, we

de�ne a wave pattern as follow:
si = sin (f × Pi + o)− l
where

• f is the frequency. The higher the value the more often the pattern will
be repeated.

• o is the o�set. Values of the o�set should be in [−π,+π].

• l is the thickness of the repeating solids. The value l should be in [−1, 1]
where -1 means everything is solid, and 1 means nothing is solid.

To get the regular lattice each axis columns are made of the intersection between
the other two other axis waves. The �nal lattice is made of the union between
all the axis columns.

Finally, the solid object can be de�ned as the union between the hollow solid
and the intersection between g(x) and the lattice. The results can be seen in
Figure 5.6.

Figure 5.6: The happy Buddha with a regular lattice micro-structure

To further improve the model, blended unions shown in subsection 5.1.1 can
be used to get smoother joints. The lattice union is replaced by the blended
union and the intersection between the lattice and the inner solid uses the
blended intersection. Results can be seen in 5.7.

41



Figure 5.7: Blended micro-structures, slice (left), ray-marched (right)

5.2 Animation

Animation can bene�t from distance �eld. Morphing and metamorphosis can
be done relatively easily compared to polygonal techniques.

5.2.1 Metamorphosis

Since the mesh is represented as a function, the morphing can be seen a normal
linear interpolation. Let f(x) be the �rst model and g(x) be the second model,
then m(x) = α · f(x) + (1−α) · g(x) de�nes the morphing model between f and
g. α is a parameter between 0 and 1. When α takes the value 1, the morphing
object is the �rst model, when α = 0 then the morphing object is the second
model. An example of a linear morph from a teapot to a bunny can be seen in
Figure 5.8. Figure 5.9 shows the Buddha model morph to the Dragon model.
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Figure 5.8: A teapot morphing to a bunny

Figure 5.9: A Buddha morphing to a dragon
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5.2.2 Space-time blending

The main drawback of linear morphing is that elements can be disconnected
from the rest of the shape and blobs can appear during the morph. Linear
morphing also lacks parameters to control the morphing. It has only one way
of morphing.

Space-time blending was introduced in Pasko et al. (2004). It is a dimension
independent method to transform one shape into another. The algorithm is
easier to visualize in two dimensions. Both shapes are extended in Z to in�n-
ity. Both shapes are cut along two planes in Z. The resulting two shapes are
blended together using a bounded blending union. Figure 5.10 shows space-time
blending in two dimensions. Finally, slices in the Z axis can be used to get the
intermediate shapes.

Figure 5.10: Two disks blend to one disk (top) and a slice of the Buddha blend
to a Dragon (bottom)

In 3D, the extra dimension can be time. The process is similar but done in
4D and then slices along time will give the intermediate models. The space-time
blending produces better results than linear morphing and avoid blobs to stand
disconnected from the rest of the shape. Figure 5.11 shows the results obtained
using space-time blending. The parameters used are a0 = 12, a1 = 5, a2 = 5,
a3 = 0.1, clipping plane distance at 0.05, and bounding plane distance at 11.

However, the main drawback of space-time blending is that it is highly non-
linear and is di�cult to control correctly. There are dramatic changes in the
intermediate shapes which can be undesirable. Some methods have been used
to overcome these issues, by using a non linear sampling of the time. Also, parts
of the shape may not blend with the target shape at all causing the intermediate
slices to change drastically from one step to another because the slice stops right
at the clipping plane.
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Figure 5.11: Space-time blending of a dragon and Buddha

5.3 Rendering

Rendering volume data is a large subject in computer graphics. FReps are often
polygonized using marching cubes or an improved version of it. But it is not
the only way of rendering scalar �elds.

5.3.1 Polygonizer

The most common algorithm for polygonizing a scalar �eld is the marching
cube algorithm. Many versions of it based on it exist such marching tetrahedra,
dual marching cubes, marching cube with edge transform, adaptive marching
cubes. All polygonizers allow to change the accuracy of the polygonization. The
number of polygons can be increased or decreased. Thanks to this feature, the
polygonizer can be used to remesh models at di�erent accuracy levels. Using
signed distance �elds from a mesh and the polygonizer, a level of detail engine
can be achieved. Figures 5.12, 5.13 and 5.14 show di�erent remeshing of a few
meshes. The polygonizer used was developed during my Animation Software
Development module at Bournemouth University. The base algorithm uses the
marching cubes and uses vertex relaxation to improve the mesh quality and
accuracy to the �eld. To produce those images, a legacy DirectX application
reads in meshes generated by a stand-alone application which uses the iso-surface
meshing library.
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Figure 5.12: Di�erent level of details of the Happy Buddha shaded (top row)
and wire frame (bottom row)

Figure 5.13: Di�erent level of details of the Stanford Bunny shaded (top row)
and wire frame (bottom row)

46



Figure 5.14: Di�erent level of details of the Stanford Dragon shaded (top row)
and wire frame (bottom row)

An advantage of this method is that it can also improve the quality of the
mesh. The Stanford Dragon for instance comes in with degenerated triangles
and relatively bad triangle quality. The mesh generated by the polygonizer
and the relaxation produces good quality meshes which are close to the original
shape (Figure 5.15).

Figure 5.15: The original Stanford Dragon mesh (left) and after polygonization
(right), both have a similar polygon count

The polygonizer also indirectly �lls holes. The Stanford Bunny has four holes
at the base. The polygonizer successfully �lls three of the four holes (Figure
5.16).

Figure 5.16: The original Stanford bunny mesh (left) and after polygonization
(right)

47



5.3.2 Slices

The easiest way to visualize a �eld is to slice the volume along a plane, and
apply colours to the values. In Figure 5.17, red is used to symbolize greater
than zero and blue for less than zero. In between, a gradient where pure green
is exactly zero.

Figure 5.17: Slices of the bunny sign breaking shape (�rst row) and the bunny
(second row)

Slices are good for debug purposes or understanding the �eld behaviour
clearly. More advanced transfer functions which map the values to a colour can
improve the understanding. But to visualize the zero-level and provide more
realistic visualization another method is required.

5.3.3 Ray-marching

Ray-casting is a common way of rendering scalar �elds. Rays are casted from
the eye towards the volume. The ray is marched through the volume. Samples
are taken along the ray to test whether it is inside or outside the volume. When
a sample is found to be inside, the ray has hit the surface and it needs to be
shaded. See Figure 5.18.

Figure 5.18: Ray-marching
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Using the two values sampled above and below the surface, a re�nement pro-
cess can be done to get a more accurate position. The re�nement will converge
to the actual intersection between the surface and the ray. Many numerical
methods for faster location of the intersection can be found. The most common
is a simple bisection search but successive linear interpolations may be used to
converge faster.

To shade the point correctly, a normal is required. The normalized gradient
of the �eld can be used as a normal. To numerically approximate the gradient,
the function is evaluated around the point.

Gx = f
(−→
P −

−→
4x

)
− f

(−→
P +

−→
4x

)
Gy = f

(−→
P −

−→
4y

)
− f

(−→
P +

−→
4y

)
Gz = f

(−→
P −

−→
4z

)
− f

(−→
P +

−→
4z

)
where

−→
4x = (h, 0, 0),

−→
4y = (0, h, 0) and

−→
4z = (0, 0, h), h are small values.

A small value in this context is a value small enough to not miss the small
features, and large enough to avoid numerical instabilities.

The classic ray marching algorithm only relies on the sign of the �eld to go
through the volume. A major improvement can be done by using the sampled
value as a step-size. The �eld value is the shortest distance to the �eld so the
surface is at least that far from the sampled position. See Figure 5.19.To be able
to reach the actual surface, the step size is the maximum between the distance
�eld value and a minimum step-size. Once the sample is negative, the bi-section
search can be used to get an accurate value.

Figure 5.19: Ray-marching using distance information

Still relying on the properties of the �eld, some e�ects can be achieved very
e�ciently (Quilez 2008). Ambient occlusion can be done by sampling only a
few positions along the surface normal. Each sampled is compared against the
expected value. The expected value is the distance between the position and
the sample position along the normal. If no occlusion happens then both values
will be identical. Figure 5.20 shows the results obtained with the bunny.

Using the same process soft-shadows can be done by sampling along the
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Figure 5.20: Ambient occlusion

segment between the point and the light.
Extending on the ambient occlusion idea, sub-surface scattering can also be

achieved by sampling along the ray inside the volume. The further away from
the surface, the lesser the weight. Finally the furthest away from the surface
the more it is obstructed.

5.4 Physics

Distance �elds can be used to detect accurately a collision and provide all the
necessary information to correctly react to the collision. For this application
the project done for CGI Techniques, a cloth simulation, was used for a quick
proof of concept. Fuhrmann et al. (2003) used signed distance �elds to collide
cloth with meshes in a more e�cient way.

For the simplest solution, the signed distance �eld is discretized over a grid.
During the simulation, each particle is tested against the �eld. If a position
returns a negative value, then the particle is inside the object. To improve
the collision results, any value less than a certain positive threshold returns
a collision event. The value is dependent on the model and avoids the cloth
material in between the particle to go through the object because it is not
tested.
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To react to the collision, the collision position and the normal are required.
Successive linear interpolations between the last particle position and the cur-
rent can be used to get a value closer to the surface. The normal of the collision
point is simply its gradient which has already been introduced in Subsection
5.3.3.

To sample the discretize �eld, the simplest solution is to �nd the closest cell
in the grid. A better solution often used on the GPU to sample textures is
tri-linear sampling.

Figure 5.21 shows the results obtained using this method.

Figure 5.21: Cloth colliding with the Buddha (100 000 faces) and the Stanford
Dragon (100 000 faces) in real-time

Because this method relies on particles, it is �exible and could be used
for many other particle based systems such as �uid simulation. Distributed
behavioural model could probably bene�t from the signed distance �elds too
especially because the function returns the euclidean distance.
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Chapter 6

Application design and

implementation

To support this thesis, three applications have been developed in C++ around
the core library. An OpenCL extension was also implemented. The library relies
on C++ and boost, and the polygon error module relies in the half edge library
which was written for the Personal Inquiry module.

6.1 SDF library

The library is built to be easily integrated in an application with a single fa-
cade through the template class signed_distance_�eld_from_mesh shown in
Figure 6.1. The policy templates allow to select di�erent behaviour for the sign
computation, the look up method and the multiple queries.
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Figure 6.1: The signed distance �eld interface

The look up policy can be a brute force method, a regular grid, an octree
and a BVH accelerated.

The sign computation could be none if only the distance is required, direct
computation, or angle weighted pseudo normals.

The multiple queries allows to do multiple queries more e�ciently than just
successively doing many single queries. Policies are iterative, threaded and GPU
accelerated through the OpenCL extension.
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Figure 6.2: The UML diagram of the look-up policies and multiple queries
policies

The diagram in Figure 6.2 shows the look up policies and multiple queries.
The multiple queries policies at the top allow to sample a discrete �eld or ar-
bitrary points in space. The iterative queries will simply do then one after the
other while the threaded queries will split the work over a few threads. Finally,
the GPU queries select the right GPU implementation according to the look-up
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method. By default it will select a GPU brute force, but if it is a grid or a BVH
it will then get the appropriate GPU implementation and use those acceleration
structures on the GPU. BVH trees use a caching system to avoid building the
trees when the mesh did not change. If the mesh is from a known source, it will
generate the cache �le with the �BVH� extension where the source �le is. If no
source can be identi�ed, then no cache reading or writing is performed.

Figure 6.3: The sign policies for the signed distance �eld

The diagram in Figure 6.3 shows the sign policies. The two �rst ones were
just used during development, but the angle-weighted average's only drawback
is memory. The angle weighted pseudo normals will use cache �les if the source
of the mesh is identi�ed. When a mesh is loaded from an obj, it sets the mesh
to a known source. When the sign object is initialised, if the cache for the angle
weighted pseudo normals exists then it will load it, otherwise it will generate the
normals and cache them on disk where the source is with the �awn� extension.
If the source is not known, no �le reading or writing will happen.
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Figure 6.4: The discretized �eld classes

A discretized �eld is a regular grid which holds values for each cell. This
class shown in Figure 6.4 provides a simple interface that allows to �ll it by any
tri-variate function. This allows to �ll a �eld with the signed distance �eld from
a mesh, or more advanced functions like blended unions or micro-structures.
The �ll operation is multi-threaded if possible.
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Figure 6.5: Some basic operations with distance �elds to be done on the CPU

Some basic operations were implemented on the CPU (Figure 6.5). They
overload the operator() so that it can act as a functor and be used by template
functions when �lling a discrete �eld.

Figure 6.6: The two error related classes for detection and correction

Finally geometry errors are handled by two classes. The geometric report
inspects the mesh to report errors, and the mesh_repair object �xes the mesh.
In the future the mesh_repair class should have more features to enable options
and set-up correctly how errors should be handled.

6.2 Demo application

The demo application uses OpenGL to display models in di�erent ways. It loads
meshes and discretized volumes and allow to blend them, morph them and �ll
them of micro-structures on the �y in the fragment shaders. This application
is mainly a test bed for the core library and visualize volumes. It also shows
ambient occlusion and other e�ects achieved thanks to distance �elds. It can also
display the polygonal mesh and the �eld slices. A screenshot of this application
is shown in appendix B.1.
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Figure 6.7: The basic class diagram of the SDF-PM application

The Figure 6.7 shows the class diagram of the application. The MainWindow
contains all the user interface elements through the Qt interface. The applica-
tion was originally built around a console where the logger is. The interpreter
was calling the appropriate functions given a command to parse. The Con-
�gLoader loads the initial settings for the application, and the geometric_report
is part of the SDF library and handles geometric errors while loading meshes.
The GLWindow is responsible for the rendering window. The UISettings and
TimerSettings are updated by the MainWindow according to the user interac-
tions. The ShaderBase loads the shader library from a �le. GLWindow renders
accordingly to the UI settings.

The application features:

• Loading mesh a discretize them on the �y using the best available method

• Loading cached discretized �elds

• Transition between models using a cutting plane as shown in

• Linear morphing as shown in

• Space time blending as shown in

• Microstructures as shown in

• Visualize the mesh as a polygon mesh, using the accelerated ray-caster
and the volume data, slices.

• Ambient occlusion using signed distance �elds

• Inspect meshes for geometrical errors and �x them except self-intersections
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6.3 Other applications

A few more applications were built for debugging purposes or comparison for
this thesis.

• An application was built to compare di�erent techniques with di�erent
data sets. It also tests di�erent settings and writes them into a log �le.

• An application generates discrete �elds using command line arguments
and con�guration �les.

• A legacy application written for DirectX to visualize the wireframe model
and get the distance to the �eld as well as a the closest point to the mesh.
It also displays the tree structures, �ipped faces, self-intersecting faces and
holes. A screen shot can be seen in Appendix B.2.

• The level of details application (asd-ism) is a program that uses the ism
library developed for ASD, and the sdf library developed for this thesis.
It generates an object �le.

• The cloth simulation developed for CGI Techniques originally was edited
to support collision with meshes using signed distance �elds. To handle
collisions it requires both the .obj �le with the .bdf �le.
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Chapter 7

Conclusion

Signed distance �eld representations are powerful techniques to represent ob-
jects which allow complex structures, animation and produce good visual results.
Distance �elds proved to be very e�cient for several applications that are usu-
ally di�cult. This thesis only showed a few possible applications of the signed
distance �elds. Signed distance �elds received an increasing interests over the
last years covering a wide range of applications and �elds. Further integration
of FReps into existing applications seem promising and in the future there will
be more application areas that will bene�t from this representation. One of
the remaining issue with volumetric representation and FReps is the ability to
easily build models. The current domination of BReps and polygonal meshes
increase this issue because the industries are not familiar with anything else
than BReps. A signed distance �eld representation of a polygonal mesh allows
to build a bridge between the two representations.

This project provides an exact signed distance �eld function which is con-
tinuous and handles minor errors. The library is extended by a GPGPU im-
plementation using QtOpenCL which allows to sample the function of distance
function e�ciently at any point in the �eld, which is suitable for advanced poly-
gonizers. The library can easily be integrated in the FRep framework allowing
polygonal meshes to bene�t from the FRep features. The library is �exible and
portable and allowed to implement new features on various old projects easily
by just wrapping the main interface in a class.

While signed distance �elds are not the best representation for all purposes,
a hybrid solution would allow to e�ciently perform operations in the best rep-
resentation.

7.1 Limitations

The input meshes have to be valid, but unfortunately it is rarely a concern
of the artist. Operations on polygonal meshes can often break the boundary
representation without being detected directly. The polygonal error checking
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and �xing provided is too limited. Many more errors can arise from bad meshes
that are not detected yet. Mesh �xing is also a large topic especially in object
reconstruction from range scans. This is a large topic but the possibility of
o�ering a few simple solutions to the user to �x holes and self-intersections is a
valuable feature. Ultimately, those errors should be handled by a user because
algorithms cannot understand what the user really wanted, and errors should
be solved by the user to insure it is what they wanted in the �rst place.

The signed distance �eld on its own also lacks texturing capabilities. Basic
procedural texturing is easily achieved but 2D texturing is a very di�cult task
which does not have a solution yet.

7.2 Future directions

This project could bene�t from more work into optimisation. The regular grid
and the octree in particular were quickly left aside because the initial results
were not as good as the BVH tree. However, the traversal methods for the octree
and the grid can be largely improved. The BVH tree can also be improved by
optimising the cache e�ciency. A node could be �t into 32 bits easily. Another
possible improvement that is often used in ray-tracing is to traverse the tree
with a block of coherent rays. It would be possible to query the tree for a few
positions at once if those positions are close enough.

The Meshsweeper algorithm seems to be a good alternative to the usual
hierarchy tree. It seems to be more di�cult to implement but might generate
faster results. Looking into the scanning methods and methods which work
better for grids would also be a good addition to this project. Most of the time,
the �eld is sampled regularly over a space. Even the polygonizers start from a
grid, and then sample more from arbitrary positions.

In terms of applications, shattering seems to be a natural extension of the
signed distance �elds because it contains volumetric information. The division
of the space can be done e�ciently and intersected with the object.

Finally, a natural extension to the library could include the signed distance
�eld to a parametric patch.
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Appendix A

Data sets

Figure A.1: The sign-breaking mesh. Modelled with very sharp features and
close features to break the sign computations. 40 faces, no holes, no self-
intersection.
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Figure A.2: A pyramid without a bottom face. The way the hole is set up
creates and in�nite zero shape. 4 faces, one hole, no self-intersection.

Figure A.3: The Stanford bunny, from the Stanford 3D scanning repository.
4968 faces, three holes at the bottom, no self-intersection.

Figure A.4: The Utah teapot by Martin Newell. 6320 faces, many holes, many
self-intersections, duplicated vertices.
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Figure A.5: The NCCA troll, 36512 faces, many holes, no self-intersections

Figure A.6: The dragon from the Stanford 3D scanning repository. 100 000
faces, no holes, no self-intersections.

Figure A.7: The dragon from the Stanford 3D scanning repository. 100 000
faces, no holes, no self-intersections, a few degenerated triangles.
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Appendix B

Applications
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Figure B.1: The sdf-pm application used to test possible applications of the
signed distance �eld.
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Figure B.2: Using a DirectX framework developed a few years ago. It displays
the mesh in wireframe and shows the closest point on the mesh using the brute
force and the acceleration structure. It also displays mesh defects with colored
faces (red is self-intersecting, blue is �xed hole, green is �ipped face.
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