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Chapter 1

Introduction

Fluid simulation is a very active topic of scientific research and falls under the
major field of Computational Fluid Dynamics. It provides essential insights into
the workings of various systems, such as medical surgery, mechanical engineer-
ing, space travel, and etc. With computers getting cheaper and more powerful,
fluid simulation gets more accurate, yet more accessible to other fields as well;
visual effects is one such field where the simulation of fluid, particularly of liq-
uids, is getting very popular both in movies, such as Day After Tomorrow, and
games, such as Bioshock, where it adds a wholly new level of realism and enriches
the visual experience of the audience. The simulation of natural phenomenon
is an essential component of CGI movies and determines their success, such as
the very realistic simulation of water in Horton Hears A Who.
Fluid simulation is very hard, yet very exciting as a topic of research and this
provides the major motivation for the simulation of liquid to being the topic
of this master thesis. Various models are used to approximate the behaviour
of liquids, with the most popular one being the Navier-Stokes equation. There
are basically three main approaches to simulating fluids, namely Eularian, La-
grangian and a hybrid of these two. The Eularian method uses a grid and is
suited to fluids within a boundary; the Lagrangian approach contrasts totally
with the latter by using particles and is best suited to interactive simulations
and free surfaces (Kelager, 2006). This project involves the implementation of a
particle-based Lagrangian simulation of liquid, with the Smoothed-Particle Hy-
drodynamics, SPH, method used to solve the Navier-Stokes equation. While a
simulation consists of the simulation itself and a visualisation part, the scope of
this project has been limited to the simulation mainly and OpenGL and sphere
primitives are used for real-time display. Functionality has been implemented,
though, to export the simulation data to an external rendering package, like
Houdini, for more realistic visualisation of the simulation.
The following chapters give a summary of some related work and a brief lit-
erature review. Design considerations for the solution are then highlighted,
followed by a detailed description of its implementation. This is followed by
simulation considerations, scenarios and results. The report concludes with an
evaluation of the implementation, from technical aspects to the implemented
functionalities themselves, and critically analyses the success of the project, as
well as discusses improvements and future work.
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Chapter 2

Previous Work

In 1822, Claude Navier and in 1845, George Stokes formulated the Navier-
Stokes Equations to model the flow of fluids (Müller et al., 2003). Smoothed-
Particle Hydrodynamics (SPH) was developed by Lucy (1977) and Gingold and
Monaghan (1982) for the simulation of astrophysical problems (Hoetzlein and
Höllerer, 2009). In 1983, Reeves introduced particle systems for simulating fuzzy
objects. Miller and Pearce (1989) introduced particle-based methods to simu-
late viscous liquids and melting (Becker and Teschner, 2007). SPH was first
applied to free surface flows by Monaghan (1994), since it adapts very well to
the simulation of complex and free surfaces. Stam and Fiume (1995) have been
the first to apply SPH in the simulation of gas and fire phenomena. Following
the latter were Desbrun and Cani (1996) who used SPH to animate highly de-
formable bodies. In 1999, Stam proposed a grid based stable semi-Lagrangian
advection method that works very well for the real-time simulation of fluids.
Takeshita et al. (2003) used particle methods for explosive flames. Müller et al.
(2003) and Müller et al. (2005) were among the first ones to present a real-time
implementation of SPH to capture the dynamic splashing effects of water, using
Dynamic Air Particles. The latter also demonstrated the simulation of multiple
fluids using Interface Tension Forces. They used a method of Spatial Hashing
developed by Teschner et al. (2003) for optimised neighbour search. In 2005,
Clavet et al. introduced viscoelastic properties to SPH.

So far, the calculation of pressure from density values has been done using the
ideal gas equation; the latter was designed to work with gas, which is very com-
pressible and gives undesired bounciness when applied to liquids (Becker and
Teschner, 2007). Various works have been done to tackle the high compressibil-
ity issue, among which, Premoze et al. (2003), who introduced the Moving Par-
ticles Semi-implicit method. However, the latter needs to solve math-intensive
and time-consuming Poisson equations and is therefore not suitable in real-time
applications. Becker and Teschner (2007), on the other hand, simulated free sur-
face flows using weakly compressible SPH which is faster than MPS and helps
limit the density fluctuation to less than 1%. A number of work have also been
undertaken to simulate non-Newtonian fluids, such as Carlson et al. (2002) who
designed methods for melting and flowing, Steele et al. (2004) who represented
fluid behaviour with functions and Paiva et al. (2009), who investigated on vis-
coplastic fluids that change viscosity with force changes.

In the recent years, the use of GPU has become very popular to process more
intense computations, thus an increased number of particles, resulting in more
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accurate simulations and better visualisation with techniques such as isosurface
ray-tracing. Harris (2003) used GPU for the simulation and rendering of fluids,
more specifically of clouds. Fan et al. (2004) implemented a parallel flow simu-
lation using the Lattice Boltzmann Model (Succi et al., 1991) on a GPU cluster
and have simulated the dispersion of airborne contaminants in the Times Square
area of New York City. Kolb and Cuntz (2005) presented an approach to imple-
ment a Lagrangian particle-based fluid simulation on the GPU. Harada et al.
(2007) presented a GPU implementation of SPH that allowed the simulation
of a massive amount of particles in real-time. Umenhoffer and Szirmay-Kalos
(2008) implemented a distributed simulation, based on the Eulerian solution of
the Navier-Stokes equations that runs on a GPU cluster.

The work of Müller et al. (2003), Müller et al. (2005) and Kelager (2006) form
the main reference for the implementation of this project. The SIGGRAPH
course notes of Bridson and Müller-Fischer (2007) gives a good description of
fluid simulation. Monaghan (2005) also gives a thorough and comprehensive
introduction of SPH (Becker and Teschner, 2007).
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Chapter 3

Technical Background

A Lagrangian particle-based approach has been employed, together with SPH
used to solve the Navier-Stokes equation and implement the liquid simulation
in this project. Information about these techniques is given in the following
sections. The implementation details and formulas have been skipped and would
be presented, in great length, in the implementation chapter later on.

3.1 Simulation Approach

Fluids refer to either gas or liquids; in this project, it specifically refers to the
latter one. A fluid is represented in a continuous space by several fields, such
as pressure, velocity, density, temperature, that altogether define its behaviour
(Auer, 2008).
There are two main approaches to the simulation of fluids, namely Eulerian and
Lagrangian. The Eulerian method subdivides the fluid space into fixed cells
and the latter model the evolution of the various fields. As such, the simulation
depends both on the simulation time as well as the position of the cells. The
transportation of the field quantities around the space is done through a process
called advection (Bridson and Müller-Fischer, 2007).
On the other hand, the Lagrangian method uses particles to model the various
fields. These particles contain all the attributes required to model a specific
fields value at a specific time in the simulation. They also contain positions and
move throughout the simulation space. As such, the Lagrangian method is not
bound to a fixed grid and is most often used to simulate fluids in a free space.
The Eulerian method gives high visual accuracy, but suffers from mass loss
and is typically slow. Lagrangian simulations, on the other hand, are faster,
more memory efficient and easier to implement, thus they are better suited to
interactive applications, such as video games. While the Lagrangian method in-
herently prevents mass loss, it cannot represent fluid surfaces quite well (Pelfrey,
2010)(Becker and Teschner, 2007).

3.2 Fluid Theory And Navier-Stokes Equation

An isothermal fluid is made up of three fields, velocity v, pressure p and density ρ
(Muller et al., 2003). The evolution of these fields is governed by two equations,
the conservation of mass and the conservation of momentum (Müller et al.,
2003).
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∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

The Lagrangian method (3.1) consists of a constant number of particles, each
having a fixed mass; as such, the conservation of mass is inherent and the cor-
responding equation can be omitted (Müller et al., 2003). The conservation of
momentum is given the Navier-Stokes equation and is used to describe the move-
ment and evolution of the fluid. The following is the Navier-Stokes equation for
incompressible fluids:

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + ρg (3.2)

where g is an external force and µ is the viscosity coefficient.

The Lagrangian particles move with the fluid and carry the fluid’s attributes in
space. As such, the convective derivative, v· ∇v, which gives the advection in
the Eulerian method, can be replaced by the substantial derivative Dv

Dt (Horvath
and Illes, 2007). The Lagrangian Navier-Stokes equation therefore becomes:

ρ
dv

dt
= −∇p+ µ∇2v + ρg (3.3)

The Navier-Stokes equation is the application of Newton’s second law of motion
for fluids; as such, the three terms making up the equation compute internal
and external forces on the fluid, and can be differentiated to get the acceleration
a and the velocities of the particles. The mass m is replaced by the density ρ
here, since the ”mass in a volume”, given by the density, is more applicable for
fluids (Auer, 2008).

a =
F

m
(3.4)

a =

(
−∇p+ µ∇2v + ρg

)
ρ

(3.5)

The three terms contribute to the internal and external force acting on the fluid,
which result in the acceleration and thus movement of the fluid particles.

The first term gives the pressure force

−∇p (3.6)

and this is what holds the fluid molecules together without it, the whole fluid
collapses onto the ground. The pressure force is created whenever there is a
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pressure difference and it acts in the direction from high pressure to low pres-
sure along the negative of the pressure gradient (Auer, 2008). The pressure
depends on the density of the fluid, with a higher concentration of mass in a
volume, or a higher density, giving rise to an increased force (from Newton’s
second law), and this increases the pressure (from the definition of pressure,
pressure is force per area). As such, the pressure term aims to equalise the
density differences throughout the fluid (Pelfrey, 2010).

The second term gives the viscosity force

µ∇2v (3.7)

and this provides the resistance to the flow of particles, hence it defines how
viscous the liquid is, such as in the case of water against honey. The Laplacian
of the velocity field, ∇2v, gives the divergence of the latter from its average
value and thus, this force aims to restore or smooth this velocity difference.
The viscosity coefficient µ defines how strongly the force acts.

The last term

ρg (3.8)

encompasses the external forces external, such as gravity or some wind or a user-
generated interaction or surface tension, and will be discussed in more details
in a later section.

3.3 Smoothed-Particle Hydrodynamics

The Lagrangian particles are finite in nature and are not enough to represent
the continuous field of a fluid. SPH is an interpolation method that uses these
particles as discrete samples to evaluate the state of the field at any position
within the fluid space; each particle is thought of as occupying a fraction of the
problem space (Kelager, 2006). The interpolation is done through the use of
radial symmetrical smoothing kernels, such that the approximation of a quantity
A at some particle position r is given as a weighted sum of contributions from
neighbouring particles (Müller et al., 2003) as follows:

A(r) =
∑
j

mj
Aj
ρj
W (r − rj , h) (3.9)

The distance h is the core radius and determines the amount of particles that
contributes to the approximation value at position r. Beyond the distance h,
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other particles have no effect on the calculation.

The SPH fluid equations also require the calculation of derivatives of the quan-
tities. These affect only the smoothing kernel function, as follows:

∇A(r) =
∑
j

mj
Aj
ρj
∇W (r − rj , h) (3.10)

∇2A(r) =
∑
j

mj
Aj
ρj
∇2W (r − rj , h) (3.11)

The pressure and viscosity forces of the Navier-Stokes equation, described in
the previous section, can be easily calculated using SPH. However, these result
in non symmetric forces that would introduce instabilities in the simulation.
Various alternatives have been developed and this will be discussed in details in
the implementation chapter later on.

Although SPH is very easy to understand and calculate, it was originally de-
signed for compressible fluids and as such has to be carefully controlled to give
visually pleasing simulation of liquids. The compressibility issue is still an active
research topic for SPH.

3.4 Smoothing Kernel

The stability and accuracy of SPH calculations depend highly on the smoothing
kernels. Moreover, since these calculations are done every single step of the
simulation, they directly influence the speed of the simulation. Muller et al.,
2003, proposed the following three kernels:

• Poly6 Kernel
This is the fastest kernel to compute, since r appears only squared, and is
used in most of the calculations (Auer, 2008).

Wpoly6(r, h) =

{
315

64πh9 (h2 − r2)3 , 0 ≤ r ≤ h
0 , otherwise

(3.12)

with r = ||r||

∇Wpoly6(r, h) = −r
945

32πh9
(h2 − r2)2 (3.13)
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∇2Wpoly6(r, h) = − 945

32πh9
(h2 − r2)(3h2 − 7r2) (3.14)

• Spiky Kernel
This gradient of this kernel is used instead for the pressure calculation
because the gradient of the Poly6 kernel goes to zero near the centre; this
would cancel any repulsive force between particles that get too close to
each other and thus would cause them to clump together (Auer, 2008).

∇Wspiky(r, h) = − 45

πh6
r

||r||
(h− r)2 (3.15)

• Viscosity Kernel
The Laplacian of the Poly6 kernel also give negative values that would
result in high-energy viscosity forces and cause high-speed particles to
accelerate instead of slowing down. The viscosity kernel is used instead;
it always gives a positive Laplacian to make the viscosity force act as a
damping force in all cases and help reduce the velocity of high-energy
particles (Kelager, 2006).

∇2Wpoly6(r, h) =
45

πh6
(h− r) (3.16)

The following figure gives a visualisation of the three kernels:

Figure 3.1: Kernels used in the SPH method. (Red) Kernel value (Green)
Gradient of kernel (Blue) Laplacian of kernel. Note that the kernels and the
individual curves are scaled differently in these plots. (Angst, 2007)
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Chapter 4

Design

This chapter discusses all the design considerations required for the implementa-
tion of the fluid simulation. These will form the basis of the final implementation
and will influence the functionalities implemented by the end of the project.

4.1 Functional Requirements/Objectives

The aim of this project is to implement a 3D Lagrangian fluid solver using SPH
to simulate the flow of liquids. The simulation will be based on the forces of the
Navier-Stokes equation discussed in the previous chapter, with some additional
forces added to it. The following are some requirements of the solver:

• Simulation of the flow of liquids such as water, honey and etc.

• User interface to tweak the simulation parameters interactively.

• Interaction with boundary containers, such as boxes, and rigid bodies,
such as spheres and mixers.

• Injection of particles, through a hose, to simulate effects such as a water
jet, rain, and etc.

• Simulation of the interaction of multiple fluids.

• Real-time visualisation of fluids using particles.

• Export of simulation data to an external application, such as Houdini, for
advanced rendering.

These objectives and functionalities will be adapted and updated throughout
the implementation.

4.2 Entity Relationship Diagram

The following diagram shows the software architecture and the various classes
that make up the solution and the relationship linking them together. These re-
lationships are directly reflected in the implementation of the software, through
class inheritance and instantiation.

The following classes form the backbone of the software:

14



Figure 4.1: Entity Relationship Diagram, showing the global system architec-
ture.

• Solver
The heart of the simulation is the solver that links to all other classes
and performs the fluid simulation. This class stores all the fluid particles,
manage their movements through the various forces, and ensure they are
confined to the boundary. It also renders the particles for visualisation.

• Simulation
This class monitors the entire simulation, creating and managing all the
other classes, including the solver. It also serves to communicate with the
user interface and update the solver accordingly.

• Particle and FluidParticle
Particles are the basic cells of a Lagrangian fluid solver. The Particle
class is the parent class that stores basic attributes for a particle, such
as position, velocity and etc. It is used mainly for sphere rigid bodies.
On the other hand, FluidParticle is specialised and stores all the required
attributes for the simulation and Lagrangian fluid interaction. The table
4.2 shows some of the main attributes contained in the FluidParticle class.
Most of the attributes, such as the surface tension and the interface ten-
sion, will be explained in more details in the implementation chapter and
their usage will become clearer.

While a particle object is mainly used as part of the fluid simulation, it
is also used as a rigid body sphere that interacts with the fluid and the
environment (boundary and other rigid bodies).

• Environment
This class manages the environment interaction with the fluid. It creates
all the rigid bodies, manages their movements and handles all collision
detection and resolution between the boundary, rigid bodies and the fluid
particles.

15



Attribute Type Use
Position Vector Cartesian coordinates
Velocity Vector For particle movement
Mass Float Fixed at creation time
Net Force Vector Accumulated force
Acceleration Vector From Newton’s second Law
Rest Density Float Pressure force calculation
Density Float Density at current position
Pressure Float Pressure at current position
Gas Constant Float Used to calculate pressure
Pressure Force Vector Navier-Stokes pressure force
Viscosity Force Vector Navier-Stokes viscosity force
Surface Tension Force Vector Smooths surface
Interface Tension Force Vector Multiple fluids interaction
Gravity Force Vector Gravitational free fall
Viscosity constant Float Calculation of viscosity force
Surface tension coefficient Float Calculation of surface tension
Surface tension threshold Float Calculation of surface tension
Interface tension coefficient Float Calculation of interface tension
Interface tension threshold Float Calculation of interface tension
Surface colour coefficient Float Calculation of surface tension
Interface colour coefficient Float Calculation of interface tension
Radius Float Collision handling
Colour Colour Visualisation

Figure 4.2: Attributes of the FluidParticle, their data type and usage

• Capsule
A capsule is one of the rigid bodies, having the shape of the cylinder.
While spheres move around, a capsule rotate around a fixed pivot and
serves to mix the fluids that interact with it. It is often referred to as the
mixer in later chapters.

• Cache and CacheItem
The Cache class is responsible for the export of the simulation data and
state to external files that could be imported to an external package, such
as Houdini, and rendered or manipulated. It saves cache items, which
are basically the fluid and the environment, at a user-defined sampling
interval. The implementation chapter discusses about it in more details.

The other classes perform miscellaneous functions around the above classes and
their functionalities are obvious from their names.
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4.3 Simulation Pipeline

A fluid contains thousands of particles and layering and calculating their initial
positions manually for the simulation is too daunting and complicated a task.
Steele et al. (2004) and Priscott (2010) discuss the use of external models and
using their vertices as initial positions for the particles.
Using this method makes it very easy to create fluids of various shapes and
resolutions, such as spheres and cubes, or even real-life models such as a house
or a creature, in an external package such as Maya or Houdini. These can then
be exported to a standard obj format and loaded in the simulation engine.
The simulation would primarily be visualised using particles, either OpenGL
points or sphere primitives. While this serves as an interactive pre-visualisation,
advanced rendering is more desired. Since this is not part of the scope of this
project, functionality will be implemented to export the simulation data to
an external format such as obj, which could then be easily rendered using an
external application such as Maya or Houdini.
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Chapter 5

Implementation

5.1 Simulation Algorithm

A basic simulation step typically calculates the density, pressure, then the var-
ious forces such as pressure, viscosity, surface tension, interface tension and
gravity. The acceleration is then integrated to get the next velocity and posi-
tion. This is finally followed by collision detection and resolution, before the
particle is displaced.

Algorithm 1: Algorithm to perform simulation of fluid

Load and create fluid particles
Initialise neighbour search structure

while timer ticks do
Refresh neighbour search structure

foreach particle P in particle list do
L← Get neighbours of P
ρ← Calculate density of P by iterating through L
p← Calculate pressure of P

end

foreach particle P in particle list do
L← Get neighbours of P
F pressure ← Calculate pressure force for P by iterating through L
F viscosity ← Calculate viscosity force for P by iterating through L

F surface ← Calculate surface tension force for P by iterating through L

F interface ← Calculate interface tension force for P by iterating
through L
F gravity ← Calculate gravitational force on P

Fnet = F pressure + F viscosity + F surface + F interface + F gravity

a = F/ρ
Integrate a to get velocity v and position x
Apply collision detection and resolution on P against environment
Move P and render it

end

end
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5.2 Fluid Creation

As mentioned in the design chapter, the fluid is created from an external model
that imported from a file. Model creation has been done in Houdini using
primitives such as poly sphere or poly box. Since this is not enough to provide
the required number of vertices for a proper simulation, the pointsfromvolume
sop has been used to fill the primitives with points/vertices. The parameter tab
even allow specifying the number of points, thus the number of particles that
form the simulation eventually can be easily controlled, and thus its resolution.

Figure 5.1: Fluid model creation in Houdini

The final model is exported to an obj file and loaded using the NGL graphics
library (Macey, 2010). The mass of the particles is fixed at creation time and
calculated as follows (Kelager, 2006):

mass = density ∗ volume

particlecount
(5.1)

Algorithm 2: Algorithm for creation of the fluid particles

Load model
Read rest density ρ0 and volume V from configuration file
Get vertex count n from model
Calculate mass m = ρ0 ∗ V/n
foreach vertex v do

Create particle, with mass = m, position = v
Add particle to solver particle list

end
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5.3 Force Calculation

This section describes in details the implementation of the various forces, which
is the essential part of the fluid solver and that uses SPH as its base. The
pressure and viscosity forces, which are directly obtained from the Navier-Stokes
equations, have been discussed briefly in the Technical Background chapter.
Apart from these two basic forces, two additional forces, surface tension and
interface tension, are also discussed. This section also makes constant reference
to the three smoothing kernels that were discussed in the Technical Background
chapter.

5.3.1 Pressure and Density

The density, and consequently, the pressure must be evaluated at every particle’s
position as it evolves throughout the simulation. The pressure is computed using
a modified version of the ideal gas state equation that was proposed by Desbrun
and Cani (1996) and used by Müller et al. (2003), as follows:

p = k(ρ− ρ0) (5.2)

where ρ0 is the rest density of the fluid and k is the gas constant.

This equation introduces a spring-like behaviour to the pressure calculation;
while a density higher than the rest value produces a positive pressure that
pushes the particles away, a lower density will result in a negative pressure and
brings the particles together. The gas constant k depends on the temperature
of the fluid and determines how strongly the pressure difference in the fluid is
equalised.

The density at position r is calculated using SPH, as follows (Kelager, 2006):

ρi =
∑
j

ρj
mj

ρj
W (ri − rj , h)

=
∑
j

mjW (ri − rj , h) (5.3)

Once, the pressure and density is computed, the pressure force is calculated by
using SPH and the Poly6 smoothing kernel (3.12) (3.13) (3.14). The following
equation resolves the non-symmetrical force issue (Kelager, 2006) and is used
in this project:
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fpressurei = −ρi
∑
j 6=i

(
pi
ρ2i

+
pj
ρ2j

)
mj∇W (ri − rj , h) (5.4)

Since the pressure and density must be found for all particles prior to the cal-
culations of the forces, two loops must be used as shown in the simulation
algorithm in the previous section; one to calculate the pressures and densities,
then the other to calculate the actual forces.

5.3.2 Viscosity

The viscosity force acts not only as a damping force to particles, but also pro-
vides stability to the simulation. As mentioned earlier, only using SPH gives
rise to a non-symmetric force; Müller et al. (2003) proposes the use of velocity
difference instead of absolute values to solve this issue as follows:

fviscosityi = µ
∑
j 6=i

(vj − vi)
mj

ρj
∇2W (ri − rj , h) (5.5)

where v is the velocity of the particles.

5.3.3 Surface Tension

The surface tension force is an external force that is not from the Navier-Stokes
equation and acts only on particles at the surface of the fluid. Its implementa-
tion is discussed in more details in this section.

Molecules inside a fluid are held in perfect balance through intermolecular at-
traction that is equal in all directions. However, this is not the case for particles
at the surface of the fluid and this imbalance gives rise to the surface tension
force. The latter acts along the surface normal in an inward direction towards
the fluid and aims to reduce the curvature of the surface and thus, smooths the
fluid surface (Müller et al., 2003).

The following formulas have been adapted from the paper of Kelager (2006).A
colour field c is used to identify the surface of the fluid. Each particle is given a
colour quantity of 1, while air is given a value of 0. It is calculated using SPH
as follows:
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Figure 5.2: Behaviour of the surface tension force acting along the inward surface
normals, in the direction towards the fluid (Kelager, 2006).

ci = c(ri)

=
∑
j

cj
mj

ρj
W (ri − rj , h)

=
∑
j

mj

ρj
W (ri − rj , h) (5.6)

Its gradient n gives the surface normal and the length of the gradient determines
how close the particles are to the surface. It is calculated using SPH as follows:

ni = ∇c(ri)

=
∑
j

mj

ρj
∇W (ri − rj , h) (5.7)

Its Laplacian calculates the surface curvature and is calculated as follows:

k = − ∇n

||n||
= −∇

2c

||n||
(5.8)

Finally, the surface tension force is calculated as follows:

fsurfacei = σkini = −σ∇2ci
ni
||ni||

(5.9)

The tension coefficient σ is different for the interaction of different fluids and it
influences how strongly the surface holds itself. The Poly6 kernel (3.12) (3.13)
(3.14) is used for the calculations. Moreover, the length of the gradient n would
lead to instabilities in the force calculation as it nears zero; as such, the force is
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only calculated when the gradient length exceeds a threshold value β, else it is
taken as zero (Kelager, 2006).

Algorithm 3: Algorithm for the calculation of the surface tension force

foreach particle P in particle list do
gradient← vector(0)
laplacian← 0
L← Get neighbours of P

foreach neighbour N in neighbour list L do
m← mass of N
ρ← density of N
gradient← gradient+ ((m/ρ) ∗Wpoly6gradient

laplacian← laplacian+ ((m/ρ) ∗Wpoly6laplacian

end
if length(gradient) > β then

F surface ← −σ ∗ normalise(gradient) ∗ laplacian
end
else

F surface ← 0
end

end

5.3.4 Interface Tension

The interface tension force is another additional external force that was first
suggested by Müller et al. (2005) for the interaction of multiple fluids. The
interface force acts perpendicular to the interface between the two fluids to
minimise its curvature.
It is an adaptation of the surface tension force, discussed in the previous section,
with the only difference being the colour field. Here, the interaction of polar
and non-polar fluids is considered. Polar fluids tend to mix with polar fluids
and are given a colour value −0.5; on the other hand, a polar fluid doesn’t mix
with a non-polar one and the latter bear a colour value of +0.5 (Müller et al.,
2005).
The calculation of the gradient and Laplacian is similar to that for the surface
tension, except that it uses the new colour values 0.5 and −0.5.

5.3.5 Gravity

The gravitational force is yet another external force that is caused by the accel-
eration due to gravity, called free fall, and it acts in the negative y direction. It
has a value of (0,−9.8, 0). Other external forces follow suit and can be imple-
mented by a simple vector. For example, the addition of a vector (5, 0, 0) to the
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accumulation of forces could be interpreted as a wind blowing in the positive x
direction.

5.4 Integration

The acceleration of the particles is computed by dividing the net force, discussed
in the previous section, by their density. The next step is to integrate the ac-
celeration to find the new velocity and position of the particle. Two integration
methods have been implemented in this project, namely, semi-implicit Euler
and leap-frog.

5.4.1 Semi-Implicit Euler

While the explicit Euler method is the simplest integration method, it suf-
fers from serious instabilities if the integration time-step is kept large. The
semi-implicit Euler method, which is a slight derivative of the explicit Euler, is
implemented in this project. The latter also suffers from numerical instabilities
with big time-steps; however, it is known to conserve energy and thus is slightly
more accurate. It is calculated as follows:

vi+1 = vi + a · dt (5.10)

xi+1 = xi + vi+1 · dt (5.11)

5.4.2 Leapfrog

The Leapfrog integration is a second order method that is more accurate than
the first-order Euler method. It calculates velocities and positions at interleaved
times, with the velocities calculated at half times and the positions calculated at
full integer times. The velocity and position are calculated as follows (Priscott,
2010):

vi+1/2 = vi−1/2 + a · dt (5.12)

xi+1 = xi + vi+1/t · dt (5.13)

The initial velocity offset v−1/2 is calculated using the Euler method as follows:

v−1/2 = v0 −
1

2
· dt · a0 (5.14)
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In this project, the leap-frog method has been implemented using a different set
of formulas (Hut and Makino, 2004), which are similar to the previous formulas
but have been rearranged and rewritten to calculate the velocity and position
at full time steps. The derived formulas are as follows:

vi+1 = vi +
(ai + ai+1) · dt

2
(5.15)

xi+1 = xi + vi · dt+
ai · dt2

2
(5.16)

The velocity is calculated from the average of the current acceleration and next
acceleration, therefore providing more stability to the next displacement of the
particles.

5.5 Neighbour Search and Spatial Hashing

The search of neighbours and their contributions is a vital part of SPH; it is per-
formed at every time-step of the simulation and directly impacts the accuracy
of the SPH calculations as well as the speed of the simulation. A naive approach
of checking every particle against all other particles results in a complexity of
O(n2). This is most undesirable since it limits the number of particles that can
be simulated. Also, the smoothing kernels of SPH use a core radius h beyond
which, all other particles have no contribution to the current particle and search-
ing them results in a waste of CPU resource. Several algorithms exist to find
neighbours efficiently and fall under the Nearest Neighbour Search algorithms.
One such very efficient algorithm which is suited to SPH fluid simulation is spa-
tial hashing, developed by Teschner et al. (2003); this algorithm decreases the
complexity from O(n2) to O(nm), with m being the average number of num-
bers found and this can even be reduced with a more uniform distribution of
particles (Kelager, 2006).

Spatial Hash Function
The spatial hashing method uses a hash function that converts a 3D position in
space to a scalar hash key. This key is then used as an index to a hash-map to
store particles in cells, as well as to retrieve neighbouring particles.

The hash function is the heart of this method, and it has been designed to
prevent the particles that are significantly apart to be hashed to the same cell
(Priscott, 2010). Kelager (2006) defines it as follows:

hash(r̂) = (r̂xp1 xor r̂yp2 xor r̂yp3) mod nH (5.17)
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A discretising function is used (Kelager, 2006) that divides the position by the
cell size l, and returns the rounded integer values, as follows:

r(r̂) = (brx/lc, bry/lc, brz/lc)T (5.18)

The cell size l is the smoothing length used in our SPH kernel calculations.

nH is the hash map size and is calculated as follows:

nH = prime(2n) (5.19)

Where n is the particle count and the function prime(x) gives the next prime
number ≥ x.

The last missing piece to the hash function equation is the values of p1, p2 and
p3. These are large prime numbers and are suggested by Kelager (2006) as
follows:

p1 = 73856093, p2 = 19349663, p3 = 83492791 (5.20)

Insertion in Hash Map
Now that the hash function is defined, the insertion of the particles and the
filling in of the hash map is to be done. This is executed before the calculation
of the forces.

Algorithm 4: Algorithm for the insertion of particles in the hash map

Clear hash map
foreach particle P in particle list do

x← Get position P
x̂← discretise(x)
hashKey ← hashFunction(x̂)
Insert < hashKey, P > in hash map

end

Searching of Neighbours
Once the hash map is refreshed, the neighbours of a particle can be searched by
first generating the hash key from its position, then retrieving all particles from
the map with the generated hash key as an index. This, however, is not enough
since not all neighbouring particles are hashed to the same cell. Kelager (2006)
also suggests the use of a bounding box, so that the search area is extended
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around the particle. The bounding box limits for a particle at position r are
defined as follows:

BBmin = r̂(r− (h, h, h)T ) , BBmax = r̂(r + (h, h, h)T ) (5.21)

A bounding box is used since it is very easy to calculate its limits and iterate
through it; however, only particles within the distance of the smoothing length
from the searched position is required, as follows:

||r− rj || ≤ h (5.22)

Algorithm 5: Algorithm used to find the neighbours for a particle (adapted
from Priscott (2010))

Input: A particle P with position X

1. get particles in the same cell as particle P
Generate hash key key using position X
Get all particles in the map with the generated hash key key
Add to neighbour list

2. define bounding box and search particles within that
Define bounding box limits BBMin and BBMax
Discretise BBMin and BBMax
for BBMin to BBMax do

Create a Cartesian position c within the bounding box
Generate hash key key2 for the created position c
Search for particles from the map having the generated hash key key2
if they are not duplicates then

if they are within smoothing distance h then
then add them to neighbour list

end

end

end

5.6 Environment Interaction

The environment consists of the boundary and rigid bodies. These interact with
the fluid particles and modify their behaviour. Kelager (2006) suggested the use
of implicit functions to model rigid bodies such as spheres and capsules and this
has been implemented in this project. While an implicit function doesn’t give
simply control over the shapes of the rigid bodies, it helps keep the computations
less complex because implicit surfaces can be defined very easily with few single
mathematical functions. The collision handling mechanism, implemented in
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this project, assumes that the environment is fixed such that the fluid particles
do not influence them; while this is not true in real-life and violates Newton’s
third law of motion of action-reaction, it keeps the collision handling easier and
less-computationally intensive.

5.6.1 Collision Detection and Handling

Collision detection is performed at every time-step for all the particles. It sim-
ply involves solving the implicit function at the current position of the particles;
a negative result from the function, F (x) < 0 implies that collision has occurred.

Once collision is detected, the following needs to be determined for the resolu-
tion, as follows:

• the contact point cp where the particle penetrate the obstacle’s surface,

• the penetration depth d that is given by the value of the solved implicit
function, and

• the surface normal n of the collided surface.

The calculation of the contact point cp is not so trivial since it is calculated
from the centre of the rigid body along the normal. Divergence occurs between
the true contact point and the calculated point, as shown in the figure 5.3, how-
ever this is minimised when the time-step is small.

Figure 5.3: Two possible collision determinations from the same particle position
update with cp1 being the correct point and cp2 the calculated one. (Kelager,
2006)

Collision resolution is a very active research topic in Computer Graphics and
several methods and algorithms have been developed and proposed by many
papers. Monaghan (1994) developed a repulsive force with the LennardJones
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potential, called boundary force. Bell et al. (2005) introduces penalty force-
based to resolve collision. Impulse-based collision response is a very popular
technique that modifies the velocity of the particle at the time of collision. In
this project, the hybrid impulse-projection method proposed by Kelager (2006)
is used, which simply projects the collided particle back to the surface along the
surface normal.

This new position ri, in the case of our implicit surfaces, is simply the contact
point:

ri = cp (5.23)

The velocity is reflected back along the surface normal. A restitution coefficient,
cR such that 0 ≤ cR ≤ 1, is used to determine the amount of the velocity
reflected back, thus mimicking the loss of energy during a collision, with a value
of 0 giving rise to an inelastic collision and a value of 1 simulating a perfectly
elastic situation (Kelager, 2006). The formula to calculate the velocity is as
follows:

vi = vi − (1 + cR)(vi · n)n (5.24)

5.6.2 Environment Objects

5.6.2.1 Boundary

The boundary is implemented using a primitive bounding box. This is the sim-
plest primitive and allows for really cheap calculations to detect and resolve
collision.

The box is defined as a collection of 6 faces, each representing a limit XMin,
XMax, YMin, YMax, ZMin and ZMax. The x, y and z components of the par-
ticle’s position is simply checked against these limits. In case of collision, they
are set to these limit values.

The new velocity follows the same line as the formula discussed in the previous
section. However, since the latter involves dot product and vector multiplica-
tion, it is a bit costly. In the case of a bounding box, the surface normals are
the unit normals. Thus, the velocity is simply reflected as follows:

vi = vi ∗ −cR (5.25)
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5.6.2.2 Periodic Wall Boundary

A periodic wall is also implemented in this project. This is an extension of
the boundary box, discussed in the previous section and as such, has the same
collision handling mechanism.

A periodic sine function is used to move the right wall, found at the maximum
x direction, up to a maximum amplitude of a to and from its initial position p0.

a sin(bθ) (5.26)

Increasing the value of a will make the wall have larger displacements around its
rest position. The angle θ of the sine function can also be multiplied by a scale
factor b to increase or decrease the period of the function and thus, influence
the speed of the wall movement.

Figure 5.4: sine wave with amplitude a and b = 1. Adapted from http:

//commons.wikimedia.org/wiki/Image:Sine.svg

5.6.2.3 Rigid Bodies

As mentioned initially, the rigid bodies are modelled with implicit functions,
which are easy to define and allow simple collision detection mechanism. Two
rigid bodies have been implemented in this project, a sphere and a capsule.

Sphere
A sphere is the simplest implicit surface to define, using the following formula
(Kelager, 2006):

Fsphere(x) = ||x− c||2 − r2 (5.27)

where c is the centre of the sphere and r its radius.

The contact point cp is calculated as follows:
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cpsphere = c + r
x− c

||x− c||
(5.28)

The penetration depth d is given by:

dsphere = |||c− x|| − r| (5.29)

where |a| gives the absolute value of a.

The unit surface normal n is calculated using the following formula:

nsphere = sgn(Fsphere(x))
c− x
||c− x||

(5.30)

Spheres are free to move and interact with the fluids, boundary, capsules and
other spheres. They are also subject to gravitational forces and act as a full
rigid body within the container.

Capsule
A capsule is another implicit surface that is widely used in computer graphics.
While easily defined as an implicit mathematical formula, it can mimic the us-
age of a cylinder or a box. In this project, it is fixed to a pivot position, with a
z -orientation and it can rotate freely around the y-axis, thus simulating a mixer.

Figure 5.5: A capsule in wireframe made up of 2 hemispheres and a cylinder.
(Kelager, 2006)

Figure 5.6: A capsule defined by the two end points p0 and p1, and a radius r.
(Kelager, 2006)
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A capsule is defined using the following formula:

Fcapsule(x) = ||q− x|| − r (5.31)

where

q = p0 +

(
min

(
1,max

(
0,− (p0 − x) · (p1 − p0)

||p1 − p0||2

)))
(p1 − p0) (5.32)

The contact point cp is calculated as follows:

cpcapsule = q + r
x− q

||x− q||
(5.33)

The penetration depth d is given by:

dcapsule = |Fcapsule(x)| (5.34)

The unit surface normal n is calculated as follows:

ncapsule = sgn(Fcapsule(x))
q− x
||q− x||

(5.35)

A sgn function is used in the calculation of the surface normals; this simply
gives the sign of the function, positive or negative.

5.7 Particle Injection

Functionality was implemented to allow the injection of particles into the fluid.
As with the fluid model, the injected particles also are loaded from an external
model and the latter typically has a reduced particle count. A list of particle
prototypes is kept in a separate list; each one of those contains the basic prop-
erties for the fluid that it represents. Therefore, if there are 2 fluids loaded in
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the simulation, the list contains 2 prototypes.

Algorithm 6: Algorithm used to inject particles into the fluid simulation

Get index i of current fluid for which particles are to be injected
Get particle prototype p for the index i
foreach injected model vertex v do

Create a particle Z with position = v and properties = p
Add Z to list of particles forming the fluid

end

This approach allows the new particles to be added to the same list of particles
that make up the simulation fluid. Therefore, once these particles are injected,
they no longer differ from the fluid particles and get subjected to the same SPH
forces as all others.

There is an option that is provided to specify the time at which these particles
start behaving like fluid particles; this could be as soon as they are injected, or
when they hit the boundary or some rigid body. Varying this gives some very
interesting effects. Screenshots have been given in the Simulation, Results and
Evaluation chapter

5.8 Visualisation and Data Exporting

5.8.1 OpenGL Rendering

As stated initially, specialised rendering techniques, such as raycasting, is not
part of the scope of this project. The particles have been rendered as sphere
primitives, using OpenGL. Each fluid is given a specific colour so that their
interactive can be observed. The obvious disadvantage of this approach is that
gaps appear in low-density regions. One approach, suggested by Kelager (2006)
is to modify the radius of the sphere to increase or decrease according to the
density and thus cover the gaps; this has not been implemented in this project
as additional calculations are required and visualisation is not the primary focus
of this project.

5.8.2 Exporting Simulation Data To Houdini

The ability to export simulation data and state is implemented in this project,
so that better and enhancement rendering can be achieved. The export is specif-
ically done to geo files, which is Houdinis native geometry ASCII format. This
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file format can be easily read and written to, thus the reason for choosing it
for this project. Moreover, being native to Houdini, it is very easy to load in
Houdini and per-frame animation is very fast.

While the contents of the geo file could contain all sort of combination between
various attributes, primitives, groups and etc., a simple approach to export
points has been adopted here. The latter is achieved by writing the set of
points as homogeneous x, y, z and w coordinates, one per line. Once exported
to a geo file, loading in Houdini is intuitive with the file sop. Point manipulation
in Houdini is a very common task and lots of enhancements could be applied to
particles to render them in multiple forms.
One very easy method is the use of the copy sop to copy spheres or other
primitives onto the particles and thus have a simulation of spheres (Horvath
and Illes, 2007). Houdini provides another very interesting sop called parti-
clefromfluid which generates a surface from the simulation particles. Further
enhancements can be done, such as the application of a procedural liquid shader.
In brief, Houdini itself takes care of all the visualisation process; all it needs is
the simulation data and this has been implemented in this project.

Apart from the fluid particles, the positions of the rigid bodies can also be
exported. The rigid bodies could thus be reconstructed in Houdini with en-
hancements and behave according to the simulation data. The boundary box
transformations are also exported, thus its periodic movements can be recreated
in Houdini.
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Chapter 6

Simulation, Results and Eval-
uation

This chapter focuses on the simulation, setup parameters and execution. Various
scenarios are discussed and simulated to show the usability and flexibility of the
simulation. The chapter ends on a discussion of some of the issues dealt with
the simulation and efficiency considerations of the implemented solution.

6.1 Simulation Parameters

While it is desired to have the parameters of the simulation set to true real-life
values, this is not always possible, either because the true values are too big for
the simulation, such as the gas constant or they are too tiny such as in the case
of the surface tension coefficient. Many of the parameters are left to the user for
tweaking to achieve a stable simulation. Moreover, large viscosity and damping
is required to take care of the various pressure shocks that would otherwise ex-
plode the simulation. Due to this, the range of viscosity values that could be
simulated is really narrow. The mass of the particles has also to be set high so
that the heaviness stabilise the simulation.

6.2 Scenarios and Results

Various scenarios have been setup and simulated, that includes the interaction
of multiple fluids with the different rigid bodies, spheres and capsules, arranged
in diverse ways. Some very interesting scene setups have been made and the
results obtained are demonstrated in the following sections.

6.2.1 Single Fluid

Several scenarios were simulated, figure 6.1 and figure 6.2 and in all of the cases,
4 phases in the flow of the liquid flow were observed:

1. particles falling down and splashing on the floor,
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2. particles moving away from the centre of the initial splash spot towards
the sides of the boundary, due to the high density and induced pressure
generated there,

3. particles collide against the boundary and slowly make their way towards
the initial splash position, as they move from the boundary (high density)
towards the centre of the initial splash (very low density), reflecting the
workings of the pressure term in the Navier-Stokes formula as discussed
in section 3.2,

4. particles come together at the initial splash position and again start mov-
ing away due to the high pressure created at that position.

6.2.2 Multiple Fluids

Particle-based simulations simplify the interaction of multiple fluids. Müller
et al. (2005) demonstrates multiple fluid interaction using interface forces. Sev-
eral tests were done to simulate the interaction of multiple fluids and some
screen-shots are included in this section in figures 6.3 and 6.4.

6.2.3 Rigid Bodies Interaction

Several scenarios have been arranged with the implemented rigid bodies, sphere
and capsule, and screenshots are displayed in figures 6.5, 6.6, 6.7, 6.8, 6.9, 6.10
and 6.11.

6.2.4 Channels

Although the rigid bodies, sphere and capsule, seem very basic, they can be
grouped and arranged to simulate some very interesting situations; in the fol-
lowing tests, capsules have been used to simulate slanted surfaces and a very
interesting funnel.

6.2.5 Periodic Wall

Another simulation has been done including the mixing of 2 fluids, but with
the periodic wall enabled. The simulation results, figure 6.12, were similar to
those obtained in the classic dam breaking problem, where the slowly moving
wall ease the pressure contained inside the boundary box to give rise to some
very interesting waves that goes high up in the air, then break down rapidly.
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(a) Initial splash on the floor (b) Moving away towards boundary due
to high pressure at centre

(c) Coming back due low pressure at cen-
tre

(d) High pressure induced at centre due
to collision

(e) Pressure creates outward wave

Figure 6.1: Simulation of a single sphere fluid of 13566 particles
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(a) (b)

Figure 6.2: Simulation of a single fluid of 65536 particles

(a) (b) (c)

(d) (e) (f)

Figure 6.3: Simulation of 2 mixing fluids, with a total particle count of 103135
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Figure 6.4: The mixing of 3 fluids

6.2.6 Particle Injection

Several simulations were done that incorporated the use of particle injection.
One very interesting feature of the implementation of the particle injection is
giving the ability for the particles to behave as particles only until they hit
either the boundary or some rigid body, after which they start behaving as the
other fluid particles. This made it possible to simulate hoses and water jets as
shown in the figures 6.13 and 6.14.

6.3 Issues and Considerations

6.3.1 Time-Step

The integration time-step must be chosen very carefully because it directly
impacts the stability of the simulation due the integration. While it is desired
to keep it as big as possible, this would have repercussions on many other aspects
of the simulation. Keeping everything stable, only a time-step of the order of
0.01 s has been achieved.

6.3.2 Compressibility

The gas constant, used in the calculation of the pressure (5.2) from the density,
determines how strongly the pressure difference in the fluid is equalised. The aim
is to make it as big as possible so that the liquid comes to rest fast after a pressure
change and thus follow a near-incompressible behaviour that is expected of a
liquid. However, this is not easy to achieve as it models a mass-spring behaviour
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(a) (b)

(c) (d)

Figure 6.5: Fluid interaction with sphere RBD
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(a) (b)

(c) (d)

Figure 6.6: More fluid interaction with dynamic sphere RBD
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(a) (b)

(c) (d)

Figure 6.7: Fluid mixing with capsule RBD
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Fluid given an initial velocity and thrown onto a static sphere, before
splashing on the wall
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(a) (b)

(c) (d)

Figure 6.9: Dynamic Sphere simulating a bullet through the fluid

(a) (b) (c)

Figure 6.10: Static capsules arranged to simulate a slanted hard surface
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.11: Use of static capsules arranged to simulate a funnel with a dynamic
sphere blocking the funnel occasionally as it moves around
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 6.12: Periodic wall to simulate the classic dam breaking problem and
mixing of 2 fluids
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(a) (b) (c)

(d) (e) (f)

Figure 6.13: Injection of particles into simulation. figure (d) shows the ease
with which the hose fluid can be changed to inject in particles of both of the
fluids.

and a huge value will make it act like a really hard spring that will undergo huge
numerical instabilities when a large change in pressure occurs (Kelager, 2006);
in this case, the integration time-step must be decreased to a really small value
to stabilise the system and this is not desirable as it reduces the interactivity
of the simulation. A compromise has to be made between the gas constant and
the time-step, such that both are kept as high as possible, while having a stable
simulation. In this project, a gas constant of 10 with a time-step of 0.01 is used
to achieve stable simulations.

6.3.3 Viscosity and Damping

The simulation contrasts with real-world liquids in that it appears to be over-
damped. While this can be resolved by decreased the viscosity constant, it
also implies making the integration time-step really tiny to prevent explosion
of the simulation and this impacts the interactivity of the simulation, which is
not desired. Also, mathematical damping introduced through viscosity keeps
the simulation stable by preventing it from exploding whenever there is a huge
pressure shock, thus decreasing the viscosity in this case in not a good alterna-
tive. To be able to keep the time-step as big as possible gives a really narrow
margin of viscosity values in this project; the only other way to solve this prob-
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(a) (b)

(c) (d)

Figure 6.14: Directional injection of particles into simulation with interaction
with capsule mixer to simulate water jet and rain. The hose particle initially
behave as particles only, until they first hit a rigid body, after which they start
behaving as fluid particles.
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lem is using implicit integration, but this process is very computation-intensive.

6.3.4 Smoothing Length

The smoothing length of the smoothing kernels determines the speed and ac-
curacy of the SPH calculations and the overall stability of the simulation. The
figure 6.15 shows the impact of various sizes of the smoothing length.

Figure 6.15: A 2D illustration of the problem of using either a) a too large
support radius, or b) a too small support radius. The dark sphere in the centre
is the particle in question. The support radius is illustrated as a circle. In this
example the support radius in c) will be a good choice. (Kelager, 2006)

A huge smoothing length results in too many neighbours; this increases the com-
plexity of the force calculations which is time-consuming, but most importantly,
reduces the weights of the contributions of the neighbours to spread them over
a bigger distance, such affecting the stability of the simulation (Kelager, 2006).
On the other hand, a tiny smoothing length will results in very little number
of neighbours and thus not enough contributions to compute the forces; the
simulation will appear erratic and unstable.

Kelager (2006) suggests the following equation that could be used to determine
the appropriate smoothing length:

h =
3

√
3Vx

4πn
(6.1)

Where V is the volume and n, the particle count. This still leaves an unknown
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x which is the number of neighbours desired. The aim would be to keep x small
to reduce the calculation complexity, while still getting a stable simulation.

For the simulations done in this project, the smoothing length has been set as
0.3, which is roughly near to the result of the formula, described previously,
when x = 10.

6.3.5 Performance And Efficiency

In this section, the performance of the solver was observed over various amounts
of particles, in terms of memory and CPU usage. The aim is to get a linear
relationship between these metrics and the particle count, so as to get as close
as possible to a complexity of O(n).

6.3.5.1 First Approach to Neighbour Search optimisation

Among all the tasks that are executed in the simulation loop, the searching of
neighbours for a particle is most complex and resource-intensive. This is due to
the numerous mathematical operations, such as mod and xor, that need to be
performed to hash the positions, iterate over a bounding box to get neighbours
and check for duplicates. This routine need to be executed for every single par-
ticle in the simulation and at every iteration. The situation is worsened by the
fact that the neighbours need to be calculated twice, as demonstrated in section
5.1, one for the calculation of the density and the other for the actual force
calculation. Therefore, the optimisation of the neighbour search would result in
a drastic performance gain.

Two methods of querying the neighbours are considered. The first one is to
query the latter on the fly, i.e., get the neighbours at the time they are needed,
thus inevitably calculating the neighbours twice. The second method is to get
the neighbours of all the particles and save them to a big neighbour list,
prior to all other tasks, then use the neighbours from this big list (which is a
simple fetch from a list) for the density calculation and force calculation. This
latter method, thus, eliminates the need for double calculations and results in a
performance boost. Two simulations are run, one with a particle count of 13566
and the other with a particle count of 29667, over 3000 iterations using these
two methods alternatively and observing their execution time (figure 6.16).

The graph 6.16 demonstrates the performance boost obtained by using the sec-
ond method. While the execution time scales accordingly for the 13566 particle
count over the 3000 iterations, it increases non-linearly as the number of parti-
cles is increased, i.e., for the 29667 particle count as from the 2000-mark. This
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Figure 6.16: Execution time (in minutes) over iterations. OTF13 - on the
fly with 13566 particles, OTF29 - on the fly with 29667 particles, BNL13 - big
neighbour list with 13566 particles, and BNL29 - big neighbour list with 29667
particles.

is due to the fact that the increased particle count increases the number of
neighbours with which each particle interacts as they come close to each other
and this definitely increases the complexity of the force calculations; however,
from gradient of the graph remains constant from the 2000-mark to 3000, thus
proving a linear complexity.

On the other hand, the memory usage pattern is the total opposite; the on the
fly method uses the least amount of memory as compared to the big neighbour
list method, mostly due to the fact that the latter needs storage to keep the
neighbours. Since, the neighbour list per particle is totally dynamic, space can-
not be reserved in advance and thus the performance of the data structure used
for the storage degrades with more iterations and particles. This is illustrated
in the graph 6.17.

6.3.5.2 CPU usage optimisation using OpenMP

Although a big performance boost was obtained using the big neighbour list
method, discussed in the previous chapter, the solver still is not fully optimised
and as such cannot be used for big particle counts. The Lagrangian fluid simu-
lation is basically a subset of particle systems, where the use of multiple cores is
becoming very popular to reduce the execution time as the complexity increases.
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Figure 6.17: Memory usge (in Mb) over iterations. OTF13 - on the fly with
13566 particles, OTF29 - on the fly with 29667 particles, BNL13 - big neighbour
list with 13566 particles, and BNL29 - big neighbour list with 29667 particles.

The use of OpenCL was initially investigated in this project, but failed to pro-
duce any performance gain. This could be explained by the fact that OpenCL
works with buffers of bytes, whereas our implementation is completely object-
oriented, thus requiring the need for the flattening of data to pass to the OpenCL
kernels, then uncompressing them afterwards to update the objects. While a
pure OpenCL implementation would definitely result in a highly optimised sim-
ulation, as demonstrated by numerous projects online, it takes away all the
code-readability and maintainability provided through the use of classes and
objects. Also, OpenCL kernels deal directly with memory and the optimisation
process needs to consider issues such as memory bandwidth optimisation and
minimising cache misses, thereby making the implementation hardware depen-
dent.

On the other hand, multiprocessing using OpenMP has been implemented in this
project and it provided a very significant performance boost. In the following
sections, a brief overview of OpenMP is given, followed by a discussion of its
implementation in this project.

6.3.5.2.1 Overview of OpenMP OpenMP is an API, defined by a group
of computer and software vendors, which enables the development of parallel
applications through the use of multi-threading and multi-processors. It sup-
ports C/C++ and Fortran across several platforms (Barney, 2011).
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OpenMP is based on a shared-memory model (Adve and Gharachorloo, 1996),
with multiple threads are created and allocated jobs and shared memory space
is used to synchronise the result of their execution. As such, it uses the concept
of private and shared memory variables and makes a clear distinction between
these two. Care should be taken when using shared memory to prevent race
conditions, with different threads overwriting the shared variable each in their
turn and resulting in an undetermined state for the shared variable.

The major strength of OpenMP is that it uses preprocessor directives, in the
form of #pragma omp, to mark out sections of code or procedures or tasks that
should be executed in parallel. This makes it easy to integrate OpenMP at an
advanced stage of a project, without disrupting the structure of the code and
it also allows a mixture of sequential and parallel code, based on the fork-join
model (Barney, 2011). It is very easy to disable the use of OpenMP and the code
reverts back to its sequential form. Parallelism is provided at three different lev-
els; sections that are small independent procedures, loops and higher-level tasks.
In this project, loop parallelism has mostly been used, that offers parallelism in
for-loops. It works by dividing the for-loop iterations among the threads and
then, each thread executes its iterations independently of all others in parallel
(figure 6.18).

Figure 6.18: Fork Join Model, enabling mixture of sequential and parallel code
with the management of a pool of threads. A : OpenMP fork and join model.
B : for-loop parallelism in OpenMP. Adapted from Barney (2011).

Another very interesting fact about for-loop parallelism is the automatic barrier
at the end of the loop, so all the threads wait at the end of the loop when they
finish execution, thus ensuring synchronisation.

6.3.5.2.2 OpenMP Integration and Evaluation The simulation algo-
rithm in section 5.1 clearly reveals the parallel potential of the code. It is made
up of basically three sections, calculation of density, calculation of the forces
and integration. Each of these tasks is performed in a similar fashion by loop-
ing through all the particles and all the iterations are completely independent
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from each other, thus facilitating the use of OpenMP.

Algorithm 7: Modified algorithm to perform simulation of fluid using OpenMP
directives

while timer ticks do
Refresh neighbour search structure

#pragma omp for
foreach particle P in particle list do

Calcule the density and pressure of P
end
#pragma omp for
foreach particle P in particle list do

Calculate net force of P
Integrate acceleration to get velocity v and position x
Apply collision detection and resolution on P against environment
Move P and render it

end

end

The performance of the OpenMP integration was observed (figure 6.19), once
again, using the two methods, on the fly and big neighbour list for neighbour
search, discussed earlier in section 6.3.5.1.

The results, from figure 6.19, proved to be totally opposite of what was demon-
strated in the previous graphs. Here, the on the fly method proved to be the
fastest with performance boost of up to 3 times, while the big neighbour list
was totally inefficient and sometimes even slower. This latter delay can be ex-
plained by the fact that the big list becomes a shared object when used with
OpenMP; as such, the OpenMP ordered construct must be used to ensure that
it is updated by only one thread at a time and that too in order. All this syn-
chronisation among threads impaired their parallel working and slowed down
the execution. As for the former case, the performance gained was because of
the use of the three other processors (the simulation computer is a quad-core
machine) resulting in a CPU usage of around 325 - 400 % as compared to the
initial 96 - 100 %.

In this project, the on the fly neighbour search method was finally chosen
with OpenMP integration. The graph 6.20 demonstrates the performance gain
by using OpenMP.
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Figure 6.19: Execution time (in minutes) over iterations using OpenMP.
OTF13 - on the fly with 13566 particles, OTF29 - on the fly with 29667 particles,
BNL13 - big neighbour list with 13566 particles, and BNL29 - big neighbour list
with 29667 particles.

Figure 6.20: Execution time (in minutes) of 13566 particles over 3000 iterations
using OpenMP and the on the fly method for neighbour search.
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Chapter 7

Conclusion

In this project, a Lagrangian simulation of liquids has been implemented using
the SPH method. In this section, an analysis of the success of the project
is made, followed by a discussion of some problems encountered during the
implementation and some improvements and future work.

7.1 Critical Analysis

Overall, this project has been successful as it meets all of the objectives initially
set in the Design chapter 4.1. Features such as particle injection have brought
in some very interesting results as shown in section 6.2.6. The interaction be-
tween the fluids and the rigid bodies has been another very successful objective
achieved in this project and some very interesting scenarios are demonstrated
with great success in section 6.2.3. The interaction between multiple fluids is
inherent in Lagrangian particle-based methods and has proved to work really
well in this project as demonstrated in section 6.2.2. The functionality of ex-
porting the simulation data to Houdini has also been implemented and being
able to manipulate it in Houdini gives much freedom for advanced enhancement
and rendering. The use of multiprocessing and OpenMP has also been success-
fully used in this project to give a significant performance boost. Efficient use
of memory and coding practices have been adopted, such as the use of passing
values by reference to prevent the creation of object copies while easily pass
addresses around and fast memory access achieved through contiguous memory
allocation on the stack instead of resorting to pointers on the heap.

On the other hand, the simulation of the flow of various liquids present some
challenges since the parameters cannot be tweaked over a wide range of values.
While the basic liquid has been successfully simulated and used for most of the
simulations presented in this paper, tweaking the parameters such as viscosity
does not always guarantee a stable simulation, as discussed in section 6.3; as
long as the timestep is kept really small, the simulation is assumed to be stable.

7.2 Problems Encountered

The density calculation of the particles is quite problematic because it depends
highly on the accuracy on the neighbour search spatial algorithm and any fluc-
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tuation in the latter impacts the density value, the resulting pressure and the
whole of the SPH force calculations. At several instances, the simulation would
explode without any apparent reason; the cause was eventually traced back to
an abnormality in the neighbour search procedure and this debugging process
was quite painful. Another issue with SPH density calculation is that surface
particles have less neighbours than those in the middle of the fluid; thus their
densities are wrongly calculated, resulting in visual artifacts at the surface of
the fluid, such as a massive concentration of particles stuck together at the edge
of the boundary. Lerer, among many others, proposes solutions to solve this
problem.
Another significant problem, that has been encountered, is with the neighbour
search algorithm. Spatial hashing uses a smoothing length and thus divides the
space in small cells; this, however, is rendered totally useless as the number of
particles increases. In the latter case, the cell size remains constant and thus the
number of neighbours per cell returned is massive and increases the complex-
ity of the force calculations. At one point during the testing phase, a massive
neighbour count of nearly 900 was returned and this resulted in a definite halt in
the simulation, as the forces were calculated over 900 particles. To resolve this
issue, the boundary dimension was increased so that the fluid particles do not
come too close to each other. However, many papers have studied this problem
and the most popular solution is to use adaptive smoothing length, whereby the
smoothing length and thus the cell size is adjusted accordingly to the simulation
space.

7.3 Improvements and Future work

While SPH is an easy method to understand and implement, it poses a lot of
challenges that must be addressed to ensure that good simulations are obtained,
as discussed in section 6.3. Improvements could be made to address a number
of these issues. Alternate formulas, such as the Tait’s equation (Monaghan,
1994), could be used to calculate the density and pressure with better accuracy.
The high compressibility issues could be resolved with the use of the conjugate
gradient method (Becker and Teschner, 2007). Furthermore, the timestep limit
could be resolved by using implicit integration methods as discussed by Stam
(1999). SPH provides a lot of room for improvement so that much more stable
simulation can be achieved. Once the latter is achieved, various types of liquid
can then be easily simulated such as honey and ink.
The nature of this project has a big scope for future work. Some of these
are discussed briefly in this paragraph. Future work could be done on the
user interface to allow easy tweaking of the simulation fluids. Concerning the
representation of rigid bodies, the use of polygon meshes would be considered in
the future because they provide much more complex shapes as compared to the
currently being used implicit functions. This would enable much more complex
and interesting scenarios such as the flow of fluid in blood vessels and etc. The
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performance of the simulation algorithm would be another concern for future
work. Improvement, in terms of frame-rate-per-second, would be considered
using other alternative technologies such as MPI to add in much more processing
power or even OpenCL. Since the weakness of the spatial hashing with massive
particle count has been discussed in the previous paragraph, some future work
would definitely involve the use of a more efficient neighbour search algorithm
designed to handle a much larger particle count, however close they get to each
other, or even improve the existing spatial hashing algorithm to tackle this
specific problem. The implementation of the reaction of fluid particle forces on
the rigid bodies would also be a good consideration as a future work, so that
Newton’s third law of motion, action and reaction, is respected and thus a more
stable simulation could be expected. This could also be then used to implement
floating bodies on the surface of the fluid or enable more complex scenarios such
as the opening of a valve by the pressure exerted by the simulated fluid.
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