
Interactive non-photorealistic rendering using GLSL

Charlotte Hoare

August 20, 2012

Contents

1 Introduction 2

1.1 Non-photorealistic rendering . 2
1.2 Watercolour rendering . 2
1.3 Ink rendering . 3
1.4 Structure of the thesis . 3

2 Previous Work 4

2.1 General . 4
2.2 Watercolour rendering . 4
2.3 Ink rendering . 5

3 Implementation 6

3.1 Cel shading . 6
3.2 Framebu�er objects . 7
3.3 Wobbling . 7
3.4 Edge darkening . 8
3.5 Turbulence �ow and pigment dispersion . 8
3.6 Paper normal mapping . 9
3.7 Ink shading . 10

4 Conclusion 11

1

Chapter 1

Introduction

1.1 Non-photorealistic rendering

Figure 1.1: Gooch shading. An example of non-
photorealistic rendering in technical illustration [10].

The goal in computer graphics for photorealism has
been ever present. Photorealism, coming from the greek
'photo' meaning produced by light and realistic mean-
ing depicting the real, is the term used to describe the
pursuit of computed generated images so realistic they
could be photographs of the real world. Naturally, many
photorealistic techniques are physically based and sim-
ulate the real world. The most pertinent physical simu-
lations being that of the interaction of light with objects
and environment, and the projection of an image onto
�lm using a camera. An example of a photorealistic ren-
dering technique which uses these physical simuations
is raytracing.

Photorealism exists beyond computer graphics. One
example is in the work of the Dutch artist Vermeer,
whose paintings can appear photographic in quality with both perspective closely observed, and brush strokes not
easily discerned in the �nished painting. However, his work was criticised for being inartistic and sterile and, this,
along with the advent of photography, has led to photorealism in art being rare and more abstract forms of expression
becoming more popular. These criticisms of photorealism in art have been equally levelled at photorealistic computer
graphics, with images described as being too perfect and lacking in scope for artistic expression.

As such, research into alternative forms of artistic rendering has become popular; this research is generally
referred to as non-photorealistic rendering. It is a many and varied topic, encompassing the emulation of traditional
art forms, technical illustration and many more. Where photorealism is concerned with simulating the behavior of
light, non-photorealistic rendering is driven by the more subjective human perception. This is very di�cult as where
physically-based simulation is governed by replicable equations, it is not easy to replicate the subjective processes of
an artist. Given this, it is necessary to understand the creative process of the artist as well as the physical aspects
to be emulated.

Non-photorealistic rendering brings the disciplines of art and science together; its value lies in both its techniques
and, importantly, on the aesthetics of the results. It is this joining of art and science which is the most exciting
aspect of non-photorealistic rendering.

1.2 Watercolour rendering

One area of non-photorealistic rendering is painterly rendering. The advantages of painting stem from the fact
that by not depicting every detail, the painter allows the viewer to complete the picture and thus share in the
interpretative process. Di�ering brush strokes can de�ne the character of a surface, that is, how light is re�ected
from it; surfaces with smooth blending brush strokes imply smoothness or softness where harsh, unblended strokes
imply stronger lighting or more pronounced surface texture. In other words, a painting can provide focus or improve

2

composition by abstractly inviting the viewer into the interpretive process. It is this abstraction which is the aim
of painterly rendering.

Painterly rendering techniques are varied, some using particle systems and others point sprites. Meier suggests
using particles to describe a surface and then render each particle as two-dimensional brush strokes, whilst Sperl
renders the particles as point sprites. However, these methods can also su�er from looking sterile; the particles or
point sprites are too uniformly distributed and the brush strokes for each unvarying. For this reason, the focus of this
thesis changed toward a painterly rendering style which both simulates physical phenomena as well as incorporating
the creative process in order to get a more aesthetically pleasing look; watercolour rendering.

Watercolour painting o�ers a very rich medium for artistic expression. Its main features stem from the variation
of pigment saturation, the behaviour of the water and the visibility and texture of the paper. These features result
from the interaction between the media, water, pigment and paper, and can therefore be scienti�cally described,
observed and emulated, whilst retaining the creative scope essential to non-photorealistic rendering. In other words,
by emulating watercolour e�ects, rather than simulating them, it is possible to present a set of intuitive controls to
the artist which will be the aim of the program.

1.3 Ink rendering

Another area of non-photorealistic rendering addressed in this project is ink rendering. In the real world, pen-and-
ink line drawing techniques are often used to great e�ect to depict form, tone, and texture in artistic, technical, and
scienti�c illustration. Its broad employment across these genres of illustration stems from the fact that it essentially
clari�es shapes and focuses attention. As such, non-photorealistic rendering in this style has been the subject of
much research.

One particular, more artistic, case of pen-and-ink rendering is that of Chinese ink rendering. Chinese ink
painting is very abstract, and incorporates �implicit meaning� in which painters use a minimum amount of brush
strokes to express form. For the purposes of this thesis, this more artistic ink renderer is pursued; with large brush
strokes similar to Chinese ink painting. That is, a method to automatically draw 3D models in the style of Chinese
ink painting is sought. This is in line with the end-program being an intuitive tool for artists, as discussed in the
previous section.

1.4 Structure of the thesis

The thesis is structured as follows. In Chapter 2, the previous work relating the problems to be addressed is
discussed. This includes a survey of relavent previous works, highlighting any particularly pertinent points to be
noted. Chapter 3 is concerned with the implementation of the program, including an overview of utility methods
employed as well as descriptions of speci�c non-photorealistic rendering algorithms. In Chapter 4, the results of the
program, and the project in general, are detailed. Also presented here are concluding thoughts and remarks on the
project.

3

Chapter 2

Previous Work

2.1 General

As mentioned in Chapter 1, interest in non-photorealistic rendering research has steadily grown in the last decade.
As such, there are ample books classifying non-photorealistic techniques and are the best places to begin research.
In the case of this thesis, the reference guide used was �Non-Photorealistic Rendering� by Bruce and Amy Gooch
[1]. This book is one of the major authorities on non-photorealistic rendering. It provides an overview of the
published research on non-photorealistic rendering and categorises the current research into an encyclopedia of
usable algorithms and techniques. The most important points to note from the book are concerned with forming
an idea of what non-photorealistic rendering is and what it should achieve, namely that �simulating reality is not
as important as creating the illusion of reality�.

2.2 Watercolour rendering

Curtis et al. in 1997 [2] described the various features of watercolour painting, and showed how these e�ects could
be simulated. The salient points of this paper are the categorised properties of watercolour painting and not the
simulation, as the aim of this project is to emulate the features of watercolour painting with a view to creating
intuitive tools for the artist.

Before continuing, it is necessary to de�ne some terms related to watercolour painting which will be frequently
used in this thesis, and which are also categorised in [2]. Watercolour paintings are created by the application of
watercolour paint to paper. Watercolour paper is di�erent from other paper in that it is made from linen pounded
into small �bers. The paper itself is mostly air, laced with a microscopic web of these tangled �bers. As such,
watercolour paper is extremely absorbent to liquids, and so the paper is impregnated with something called sizing

so that liquid paints may be used on it without immediately soaking in and di�using. Sizing, made from cellulose,
forms a barrier that slows the rate of water absorption and di�usion.

Watercolour paint is, in essence, a suspension of pigment particles in a solution of water, and chemicals called
binder and surfactant. A pigment is a solid material in the form of small, separate particles which hold the colour of
the watercolour paint and penetrate into the paper. Once they have settled in the paper they tend not to migrate.
Pigments vary in density, with lighter pigments stayin suspended in water longer, and, as a result, spreading further

Figure 2.1: Edge darkening
[2].

across paper as the water travels. The two other chemicals in watercolour paint,
binder and surfactant, also have important roles; the binder enables the pigment to
absorb into the paper, while the surfactant allows water to soak into paper impreg-
nated with sizing.

Given these de�nitions, it is possible to explicitly de�ne some of the main features
of watercolour painting. The main properties described include edge darkening,
which can be seen in Figure 2.1. In a watercolour brushstroke, the amount of sizing
in the paper together with the surface tension of the water means the brushstroke
is prevented from spreading. As a result of this, the pigment gradually migrates
from the interior of the painted region towards its edges as the paint dries, which
leaves a dark deposit at the edge of the brushstroke. This edge darkening is a key
e�ect and one that watercolour artists utilise in their expression and one that paint
manufacturers continue to ensure is part of their watercolour paint formulations.

4

Figure 2.2: Granulation due
to heavy-density pigment [2].

Another pertinent feature described in the paper is that of the granulation and
separation of pigments. The granulation of pigments results in a grainy texture
which emphasizes the gradient of the paper as the watercolour runs into the valleys
of the paper. It is similar to separation; a splitting of colours that occurs when
denser pigments settle earlier than lighter ones. Combined, this results in pigments
with a greater density showing more of the e�ects of granulation, which can be seen
in Figure 2.2. These features are the salient ones when it comes to watercolour
painting, and as such need to be properly emulated in the �nal application.

Another paper which describes attempts non-photorealistic watercolour rendering
is [3]. Not only this, it also attempts to emulate watercolour e�ects rather than
simulating them to o�er intuitive controls to an artist, in line with the aims of this
thesis. On top of those e�ects covered in [2], it de�nes two more, highlighted below.

Figure 2.3: Turbulence �ow and wobbling [3].

The water component of watercolour paint causes
colour variation due to the non-homogeneous distribu-
tion of water on the canvas. The �ow of water is turbu-
lent and so this e�ect shall be referred to as turbulence
�ow. An example of this in a real watercolour can be
seen in Figure 2.3. In addition to this, a wobbling ef-
fect is discernable in watercolour paintings due to paper
grain; that is, as a result of pigments depositing in small
valleys in the paper. This can also be seen in Figure 2.3.

Another important paper in watercolour rendering is [4], which combines the simulation and emulation elements
of the aforementioned papers with interesting results, and also [5] which applies the theory in [3] as an image
processing technique; an interesting possible extension.

2.3 Ink rendering

[6] provided the best overview of both Chinese painting expression integrated with computer technology. It suggests
that Chinese ink painting is all about implicit meaning, that is, a minimum amount of strokes is used to express
meaning and emotion. This is very similar to silhouette shading (see Figure 2.4); a common non-photorealistic
technique on which there are many resources [7].

Figure 2.4: Silhouette shading [7].

5

Chapter 3

Implementation

Figure 3.1: Test scene.

The problem then to be solved, which can be explicitly stated fol-
lowing Chapters 1 and 2, is this: Given a 3D scene, render the
scene as a watercolour painted image or an ink painted image. For
the purposes of this chapter, we will use a test scene containing a
golden teapot, which can be seen in Figure 3.1. As proposed in [3],
the �rst step is to apply cel shading to the scene, and then apply
the watercolour e�ects to the cel shaded scene.

3.1 Cel shading

Cel shading is a type of non-photorealistic rendering speci�cally
designed so that 3D computer graphics appear hand drawn. Indeed,
its name is derived from cels, the clear sheets of acetate which are
painted on in tradition 2D animation. Often used to mimic the
style of a comic book or cartoon, its most common usage is in
video games.

The algorithm used to implement cel shading in the application
is a simple one, which performs light intensity thresholding in order
to create four discrete surface shades which are lighter where the
threshold is high, and was written based on the tutorial at [8].

As light intensity is strongest when the directon of light n the scene and the normal at the surface are coincident,
and drops o� to zero as the angle between the two increases to 90◦ [9], the light intensity on a surface is equivalent
to the cosine of the angle between the light direction vector and surface normal. That is,

intensity = cos(lightDirection,normal)

=
lightDirection · normal

|lightDirection| ∗ |normal|

This can be simpli�ed if both the direction of the light and the normal are normalised (they have length one) so
that,

intensity = cos(lightDirection,normal)

= lightDirection · normal

This calculation may be performed using GLSL's �dot� function, so the light intensity becomes trivial to �nd per
vertex or per fragment.

6

In this case, the light intensity is found per fragment in the fragment shader. The vertex shader normalises the
vertex normal and then passes this to the fragment shader for intensity calculations, then computes the homogeneous
vertex position. The fragment shader is more involved. It takes in the normalised normal from the vertex shader
and also a uniform colour from the application (see Figure 3.2 for the colour passed in in the test scene). The
direction of the light is speci�ed and normalised, and then the light intensity per fragment is calculated. The
intensity thresholding is then performed. Where the intensity is greater than 0.95, the uniform colour value passed
in is outputted as the fragment colour. Otherwise, if the intensity is greater than 0.5, the uniform colour is scaled
down and outputted as the fragment colour, and so on. The result of the intensity threshold cel shader applied to
the test scene can be seen in Figure 3.2.

Figure 3.2: Test scene with cel shading.

3.2 Framebu�er objects

Figure 3.3: Test scene with wobbling.

Many of the watercolour e�ects de�ned in Chapter 2 need to be
applied to the entire screenspace, as it is this which is analogous
to the painting in the application. In order to apply e�ects to the
entire screenspace, the frame bu�er is captured as a frame bu�er
object and stored in a texture. This texture then sent to a GLSL
shader as a sampler, and this shader is then used on a plane which
covers the OpenGL bu�er which is seen in the �nal application.

The GLSL vertex and fragment shaders which are used to shade
the plane, which is now essentially the analogous painting, are
where the rest of the watercolour e�ects will be implemented. The
vertex shader passes the uv co-ordinate information to the fragment
shader as vertUV and then calculates the homogeneous vertex po-
sition. Again, the fragment shader is more involved.

3.3 Wobbling

When wet watercolor paint is applied on dry paper, there is a wob-
bling e�ect due to the raggedness of the paper. This e�ect is emu-
lated in the fragment shader by distorting the incoming framebu�er
texture. This distortion is achieved by o�setting the uv co-ordinates
using a paper texture passed in from the main program according
to, in GLSlang,

7

wobbleUV = vertUV + texture(paperTex,vertUV) ∗D

where paperTex is the texture passed as a uniform sampler to the fragment shader and D scales the o�set. The
higher D is, the greater the distortion. This distortion scale factor is one of the intuitive controls which is made
available to the user. To see the e�ect of the new wobbleUVs, see Figure 3.3.

3.4 Edge darkening

Figure 3.4: Test scene with edge darkening.

Before discussing edge darkening, it is necessary to describe the
way colour darkening is achieved in the fragment shader, as it will
be referred to here and in subsequent sections.

The darkening method used is that used in [3], where an empir-
ical darkening due to pigment density model was described. It uses
a parameter d to speci�y the pigment density, and the darkening
is then computed according to the following equation,

C = C(1=(1=C)(d=1)) (3.1)

Using a parameter d to control the darkening, or pigment density,
is useful as it can be made open to the user.

In order to darken only the edges, however, it is necessary to
�rst detect those edges in the fragment shader. Edge detection is
based on the assumption that an edge occurs where a sudden change
in colour occurs. Basic edge detection uses the change in intensity
values, rather than colour values, to detect an edge. Here intensity
is not the same as the light intensity described in Section 3.1 but
rather colour intensity. The intensity of a colour is the brightness or
force of a colour. In the fragment shader, the colour intensity of a
pixel is found by averaging the value of the three colour channels of
the pixel. The edge detection itself is implemented in the function
'edgeDetect' in the fragment shader and works as follows. The pixel intensity is found for the current pixel and its
eight direct neighbours. The di�erences in the intensities of the neighbour pixels is then calculated and averaged.
If this average is very small, that is, the di�erences in the intensities is negligible, the function returns that there is
no egde. If the average is larger, then there is an edge.

To edge darkening. Essentially, for every pixel, if it does not lie on an edge, the function returns 0.0, if it does
lie on an edge, it returns a nonzero �oat. When a nonzero value is returned in the fragment shader, that fragment
is darkened according to equation (3.1).

3.5 Turbulence �ow and pigment dispersion

As described in Chapter 2, the colouring of a watercolour varies in two ways; there is granulation causing pigment
dispersion and non-homogeneous repartition of colour due to the turbulent �ow of water. These colour variations
are emulated in layers using greyscaled images sent to the fragment shader as uniform samplers. For the pigment
dispersion layer, a greyscaled paper texture was again used and for the turbulent �ow a Perlin turbulent noise
texture was used. The intensity of these images then gives the colour variation. This method was based on one
presented in [3].

When the greyscaled image has an intensity of I (as described in Section 3.4), the fragment is darkened according
to equation (3.1) with a d value of

d = 1 + β(I − 0.5)

where β is a global scaling factor which can be made open to the user. The greater β, the more turbulent the �ow
of the water; the greater the granulation of the paper.

Finally, it is important that the fragments are only darkened where there has been paint; that is, the paper itself
would not be darkened where it is blank. As such, the fragment shader �rst calculates if the raw colour information
is fully white; that is it is paper. Then, later, if the raw colour information was found to be fully white, the turbulent
�ow and pigment dispersion is not applied. To see the �nal result of these colour varying e�ects, see Figure 3.5.

8

Figure 3.5: Test scene with turbulent �ow on the left and turbulent �ow plus pigment dispersion on the right.

3.6 Paper normal mapping

The �nal step in generating a watercolour from a 3D model was to make the plane appear bumpy like watercolour
paper by using a watercolour paper normal map. The calculation is a simple one, the fragment shader looks up and
sets the surface normal according to the watercolour normal map which has been passed to the fragment shader as
a sampler. Following this, the di�use lighting value is calculated in the normal way [9]

diffuse = max((lightDirection · normal), 0.0)

and then multiplied with the output colour to get a normal mapped plane which appears like watercolour paper.
The �nal output can be seen in Figure 3.6.

Figure 3.6: The �nal output compared with the original 3D model.

9

Figure 3.7: Troll rendered ink style.

3.7 Ink shading

The ink renderer is only slightly di�erent, in that it implements ink shading where the watercolour renderer imple-
ments cel shading. The shader was written with help from [11]. The ink shader works by calculating light intensity
like the cel shader, but the calculation is slightly di�erent. The intensity is o�set so that the places which form the
silhouette of the model appear to be in the dark; the sihouette will render darkest. The interior works with the
light intensity as normal, growing from dark grey to white to show intensity. The results of this shader can be seen
in Figure 3.7.

10

Chapter 4

Conclusion

The resulting images from the program are visually very pleasing, as can be seen in Figure 4.1. The watercolour
e�ects are convincing, and all are interactively controllable by the user and can be intuitively understood. To this
end then, the project has been a success.

Some de�nite improvements would be to achieve some kind of real-time temporal coherence, in order to reduce
the �shower door� e�ect of the turbulent �ow and pigment dispersion e�ects. The �shower door� e�ect coming from
the watercolour paper is actually quite pleasing, as it appears the movement is happening on a static piece of paper;
the watercolour paper becoming a viewport. The excursion into non-photorealistic rendering and GLSL has been
an interesting one, and certainly the knowledge and understanding gained in terms of GLSL is invaluable.

Figure 4.1: Resulting images

11

Bibliography

[1] Gooch, B. and Gooch, A., 2001. Non-photorealistic Rendering. Massachusetts: A K Peters.

[2] Curtis, C. J., Anderson, S. E., Seims, J. E., Fleischer, K. W. and Salesin, D. H., 1997. Computer-generated
watercolor. In: Siggraph '97, ACM Press, 421-430.

[3] Bousseau, A., Kaplan, M., Thollot, J. and Sillion, F. X., 2006. Interactive watercolor rendering with temporal
coherence and abstraction. In: NPAR '06, ACM Press, 141-149.

[4] Lei, E. and Chang, C., 2004. Real-time rendering of watercolor e�ects for virtual environments. In: PCM '04,
ACM Press, 474-481.

[5] Doran, P., 2010. Expressive rendering with watercolor. Thesis, (Masters). Brown University.

[6] Way, D. L., Lin, Y. R. and Shih, Z. C., 2002. Chinese ink rendering for trees using outline drawing and texture
strokes. In: IWAIT '02.

[7] Goodwin, T., Vollick, I. and Hertzmann, A., 2007. Isophote distance: a shading approach to artistic stroke
thickness. In: NPAR '07, ACM Press, 53-62.

[8] Lighthouse3d.com. Toon Shading. Available from: http://www.lighthouse3d.com/tutorials/glsl-tutorial/toon-
shading/ [Accessed 17 August 2010]

[9] Rost, R. J., 2006. OpenGL Shading Language. Second. Addison Wesley Professional.

[10] Reynolds, C., 2004. Stylized Depiction in Computer Graphics. Craig Reynolds. Available from:
http://www.red3d.com/cwr/images/npr/gooch_98.gif [Accessed 17 August 2012]

[11] 2011. Outline via GLSL?. Maratis 3D. Available from: http://forum.maratis3d.com/viewtopic.php?id=56[Accessed
17 August 2012]

12

