

MSc Masters Project
3D Particle in Cell / Fluid Implicit Particle Fluid

Solver
using OpenMP directives

Ioannis Ioannidis
MSc CAVE 11-12
August 20, 2012

 2

TABLE OF CONTENTS

1 Introduction ... 9

1.1 Topic .. 9

1.2 Project Objective ... 10

1.3 Report Structure ... 10

2 Previous Work .. 10

3 Basic Fluid Dynamics and Pic / Flip Theory .. 11

3.1 Fluid Dynamics Research Approaches ... 11

3.1.1 Eulerian Grid Based Methods ... 12

3.1.2 Lagrangian Particle Based Methods ... 12

3.1.3 Theoretical Comparison Eulerian Vs Lagrangian 13

3.2 Staggered MAC Grid .. 15

3.3 Equations of Fluid Motion ... 17

3.4 PIC / FLIP Methods ... 19

3.4.1 Particle In Cell Method ... 19

3.4.2 Fluid Implicit Particle Method .. 19

3.5 PIC / FLIP Combination Algorithm ... 19

3.5.1 PIC / FLIP Algorithm Step Analysis .. 20

4 Design of the custom plug-in ... 23

4.1 Aims and Objectives .. 23

4.2 Application Class Diagram ... 24

4.3 Brief Class Functionality Description ... 27

4.4 Project Pipeline .. 28

4.4.1 Analytical Pipeline Structure Steps ... 29

4.5 Scene Object Representation .. 30

5 Implementation ... 30

5.1 Main Algorithmic Scheme ... 31

5.2 From Houdini To Custom Solver ... 32

5.2.1 XML Configuration Functionality ... 32

5.2.2 Particle Fluids From Objects ... 33

5.2.3 Particle Position Filtering & Conversion .. 34

5.3 Simulation Set Up & Initialization ... 35

5.3.1 Memory Allocation .. 35

5.3.1.1 Multidimensional C++ Array Explanation 36

5.3.2 MAC Grid Walls Creation ... 37

5.3.3 Fluid & Rigid Body Objects Creation and Placing 37

5.3.4 Particle-Cell Identification .. 38

5.3.5 Fluid Surface Marking .. 38

5.3.5.1 Level Set Function Analysis ... 39

 3

5.3.6 Initial Stuck Particle Removal ... 40

5.4 Iterative Simulation Algorithm .. 40

5.4.1 Particle in Cell Discretization .. 40

5.4.2 Density Calculation ... 40

5.4.3 Solve External Forces ... 41

5.4.4 Particle Velocities to Grid ... 42

5.4.5 Boundary Velocities To Zero ... 43

5.4.6 Projection Step Algorithm & Theory ... 44

5.4.6.1 Projection Method Main Algorithm .. 44

5.4.6.2 Analysis of the Projection Step: ... 45

5.4.6.3 Preconditioned Conjugate Gradient Solver 48

5.4.6.3.1 Conjugate Gradient Method ... 48

5.4.6.3.2 Using a Preconditioner ... 52

5.4.7 Velocity Extrapolation ... 56

5.4.7 .1 Velocity Extrapolation Algorithm .. 56

5.4.8 Pic Flip Velocities Calculation .. 58

5.4.9 Particle Advection ... 60

5.4.9.1 Runge-Kutta ODE Solver .. 60

5.4.9.2 Collision Detection & Response ... 62

5.4.9.3 Stuck Particle Repositioning .. 63

5.4.10 Particle Distribution Correction .. 65

5.4.10.1 Correction Algorithm ... 65

5.4.11 Export and Write Particle Positions .. 66

5.4.12 Artificial Vortex Behaviour .. 67

5.4.13 Smooth Kernel Functions ... 68

6 Pipeline Issues .. 72

6.1 Custom Houdini Digital Asset creation .. 72

6.1.1 PicFlip Fluid Houdini Digital Asset ... 72

6.1.2 PicFlip Solver Houdini Digital Asset... 73

6.2 Python & Houdini ... 75

6.3 XML Step Analysis .. 76

7 Simulation Results and Discussion ... 76

7.1 Simulation Scenarios .. 76

Scenario 1 Single Primitive .. 77

Scenario 2 Single Liquid .obj Loading .. 78

Scenario 3 Multiple Interacting Liquids .. 79

Scenario 4 Liquid Interacting with Static .obj ... 80

 4

Scenario 5 Liquid Interacting with RBD .obj ... 81

Scenario 6 Viscous Liquid Interacting with Static .obj 82

Scenario 7 Artificial Liquid Vortex Behaviour .. 83

7.2 Known Issues .. 85

7.2.1 Pic Flip Issues .. 85

7.2.2 Time step Issues ... 85

7.2.3 Viscosity Issue .. 85

7.3 Performance and Efficiency ... 85

7.3.1 Neighbour Search .. 85

7.3.2 Using OpenMP Directives ... 87

8 Conclusion and Future Work ... 91

8.1 Critical Analysis of Initial Objectives .. 91

8.2 Possible Extensions and Improvement .. 92

Appendix .. 93

Bibliography ... 93

 5

LIST OF FIGURES

Figure 1 : Eulerian Particles Passing through fixed points in space 12

Figure 2 : Lagrangian Particle moving through space and time with a velocity vector
attached to it. ... 13

Figure 3 : Eulerian (left) – Lagrangian (right) system visual comparison..................... 13

Figure 4 : Individual Lagrangian Particle moving through space and time 14

Figure 5 : Field-based and particle-based views of a fluid. (a) Grid based: Each point
has fluid properties like velocity (arrows), density (box fill), pressure (arrow color),
and temperature (box outline), and the grid points never move. (b) Particle based:
Each particle has fluid properties in addition to position, and each particle can move
.. 15

Figure 6 : 2D staggered MAC grid showing pressure values stored in the center of
each cell and velocities on the center of each face of the cell (part 1) 16

Figure 7 : Navier Strokes Equations ... 17

Figure 8 : Analytical Fluid Form of Navier Strokes Equations 18

Figure 9 :Particle positions and velocities initial set up ... 20

Figure 10 :Particle velocities are mapped on the grid ... 21

Figure 11 : New Particle velocities calculated through steps 5,6,7 23

Figure 12 :Class Diagram 1 Shows the relationship of the heart of the pic flip the
Solver class with the rest of the solver’s classes functionality (part 1) 25

Figure 13 :This flowchart depicts all the important steps of the project’s pipeline
structure ... 30

Figure 14 :This is the process of the creation of a “man figure” .obj to be loaded in a
fluid HDA. We load a usual .obj model of a “man figure”, we fill it with particles using
the “pointsfromvolume” SOP and write this to a new .obj file. 34

Figure 15 :This is a memory representation of the implementation of a
multidimensional array .. 36

Figure 16 :This is cube representing the outer wall sides of the 3D MAC grid 37

Figure 17 : Velocity of an falling object (with respect to time) 42

Figure 18 : Trilinear Interpolation of each neighbour particle of the center cell for the
computation of its weighted contribution to this cell. .. 43

Figure 19 (reference figure 6) : 3D MAC grid .. 47

Figure 20 : An example of a symmetric matrix. .. 49

Figure 21 : Example Upper – Right Triangular Matrix ... 53

Figure 22 : Example decomposition of a matrix , where has only
zeros above its diagonal and has only zeros below its diagonal.............................. 54

Figure 23 : Velocity Extrapolation in regions of the MAC grid where velocities are
unknown yet. ... 57

Figure 24 : Transferring the grid velocities back to a particle in a cell performing
trilinear interpolation and contribution weighting based on the distance of the
particle from each grid cell point carrying a sampled velocity. 59

Figure 25 : 2D representation of the normal direction of the collision response (green
vertical arrow) .. 62

 6

Figure 26 : Repositioning of a particle whose cell index is marked as solid wall to a
pure fluid region (cell surrounded by fluid cells) cell. ... 64

Figure 27 : On the left, a particle’s position is being modified based on the total
force weighted contribution of neighbour particles. .. 66

Figure 28 : Vortex fluid behaviour .. 67

Figure 29 : Quadratic Loose kernel function 3D graph ... 69

Figure 30 : Quadratic Stiff kernel function 3D graph .. 70

Figure 31 : Cubic kernel function 3D graph .. 71

Figure 32 : Generic Pipeline of the project ... 72

Figure 33 : Custom HDA representing a fluid object to be added to the solver and be
simulated ... 73

Figure 34 :Multiple Fluid Addition to the solver HDA ... 74

Figure 35 : Custom HDA representing the main solver which collects all fluids to be
simulated (part 1) .. 74

Figure 36 : Simple primitive liquid sphere 15894 particles with low.......................... 77

Figure 37 : .obj “Plane” model loaded and simulated as liquid with 8048 particles
with low viscosity (5 %) .. 78

Figure 38 : Two liquids interacting with low viscosity (5%) : Primitive Sphere 15894
particles, Primitive Box 69216 particles ... 79

Figure 39 : “Camera” liquid object colliding with a static object in a single scene.
Liquid’s viscosity is also set to (5%) low value : Camera 130972 particles, Man Figure
55047 particles ... 80

Figure 40 : “Man Figure” liquid object colliding with an RBD “bullet” object in a
scene. Liquid’s viscosity is also set to (5%) low value : Man Figure 55047 particles,
Bullet 124 particles .. 81

Figure 41 : Viscous “food ball” liquid object colliding with an static sphere object in
a scene. Liquid’s viscosity is also set to (100%) max value : Food ball 6547 particles,
sphere 15894 particles ... 83

Figure 42 : Primitive liquid sphere with artificial Vortex Boost coefficient set to
100%. Sphere consists of 15894 particles. Noticeable is the spinning motion
behaviour causing turbulent flow at the center of the fluid and big splashes at the
edges. ... 84

Figure 43 : Comparison 0% vortex boost (white liquid) and 100% vortex boost (red
liquid). Note here, the two liquids are not interacting with each other but instead
they have been pre simulated each one on each own and later placed in this single
scene to be rendered together for demonstration purposes. The figure is just
juxtaposing the different topology in the fluid flow as a result of the new artificial
vortex boost coefficient feature added to the solver. ... 84

Figure 44 : The above column charts clearly show the difference in execution time
and complexity of the 2 methods. “All-Pair-Test” gives a O(n2) complexity as the
number of particles increases whereas by making use of this simple cell indexing
method leaves the complexity at linear level. ... 87

Figure 45 : The main fork-joint model of OpenMP ... 88

Figure 46 : A serial segment of code is being parallelized using all CPU cores available
in the system and returns to the main execution Master Thread multiple times
during the iteration of a program’s algorithm ... 89

 7

Figure 47 : “Man Figure” .obj liquid simulation test case for OpenMP consisting of
55047 particles with low viscosity (5%) .. 89

Figure 48 : Density Calculation execution time comparison of “Man Figure” .obj
liquid simulation test case for OpenMP consisting of 55047 particles with low
viscosity (5%) .. 90

Figure 49 : Velocity Extrapolation execution time comparison of “Man Figure” .obj
liquid simulation test case for OpenMP consisting of 55047 particles with low
viscosity (5%) .. 90

Figure 50 : One example of the configuration settings file in .xml format written to
the current directory from inside Houdini. The c++ external application is responsible
for parsing the lines of this file and set up the solver accordingly. 93

 8

LIST OF TABLES

Table 1 : Flip velocity step explanation ... 22

Table 2 : Pic velocity step explanation .. 22

Table 3 : Initialization Steps of the Algorithm... 31

Table 4 : Operations while the simulation runs (1/2) ... 31

Table 5 : Fluid physical properties list in the simulation .. 34

Table 6 : Fluid list iteration and filtering conversion of each fluid’s particle positions
.. 34

Table 7 : Conversion function visualization from Houdini scene space to custom
Solver scene space ... 35

Table 8 : The MAC grid cells’ marking process. .. 38

Table 9 : Generic explanation of the Conjugate Gradient method 49

Table 10 : Prerequisites of the Conjugate Gradient method 51

Table 11 : The Conjugate Gradient Math Algorithm .. 52

Table 12 : Calculation of the MIC preconditioner in 3D .. 56

Table 13 : Applying the MIC preconditioner in 3D ... 56

Table 14 : The algorithm for velocity extrapolation ... 57

Table 15 : (reference table 1) Flip velocity calculation. ... 58

Table 16 : (reference table 2) Pic velocity calculation. ... 60

Table 17 : Reposition stuck particles to new positions somewhere inside the fluid
volume ... 63

Table 18 : Assign new velocities to just repositioned particles based on resampling
their new neighbours’ velocities. ... 64

Table 19 : The algorithm description of the particles’ distribution correction. 65

Table 20 : The algorithm description of the standard velocity mapping to a grid cell
and an adjusted squared distance weighted contribution for the creation of the
effect of an artificial vortex-spinning behaviour of the fluid. 68

 9

Abstract

 This master's project paper deals with the implementation of a Pic Flip
fluid solver implemented with OpenMP as a plugin for SideFX Houdini 3D
Package. First and foremost, a standalone pic/flip solver is created in C++,
using OpenGL and NGL graphics library (Bournemouth University's
graphics library). Secondly this fluid solver's execution is parallelized using
OpenMP compiler directives so as to exploit all available CPU cores of the
current running system. In addition, as simulation is controlled from
inside Houdini, 2 HDAs (Houdini Digital Assets) are created, which set and
store all available fluid geometry data and settings for the custom
external fluid solver. Last but not least, an interface is attached to the
solver for parsing an .xml which contains all settings needed for the
solver, plus a .geo file writer of point position data to a Houdini
compliant file format is attached as the means to communicate the
simulation data back to Houdini scene space. Additionally, a new feature
regarding the rotational motion of the fluids being simulated has been
added to the solver as well, which introduces an artificial vortex-like
behaviour during the fluid flow.

 1 Introduction
 Fluid simulations for generating realistic animations of water, smoke are extremely
useful in the field of visual effects especially in films but also in commercial projects
such as advertising. This is mainly owed to the fact that are fully controllable
(because they are pre-programmed to behave in a certain way), but most
importantly because it is much more easier, cheaper and safe to create in ex. fake
huge ocean waves compared to filming in the actual ocean, or huge explosions and
so on.

 1.1 Topic

In this thesis report the implementation of a custom 3D fluid solver as a plug-in for
SideFX Houdini 3D package using the particle-in-cell / fluid implicit particle method
is covered and analyzed. It is mostly based on the Siggraph paper “Animating Sand As
Fluid” by Zhu and Bridson (2005) *2+ and on the “Fluid Simulation for Computer
Graphics” book by Robert Bridson *1+ from which someone can form a deep and
meaningful background in the two fluid simulation methodologies which are
combined under Pic/Flip model. A Pic/Flip custom fluid plug-in is investigated,
designed and implemented so as that it is ready to be used iteratively through
Houdini 3D package and offer the opportunity for technical directors or artists to
create and direct sequences of fluid simulations using their custom set of
preferences inside Houdini.

 10

 1.2 Project Objective

The project uses C++ and OpenGL to implement the fluid solver having this is as it's
initial objective as it's a programming project. Secondly, Houdini Digital Assets are
designed and created to load pre-created fluid object geometry data inside Houdini
and plug their data into a custom fluid solver so to be solved. Of course, a custom
c++ solver has been implemented to solve the fluid flow using the Pic/Flip method.
Furthermore, an interface between Houdini and the custom Pic/Flip solver is
implemented using an xml file format parser in C++ to import and read a
configuration settings file created inside Houdini using Python scripting embedded
as one of the various functionalities of HDAs. Moreover, point position data are
written per frame in .geo file format so as to pass the fluids’ particle positions back
to Houdini to a readable and compliant format. Finally, the custom fluid solver's
execution time gets boosted by parallelizing it using OpenMP compiler directives.

 1.3 Report Structure

 Chapter 2 introduces the area of research through presenting previous work
related to the project.

 Chapter 3 will analyze the main theory behind particle-in-cell / fluid implicit
particle (Pic / Flip) methodology, plus some general basic fluid dynamics the-
oretical concepts that will allow the reader to form the proper theoretical
background and carry on reading this thesis.

 Chapter 4 will present the design of this custom plug-in for Houdini 3d Pack-
age as an external application.

 Chapter 5 will exhaustively analyze the details of the implementation of the
plug-in as a whole.

 Chapter 6 will present the overall pipeline and several issues and steps that
are needed to be followed so as for the custom solver to work as an external
application.

 Chapter 7 will discuss the results of the implementation

 Chapter 8 will form a conclusion for the project and suggest possible future
work that could improve the existing solution in different aspects.

 2 Previous Work
 Pic/Flip methodology has its roots back to 1963 by Harlow *8+ and then it was
improved in the 1980's and more specifically in 1986 when Brackbill et. all *6+ in the
journal “FLIP: A method for adaptively zoned particle-in-cell calculations in two
dimensions” presented the fluid implicit particle fluid methodology based algorithm
theory of particle in cell (PIC) method. They also addressed and almost completely
solved the problem of numerical dissipation in PIC method.
Later on, in 1988 they developed the FLIP (Fluid-Implicit-Particle) method that uses

 11

fully Lagrangian particles to eliminate convective transport which was the main and
largest source of in calculations of computational diffusion in fluid flow (Brackbill,
1988). In FLIP method here the Lagrangian particles were used and contained all
necessary information to describe the fluid and through using these particle data,
the Lagrangian moment equations were solved on a grid. The results of those
equations then used as solutions to advance the particle variables at each simulation
time step. The real strength of FLIP method which conserves the angular momentum
and the absence of numerical dissipation is presented in this journal.
There has been a lot of improvements the main PIC/FLIP methodology since then
with culminating in the Siggraph paper “Animating Sand as Fluid” by Zhu and Bridson
(2005) *2+, in which they described a method for converting an existing fluid solver
into one capable of plausibly animating granular materials such as sand. In their
paper they developed a new fluid algorithm that combines the strengths of both
particles and grids, offering enhanced flexibility and efficiency while offering a new
method for reconstructing implicit surfaces from particles; this paper is considered
as a milestone to the PIC/FLIP methodology due to its excellent conservation of
energy without the spurious oscillations associated with similarly undissipative
central difference schemes.
In 2008, R. Bridson in his book “Fluid Simulation for Computer Graphics”
presents and analyses extensively the similarities and differences as well as the
equations of the Eulerian and Lagrangian methods used in fluid simulations. Its
contents form a deep and meaningful background in those two fluid
simulation methodologies which are combined under PIC/FLIP model. It helps
clarifying the theoretical structure of algorithmic approaches related to these
kind of fluid methods which are then fitted together to create the hybrid
PIC/FLIP method itself.
Furthermore, Ando et. Al (2012) in their technical paper “Preserving Fluid Sheets
with Adaptively Sampled Anisotropic Particles” present a particle-based model for
preserving fluid sheets of animated fluids with an adaptively sampled Fluid-Implicit-
Particle (FLIP) method. In addition, preserving fluid sheets by filling the breaking
liquid sheets with particle splitting in the thin regions, and by collapsing them in the
deep water is extensively analysed in this paper as well.
Finally, , in 2011 Boyd and Bridson in their Siggraph paper “MultiFLIP for Energetic
Two-Phase Fluid Simulation” presented the MultiFLIP method to graphics, which is
an extension of the Fluid Implicit Particle (FLIP) method *Brackbill and Ruppel 1986+ ,
and adapted it to incompressible flow by Zhu and Bridson *2005+. They developed a
new particle-based surface tracking scheme which identifies sub-scale bubbles
and droplets (Boyd, 2011) . MultiFLIP method incorporates particles into the grid-
based fluid solve so they are subject to the same physical parameters as the rest of
the simulation.

 3 Basic Fluid Dynamics and Pic / Flip Theory

3.1 Fluid Dynamics Research Approaches

There has been a variety of technical methods researched to simulate 3D fluids
properly already with the most exceptional ones to be the Eulerian or (Grid-Based),

 12

the Lagrangian or (Particle-Based), the Lattice Boltzmann and the Vorticity-Based re-
searched methods. All these methods have gradually been adapted in Computer
Graphics industry and the world of Visual Effects so as to produce realistic pieces of
water and smoke animation mostly. Since the method used in this project is the Pic
/ Flip and since its based at a combination of two of the aforementioned (Eulerian &
Lagrangian) there will be only a brief description on those two related ones.

3.1.1 Eulerian Grid Based Methods

The Eulerian description of a system, generally considers the range of change of sys-
tem variables fixed at a particular point in space. So, as time evolves, all the physical
term properties associated with the fluid particles such as pressure, density or veloc-
ity that pass through a fixed region of space are being measured and examined. This
could be further interpreted as points sticked in a grid which measure any quantita-
tive attributes of particles that pass by those points over time. All the particle data
information such as velocity, pressure, fluid surface indices and so on are kept usual-
ly on a grid.

Figure 1 : Eulerian Particles Passing through fixed points in space
(by the National Committee for Fluid Mechanics)

3.1.2 Lagrangian Particle Based Methods

The Lagrangian system on the other hand, considers individual particles which corre-
spond to individual fluid parcels and which the system tracks and follows them along
their trajectories in time and space. Each of those particles carry all the fluid infor-
mation such as acceleration, viscosity, density, pressure or velocity and those quanti-
tative material terms are measured in motion.

 13

Figure 2 : Lagrangian Particle moving through space and time with a velocity vector
attached to it.

(by the National Committee for Fluid Mechanics)

3.1.3 Theoretical Comparison Eulerian Vs Lagrangian

Figure 3 : Eulerian (left) – Lagrangian (right) system visual comparison

(by www.cs.cdu.edu.au/homepages/jmitroy/eng243/sect05.pdf)

 14

To start with, while the grid-based methods provide impressive results, the particle-
based methods could provide an alternative for simulation and animation of variety
of fluids with different physical properties while allowing user control and fast feed-
back at coarse resolutions.

Listing the advantages of Particle based approaches we could say:

 Overall complexity of the simulation is reduced

 Mass conservation is ensured

 Convection terms are dispensable: and so pressure and density can be com-
puted from weighted contributions of neighbouring particles rather than by
solving linear systems of equations

 Particles can be used directly to render the fluid surface

 Large deformations are treated relatively easier because particles have no
fixed connectivity

 Particle refinement is way easier than mesh-refinement(in Eulerian Grid-
based methods)

One of the most important disadvantages of particle-based methods (as usually stat-
ed) is the need for large numbers of particles to produce simulations of equivalent
resolution as grid-based methods.

Figure 4 : Individual Lagrangian Particle moving through space and time
(by

http://en.wikiversity.org/wiki/Fluid_Mechanics_for_MAP_Chapter_4._Fluid_Dynami
cs)

 15

Listing the advantages of Grid based approaches we could say:

 Higher visual accuracy is ensured generally

 They maintain better Surface Representation

 Performance is independent of the particles’ number

One of the most important disadvantages though is the numerical dissipation be-
cause of the fluid domain sampling, plus it has a large memory footprint. Moreover,
the detail of the simulation is largely dependent on the grid resolution hence the size
of the simulation depends on the grid’s size.

Figure 5 : Field-based and particle-based views of a fluid. (a) Grid based: Each point
has fluid properties like velocity (arrows), density (box fill), pressure (arrow color),
and temperature (box outline), and the grid points never move. (b) Particle based:

Each particle has fluid properties in addition to position, and each particle can move

(by http://software.intel.com/en-us/articles/fluid-simulation-for-video-games-part-
1/)

3.2 Staggered MAC Grid

In this thesis a staggered MAC grid is used so as to store different quantative variable
terms in different locations because it’s a simple model to avoid the “Odd-Even“
numerical issue when trying to compute pressure on the grid [21]. If we were to look
at a simpler form of the MAC grid in 2 dimensions we can see the pressure in grid
cell (i, j) is sampled at the center
of the cell, indicated by Pi,j and the velocity is split into its two components regard-
ing each direction of the system (grid’s cell faces). The horizontal u component is

 16

sampled at the center of the vertical cell’s faces, and is indicated by Ui+1/2,j for the
horizontal velocity between cells (i, j) and (i+1, j). The vertical v component is sam-

pled at the centers of the horizontal cell faces and is indicated by vi,j+1/2 for the

vertical velocity between cells (i, j) and (i, j +1). This way, having acquired each grid
cell’s velocity at the center of each of its 6 faces we are able to calculate the amount
of fluid flowing into and out of the cell (Bridson, 2007).

Figure 6 : 2D staggered MAC grid showing pressure values stored in the center of
each cell and velocities on the center of each face of the cell (part 1)

(by http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf)

http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf

 17

The same goes for the 3D representation of a MAC grid:

Figure 6: 3D staggered MAC grid showing pressure values stored in the center of each

cell and velocities on the center of each face of the cell (part 2)
(by http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf)

3.3 Equations of Fluid Motion

Navier Strokes Equations:
The governing equations that are used to describe the motion of a fluid are called
the Navier-Strokes equations and result from applying Newton's second law to fluid
motion:

(3.1)

Figure 7 : Navier Strokes Equations

(by http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations)

In the above figure u denotes the velocity , ρ the density, p the pressure, ν the kine-
matic viscosity and f the external forces acting on the fluid. The symbol
represents the spatial derivative vector in 3 dimensions:

http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf
http://en.wikipedia.org/wiki/Newton%27s_second_law
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Fluid_dynamics
http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations

 18

(3.2)

The first differential equation of the two of the Navier Strokes equations is called the
momentum equation and it practically describes that the fluid accelerates and con-
sequently moves when external forces are applied onto it.
The second equation deals with what in computational fluid dynamics we call in-
compressibility condition. That basically means, that the mass of an infinitesimal flu-
id parcel has to remain constant throughout the fluid flow and so the mass is con-
served.
Although, in reality fluids are not incompressible and indeed change their volume
(ex. supersonic flows, sound under water), in fluid simulations especially for com-
puter graphics we tend to ignore this parameter for the sake of simplicity in terms of
coding and performance; This is because we are mostly interested in an acceptable
visual outcome which is subject to a little deviation from the strict physical laws.

(3.3)

Figure 8 : Analytical Fluid Form of Navier Strokes Equations
(forces acting on the fluid (right side) cause the acceleration of the fluid (left side))

(by http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations)

Analysing the terms of the momentum equation gives us a better clarification on the
whole fluid motion and so we can describe each term as follows:

 : is the unsteady acceleration of each of the individual particles of the
fluid

 : is the convective acceleration caused by a (possibly steady) change in
velocity over position, for example the speeding up of fluid entering a con-
verging nozzle. It’s also known as the advection term that moves the fluid

http://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations

 19

 : is the pressure gradient which describes how the volume of the fluid
moves with respect to the pressure attribute field and is responsible for
maintaining the fluid incompressible (solved in the step called Projection).

 - : is the kinematic viscosity which is also called diffusion as well, repre-
senting the whole fluid volume’s internal resistance to motion. For example,
types of fluids like water, blood, honey and molasses have different amounts
of viscosity with the first having the lowest and the latter the highest.

 At Last, f represents the external forces that act on the fluid with the most
common and simple one be the gravity itself with approximately 9.81

m/ .

3.4 PIC / FLIP Methods

3.4.1 Particle In Cell Method

The Particle-in-Cell (PIC) method which was early approached by Harlow (1963) [8]
was a method for simulating fluid flows using particles for the advection step. All the
other simulation steps were computed on a grid. All particles’ quantative terms were
replaced by the weighted average of neighbour particles’ quantative terms’ values
and then were updated on the grid without the doing the advection step. An inter-
polation of the newly found particle values on the grid and the previous particle val-
ues was undertaken and in the end the particles were moved based on the grid’s ve-
locity field. What this method was suffering from was the numerical diffusion caused
by the continuous averaging and interpolating of the fluid variables (Bridson, 2005).

3.4.2 Fluid Implicit Particle Method

Later, in 1986 Brackbill and Ruppel in their paper “FLIP: A method for adaptively
zoned, particle-in-cell calculations of fluid flows in two dimensions ” [5] achieved al-
most no numerical dissipation while at the same time having many variations of flu-
id shapes by using particles as the main fluid volume representation and by using the
grid so as to increment the particle quantative terms based on the change calculated
on it (Bridson, 2005).

3.5 PIC / FLIP Combination Algorithm

 20

By adapting PIC and FLIP methods to ensure an incompressible fluid flow as we have
the following generic algorithm (following Bridson’s 2005 “Animating Sand as Fluid”
paper):

 We initially set all particle positions & velocities
For each time step:

 For each MAC grid cell we calculate the weighted average of neighbouring
particle velocities

 For FLIP: We store the grid velocities

 Perform all the non-advection steps of a standard water simulator on the
grid

 For FLIP: Subtract the new grid velocities from the previously stored veloci-
ties, then add the interpolated difference to each particle’s velocity.

 For PIC: Interpolate the new grid velocities to the previous particles’ veloci-
ties.

 Mix Pic and Flip velocities

 Move particles through the grid velocity field with an ODE solver, making
sure to push them outside of solid wall boundaries

 Write the positions of the particles to an output.

3.5.1 PIC / FLIP Algorithm Step Analysis

1. Set initial Positions & Velocities

Initially, we actually place the particles inside the MAC grid’s space and in this
thesis we practically match Houdini’s scene space particle positions to the
custom solver’s corresponding ones.(See section 5.2.3)

.

Figure 9 :Particle positions and velocities initial set up

 21

2. Calculate the weighted average of neighbouring particle velocities

In this step the particle velocities are mapped onto the grid and each of the
grid points are taking a weighted average of nearby particles by performing a
trilinear (horizontal, vertical and depth) 3d interpolation.(See chapter 5)

Figure 10 :Particle velocities are mapped on the grid

3. Store grid velocities

In this step, we just temporarily store the grid velocities that have just been
mapped to it from particles for future reference as a part of the FLIP method.

4. Perform all the non-advection steps of a standard water simulator on the
grid

In this step we set indicators and mark each MAC grid’s cell as liquid, solid or
empty cell, we set boundary cell velocities to zero, we perform the projection
step to enforce the incompressibility of the fluid (see Chapter 5) and extrapo-
late velocities (define the fluid velocity in regions that might not be defined).

5. For Flip: Subtract new from stored grid velocities , then add the interpolat-
ed difference to each particle velocity.

This step is essential for the FLIP method in which we subtract the newly cal-
culated grid velocities (by the projection step) from the previous stored grid
velocities and store them (as X). Then we temporary save the already existing
particle velocities (as Y) and calculate new particle velocities (Z) by mapping
back to particles the change (X) in stored grid velocities from previous and

 22

current time step . As soon as we have these new particle velocities (Z)we in-
terpolate the difference (Z) to each particle’s previously saved velocity (Y) and
we call that flip velocity. (See Chapter 5)

 X =

 new_grid_vel – prev_grid_vel

 Y =

 cur_particle_vel

 Z = X

 Flip = Z + Y

Table 1 : Flip velocity step explanation

6. For PIC: Interpolate the new grid velocity to the particles’ velocities

In this step, we calculate new particle velocities (PIC) by mapping and inter-
polating the new grid velocities (X) found by the projection step (and not the
difference between the new grid velocities and the previously stored ones)
back to particles current velocities (Y). We call theses ones PIC velocities (See
Chapter 5)
.

 X =

 new_grid_vel

 Y =

 cur_particle_vel

 PIC = Y + X

Table 2 : Pic velocity step explanation

7. Interpolate Pic and Flip velocities

At this step, we just interpolate a value between pic and flip velocities computed so
as to finally apply it to the particles velocities. A weighted average of the two is used
to result the preferred numerical viscosity. Flip is mostly preferred for inviscid flows
such as water whereas Pic for more viscous flows such as molasses or honey etc.
(See Chapter 5).

 23

Figure 11 : New Particle velocities calculated through steps 5,6,7

8. Move particles through the grid velocity field with an ODE solver, making

sure to push them outside of solid wall boundaries

In this step, we simply advect the particles to new positions by using a simple
and accurate ordinary differential equation solver and more specifically using
a Runge-Kutta 4th order integration method (See Chapter 5).

9. Write the positions of the particles to output.

This is where we take all new particle positions found based on the integra-
tion method performed at the previous step and write them to the output so
as to update the fluid motion. In fact, we write them to a Houdini compatible
file format so as to be loaded as separate frames when then simulation fin-
ishes (See Chapter 5).

4 Design of the custom plug-in

In this chapter all the aspects around the design of the external pic/flip solver as a
custom Houdini plugin are discussed. More specifically all the initial general design
modules needed till the actual implementation considerations are presented.

4.1 Aims and Objectives

The main key features needed for the actual success of the application are listed as
follows:

 24

 A number of more than one of fluids should be simulated within one scene

 There should be a capability to simulated a variety of the fluids with different
properties as well as the support for different set up topologies in the pre
simulation stage inside Houdini.

 It should provide an interaction with static collision obstacles and bounding
box areas

 It should be capable of handling large amounts of simulation data (number of
particles)

 There should be an interface for importing .obj models pre-created in Houdi-
ni

 It should include a proper point position exporter for particle positions to a
Houdini compliant file format (.geo) for later loading and rendering of the fi-
nal simulation

 There should be a visualization window of the current simulation running in
the custom solver

All if the above bullet points are further discussed, analyzed in detail and associated
with their contribution to the overall design of the custom plugin.

4.2 Application Class Diagram

In figure 10 and 11 a class diagram splitted in two comprising all the classes/entities
needed for the solver to work properly. Additionally, it sums up all the relationships
amongst the different functionalities that each one of the classes provides to the ap-
plication. To briefly guide the reader through, we should indicate that the most cru-
cial part of the following class diagram is the Solver class itself which is the heart of
the pic/flip solver and encapsulates all the needed algorithmic functionality in terms
of methods which are called to solve the fluid/s. Furthermore, an XML file parser is
provided to read and import a settings file created inside Houdini and stored in our
application’s home directory. Finally, the 3rd most important part of the whole appli-
cation is controlled through the GLWindow class in which all the needed steps of the
simulation are provided and called one by one at each time step.

 25

CLASS DIAGRAM PART 1

Figure 12 :Class Diagram 1 Shows the relationship of the heart of the pic flip the Solv-

er class with the rest of the solver’s classes functionality (part 1)

 26

CLASS DIAGRAM PART 2

Figure 12 : Class Diagram 2 Shows the relationship of the Solver with GLWindow

class from which all the algorithmic steps of the simulation are called plus the XML
class is used to import and read a file with all configuration settings and passes the

values read to the solver. (part 2)

 27

4.3 Brief Class Functionality Description

Accompanying the above diagrams, in this section a quick description of each class
will be given:

XML
This is a class that contains the parser to an XML configuration file and sets up and
initializes the custom fluid solver based on it.

Solver
This is a class that contains the main algorithm of the solver that guides all the need-
ed functions for the simulation. It sets up the performs all the crucial steps of the
custom solver needed such as setting up the staggered MAC grid, placing particles
based on Houdini’s scene particle objects, implementing the pic/flip main algorithm,
handling the advection of the particles and calling the exporter of the particle point
positions.

SmoothingKernels
This is a class that contains a series of smoothing kernels to be used in neighbouring
particles' mutual contribution for operations like density evaluation, velocity
resampling or transferring particle velocities to the MAC grid.

RK4Integration
This is a class that a implements a 4th order Runge-Kutta integration method. It is
used as the ODE solver for the advection of particle positions in the last step of the
solver’s main algorithm.

OuterWallOBJ
This is a class that creates an MAC grid wall cubic object in which the simulation
takes place. It defines all 6 sides of the MAC grid’s cube and places it in the center of
our scene’s window to incorporate the simulation.

Modifier
This is a class that performs all sorts of all particle repositioning related operations .
It calculates and reassigns an average of neighbouring particle velocities to a queried
particle during velocity resampling process. It is also responsible for the position
modification of particles to guarantee an evenly spaced distribution of the fluid vol-
ume while simulating.

MainWindow
This is the main re-sizable window which contains a GLWindow widget used to hold
our basic openGL applications plus it’s used to pass the xml settings configuration file
to the Solver.

GridMapper
This is a class that performs all sorts transfers of velocities from particles to MAC grid
and vice versa. It also calculates and stores linear grid velocities at X,Y,Z directions.

 28

GLWindow
This is our main openGL window widget for NGL applications’ drawing elements.
Moreover, it’s also the class in which the pic/flip algorithmic steps that are imple-
mented in Solver are called one by one at each frame of the simulation.

FlipParticle
This is a class that represents an instance of a fluid particle of the whole fluid.
It contains the main attributes of a fluid particle instance such as its 3D position and
velocity, its mass, its type (liquid or solid or empty), its density etc..

Filter
This is a class that performs filtering of the point positions of the particles that are
imported from Houdini’s scene to the custom solver's space.

Discretizer
This is a class that performs all sorts of discretization needed to identify each MAC
grid cell. Furthermore, it performs the neighbour search of a queried particle but it
also contains the functionality for setting indicators to each of the MAC grid’s cells
(solid, liquid, empty) plus a surface tracking method.

Declarations
This is a class that declares all global variables needed to identify the nature of the
MAC grid's cells and particles (solid, liquid, empty).

Cache
This is a class that writes all particle positions to a .geo Houdini compliant file format
file. It contains a method that prepares a list of liquid particles to be passed into
writeHoudiniGeo method which is the actual exporter of particles’ point positions.

ConjugateGradientSolver
This is a class that implements the Modified Incomplete Cholesky preconditioner and
the Conjugate Gradient method for solving particles ‘ pressure on the MAC grid at
each time step of the simulation.

4.4 Project Pipeline

As the initial idea of the project was to create a custom plugin for SideFX Houdini 3D
Package, the pipeline was built around Houdini’s environment by making use of
Houdini’s Object Model (HOM) plus the powerful capabilities of Houdini Digital As-
sets (HDAs). As more and more parts of Houdini are written in Python language, this
offers great advantages such as :

 29

 Scripting in digital assets
 Implementing nodes in Python
 Using Python in parameter expressions
 Creating user interfaces from Python

Considering the above, we created a two HDAs inside Houdini, one for each fluid to
be loaded and one guiding and controlling the external custom C++ solver applica-
tion.

4.4.1 Analytical Pipeline Structure Steps

1. Pre-creation of fluid objects (convert models to objects filled with particles
and save them as .obj files)

2. Initialization of .obj Loading, creation and visualization of a fluid using HDA1
(picFlipLiquid) and Python scripting in its internal python module.

3. Adjustment of any of the fluid’s parameters

4. Addition of all created fluids to the solver plugin HDA2 (picFlipSolver)

5. Adjustment of any of the solver’s parameters

6. Writing all solver’s settings to an .xml settings file using Python scripting in-
side the picFlipSolver’s internal python module.

7. Trigger the external c++ solver and start the simulation

8. Parse the configuration .xml file and initialize the custom external solver
based on it

9. Solve the simulation scene

10. Export data to a .geo houdini compliant file format at each frame of the sim-
ulation

11. Return to the picFlipSolver HDA inside Houdini and create a scene based on
the .geo files written for all frames that have been simulated

 30

Figure 13 :This flowchart depicts all the important steps of the project’s pipeline
structure

4.5 Scene Object Representation

While initially designing the custom simulator an answer had to be given on how to
define represent the fluid and static object entities in our custom simulation scene.
Inspired by Priscott (2010) referring to Steele et. al (2004) approach, a particle repre-
sentation of both was finally chosen. Having researched other approaches such as
representing static objects with polygonal or parametric surfaces and computing flu-
id interactions with them, converting the static objects into objects filled with parti-
cles was offering convenience and an easy to code process (considering the time lim-
itations of this project) as the main algorithm stays the same while adding an extra
overhead to the simulation. This is something that could be improved in future work.

5 Implementation

 31

In this section all the important parts of the actual implementation of the fluid solv-
er are presented, analyzed and discussed in detail. The structure of this chapter is as
follows :

1. Main Algorithmic Scheme (using Pseudo code)
2. Analysis of the most crucial functions encapsulated in each Class of the applica-

tion
3. Detailed discussion of theoretical base of the methodologies applied.

 5.1 Main Algorithmic Scheme

Intitialization Phase
 ReadXMLFile()

 foreach particle P houdiniParticlelist do

// Convert To Solver Space

 solverParticlelist = FilterParticlePosition(P)

 SetUpSolver()

 ConstructMacGrid()

 foreach particle P solverParticlelist do

 AddHoudiniParticle(P)

 foreach particle P particlelist do

 MatchParticle To CorrespondingCell(P);

 computeFluidSurface()

 foreach particle P particlelist do

 if(is placed in solid wall cell)

 InitiallStuckParticleRemoval()

Table 3 : Initialization Steps of the Algorithm

Looping Simulation Phase
 while(timer_ticks)

o foreach particle P particlelist do

 MatchParticleToCorrespondingCell(P)

o foreach particle P particlelist do

 calculateDensity(P)

o foreach particle P particlelist do

 calculateGravityForce(P)

o storeParticleVeloctiesToGrid()

 /// temp store Current grid velocities
o storeGridVelocities()

 /// solve pressure to grid and calculate new grid velocities
o projectPressure()

o newgridVel = calculateNewGridVelocities()

 /// set new boundary vellocities to 0

o setBoundaryVelocitiesToZero()

 /// re evaluate grid velocities in regions that mightnot be defined

 ExtrapolateVelocity ()

o writeSimulationFrame()

Table 4 : Operations while the simulation runs (1/2)

 32

 /// flip
/// calculate new flip velocity

/// subtract current grid from saved grid velocities and store 'em

o changeInVelocity = subtractGridVelocities()
///calculate new flip velocities based on change in grid's velocities

o foreach particle P particlelist do

 particleVel = storeGridVelocitiesToParticles

/// Interpolate the change in grid velocities to the particles existing veloci-

ties

o foreach particle P particlelist do

 Flip_particleVel = particleVel + changeInVelocity

/// pic

/// calculate new pic velocity

/// Interpolate the new grid velocity to the particles existing veloci-

ties

o foreach particle P particlelist do
 Pic_particleVel = particleVel + newgridVel;

///Interpolate pic flip velocities

o foreach particle P particlelist do

 particleVel = (1-visc_coefficient)* Pic_particleVel +

visc_coefficient *Flip_particleVel

///Advect Particles

o foreach particle P particlelist do

 integrate(P)

///Detect Collisions amongst Particles

o foreach particle P particlelist do

 collisionDetection() & resolve()

///Reposition Particles

o foreach particle P particlelist do

 if(P is liquid particle && is stucked in solid cell)

 repositionInsideTheFluid()

Table 4 : Iterative Operations while the simulation runs (2/2)

5.2 From Houdini To Custom Solver

At first, as in this chapter we are about to discuss the actual Solver’s implementation
and the issues dealing with it, we are going to start from this step of the pipeline
where the Houdini custom plugin has given its turn to the external solver to solve
the simulation. So, after the user has pressed the “Simulate” button of the plugin
(see Chapter 6) the XML class of the solver has to parse the configuration data from
the .xml settings file.

5.2.1 XML Configuration Functionality

 33

XML parsing means nothing more than the XML class of the solver of the external
C++ application reading line by line the configuration settings data that have been
written previously and saved as a . xml in the solver’s current directory. What this
class offers is the initialization of the solver itself based on the values that have been
read. A number of parameters that is highly important to be initialized before the
solver starts such as the time step of the simulation, the number of the total frames,
the prefix which will be used for naming the export of each .geo file at each frame so
as not to overwrite the already simulated frames. Additionally, each simulated fluid’s
parameters such as position, viscosity, velocity are defined and initialized.
The class basically separates the .xml context based on the different tags in the file
and performs the corresponding match to the proper variables of the solver.

5.2.2 Particle Fluids From Objects

In this chapter the process of creating and importing fluid objects from Houdini into
the custom solver is presented. The fluid objects are pre-created inside Houdini us-
ing the “points from volume” SOP which basically fills a geometry node of any ran-
dom shape with particles . After, the fluids have been created we save them as .obj
files which are then loaded using NGL graphics library (Macey, 2011) obj class and
more specifically the getNumVerts() method of AbstractMesh class which provides
access to the total number of vertices in the object and that way objects are able to
be imported into the scene as individual vertices. By matching these vertices to par-
ticles we construct the fluids inside the solver after having performed a position fil-
tering for placing them correctly in our custom scene space.
One of the solver’s primary objectives is to have the ability to load multiple fluids to
interact within the scene and so a list of fluids is created each one with its list of par-
ticle positions and parameters.

 34

Figure 14 :This is the process of the creation of a “man figure” .obj to be loaded in a
fluid HDA. We load a usual .obj model of a “man figure”, we fill it with particles using

the “pointsfromvolume” SOP and write this to a new .obj file.

ρ(x; t) density (kg/m3)

p(x; t) pressure (N/m2)

u(x; t) velocity (m/s)

f(x; t) body forces density(N/m3)

Table 5 : Fluid physical properties list in the simulation

5.2.3 Particle Position Filtering & Conversion

As this is a custom plugin meant to run exclusively from inside Houdini, the initial
setup of the scene is prepared inside Houdini too. This means that, after having
loaded a pre-created fluid object to the corresponding HDA and after having con-
nected it to the HDA solver and pressed the “Simulate” button, the current particle
positions of the fluid/s have to be converted from the Houdini’s scene space to the
custom fluid solver’s space.
This functionality is handled by the Filter class of the solver and more specifically
within the convert() method. A brief description of the method’s functionality is pre-
sented below using pseudo code:

iterator = IterateHoudiniFluidsList()

For each fluid in iterator

 // Store the size of its current Houdini positions list

 fluidPositionsList = fluid.size()

 For each position p in fluidPositionsList

 //convert to MAC grid space

 newP = convertPosition(p)

 //store each fluid's converted position to a temp vector

 tempFluidPositionList.push_back(newP)

//save a list with all fluids (each one with its own par-

ticles and their corresponding positions)

// Store a list of its converted positions

 solver_list.push_back(tempFluidPositionList)

 empty_TempFluidPositionList()

Table 6 : Fluid list iteration and filtering conversion of each fluid’s particle
positions

 35

Here we iterate over a list of Houdini fluids with their positions loaded through their
.obj paths using the XML class and for each one of these fluids we loop through the
list of its positions and convert each one to the MAC grid custom space by multiply-
ing each position by a constant factor 0.025 (to ensure enough scale) and placing
them at both sides of the 0.5 (custom solver origin position).

For example,

Houdini Scene particle position Custom Solver particle position

(0,0,0) (0.5+ 0*0.025), (0.5+ 0*0.025), (0.5+ 0*0.025)

(1,0,0) (0.5+ 1*0.025), (0.5+ 0*0.025), (0.5+ 0*0.025)

(0,0,2) (0.5+ 0*0.025), (0.5+ 0*0.025), (0.5+ 2*0.025)

Table 7 : Conversion function visualization from Houdini scene space to cus-
tom Solver scene space

Later, we store each converted position to a temporary vector which holds all the
converted positions for the current fluid each time the iterator increases. When all
the positions of the current fluid have been converted we add this vector of convert-
ed particle positions to a vector that is meant to hold a list of the fluids with their
new converted positions locally inside the custom solver. Note that in each iteration,
before we proceed in looping the list of particle positions of another fluid, the vector
that contained the previous converted particle positions of the previous fluid must
be emptied.

5.3 Simulation Set Up & Initialization

As soon as we have initialized the solver with the values specified from the HDAs ‘
parameters inside Houdini it’s time to set up the pic/flip solver. The most important
steps are presented and analyzed in the flowing subsections.

5.3.1 Memory Allocation

The first thing we need to do is to allocate memory for all the variables related to the
3D MAC grid in which the simulation is taking place. Some examples of those varia-
bles are the “grid velocity”, “stored grid velocity”, “surface marker”, “level-
set_marker”, “pressure”, “mac grid cells”. All the these variables have an immediate
connection with the 3D MAC grid and so an appropriate 3D structure has to hold and
maintain the data corresponding to each cell. For this thesis a high-performance
multi-dimensional C++ array library by John C. Bowman (2010) was used to offer effi-
ciency and consistency in terms of memory jumps while looping through each of the-
se arrays during the simulation.
Secondly, we assign zero values to the all cell’s grid velocities and pressure and man-
ually construct a 3D MAC grid with a specified number of 32 cells in each direction

 36

(32x32x32) using c++ multidimensional arrays, as we noticed that this is a reasonable
grid discretization value which offers a quite satisfying visual outcomes.

5.3.1.1 Multidimensional C++ Array Explanation

We can imagine a multidimensional c++ array as creating an array that points to oth-
er arrays, which point to other arrays, and so on. For example, to create a 2x3x4 ar-
ray in C++, we should imagine the implementation as follows (The Code Log, 2010):

Figure 15 :This is a memory representation of the implementation of a multidimen-

sional array
(by http://mycodelog.com/2010/05/21/array3d/)

http://mycodelog.com/2010/05/21/array3d/

 37

5.3.2 MAC Grid Walls Creation

The next operation requires the construction of a 3D cube as sides of the MAC grid
to represent the outer solid wall boundaries in which the simulation takes place. The
3D cube is constructed inside the solver by defining an OuterWallObj with sides from
0,0,0 to 1,1,1 as follows:

Figure 16 :This is cube representing the outer wall sides of the 3D MAC grid
with indicators of the outer wall solid particle insertion during its construction.

We place the outer solid wall particles in each side of the 3d cube with a spacing of
“mac_cell_scale /2” which represents the half width scale of each cell of the MAC
grid and becomes the step for each next particle position to be placed.

mac_cell_scale = 1 / number of MAC grid cells

This way, we place a solid wall particle every half cell in each side of the grid in all 3
dimensions.

5.3.3 Fluid & Rigid Body Objects Creation and Placing

At this stage we are supposed to create and place correctly all Houdini’s scene ob-
jects specified to be simulated and added to the custom picFlipSolver’sHDA inputs.
To do this we are going to iterate over the pre-created vector that holds a list of the
fluids with their new converted positions locally inside the custom solver.

(std::vector < std::vector <ngl::Vector> > solver_list).

 38

For each of the these objects we check if it’s specified as a fluid or as static collision
object and mark it properly and create a FluidParticle instance for each of its parti-
cles. Additionally, we define initial position and velocity based on the corresponding
pre-created vectors holding theses values specified through the picFlipSolver HDA
inside Houdini. At last, we add the created particle to a generic vector holding all
simulation particles.

5.3.4 Particle-Cell Identification

In this step of initialization, we basically match each placed particle’s position in a
cell of the 3D grid. This is a quite simple process and it’s described algorithmically
below:

o Loop through the list of all simulation particles
o Multiply each particle’s position with the number of cells in each di-

rection and acquire its cell index . For example in 1D when cells are 32
we have (ex. 0.5 * 32 = 16).The number 16 is the cell index which cur-
rently the particle with position 0.5 belongs to.

o Store the particle in the relevant corresponding cell based on its in-
dex.

5.3.5 Fluid Surface Marking

An essential step for this fluid simulation using the pic / flip method is to set markers
in the cells of the grid so as to indicate whether it represents a liquid, a solid or an
empty cell filled with atmospheric air. This information highly important and is used
in many steps during the simulation algorithm such as setting boundary velocity to
zero, the pressure projection step, velocity extrapolation and so on.
The actual process of marking cells can be analyzed in the following steps:

 foreach cell in mac_grid_cells do

 fillWithAir(cell)

 foreach particle in cell do

 if(particle == solid)

 setGridMarker(solid)

else

 if(levelset < 0)

o setGridMarker(liquid)

else

o setGridMarker(empty)

Table 8 : The MAC grid cells’ marking process.
Each cell is checked and marked as a liquid, solid or empty based on a its level

set value.

 39

5.3.5.1 Level Set Function Analysis

Existing Methods Brief Description
A Level Set method generally is an implicit or an explicit technique which is used to
describe the fluid surface and more specifically the interface motion between a fluid
(ex. water) and another one (ex. air). There has been a variety of level set methods
investigated over the past twenty years. Implicit level set methods, introduced by
Osher and Sethian, basically rely on an implicit representation of the interface whose
equation of motion is numerically approximated and built from hyperbolic conserva-
tion laws (Sethian ,2003). More specifically, at each cell of the staggered mac grid a
signed distance function from the closest surface position is applied in the form of
φ(x) =y. When, φ(x) =0 means we are at the fluid’s surface whereas if it’s φ(x) <0
means we ‘re inside the fluid otherwise if φ(x) >0 we ‘re referring to an air region
outside the fluid volume.
Furthermore, there is a variety of explicit approaches researched concerning fluid
surface tracking with the most exceptional one to be the “volume-of-fluid method”
(Hirt, 1981) in which the underlying domain is discretized and cell fractions are filled
with values that represent the characteristic function in those cells; these values are
zero or one except in those cells cut by the interface(Sethian, 2003). For example,
Consider the function χ(x, y, t), where χ=1 inside the interface Γ and
χ=0 anywhere else. So the the motion of χ could be written as,

χt = −u ·∇χ

(5.1)

In this view, all the points inside the set (where the function χ=1) are transported
under the velocity field.
Both implicit and explicit methods have several drawbacks. Implicit methods cannot
handle ruptures in points of the fluid where the surface is thin and suffer memory
inefficiency problems. Volume-of fluid explicit method also faces difficulties for ex-
ample in handling a discontinuous interface.

 We used
In this thesis we adopted an alternative approach by (Ando,2012) which calculates a
level set function of the form:

(5.2)

i : current particle cell index
ρ : the initial max density value specified at the start of the simulation
α : a parameter distinguishing fluid volumes from fluid splashes (rate of tolerance of
splashes)
N : the initial number of particles placed in each cell

 40

The fluid volume is described by all cells of the grid in which φ <=0.
Parameter α=0.2 and Ν=8, 2x2x2 particles approximately for 3 dimensional fluids.
With the use of this method, one advantage we do get is that in regions of the fluid
volume that are sparse or even in places where gaps may exist are not being marked
as fluid cells. This leads to the avoidance of the strange visual artifact of lonely parti-
cles floating onto the fluid surface in sparse regions and it also prevents the unnec-
essary increase of fluid volume (Ando, 2012).

5.3.6 Initial Stuck Particle Removal

This is the last step of the initialization stage were all fluid particles that have been
placed in positions where their corresponding cell indexes were marked as solid wall
cells at the previous (fluid surface marking) step are removed once and for all from
the scene. This, prevents liquids to be stuck inside static obstacles and RBD objects
or exist outside the borders of the outer MAC grid walls at the initial placing stage of
all particles to the custom solver’s scene space.

5.4 Iterative Simulation Algorithm

At this section, all the needed operations and the concepts developed around them
which are essential to be applied at each time step of the simulation are going to be
presented analytically.

5.4.1 Particle in Cell Discretization

This step is analyzed at section 5.3.4. It should be called iteratively during the simula-
tion and be the first thing to do after a complete simulation cycle to match all the
particles to their corresponding cells.

5.4.2 Density Calculation

In order to specify the local density on the simulation grid which is essential at each
time step of the simulation (see level set computation 5.3.5.1), we have to be able to
calculate and determine the molecules’ (particles) concentration from the particle
data. For that, we collect and sum the particle density values at each grid cell modu-
lated by a kernel function W that is used to produce a weighted average contribution
of nearby particles (Bridson, 2008).
More analytically, for each queried particle of the fluid we search and find neigh-
bours around its cell index on the grid, we calculate the weighted contribution of
each of the neighbour particles found based on its mass and distance from the que-
ried particle moderated by a smoothing kernel (Kelager, 2006) and finally we calcu-

 41

late the queried particle’s density by taking the ratio of the sum of all neighbours’
total weighted contribution over the max density value for the fluid (Turk, 2010) :

 ∑ /

(5.3)

where ,

 , the particle density

 , the mass of a neighbour particle

 , the position of a neighbour particle

 , the queried particle’s position

 ,, the maximum density value of the fluid

 , the radius of contribution of a neighbour particle

 a loose kernel function used

5.4.3 Solve External Forces

The only physical external force that takes place in the simulation and acts on the
fluid is the gravity force g. To compute the gravity force we use Newton’s 2nd Law of
motion . The general gravity equation for velocity with respect to time is
derived as follows :

 We know,

 (5.4)

 (5.5)

and from equations 5.4 and 5.5 we get:

 –

 (5.6)

 so,

 (5.7)

 42

Since the initial velocity vi = 0 for an object that is simply falling, the equation reduc-
es to:

 (5.8)

 where,

v , the vertical velocity of the object in meters/second (m/s)

 g is the acceleration due to gravity (9.81 m/s2)
 dt is the time in seconds that the object has fallen (Ron Kurtus, 2011)

Figure 17 : Velocity of an falling object (with respect to time)

5.4.4 Particle Velocities to Grid

Considering that at each time step during the simulation at each staggered MAC grid
cell we need to compute a weighted average of the nearby particle velocities so as to
assign it the corresponding cell’s face center, at this stage we need to define the
method to transfer our particle velocities to the grid (shown in figure 10).
For each of the MAC grid cells we compute the weighted average of neighbour parti-
cles’ contribution based on the their mass, their distance from the current evaluated
cell using a kernel function of a specified radius, as we previously did for the density
calculation step. We perform a standard trilinear interpolation so as to find the
weight of each neighbour particle to a grid cell as shown below:

 43

Figure 18 : Trilinear Interpolation of each neighbour particle of the center cell for the
computation of its weighted contribution to this cell.

(Assume that each neighbour particle’s weight is computed for cell 1,1,1 - middle cell
in x, y, z dimensions in the center of the cube)

We use equation 5.9 to compute grid velocities transferred from particles for each
X,Y,Z dimension:

 ∑ / ∑

(5.9)

where ,

 , the mass of a neighbour particle

 , the new velocity of a neighbour particle

 , the position of a neighbour particle

 , the grid cell position

 h, the radius of contribution of neighbour particle

 W, a stiff kernel function used

5.4.5 Boundary Velocities To Zero

At this stage, we need to enforce boundary velocities to zero. What this practically
means is that in every part of the grid that has been marked as a solid wall cell we
set grid velocity to zero. A solid wall boundary is where the fluid is in contact with a
solid wall. If we are to determine that condition in terms of grid velocity we must
ensure that the fluid will not be flowing into the solid or out of it, thus the normal
component of velocity has to be zero:

(5.10)

where,

 u, the grid velocity

 n, the normal at this point

 44

As we said since a solid wall object is not moving we should have zero velocity at this
grid point as:

(5.11)

At this point, the normal component of the fluid’s velocity should match the
normal component of the solid’s velocity as:

(5.12)

5.4.6 Projection Step Algorithm & Theory

This is another crucial step of the simulation algorithm where we enforce the fluid to
be incompressible. More analytically, at each time step we compute an intermedi-
ate velocity that tries to satisfy an incompressibility condition, so while it doesn’t the
current pressure is used as the means to project this intermediate velocity onto a
divergence-free velocity field to get the next calculated of velocity and pressure.

5.4.6.1 Projection Method Main Algorithm

• Calculate the divergence of velocity b
• Build the Modified Incomplete Cholesky (MIC) preconditioner.
• Solve Ax = b linear system of equations with using the Preconditioned Conjugate
Gradient iterative method (MICCG)
• Calculate new MAC grid velocities according to the pressure gradient update to
current existing grid velocities.

The following section go into deep mathematical explanation of the concepts around
the iterative “preconditioned conjugate gradient” method so as to find solve pres-
sure that one could skip if not interested in mathematics background.

As we previously mentioned in chapter 3, a fluid needs to be incompressible because
compressible fluids are in general expensive and more complicated to simulate. For
an incompressible fluid we basically need that its volume does not change through-
out the simulation.
A vector-field that satisfies the incompressibility condition is called “divergence-free”
and to simulate incompressible fluids we need to assure that the velocity field stays
divergence-free.

 45

 · u = 0

(5.13)

This is where the pressure comes in. We can imagine pressure as the medium that is
needed to keep the velocity divergence-free (Bridson, 2008).
Let’s derive exactly what the pressure has to be.
Taking the divergence of both sides of the momentum equation we have:

(5.14)

By changing the order of differentiation in the first term, we get the time derivative
of divergence:

(5.15)

And for incompressible fluids :

 = 0

(5.16)

So by rearranging (5.14) we have:

(5.17)

From this last Poisson type equation of pressure we can derive and measure how
fast a fluid volume is changing.

5.4.6.2 Analysis of the Projection Step:

Compute the divergence of velocity
At first, we need to calculate “how much” the grid velocity is changing between two
continuous grid cells

3D Divergence of Grid Velocity:

(5.18)

 46

So we need to basically evaluate only the divergence of velocity of grid cells marked
as fluid only. And so the divergence for each fluid grid cell can be calculated as:

(5.19)

The Discrete Pressure Gradient

Now, we need to have the mix pressure term somehow to derive the new grid veloc-
ities and that is possible using the pressure update formula below that uses central
difference approximations:

(5.20)

To explain this a bit further, consider the MAC grid now, where we need to subtract
the ∂/∂x-component of the pressure gradient from the u component of velocity.
Note that there are two pressure values lined up perfectly on either side of the u
component just waiting to be differenced.

 47

Figure 19 (reference figure 6) : 3D MAC grid

Now, all we need to do is to find the pressure that achieves incompressibility by sub-
stituting the pressure update formula (equation 5.20) into the 3D divergence formu-
la (equation 5.19) (Bridson,2006).

Pressure Equations

Detailed Analysis of substitution of pressure update formula (5.20) to divergence-
free formula (5.19) for a fluid grid cell (i,j,k) 3 dimensions:

(5.21)

From which we get:

 48

(5.22)

From which we finally derive:

(5.23)

Finally in 5.23, we result into the numerical approximations of the Poisson problem
described in a generic form below:

(5.24)

5.4.6.3 Preconditioned Conjugate Gradient Solver

In the previous section we resulted in a large sparse system of linear equations. And
this kind of systems can be solved using the Conjugate Gradient algorithm (CG)
method and makes use of a preconditioner (PCG). In this section we will go into de-
tails of what this method is and what it offers.

5.4.6.3.1 Conjugate Gradient Method

The conjugate gradient method is method which numerically solves linear systems of
equations (usually partial differential equations), whose matrix is symmetric and def-
inite. This means that for a matrix A

http://en.wikipedia.org/wiki/System_of_linear_equations
http://en.wikipedia.org/wiki/System_of_linear_equations

 49

where,

 A is symmetric when AT = A),

 A is positive definite when xTAx > 0 for all non-zero vectors x in Rn), and real

x is supposed to be the unique solution of the system.

Figure 20 : An example of a symmetric matrix.
The diagonal stays the same if we interchange rows with columns

(by http://metodososcaruis.blogspot.co.uk/2010/07/matrices.html)

The conjugate gradient method could be used either as a direct or as an iterative
method. However when we are dealing large systems the direct approach is too ex-
pensive computationally and so we choose the iterative approach which performs
better at these kind of systems (Wikipedia, 2012).
Algorithmically, in its simplest form the Conjugate Gradient could be expressed as:

guess at the solution x
 for i in iterations
 if(x==accurate_solution)

stop
 else

improve the existing solution x,

Table 9 : Generic explanation of the Conjugate Gradient method

 At each iteration the method minimizes a particular measure of the error, and thus
can be guaranteed to converge to the solution eventually (Muller, 2006)

http://en.wikipedia.org/wiki/Symmetric_matrix
http://en.wikipedia.org/wiki/Positive_definite_matrix
http://metodososcaruis.blogspot.co.uk/2010/07/matrices.html
http://en.wikipedia.org/wiki/Iterative_method
http://en.wikipedia.org/wiki/Iterative_method

 50

General System Description

We can describe the whole system as:

(5.25)

where,

 A, is the coefficient matrix

 x, is a vector containing all the unknown pressures of cells that we need to
find out

 b, is a vector of all divergences in each fluid cell

Each row of the A matrix corresponds to one equation for each fluid cell of the grid.
The terms in each row of A represent the pressure coefficients in each equation and
most of them are zero except for the those who correspond to this queried cell and
its 6 neighbour cells (in 3D).

The x solution could also be describe as:

(5.26)

where p, is a sequence of mutually conjugate directions

(2 vectors u,v are conjugate with respect to A if Av =0. If A symmetric, positive defi-
nite

then:

So, u, v are conjugate if they are orthogonal to this inner product and so UconjugateV ==
VconjugateU)

So, pressure coefficients αk could be resulted from:

(5.27)

In the iterative CG method, we only need to carefully specify pk which might not
give a satisfying approximation to the final x solution. However, this doesn’t matter

 51

that much cause we get to improve this in the next iteration hence we solve the
whole large linear system this way.

Useful Known Facts:

 x is also the unique minimizer of f :

 if f (x) is smaller at each iteration means we are getting closer to the solution x

 rk is the residual at the k th step (the error result of the iteration) and signifies

“how much” divergence is left after we have updated pressure with our pres-
sure estimate each time

 rk is also the negative gradient of f at x = xk, which means that the method

moves towards rk

 Initially we consider, x0 = 0



 is the next optimal location



Table 10 : Prerequisites of the Conjugate Gradient method

The Detailed Algorithm:

If a system where is a real, symmetric and positive-definite matrix. The

input vector x0 can be an approximate to the initial solution or 0.

 52

//initial error

//conjugate direction

//iteration number

repeat

//pressure coefficient found

//new solution of intermediate velocity

//new error calculated

if rk+1 is sufficiently small then exit loop end if

//new pressure coefficient

//new pressure calculation

//next iteration number

end repeat

Table 11 : The Conjugate Gradient Math Algorithm

The new solution result is xk+1 .

5.4.6.3.2 Using a Preconditioner

As we previously mentioned, the CG method can be computationally expensive in
large systems and this because the number of iterations it takes to finally converge

 53

to the desired solution is proportional to the number of grid cells. This is where pre-
conditioning comes in place!

The usual conjugate gradient takes more iterations the further away matrix is from
being the identity matrix, . So, solving a system with the identity matrix is as :

(5.28)

By using a preconditioner we basically imply that: that the solution of is
the same as the solution of for some matrix M.
If is approximately the inverse of , so that get really close to being the
identity matrix, this would mean that the could solve d really fast (Brid-
son, 2006).

Preconditioning Theory and Implementation

In general, we can solve linear systems of equations by doing row reductions in our
system until the matrix is upper triangular or lower triangular:

Figure 21 : Example Upper – Right Triangular Matrix

and then use backward substitution or forward correspondingly to get the solution.

LU Decomposition and Cholesky Method

Knowing that matrix equations with triangular matrices are easier to solve, we per-
form the LU decomposition which is nothing but expressing the A matrix as the
product of its lower and its upper triangular matrix as follows:

(5.29)

 L, is the lower-left triangular matrix

 U, is the upper-right triangular matrix

 54

Figure 22 : Example decomposition of a matrix , where has only ze-

ros above its diagonal and has only zeros below its diagonal

Now, since A is a positive and definite matrix we could write its “Cholesky factoriza-
tion” as:

(5.30)

And so,

 (5.31)

Now we can solve as:

 with forward substitution (5.32)

 with backward substitution (5.33)

Incomplete Cholesky Method

Because, this solution is not particularly good memory wise for a 3 dimensional prob-
lem (has a low number of zeros whereas may have a lot) we move on to the “In-
complete Cholesky factorization method”. This method tackles this specific problem
by canceling all simple Cholesky’s trials to add nonzeros to at the positions where
 currently has zeros. Eventually, we result with an vector that is a sparse a A (so
we guarantee memory) but we have caused errors on purpose so now:

 A ≠

(5.34)

This practically means that the lower-left triangular matrix of is the same with ’s
lower-left triangular matrix in all nonzero positions of and different in all zero posi-
tions of . What we have achieved though is that is very close to A so we can solve
the sytem of equations almost as fast as if we had applied as a preconditioner.

Now, if we split A in its lower-left matrix if its lower-left matrix and its diagonal.

 55

(5.35)

It can be shown that:

(5.36)

where,
 is a diagonal matrix.

So now, we only have to calculate the diagonal entries of and we can just infer
others from (Muller, 2006).

Modified Incomplete Cholesky Method

Finally, a slightly different variation of “Incomplete Cholesky” method is the “Modi-
fied Incomplete Cholesky” (MIC) which gives way better results in terms of conver-
gence with almost no cost. In theory, MIC differs from IC only to the point that in-
stead of cancelling nonzero entries to in corresponding positons where is zero, it
adds it to the diagonal (Bridson, 2006).

And so, MIC is the same as IC but ensures that:

 The off diagonal nonzero entries of A are equal to the corresponding ones
of

 The sum of each row of A is equal to the sum of each row of

And to gain even more better performance we take a weighted average of IC and
MIC using a tuning constant r as shown below:

 56

Table 12 : Calculation of the MIC preconditioner in 3D
(by http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf)

where,

 precon, is the reciprocals of the E diagonal entries

 Aplusi & Aplusj & Aplusk, are the methods which we use to refer to the 6
neighbour cell faces of each grid cell in 3D.

Applying the Preconditioner

At this stage, we have already computed our preconditioner which is supposed to
offer to us performance as far as the CG (Conjugate Gradient) is concerned. So, all
we need to do is to apply this preconditioner to our 3D system which means to actu-
ally calculate the triangular solves (Muller, 2006).

Table 13 : Applying the MIC preconditioner in 3D

(by http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf)

5.4.7 Velocity Extrapolation

At this section, we describe the extrapolation of velocity out into the air. This step is
essential for us so as to be able to sample the fluid’s velocity along the trajectory of
its particles When the fluid is moving towards new regions of the 3d MAC grid (to-
wards the air for example) it actually moves outside the existing fluid volume where
the velocity is not known at these points yet and so we need to define it.

5.4.7 .1 Velocity Extrapolation Algorithm

http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf
http://www.cs.ubc.ca/~rbridson/fluidsimulation/fluids_notes.pdf

 57

Figure 23 : Velocity Extrapolation in regions of the MAC grid where velocities are un-
known yet.

We basically loop through the MAC grid cells and put markers in all fluid & near fluid
as well as hard solid wall and empty cells (where current and previous cell solid or
empty).
Then, we loop again through the MAC grid cells and for each cell marked as hard sol-
id or empty cell and current cell is nowhere around fluid cells, loop through the list
of each of this cell’s neighbour cells according to its 6 faces. Finally, collect all of the
grid velocities of all neighbour cells marked as fluid or near a fluid and assign a
weighted average to the current cell.

 foreach i,j,k in grid_cells do

o If(grid_cells(i,j,k)==fluid_or_near fluid)

 fluidMark=(grid_cells(i,j,k)

o else If(grid_cells(i,j,k)== near_solid_or_air)

 solidOrEmptyMark=(grid_cells(i,j,k)

 foreach i,j,k in grid_cells do

o If(grid_cells(i,j,k)== solidOrEmptyMark && grid_cells(i,j,k!=fluidMark))

 foreach face in neighourGridCells(i,j,k) do

 If (neighourGridCells (face) == fluidMark)

{

 newGridVel= neighourGridCells(face).GetVelocity()

 total++;

 sum+=newGridVel;

}

 weightedAverageGridVel = sum / total;

Table 14 : The algorithm for velocity extrapolation

 58

By doing so, we manage to obtain the necessary velocity boundary conditions at and
near the free surface of the fluid .

5.4.8 Pic Flip Velocities Calculation

At this stage we are about to calculate the flip velocities, the pic velocities and per-
form a linear interpolation between them so as to acquire a new pic/flip velocity.
Because of the fact that pic velocity is suited to more viscous flows whereas flip ve-
locity to inviscid flows, this interpolation between them allows us to specify the de-
gree of an artificial viscosity of the fluid.

FLIP Algorithm

 foreach cell in MAC do

 grid_vel_change =subtract(new_grid_vel, prev_grid_vel);

 foreach p in particles do

 cur_particle_vel = saveParticleVelocity(p);

 foreach p in particles do

 cur_particle_vel += grid_vel_change(p) ;

Table 15 : (reference table 1) Flip velocity calculation.

Here we notice that the changes of the grid velocity from a previous time step are
mapped to the particles and used later so as to add onto the existing particle veloci-
ties. The whole point is that these grid velocities are then used to guide the motion

 X =

 new_grid_vel – prev_grid_vel

 Y =

 cur_particle_vel

 Z = X

 Flip = Z + Y

 59

of the particles. The main disadvantage the flip velocity is that the fluid suffers from
its noisy behaviour.
Now, as far as mapping the change in grid velocities from the grid to the particles is
concerned, the method is described below:

METHOD EXPLANATION
For each particle we compute linear velocities based on the particle’s position and
cell index. More specifically, we sum up the 8 cell's velocities at the cells grid points
with regards to the particle’s position at this cell. This practically means that for a
particle in a cell, we sum the percentages of contribution multiplied with the grid
velocities and map them to the particle velocity.

Figure 24 : Transferring the grid velocities back to a particle in a cell performing tri-
linear interpolation and contribution weighting based on the distance of the particle

from each grid cell point carrying a sampled velocity.

PIC Algorithm

 foreach p in particles do

 cur_particle_vel = saveParticleVelocity(p);

 foreach p in particles do

 cur_particle_vel += new_grid_vel (p) ;

 X =

 new_grid_vel

 60

 Y =

 cur_particle_vel

 PIC = Y + X

Table 16 : (reference table 2) Pic velocity calculation.

At this point, we are just perform trilinear interpolate as we did in flip algorithm
above but instead of transferring back the change from new and previous grid veloci-
ties we just pass the new grid velocities found by the projection step back to parti-
cles.

Pic Flip Weighted Average

This is the last step of the pic/flip velocities calculation, where we actually perform a
linear interpolation between the two different velocities calculated (flip and pic) so
as to acquire the weighted average of both. By mixing those two velocities we can
adjust the amount of viscosity of the whole fluid by an artificial viscosity_coefficient
term as Pic velocities produce more viscous and Flip more inviscid flows.

5.4.9 Particle Advection

At this section, we present and analyze the advection part of the algorithm in which
particle positions are simply updated through the grid velocity field calculated at the
previous steps. More analytically, we advect all particles of the simulation using the
Runge-Kutta 4th order ODE (ordinary differential equation) solver which is highly accu-
rate compared to other simpler and more inaccurate methods. Additionally, we per-
form all sorts of collision detection checks and responses such as for the all particles
and the MAC grid or with solid obstacles plus some particle position correction for
particles stuck at solid obstacles.

5.4.9.1 Runge-Kutta ODE Solver

From Newton’s 2nd Law of motion we know that :

 (5.37)

We also know acceleration is the rate of change in velocity over time so:

 61

(5.38)

The same way velocity can be calculated by the rate of change in position over
time:

 (5.39)

We can easily presume from the above that knowing the current position and veloci-
ty of an object and possibly all the forces that are applied to it we can integrate to
find its position and velocity at some point in the future.

Runge-Kutta Method Mathematical Analysis

Take as an example the function and , is a function of
both and time and at the start point t₀ =y₀ .

The RK4 method is extended as follows:

(5.40)

where is the RK4 approximation of , and

So, each next value () is associated with the present value ()
plus the weighted average of four increments, where each increment
is the product of the size of the interval, , and an estimated slope

specified by function on the right-hand side of the differential
equation.

 is the increment based on the slope at the beginning of the in-
terval, using , (Euler's method) ;

 is the increment based on the slope at the midpoint of the in-

terval, using ;

http://en.wikipedia.org/wiki/Weighted_average
http://en.wikipedia.org/wiki/Euler%27s_method

 62

 is again the increment based on the slope at the midpoint, but

now using ;

 is the increment based on the slope at the end of the interval,

using .

In averaging the four increments, greater weight is given to the in-
crements at the midpoint (Wolfram Mathworld, 2012).

The important thing to notice is that the error per step is of the order

of , while the total accumulated error has order .

5.4.9.2 Collision Detection & Response

Detection
At this section we perform a simple collision detection framework for both fluid-fluid
and fluid-solid collisions, since both are represented as particles at the current solv-
er. The method we used is a simple sphere-to-sphere collision method in which a
collision is detected if the distance between the queried particle and a neighbour
particle is less than a specified tolerance (collision radius). This tolerance value is in
immediate connection with the density of the fluid per grid cell. In fact,

 Collision_radius = cell_density = density / cells
So,

 If (distance < Collision_radius) a collision has been detected

Response
At each collision detection there must be a collision response too. At this, step we
initially find the normal direction vector of the plane that the two particles collided
define. Then, project the velocity onto the normal’s direction, push out the fluid par-
ticle from the solid particle to the normal’s direction.

 Figure 25 : 2D representation of the normal direction of the collision re-

sponse (green vertical arrow)
(by

http://www.gamasutra.com/view/feature/131424/pool_hall_lessons_fast_accurate
_.php?print=1)

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation
http://www.gamasutra.com/view/feature/131424/pool_hall_lessons_fast_accurate_.php?print=1
http://www.gamasutra.com/view/feature/131424/pool_hall_lessons_fast_accurate_.php?print=1

 63

5.4.9.3 Stuck Particle Repositioning

At this stage, we perform a simple search for all fluid particles that happen to exist in
regions where cells have been marked as solid wall cells at the stage of flu-
id_surface_marking. For all these particles found, they are labeled so to be reposi-
tioned somewhere else inside the fluid volume. This way, we can achieve both “fluid
volume” maintenance and avoid the stuck particle artifact that happens as a result of
the Lagrangian advection nature of the flip method which uses the grid velocity field
as a guide.

Repositioning

For all particles labeled as stuck in the above step, we add them in a list and search
for cells inside the fluid volume which are totally surrounded by fluid cells so as to
reposition these particles there. After having moved them to their new positions, we
update the grid cells with those particles by matching each one of the repositioned
particles to their corresponding cell (see Chapter 5.3.4), and assign to them new ve-
locities by resampling the neighbour particle velocities of their new positions (Ando,
2012). Both repositioning and resampling are presented below:

Reposition Algorithm

 foreach p in particles do

 if(fluiparticle(p))

 if(p.cell==marked_as_wall)

 label= reposition(p);

 foreach p in particles do

 reposition_list.push_back(p);

 foreach i,j,k in MAC_grid_cells do

if(searchFluidSurroundedCells(i,j,k))

 //cell surrounded by fluid cells

 liquid_surrounded_list.push_back(i,j,k);

 foreach n in reposition_list do

 particles[n].repositionTo(liquid_surrounded_list[n])

Table 17 : Reposition stuck particles to new positions somewhere inside the fluid
volume

 64

Figure 26 : Repositioning of a particle whose cell index is marked as solid wall to a
pure fluid region (cell surrounded by fluid cells) cell.

Resample Algorithm

 foreach p in reposition_list do
 neibourlist = findNeighbourParticles(p)

foreach n in neibourlist do

 if(n==fluidParticle)

 {

 distance = findDistanceBetween(p,n)

 weighted_contribution = n.mass * W(distance,radius)

 p.vel += weighted_contribution * n.vel
 average_weighted_contribution += weighted_contribution
 }

 p.vel = p.vel / average_weighted_contribution

W : a stiff kernel used to measure each neighbour’s contirbution

Table 18 : Assign new velocities to just repositioned particles based on resampling

their new neighbours’ velocities.

The weighted contribution of each neighbour particle to the repositioned particle
could be expressed mathematically as:

 ∑ / ∑

(5.41)

 65

where ,

 , the mass of a neighbour particle

 , the new velocity of a neighbour particle

 , the position of a neighbour particle

 , the position of the newly placed particle

 h, the radius of contribution of neighbour particle

 W, a stiff kernel function used

5.4.10 Particle Distribution Correction

It is generally known that in the pic flip method a surface reconstruction correction
step is needed to overcome the problem of bumpy surfaces caused by the uneven
distribution of the particles throughout the fluid flow. By applying a set of kernel
weighted forces based on the “mass-spring” model amongst particles we manage to
gradually remove the pic/flip noise and eventually achieve particles to be evenly dis-
tributed in space (Ando, 2011).

5.4.10.1 Correction Algorithm

foreach p in particles do

 if(p==fluidParticle)

 {

 neibourlist = findNeighbourParticles(p)

 foreach n in neibourlist do

 sq_dist = findDistanceBetween(p,n)^2

 weighted_contr = spring_coefficient * n.mass * W(sq_dist, radius)

 if(sq_dist > Tolerance)

 force(x,y,z) += weighted_contr * ((p.posit – n.posit) / sqrt.dist) * radius

 else

 {

 if(n==fluidParticle)

 force(x,y,z) += weak_force*radius/time step

 else

 force(x,y,z) += strong_force*radius/time step

 }

//Xnew = Force * dt

 p.pos += force(x,y,z)*time step
 }

foreach p in particles do

// compute each new particle’s velocity by resampling the neighbour velocities of the

// its new modified position

 newVel = velocityResampling(p.pos)

 UpdateParticlePositions(p,newVel)

 UpdateParticleVelocities(p.pos)

Table 19 : The algorithm description of the particles’ distribution correction.

 66

In the above algorithm, for each fluid particle’s neighbours we calculate a weighted
spring force based on their weighted contribution (depending on their in between
distance), we compute the total 3D force to be applied onto the current queried par-
ticle, we update its new position as a result of this force and finally we resample new
velocities from new neighbours (based on new position found at the previous step)
and apply newly computed velocity to the particle.

Figure 27 : On the left, a particle’s position is being modified based on the total force

weighted contribution of neighbour particles.
On the right, the same particle at its new position is updating its velocity based on

neighbour particles’ velocities weighted average contribution.

5.4.11 Export and Write Particle Positions

This is the last step of our iteration algorithm. What we actually do at this stage is
constructing one list with all fluid, static or RBD particles of each fluid to be exported
at each frame. This list contains all of the current fluid particle positions based on
which we create one .geo file (Houdini Ascii file format) per frame. Finally, after the
simulation has finished we can read and load back the simulation data into Houdini
for later rendering.

Simulation Data as .geo Houdini file format

 67

The ASCII .geo & .bgeo file format is the standard format for storing Houdini geome-
try. The .geo format stores all the information contained in the Houdini geometry
detail (Houdini12 Import-Export, 2012). Since .geo it’s native to Houdini’s environ-
ment but also a human readable and writable file format, it was chosen as the
means to communicate and load the simulation data easily back to Houdini for later
rendering. So, at each frame of the simulation we create a .geo file containing the
number of points and primitives exported as well as their positions at each frame.

5.4.12 Artificial Vortex Behaviour

Figure 28 : Vortex fluid behaviour
(by http://www.123rf.com/photo_3435864_water-vortex-note-some-motion-blur-

for-added-effect.html)

At this stage an extra new feature that has been added to the solver is presented
and analyzed. This new addition has to do with the creation of artificial vortex be-
haviour of the fluid during its flow. Generally, as vortex we describe a spinning and
often spiral, turbulent fluid flow as the motion of the fluid is swirling rapidly around
a center. We also know that in a “free” vortex the velocity and the rate of rotation
increases at the center of the fluid and decreases progressively outwards. In this pro-
ject we have been inspired by this specific behaviour and tried to match and incor-
porate this concept when transferring particle velocities to the grid as a weighted
contribution of neighbour particles of the cell depending on their distance.

Algorithm

http://www.123rf.com/photo_3435864_water-vortex-note-some-motion-blur-for-added-effect.html
http://www.123rf.com/photo_3435864_water-vortex-note-some-motion-blur-for-added-effect.html
http://en.wikipedia.org/wiki/Center_(geometry)

 68

foreach cell in MAC do

 neighbourlist = findNeighbours(cell)

 foreach n in neighbourlist do

 distance = cell.pos – n.pos

// a standard trilinear interpolation to compute the contibution weight of each neighbour to this cell

 weight = n.mass * W1 (distance, radius)

// a trilinear interpolation to compute an increased contribution weight of each neighbour to this cell

// using a squared distance and causing vortex-like behavior

 vortex_weight = n.mass * W2 (distance^2, radius)

 sumx += (weight +(vortex_weight *1.3)*m_vortexboost)*n->vel

 sumw += weight

grid_vel = sumx/sumw

W1 : is a standard stiff kernel

W2 : is cubic kernel (adjusted for artificial vortex-like fluid behaviour

w : a standard weighted contribution

sumx : gathers a mixture of both weights computed (standard-vortex)

sumx : gathers standard weights compute for mapping particles’ velocities to grid

Table 20 : The algorithm description of the standard velocity mapping to a grid cell
and an adjusted squared distance weighted contribution for the creation of the ef-

fect of an artificial vortex-spinning behaviour of the fluid.

In the above code snippet, we initially we perform the standard trilinear interpola-
tion needed as part of the pic/flip algorithm to transfer the particle velocities and
map them to our staggered MAC grid. Additionally, exploiting the varying velocity
contribution of a free vortex type, where velocity scale of a fluid is proportional to
the distance from its center, we have applied this behaviour locally for each of our
grid cells and we achieved the spinning effect of an artificial vortex-like behaviour for
our fluid. The amount of contribution of the vortex to the overall fluid behaviour is
manually adjusted within a specific parameter called “artificial vortex boost”, acting
as a coefficient inside our custom picflipSolver HDA inside Houdini. The final grid ve-
locity of each cell is computed by the ratio of the total vortex-adjusted weighted
contribution over the total standard weighted contribution.

5.4.13 Smooth Kernel Functions

This section presents a number of smoothing kernels that are used throughout the
implementation of the solver for different purposes but generally for calculating
weighted contributions. More specifically, the main principle that governs these ker-
nel functions is that they determine the amount of influence a particle may
have on the particle that is being tested against. Moreover, these kernel functions
use a radius distance , which practically means that if the distance between two

 69

tested particles is less than this radius then a non-zero value is returned as a result of
applying this kernel function, otherwise 0 is returned (Monaghan, 1992).

Loose Quadratic Kernel
This kernel function is used in the solver so as to approximate the amount of contri-
bution of neighbouring particles when calculating density but also when weighting
the contribution of forces of neighbour particles during the particle distribution cor-
rection step. This parametric function is of a form:

 ,
 otherwise

where,

(5.42)

 r, the distance between queried points

 h, the radius of influence

And its corresponding 3d graph is :

Figure 29 : Quadratic Loose kernel function 3D graph
(by http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/)

Stiff Quadratic Kernel

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/

 70

This is another kernel function which is used in the solver so as to approximate the
amount of contribution of neighbouring particles when resampling new velocities for
particles just repositioned (see section 5.4.9.3), when the uneven particle distribu-
tion is corrected (see section 5.4.10.1) and also when transferring particle velocities
to their corresponding grid cells . This parametric function is of a form:

 , <
 otherwise

where,

 r, the distance between queried points

 h, the radius of influence

(5.43)

And its corresponding 3d graph is :

Figure 30 : Quadratic Stiff kernel function 3D graph
(by http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/)

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/

 71

Cubic Kernel
This is the last kernel function used in the solver. It is mostly related to the artificial
vortex effect added as a new feature, and it’s used to approximate the amount of
contribution of neighbouring particles of a squared distance when resampling new
velocities for particles just repositioned (see section 5.4.9.3) and when the uneven
particle distribution is corrected (see section 5.4.10.1). This parametric function is of
a form:

 ,
 otherwise

where,

 r, the distance between queried points

 h, the radius of influence

(5.44)

And its corresponding 3d graph is :

Figure 31 : Cubic kernel function 3D graph
(by http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/)

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/

 72

6 Pipeline Issues

 At this chapter we are going to explain in detail the pipeline used during this project
which describes the custom solver's interdependencies, steps and issues that must
be addressed and followed for a successful usage of this custom plugin.
At first, and as we mentioned earlier this is a custom solver that is meant to be run
from inside Houdini 3D package and thus we will start with analyzing the Houdini
side of the pipeline. Secondly, will present the solver's side pipeline issues and at the
end we are going to return back to Houdini as it is responsible for reloading back the
simulation data and render the final piece of simulation.

Figure 32 : Generic Pipeline of the project

6.1 Custom Houdini Digital Asset creation

6.1.1 PicFlip Fluid Houdini Digital Asset

The whole plugin concept is that a subject user will be able to open the Houdini 3D

package and start setting up the simulation from inside there. For that reason, we cre-

ated our first custom HDA , which represents an instance of a fluid object inside Hou-

dini. This HDA loads any pre created .obj models to be simulated as fluids or RBD

objects and contains a number of parameters to be tweaked regarding its behaviour

during the simulation. The whole idea behind this asset for the custom solver to be

capable of simulating multiple fluids inside a single scene, and that is the reason why

there should also be a separate fluid instance nodes from which each one of them

could be controlled as a HDA.

 73

Figure 33 : Custom HDA representing a fluid object to be added to the solver and be

simulated

More specifically, this HDA contains a “Load Object” path which points to a pre-
created .obj filled with particles to be simulated. As soon as the user specifies the
path, we create a geometry SOP under “/obj” path inside Houdini which contains a
file node (fluid object to be loaded), a “sphere” and a “copy” SOP which are used so
as to allow the user to visually place and set up the fluid into the scene before simu-
lating it. Additionally, there are more parameters which are explained in detail in a
user guide accompanying this report.

6.1.2 PicFlip Solver Houdini Digital Asset

At this stage we are presenting any fluid assets previously created being added to-

gether to the main custom HDA solver. Later on, from inside this solver asset, we are

able to control several parameters as far as the simulation is concerned; for example

the viscosity of the fluids being simulated, the time step of the simulation, the number

of the total simulation frames, the path to the settings file and the solver binary, the

visualization type and colour of the fluids an so on.

 74

Fluid Addition to the Solver

Figure 34 :Multiple Fluid Addition to the solver HDA

Solver HDA

Figure 35 : Custom HDA representing the main solver which collects all fluids to be

simulated (part 1)

 75

Figure 35 : Custom HDA representing the main solver which collects all fluids to be

simulated (part 2)

At this stage, after all fluids have been set up separately through their HDAs and the
simulation parameters have also been finalized, all of these settings’ information
needs to be transferred to the external C++ solver which runs through the main HDA
solver (picFlipSolver).

6.2 Python & Houdini

Houdini is a powerful 3D package which amongst others offers an application pro-

gramming interface (API) that lets us collect information from and control Houdini

using the Python scripting language. It is called HOM (Houdini Object Model) and al-

lows us handling Houdini modules, nodes and functions and in this project we used it

for writing custom scripts inside the Python module of our HDAs to:

 Create and visualize the fluid geometry (.obj) loaded within a fluid HDA.

 Control the fluid geometry’s position after it has been loaded.

 Writing configuration settings from Houdini to the external c++ solver

 Read back simulation data and visualize the simulated scene

In the third and most important part of the whole usage of Python scripting in
this project, we are about to retrieve all data needed for the external c++ solver’s
initialization step. We achieve that, using a Python script inside the solver HDA,
which through the HOM allows us to have access to each of the HDAs’ parameter
names and values. We open an .xml file specified and write all need data there so
as for the external solver to be able to parse them at the next step. Additionally,
we trigger the external solver from inside the solver HDA (os.system(executable

http://www.python.org/

 76

+ " " + xmlfilepath)) passing the xml file created as an argument. Finally, after the
external sover has finished its work, we create a geometry node under /obj in-
side houdini (named OutSim) which includes all fluids simulated with an appro-
priate “particlefluidsurface” node set up and attached to them for further visuali-
zation of the simulation. We should note here that fluids as well as static or RBD
objects are loaded as .geo files created at each frame during simulation from the
external solver. Finally, the user can render out the simulation according to its
scene preferences (shading etc.).

6.3 XML Step Analysis

This section deals with the concepts of XML configuration file creation and parsing.
Since we are creating a plugin which on its own is of a variable nature, we need the
external solver application to be eligible enough so as to handle different user pref-
erences and requirements specified as parameters inside Houdini’s HDAs. One of the
easier ways to achieve this is through the use of an XML configuration file to store
these preferences.
 At first, when the user presses the “Simulate” button of the custom HDA solver, an
xml configuration file with all parameter settings is created into the current Houdini
scene’s directory. Since the external solver is placed there as well, it initiates the ex-
ecution taking the xml file as an argument.
 The second step, is for the external application itself to read and set up the solver
based on this xml file. As xml is a file format which contains plain readable text em-
bedded between tags, we simply parse configuration xml file’s tabs (ex.
<solver>, < liquid> etc.) and initialize the solver’s variables based on their content.
(See Appendix)

7 Simulation Results and Discussion

At this chapter we are going to present a number of simulations corresponding to a
number of different scenarios so as to demonstrate the solver’s full functionality.
Additionally, we are about to discuss several issues that had to be taken into consid-
eration during this project as well as the overall efficiency achieved.

7.1 Simulation Scenarios

 77

Scenario 1 Single Primitive

In this first scenario, we are simply simulating a primitive sphere consisting of 15894
particles with almost no viscosity (viscosity 5%). There is nothing too interesting as
far as this simple sphere simulation is concerned , apart from the fact it falls into the
laws of physics and represents a quite accurate real world splashing liquid sphere.

Figure 36 : Simple primitive liquid sphere 15894 particles with low

viscosity (5 %)

 78

Scenario 2 Single Liquid .obj Loading

In this second scenario, we are loading and simulating a pre-created .obj file consist-
ing of 8048 particles with almost no viscosity (viscosity 5%). It is obvious that one of
the project objectives (pre-created .obj loading using NGL graphics library (Macey,
2011) obj class) has been achieved with quite satisfying and promising visual results.

Figure 37 : .obj “Plane” model loaded and simulated as liquid with 8048 particles
with low viscosity (5 %)

 79

Scenario 3 Multiple Interacting Liquids

In this scenario, we present the solver’s ability to simulate multiple fluids into a sin-
gle scene. The most noticeable effect here is the big hole created at the center of the
liquid box where the sphere falls, depicting a real world behaviour regarding the
pressure which is analogous to the mass concentration (density). So, as the particles
around a specific liquid area are increasing the pressure is increasing too causing the
following effect. Viscosity is also set at low value (5%).

Figure 38 : Two liquids interacting with low viscosity (5%) : Primitive Sphere 15894

particles, Primitive Box 69216 particles

 80

Scenario 4 Liquid Interacting with Static .obj

This is the 4rth scenario, in which we show one liquid and one static object both cre-
ated inside Houdini and loaded into the external custom solver, interacting with each
other. More specifically, there is a “camera” .obj liquid consisting of 130972 particles
is colliding and being wrapped around with the solid “man figure” static object con-
sisting of 55047 particles.

Figure 39 : “Camera” liquid object colliding with a static object in a single scene. Liq-

uid’s viscosity is also set to (5%) low value : Camera 130972 particles, Man Figure
55047 particles

 81

Scenario 5 Liquid Interacting with RBD .obj

At this scenario, a liquid object interacts with a rigid body object (RBD). There’s an
initial z axis velocity of -5 given to the RBD “bullet” .obj which is heading towards
the “Man figure” liquid and penetrates it leaving a hole in the head area. Another,
initial project objective has been met at this point by achieving simulating a real
world situation where moving liquids may interact with moving RBD objects.

Figure 40 : “Man Figure” liquid object colliding with an RBD “bullet” object in a sce-
ne. Liquid’s viscosity is also set to (5%) low value : Man Figure 55047 particles, Bullet

124 particles

 82

Scenario 6 Viscous Liquid Interacting with Static .obj

In this scenario, we are examining the visual results of a viscous liquid object (“food
ball”) interacting and colliding with a static primitive sphere object. The “foob ball”
viscosity has been set to 1 so this practically means [visc*pic + (1-visc) *flip] (with
visc=1) and so we are based on the viscous pic at 100% and 0% at flip velocities. The
“food ball” consists of 6547 particles and the sphere consists of 15894 particles. As it
is obvious from the rendered shots below, the liquid food ball shows a clear re-
sistance to change its shape and volume topology which is a feature that high vis-
cous liquids have in real world too.

 83

Figure 41 : Viscous “food ball” liquid object colliding with an static sphere object in a

scene. Liquid’s viscosity is also set to (100%) max value : Food ball 6547 particles,
sphere 15894 particles

Scenario 7 Artificial Liquid Vortex Behaviour

In this last scenario we are about to present a new feature that has been added to
the solver which causes a spinning turbulent fluid flow motion in the total fluid be-
haviour. As in real world vortex situations, the velocity and the rate of rotation in-
creases at the center of the fluid and decreases progressively outwards; in this thesis
the vortex behaviour is applied to each of the MAC grid cells during the simulation
and so we can see many more spinning areas on the whole fluid rather than one big
rotational hole in the middle of it. In this simulation, we have applied a “vortex
boost” of value (1, maximum value for this solver) in a non-viscous primitive sphere,
exactly the same with the one presented in the 1st scenario. It is more than obvious
that the overall fluid flow has changes, its motion is way more turbulent which caus-
es a variety of splashes and waves in different shapes and directions.

 84

Figure 42 : Primitive liquid sphere with artificial Vortex Boost coefficient set to
100%. Sphere consists of 15894 particles. Noticeable is the spinning motion behav-
iour causing turbulent flow at the center of the fluid and big splashes at the edges.

Figure 43 : Comparison 0% vortex boost (white liquid) and 100% vortex boost (red
liquid). Note here, the two liquids are not interacting with each other but instead

they have been pre simulated each one on each own and later placed in this single
scene to be rendered together for demonstration purposes. The figure is just juxta-
posing the different topology in the fluid flow as a result of the new artificial vortex

boost coefficient feature added to the solver.

 85

7.2 Known Issues

7.2.1 Pic Flip Issues

The most important issue with a Pic solver is that it suffers from numerical dissipa-
tion. This practically results in smoother simulations with lower accuracy as far as the
fluid surface is concerned. On the other hand, a Flip solver shows a quite noisy and
unstable behaviour when applied on its own. To alleviate this issue we are mixing
the Pic velocities of the Pic solver with the Flip ones at a reasonable percentage as
Bridson suggests in “Animating Sand as Fluid” Siggraph paper in 2005, and so we re-
sult in a quite accurate fluid flow which includes many thin fluid details such as small
splashing areas without necessarily having to introduce a significant amount of nu-
merical dissipation.

7.2.2 Time step Issues

The time step of the simulation is another very important aspect we have to consider
when setting up the a scene. Most of the times especially when simulating liquids
the time step can be increased even to a value of 0.01 since we only have fluids mix-
ing with each other. However, one situation where we should be very careful with is
when we are simulating fluids with static or rigid body objects where the time step
should be way smaller to guarantee accurate fluid-static object interaction and
proper early collision detection and response. Especially, when we are setting up ini-
tial velocities to one or both of the simulated objects where they are moving much
more fast; in that case we found that a stable time step is a value of 0.006 and so the
integration method can assert that all particles’ new positions are correct and we
don’t experience the strange visual artifact of liquids intersecting with solid objects.

7.2.3 Viscosity Issue

Fluid viscosity is another issue which we had to address during this project. Since we
don’t explicitly solve the viscosity force of the Navier-Strokes Equation (3.3) we are
taking advantage the fact that the Pic velocities found result in viscous flows while
the Flip velocities found result and they are suited in more inviscid flows. By linearly
interpolating both and adding a adjustment variable such as a “viscosity coefficient”
to the solver we are able to control the viscosity levels from inside the solver HDA
inside Houdini.

7.3 Performance and Efficiency

At this section, we are about to discuss the overall performance and efficiency of the
solver. The initial target of such as solver is to have a linear complexity of O(n) as the
number of particles in the simulation increases.

7.3.1 Neighbour Search

 86

There is a variety of neighbour search methods researched in various papers offering
big time boosts in fluid and other types of simulations so neighbour search is usually
an important subject as far as the overall efficiency of solver is concerned. In this pa-
per, we have initially thought to use 3D Spatial Hashing method so as to increase
neighbour search. However for this project, since we were creating a grid based
solver whose the structure we already had from a previous stage we chose a differ-
ent approach which falls into the borders of a simple cell indexing technique in which
we exploited the already existing grid structure and the main neighbour search was
limited to the nearby cells of a queried particle’s cell index,. The results as far as the
accuracy of this method were quite convincing from the very start so we stuck to this
solution which gives a close to linear complexity results in contrast with the naïve
“all-pair-test“ approach of iterating through all the particles of the simulation and
measure distances from each queried particle each time resulting in O(n2) complexi-
ty.

0

0.5

1

1.5

2

All-Pair_Test Simple near-cell Grid
Indexing

Performance Review
Neighbour Search

 Frame 1, 8048 particles

Execution Time (secs)

 87

Figure 44 : The above column charts clearly show the difference in execution time

and complexity of the 2 methods. “All-Pair-Test” gives a O(n2) complexity as the
number of particles increases whereas by making use of this simple cell indexing

method leaves the complexity at linear level.

7.3.2 Using OpenMP Directives

More and more these days, the complexity of fluid simulations is increasing and so
the needs for alternative ways to keep up with this complexity definitely demands
for more CPU cores’ exploitation. As it was one of the initial objectives of this pro-
ject, we had to increase the overall performance of the solver by including OpenMP.
 OpenMP is an API that supports multi-platform shared memory multiprocessing
programming in C, C++ and other programming languages. It was chosen because
it’s a set of compiler directives and library functions that positively influence and
boost the run-time execution behaviour of a program and in parallel gives a simple
interface for parallelizing various kinds of applications (Yliluoma,2007).

0

1

2

3

4

5

All-Pair_Test Simple near-cell Grid
Indexing

Performance Review
Neighbour Search

 Frame 1, 15894 particles

Execution Time (secs)

 88

Figure 45 : The main fork-joint model of OpenMP
(by

http://static.msi.umn.edu/tutorial/scicomp/general/openMP/content_openMP.html
)

The great features about OpenMP, which were the main reasons for choosing it as a
method for increasing our solver’s efficiency are:

 Easy of Usage

 Ensures automatic manipulation of pool threads which allows for mixing of
sequential and parallel code without any user interference.

 Ensures automatic synchronization as an embedded functionality which pre-
vents threads which share a “for” block of memory from continuing beyond
the limits of this loop until all of them have finished execution inside it.

http://static.msi.umn.edu/tutorial/scicomp/general/openMP/content_openMP.html
http://static.msi.umn.edu/tutorial/scicomp/general/openMP/content_openMP.html

 89

Figure 46 : A serial segment of code is being parallelized using all CPU cores available
in the system and returns to the main execution Master Thread multiple times dur-

ing the iteration of a program’s algorithm
(by http://www.lrz.de/services/software/parallel/openmp/)

Below we present the results in execution times from two tests undertaken for a
“Man Figure” liquid consisting of 55047 particles showing the performance gained by
using OpenMP.

Figure 47 : “Man Figure” .obj liquid simulation test case for OpenMP consisting of
55047 particles with low viscosity (5%)

http://www.lrz.de/services/software/parallel/openmp/

 90

In the following column charts we present and juxtapose the boost in performance
acquired from the use of OpenMP. Two specific cases have been examined:

1)The “Density Calculation”, which is a quite expensive method of our algorithm on
its own .
2)The “Advection” method, which also takes a significant amount of time at each
time step of the simulation.

Figure 48 : Density Calculation execution time comparison of “Man Figure” .obj liquid
simulation test case for OpenMP consisting of 55047 particles with low viscosity (5%)

Figure 49 : Velocity Extrapolation execution time comparison of “Man Figure” .obj

liquid simulation test case for OpenMP consisting of 55047 particles with low viscosi-
ty (5%)

0

0.1

0.2

0.3

0.4

0.5

0.6

Without OpenMP With OpenMP

Performance Review
Density Calculation Frame 51

Execution Time (secs)

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Without OpenMP With OpenMP

Performance Review
Velocity Extrapolation Frame 5

Execution Time (secs)

 91

The above examples are only two examples of the main loop that have been parallel-
ized with OpenMP directives and it is obvious that we actually boost performance
more than 50% overall. Finally, we should mention that for 100 frames of simulation
of the “Man Figure” .obj, it took 6.83 minutes without the use of OpenMP directives
and on the contrary it took 3.33 minutes for the same amount of frames using
OpenMP. Thus, we successfully introduced a significant boost up in the execution
time of our solver achieving one more very important initial objective of this project.

8 Conclusion and Future Work

In this final chapter we are about to discuss and draw a conclusion for the whole pro-
ject. In general, in this project a Pic / Flip solver custom plugin for simulating fluids
inside Houdini 3D package was implemented using OpenMP directives. It is consid-
ered to be successful as it managed to meet all of its initial aims and objectives relat-
ing to the understanding and implementation of a fluid solver based on the Pic/Flip
method, the incorporation to Houdini using custom HDAs to load, set up and control
the pre simulation stage, but also the introduction and application of OpenMP com-
piler directives which helped in boosting up the overall fluid solver’s efficiency.

8.1 Critical Analysis of Initial Objectives

 At first, we achieved to simulate a number of fluids into a single scene inter-
acting with each other offering quite pleasing visual results.

 At the pre simulation stage, we also managed to control and vary several flu-
id parameters such as the initial position, the initial velocity, the visualization
type and color of the fluids to be simulated

 The interaction amongst fluids and static or RBD objects was also another
one of the project’s initial targets so as to simulate real world situations
where fluids collide with static objects.

 Additionally, we were able to handle large amounts of simulation data in
terms of the number of particles in a scene with the use of the simple near-
cell indexing technique for neighbour search which prevented quadratic
complexities O(n2). On the top of this, we increased the overall solver’s per-
formance with the successful use of OpenMP compiler directives.

 We managed to set up and control the solver based on the parameters speci-
fied in the custom Houdini plugin. For this purpose an interface parser was
successfully created to read and import an xml configuration file pre-created
inside Houdini.

 Furthermore, a proper point position exporter was embedded in the solver so
as to write particle positions to a Houdini compliant file format (.geo) for lat-
er loading and rendering of the final simulation.

 Apart from fluid HDA, we also achieved in setting up different simulation pa-
rameters with the use of a custom Houdini Digital Asset for the solver as well,

 92

and Python scripting was used to retrieve and write all appropriate needed
settings’ from fluid and solver HDAs’ parameters to a configuration file.

 Last but not least, we managed to successfully load any simulation (.geo) data
created at each simulation frame back into Houdini and added a particle fluid
surface node so as to properly visualize the loaded simulation as soon as it’s
finished using Python scripting as well.

8.2 Possible Extensions and Improvement

As this was a quite limited time project, there are a number of possible improve-
ments that could be applied to the existing solution and make it even more flexible
and efficient.

Efficiency
Initially, and as far as performance is concerned a possible extension would be to
parallelize the solver on the GPU and since graphics cards these days offer an in-
creasing number processing cores the current solver could run significantly faster
than simply on a multi-core system. The generic idea behind performing fluid simu-
lation of particles in a grid on the GPU is to use a fragment programs that perform
the computations at each of the grid’s cell for solving separately one by one all the
steps of the algorithm such as advection, force application, viscosity diffusion etc..

Collision Detection & Response
Moreover, since for the current representation of any static or RBD objects we are
using particles, this could be extended to representing static objects with polygonal
or parametric surfaces and computing collision detection and response of liquid in-
teractions with them. This would prevent any slowdown in the overall performance
of the solver which is caused by the iteration over any extra particles added to repre-
sent the static or RBD objects but it would introduce a significant overhead depend-
ing on the algorithm chosen to handle the collision detection-response. For example,
in the case of a collision detection algorithm which performs checks at a polygonal
mesh RBD we would have to check against every polygon possibly with some sort of
point-Polygon intersection algorithm which is quite computationally expensive and it
can be even more inefficient as the number of polygons of the RBD increases. Of
course, there are many other ways to perform collision detection and response each
one with its specific advantages and disadvantages such as AABB (Axis Aligned
Bounding Box) method and others but this falls out of the scope and time limitations
of this project.

Full RBD System Extension
Finally, the solver could be extended to include and solve complete fluid RBD inter-
actions. This basically means that a full rigid body system would have to be integrat-
ed so as to allow any fluid forces to be applied back to the RBD objects as well and

 93

affect their overall behaviour and motion. It could achieved by developing a custom
rigid body system or use a ready to use library and incorporate it to the already exist-
ing solver.

Appendix

Configuration Settings XML file example

Figure 50 : One example of the configuration settings file in .xml format written to

the current directory from inside Houdini. The c++ external application is responsible
for parsing the lines of this file and set up the solver accordingly.

Bibliography

1. Fluid Simulation for Computer Graphics, R. Bridson, A K Peters, 2008.

 94

2. Zhu , Y. Bridson , R., 2005. Animating Sand as a Fluid . Association for Computing
Machinery ACM SIGGRAPH, (2005).

3. Brackbill, J.U., Kothe , D.B., Ruppel , H.M., 1988. FLIP: A LOW-DISSIPATION, PARTI-
CLE-IN-CELL METHOD FOR FLUID FLOW . Computer Physics Communications, 48
(1988), 25-38.

4. Cummins , S.J., Brackbill , J.U , 2002. An Implicit Particle-in-Cell Method
for Granular Materials . Journal of Computational Physics , 180, 506–548 .

5. J.U. Brackbill, H.M. Ruppel, FLIP: A method for adaptively zoned particle-in-cell
calculations in two dimensions, J. Comput. Phys. 65 (1986) 314343.

6. BARDENHAGEN , S. G., B RACKBILL , J. U., AND S ULSKY, D.
2000. The material-point method for granular materials. Comput. Methods Appl.
Mech. Engrg. 187, 529–541.

7. Ando, R., Turey, N., Tsuruno , R., 2012. Preserving Fluid Sheets with Adaptively
Sampled Anisotropic Particles . IEEE TRANSACTIONS ON VISUALIZATION AND COM-
PUTER GRAPHICS ,VOL. X, NO. X, (2012).

8. HARLOW, F. H. 1963. The particle-in-cell method for numerical solution of prob-
lems in fluid dynamics. In Experimental arithmetic, high-speed computations and
mathematics, (1963).

9. Boyd, L., and Bridson, R. 2011. MultiFLIP for Energetic Two-Phase Fluid Simula-
tion. ACM Trans. Graph. VV, N, Article XXX (Month YYYY), PP pages.

10. Zhu , Y, 2005. Animating Sand as a Fluid . Thesis, (MSc Masters Project).
The University of British Columbia

11. Robert Bridson, (2012). Reference of the C++ Language Library , Available from:
http://www.cs.ubc.ca/~rbridson/

12. The C++ Resources Network, (2012). Reference of the C++ Language Library ,
Available from: http://www.cplusplus.com/reference/
Macey, J. (2012). Ngl graphics library, Available from: http://nccastaff.bournemouth.
ac.uk/jmacey/GraphicsLib/index.html.

13. SideFX, (2012). Masterclass | Fluid Solvers from Scratch, Available from:
http://www.sidefx.com/index.php?option=com_content&task=view&id=2200&Itemi
d=166

14. An Introduction to Parallel Programming, Peter Pacheco, Elsevier Inc, 2011.

http://www.cs.ubc.ca/~rbridson/
http://www.cplusplus.com/reference/stl/multimap/equal_range/
http://www.sidefx.com/index.php?option=com_content&task=view&id=2200&Itemid=166
http://www.sidefx.com/index.php?option=com_content&task=view&id=2200&Itemid=166

 95

15. M. Evans and F. Harlow, The particle-in-cell method for hydrodynamics calcula-
tions. LA-2139, 1957.

16. Steele, K., Cline, D., Egbert, P. K. and Dinerstein, J. (2004). Modeling
and rendering viscous liquids: Research articles, Comput. Animat. Virtual
Worlds 15(3-4): 183{192.

17. S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent
speed: algorithms based on hamilton-jacobi formulations,”
J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988.

18. C. W. Hirt and B. D. Nichols, “Volume of fluid vof method for
the dynamics of free boundaries,” Journal of Computational Physics,
vol. 39, pp. 201–225, January 1981.

19. Wolfram MathWordl, (2012). Runge-Kutta Method, Available from:
http://mathworld.wolfram.com/Runge-KuttaMethod.html

20. SideFX, (2012). Import and export geo/bgeo format, Available from:
http://www.sidefx.com/docs/houdini12.0/io/formats/geo

21. Numerical Heat Transfer and Fluid Flow, Suhas Patankar, Taylor & Francis, 1980.

	1 Introduction
	1.1 Topic
	1.2 Project Objective
	1.3 Report Structure

	2 Previous Work
	3 Basic Fluid Dynamics and Pic / Flip Theory
	3.1 Fluid Dynamics Research Approaches
	3.1.1 Eulerian Grid Based Methods
	3.1.2 Lagrangian Particle Based Methods
	3.1.3 Theoretical Comparison Eulerian Vs Lagrangian

	3.2 Staggered MAC Grid
	3.3 Equations of Fluid Motion
	3.4 PIC / FLIP Methods
	3.4.1 Particle In Cell Method
	3.4.2 Fluid Implicit Particle Method

	3.5 PIC / FLIP Combination Algorithm
	3.5.1 PIC / FLIP Algorithm Step Analysis

	4 Design of the custom plug-in
	4.1 Aims and Objectives
	4.2 Application Class Diagram
	4.3 Brief Class Functionality Description
	4.4 Project Pipeline
	4.4.1 Analytical Pipeline Structure Steps

	4.5 Scene Object Representation

	5 Implementation
	5.1 Main Algorithmic Scheme
	5.2 From Houdini To Custom Solver
	5.2.1 XML Configuration Functionality
	5.2.2 Particle Fluids From Objects
	5.2.3 Particle Position Filtering & Conversion

	5.3 Simulation Set Up & Initialization
	5.3.1 Memory Allocation
	5.3.1.1 Multidimensional C++ Array Explanation

	5.3.2 MAC Grid Walls Creation
	5.3.3 Fluid & Rigid Body Objects Creation and Placing
	5.3.4 Particle-Cell Identification
	5.3.5 Fluid Surface Marking
	5.3.5.1 Level Set Function Analysis

	5.3.6 Initial Stuck Particle Removal

	5.4 Iterative Simulation Algorithm
	5.4.1 Particle in Cell Discretization
	5.4.2 Density Calculation
	5.4.3 Solve External Forces
	5.4.4 Particle Velocities to Grid
	5.4.5 Boundary Velocities To Zero
	5.4.6 Projection Step Algorithm & Theory
	5.4.6.1 Projection Method Main Algorithm
	5.4.6.2 Analysis of the Projection Step:
	5.4.6.3 Preconditioned Conjugate Gradient Solver
	5.4.6.3.1 Conjugate Gradient Method
	5.4.6.3.2 Using a Preconditioner

	5.4.7 Velocity Extrapolation
	5.4.7 .1 Velocity Extrapolation Algorithm

	5.4.8 Pic Flip Velocities Calculation
	5.4.9 Particle Advection
	5.4.9.1 Runge-Kutta ODE Solver
	5.4.9.2 Collision Detection & Response
	5.4.9.3 Stuck Particle Repositioning

	5.4.10 Particle Distribution Correction
	5.4.10.1 Correction Algorithm

	5.4.11 Export and Write Particle Positions
	5.4.12 Artificial Vortex Behaviour
	5.4.13 Smooth Kernel Functions

	6 Pipeline Issues
	6.1 Custom Houdini Digital Asset creation
	6.1.1 PicFlip Fluid Houdini Digital Asset
	6.1.2 PicFlip Solver Houdini Digital Asset

	6.2 Python & Houdini
	6.3 XML Step Analysis

	7 Simulation Results and Discussion
	7.1 Simulation Scenarios
	Scenario 1 Single Primitive
	Scenario 2 Single Liquid .obj Loading
	Scenario 3 Multiple Interacting Liquids
	Scenario 4 Liquid Interacting with Static .obj
	Scenario 5 Liquid Interacting with RBD .obj
	Scenario 6 Viscous Liquid Interacting with Static .obj
	Scenario 7 Artificial Liquid Vortex Behaviour

	7.2 Known Issues
	7.2.1 Pic Flip Issues
	7.2.2 Time step Issues
	7.2.3 Viscosity Issue

	7.3 Performance and Efficiency
	7.3.1 Neighbour Search
	7.3.2 Using OpenMP Directives

	8 Conclusion and Future Work
	8.1 Critical Analysis of Initial Objectives
	8.2 Possible Extensions and Improvement

	Appendix
	Bibliography

