

Bournemouth University

12

Sand Simulation
Athanasios Papadimitriou

Msc Computer Animation and Visual Effects

2

ABSTRACT

 The simulation of granular materials has been considered a changeling task in computer

graphics world. Given the limitations that a granular system presents, these materials appear unique

properties that sometimes are difficult to be simulated with physical accuracy. Sand is a granular

material that has offered some great effects in computer animation. Nevertheless, it is an expensive

simulation as a ton of particles is needed to interact with each other in order to create visually

interesting results. In this master thesis, a hybrid approach for sand simulation is proposed combing

the use of particles and a heightfield for the creation of sand surfaces and the simulation of its

properties. This hybrid approach is succeeded by taking advantage of the sand as an opaque

material and the replacement of the invisible part of a sand surface by a mesh that is defined by a

heightfield.

3

Table of Contents

1 INTRODUCTION ... 4

2 RELATED WORK .. 6

3 DISCRETE ELEMENT METHOD (DEM) .. 8

3.1 The DEM Algorithm .. 8

3.2 Contact Model .. 9

4 GROUND GRANULAR MODEL .. 12

4.1 Representation Model .. 12

4.2 Displacement .. 13

4.3 Erosion ... 14

5 COLLISIONS .. 16

5.1 Particle-Particle Collision .. 16

5.2 Particle-Object Collision .. 16

5.3 Particle-Plane Collision.. 17

5.4 Heightfield-Object Collision .. 17

6 SIMULATION ... 20

6.1 Spatial Hashing .. 21

6.2 Integration .. 22

6.3 Hybrid Approach.. 23

6.4 Visualization .. 24

7 CONCLUSION .. 27

7.1 Performance ... 27

7.2 Limitations ... 28

7.3 Future Work ... 28

REFERENCES... 30

4

1. INTRODUCTION

 In recent years there has been a significant increase of interest in simulating the dynamic

motion of granular materials, such as sand, soil, powders and grains. In computer graphics world

there has been always the demand of animating such materials, but their unique natural properties

has made this task a challenging procedure. Especially, sand is a granular material that is met in

many landscapes and its interaction with the environment has been researched for many years.

Animating scenes with sand in computer graphics has become an interesting topic of research as the

computational models for this should be highly configurable with rich visual behaviour and in as

low as possible computational cost.

 Many techniques have been developed for simulating sand either as a solid material or as a

fluid. Due to the physical properties of the sand, sand can flow under external forces as a fluid and

stabilize into sand piles as a solid. Animating sand a fluid is a nice way to lower the computational

cost of sand animation but it lack in terms of physical accuracy, as the solid characteristics of sand

grains are not implemented. If we want to simulate a physical model of sand movement, each grain

of sand will be considered as a discrete element. So a particle-based approach in sand simulation is

required for succeeding physical accuracy. The main disadvantage of such an approach is the high

computational cost of having such a great number of particle’s interaction. Many computational

models have been developed to represent the properties of sand. Discrete element methods (DEM)

are popular in this area as they can be applied in each grain and produce realistic results in terms of

physical accuracy. But the computational efficiency of these methods is still a challenge.

 Another way of simulating sand surfaces suggests to animate these kind of surfaces as a

continuous volume of material. The most common model is the use of a heightfield which is created

by dividing the volume into a uniform rectilinear grid. The use of such a model offers the ability to

animate any displacement in a sand surface and handle many types of collision between an object

and the surface. But even if these methods are efficient in terms of computational cost, they only

can be used in animating sand surfaces and what happens on it. Other natural phenomena including

sand are not able to be implemented without the use of a particle system and the representation of a

sand grain as a discrete element.

 This master thesis involves the implementation of a hybrid technique for sand simulation.

By taking advantage of the fact that sand is an opaque material, a sand surface could be divided into

two layers: the visible surface layer and the invisible interior layer. In the surface layer, sand

simulation is implemented by using a particle system with Discrete Element Method in order to

5

apply the physical properties of the sand. For the invisible layer, a heightfield is used that stores in a

2D matrix the height of each part of the surface forming vertical columns. So, each part of the

surface will have a predefined height with a surface of particles at the end of each column. While a

simulation consists of the simulation itself and a visualisation part, the scope of this project has

been limited to the simulation mainly.

 In the following chapters the elements and the methods that were used for this sand

simulation are discussed. In chapter 2, an overview of the previous work in the field of the

simulation of granular materials is presented. In chapter 3, the main algorithm for the creation of the

forces among the particles is explained. In chapter 4, the ground granular model for the

representation of a sand surface is analyzed and algorithms for the deformation of the surface are

also included. In chapter 5, the basic aspects for the collision tests between all the elements in the

simulation are examined. In chapter 6, the simulation of this project and its main elements are

discussed. Finally, in chapter 7, the advantages and disadvantages of this simulation are presented

with suggestions for future work and improvement of this technique.

6

2. PREVIOUS WORK

 A lot of research has been taken place for the simulation of granular materials, such as sand.

Many different techniques have been proposed throughout the years using different elements for

the representation of sand and its properties. The previous work in this field can be divided into

particle-based methods and mesh-based methods.

 Bell et al. (2005) presented a simulation method of granural materials, such as sand and

grains, based on theoretical and experimental results in physics area. In their approach, they model

the granular material with discrete elements represented by particles. The major advantage of using

discrete elements is that dynamic phenomena, such as splashes and avalanches, can be generated by

the particles’ interaction with great physical accuracy. In addition, the simulation technique that

they proposed is based on Molecular Dynamics methods, which include methods for handling the

contact forces efficiently. The discrete elements in this technique are represented by multiple round

particles that move together as a single rigid object. As a result, they can handle the collisions with

other objects in a rigid body simulation system with realistic results. But the high computational

cost is a disadvantage, as despite the realistic simulation, a sand simulation can only be used offline.

In contrast to the above rigid body approach, Zhu and Bridson (2005) combined particle-in-cell(PIC)

and fluid-implicit-particle(FLIP) methods to simulate sand as fluid. The results were

computationally more efficient but the motion of the sand as fluid does not match all the natural

properties of granular materials in terms of physical accuracy.

 Based on previous similar methods, Alduan et al. (2009) presented an improved technique

for simulating granular materials with particles that achieves high visual resolution and at a lower

computational cost than earlier techniques. Their main difference is detected on the simulation of

the internal and external forces of granular materials. The computationally expensive internal

granular forces are simulated at a spatial low resolution scale, while the less expensive external

forces are simulated at a spatial high resolution scale. So the physical accuracy is preserved in a

more efficient way in terms of memory and computation cost. But still the problem of the high

computational cost of the internal forces remains, even in a smaller scale, due to the required small

time step.

 Zhu and Yang (2010) described a new method for simulating sand by separating the forming

sand piles in two layers: the static and the moving layer. This method offers a lower computational

7

cost than other particle-based methods as it replaces the static and invisible particles of sand with a

heightfield. Thus, the number of particles is reduced and sand is animated as a surface flow

according to the BCRE model. Their results show that their approach performs pretty well in large

3D scenes. But it cannot be used in interactive applications because of the use of the discrete

element method for the interaction between the particles in the surface flowing layer.

 As far as the mesh-based methods are concerned, Sumner et al. (1999) proposed a method

for animating ground surfaces consisted of granular materials. For computational efficiency the

ground material is modelled as a heightfield which is formed by vertical columns. So after the

impact of a solid object, deformations are applied to the ground surface through the compression of

the material and the movement of the material between the columns. Algorithms for the collision

detection, the displacement of the surface and the process of the erosion are also presented in order

to succeed as realistic results as possible. The biggest advantage of this technique is the low

computational cost and its usability in simulations that run in real time. The technique that is

described gives the ability to capture many behaviours of substances such as sand, mud and snow,

but it lacks when it is tried to animate specific characteristics of the sand, such as the creation of

sand piles and the effect of friction when a collision happens.

 An improved version of an interactive system with a ground surface composed of a granular

material is described by Onoue and Nishita (2003). The main difference from the above technique is

that this proposed method can handle objects of various shapes, even concave ones. This enriches

the interactivity of the system and the visual results become more realistic. This technique is also

based on the use of a heightfield for the representation of the ground surface. For the representation

of the granular material on the surface of an object, a height span map is used. Its use creates a nice

effect in the interactivity between the ground surface and the different objects. Overall, it is a very

interesting approach in simulating granular materials at an interactive frame rate.

 Benes et al. (2006) presented a novel approach for a virtual granular material interactive

manipulation system. The representation of the sand surface relies on the fact that a sand surface

cannot form concave structures and so it is accomplished with a regular heightfield. The

displacement and the erosion of the sand surface are considered for the sand manipulation and the

results are not so realistic, but they are close to real-time speed. This is also the disadvantage of this

system, as several aspects of sand simulation cannot be produced by using only a heightfield. In

addition, the collision with non-spherical objects is still an unsolved problem in their method. But

the ground surface manipulations are very helpful for creating similar results with low

computational cost in an improved version of this technique.

8

3. THE DISCRETE ELEMENT METHOD (DEM)

 Sand is a granular material that is consisted of many discrete solid particles. The sand grains

are represented as spherical particles that interact with each other. Two important ingredients for

such a granular system is the repulsion between the particles in contact and the dissipation of energy

during the collisions. Another important characteristic of the behaviour of sand grains is the fact

that when a significant number of sand particles are at rest, they behave as solid. Part of the reason

why they behave as solid is the static friction that is taking place when two or more particles are in

contact. The static friction is also responsible for the formation of sand piles and their solid situation.

 The Discrete Element Method is an approach to numerical simulation that computes the

motion of a large number of particles from the individual motion of each particle and their mutual

interactions. In this thesis' model, a DEM method is used to calculate the forces between the

particles and the motion of each one individually. An individual sand grain is modelled by a

spherical particle.

 3.1 The DEM algorithm

 The basic steps in the algorithm using the Discrete Element Method (DEM) are:

Figure 1. DEM Algorithm

9

1. Setup: The first step of the algorithm is the generation of particles and arranging them in the

environment.

2. Neighbours: After the initialization of the particles in the system, the neighbours of each

particle is computed in order to est for collisions. This is a significant part of the algorithm

as it determines the particles that are candidates for interaction with each other.

3. Collisions and Calculation of contact Forces: When a collision detection is occurred

between two particles, the appropriate forces are applied according to the DEM model that

it is described below.

4. Update Positions and Velocities: The total force that is applied to each particle after the

collision is incorporated into the motion equations and the acceleration is updated. Therefore,

the positions of each particle need to be changed accordingly as well as their velocities.

 3.2 Contact Model

 In the DEM algorithm, when a collision between two particles occurs, a numerical contact

model is applied for the proper simulation of the motion of these particles. This contact model

calculates the total force that affects the trajectory of the particle. The total force on a given particle

is computed as the sum of its pairwise interactions. The contact model that is used in this simulation

is based on the implementation of Lee and Herrman (1992).

Figure 2. Contact Model

10

 The total force that is responsible to update the acceleration of each particle is the sum of the

external and the internal forces. The external forces that act in a particle are the gravity and any

other force from the environment. In the external forces, the force from the collision between the

particle and an object can be concluded, as well as the force from the interaction between the

particle and the boundary wall. The internal forces are the forces from the contacts between the

particles. So the total force is compute as:

 TotalForce = ExternalForces + InternalForces

 The internal contact force can be divided into normal and tangential components as follow:

Consider two particles i and j that are in contact and their positions are and respectively. Their

distance is defined as . A vector is also defined to be a unit vector parallel to the

distance between the particles i and j. A vector is orthogonal to and defines the tangential

component of the internal force. Consider also the relative velocity as i - j and the radius of

particle as . So, according to the model of Lee and Herrman, the internal force on particle

exerted by particle is :

As it is mentioned before, the internal contact force is consisted by two components. Here, if the

normal factor of the normal component and is the shear factor of the tangential component .

These two factors give to the particles the physical properties of the sand.

 In more details, the normal factor is calculated as follows:

where:

 The elastic constant of the sand

 The constant that controls the amount of energy dissipation

 The effective mass

11

 The first part of this equation is the three dimensional Hertzian repulsion which is caused by

the elastic deformation of the sand grain when it comes in contact with another sand grain. The

second part is the friction term which depends on the relative velocity and is used for the dissipation

of the energy in the simulation.

 The shear factor of the internal force is calculated by the following equation:

where:

 The first term of this equation is similar to second part of the previous equation and defines

the dissipation of energy during the contact. The second term is actually the implementation of the

static friction, a physical property of the sand material. The general idea behind the static friction is

the creation of a virtual spring in the direction of the shear force between two particles in contact.

So, a restoring force is acted during the contact with a maximum value that is given by Coulomb’s

criterion. When the particles are no longer in contact, this virtual spring between them is removed.

It is important also to note that the rotation of particles is not included in this simulation.

 The restoring constant of the shear force

 The constant that controls the amount of energy dissipation

 The total shear displacement

 The static friction constant

12

4. GROUND GRANULAR MODEL

4. 1 Representation model

 In this thesis a hybrid approach for sand animation is proposed combining particles with a

general model of deformable granular material. This model is represented by a heightfield which is

defined by vertical columns. It is actually a continuous volume of sand on the ground that is divided

into a rectilinear grid. Each column in the grid takes a defined height in order to form the necessary

heightfield for the simulation. This heightfield replaces the invisible and static layer of a sand

surface and, therefore, the necessary number of particles needed for the simulation is reduced by a

significant margin. The resolution of the grid can be suitably selected according to the environment

and the size of the objects that are going to interact with it.

Figure 3. Representation of Heightfield (Holz et al,2009)

 In this simulation, the heightfield has a predefined height for each column and it forms flat

surfaces. But the initial conditions for the height of each grid point could also be created either

procedurally or imported from a variety of sources. Unfortunately, there is not such an

implementation in this simulation due to time constraints. But it is a challenge to be created in the

future.

13

 After the initialization of the heightfield, an algorithm for its interaction with objects in the

environment needs to be implemented. This algorithm has three basic stages: collision detection,

displacement, erosion. The collision detection between the heightfield and the objects in the

environment will be discussed in the next chapter.

 4.2 Displacement

 The displacement of the sand surface is taken place when an object is in contact with the

columns of the heightfield. Therefore, when a collision is detected, the columns that are in contact

with the object are moving downwards until the object remains stable. In order to find the

neighbouring columns that are not in contact with the object, an array is used to store a integer

value. This array actually shows if a column is in contact with the object or not. If it is in contact,

then it takes the value of 1, otherwise it takes the value of 0. This is useful when we try to find the

surroundings columns for the displacement step of the algorithm.

 This procedure is applied for every column of the heightfield that is affected by the surface

of the object that is in contact with the heightfield. The material from these columns is either

compressed or distributed to the surroundings columns that are not in contact with the object. This

material is represented by the vertical displacement of the columns and is stored in a value () that

is going to be used for the total distributed material in the neighbouring columns. For the

compressed material, a ratio is used and can be chosen from the user according to the type of the

surface that is going to be appeared. Then the distributed material is calculated as follows:

After these calculations, the height of each surrounding column that is not in contact with the object

is increased in order to simulate the displaced material. The material is equally distributed in these

columns and the next step is the procedure of erosion which is explained below.

14

Figure 4. Displacement of surface

4.3 Erosion

 After the material is displaced in the neighbouring columns, an erosion procedure needs to

be applied for creating realistic deformation of the sand surface. After the displacement of the

surface, the material is distributed only in the first ring of the surrounding columns that are not in

contact with the object. Therefore, an unrealistic visual result needs to be corrected. During the

erosion step of the algorithm, the steep slopes between the columns and their neighbours are

examined and an amount of the material in each column is further moved to columns with a lower

height.

 The slope between two adjacent columns is actually represents the angle of repose of the

sand. When the columns are moving upwards due to the transferred material of the compressed

columns, sand piles are formed around the object on the surface. According to the physical

properties of sand as a granular material, the height of a sand pile is dependent of the angle of

repose. Therefore, each displacement in the columns of the heightfield needs to be further examined

in order to produce realistic visual results close to physical accuracy. This is a reason why the slope

between the adjacent columns has a significant role in the deformation of the sand surface.

According to Sumner et al. (Sumner et al,1999), for a column and a neighbouring column , the

slope, , is calculated as:

 ,

15

where and are the height of columns and respectively, and is the distance between

the two columns.

 The next step after the calculation of each slope is the correction of any large values of

slopes. This correction is implemented by defining a threshold (). If the slope between two

columns is greater than this threshold, then the material is moved from the higher column down the

slope to the lower column. This procedure is repeated until all slopes are below a second threshold

().

 The amount of material that is distributed between the columns with steep slopes is

computed by the average difference between the neighbouring columns. The equation is:

,

where are the neighbouring columns. The average difference in height is then multiplied by a

fractional constant (). The material after the above calculations is then equally distributed to the

neighbouring columns with lower height. The erosion step of the algorithm gives the realistic visual

results of a sand surface and by changing the factors, the appearance of the deformation on the

surface is going to be different.

Figure 5. Erosion on the surface

16

5. COLLISIONS

 In a physics-based simulation the management of different types of collision between the

elements that take part in the simulation is a significant factor for the success of realism. Each

collision has two main parts: the collision detection and the collision response. Both procedures

increase the computational cost of the simulation significantly and, thus, they need to be handled

carefully and effectively in order to succeed physical accuracy in the simulation. In the following

chapters, the different types of collision in this simulation are going to be explained.

 5.1 Particle-Particle Collision

 For the representation of a sand grain, a spherical particle is used in order to simplify the

collisions between each sand grain. By using spheres the collision detection between each pair of

particles becomes very simple as we only need to compute the distance between the centres of each

pair of particles. Consider two particles , with centres at positions and respectively. Given

the radius , as each particle in this simulation has the same radius, a collision occurs when:

 The collision response in each case is described by the contact model between two particles

in the DEM algorithm above.

 5.2 Particle-Object Collision

 In this simulation, spherical objects in the environment have been used in order to lower the

computational cost of the collisions between a large number of particles and the objects in the

environment. The collision detection is the same as in particle-particle collision case but the

collision response is a bit different. In this case, when a collision occurs, an additional force from

the contact with the spherical object is added in the total sum of forces that affects the acceleration

of each particle. This force is divided into two components, the normal and the tangential force.

17

Both components are calculated as described in the contact model with the static friction applied on

the surface of the spherical object. But in this type of collisions, a different value for the elastic

constant of the material () is defined depending on the surface of the spherical object.

 5.3 Particle-Plane Collision

 Another type of collision in this simulation is between the particles and a flat surface. Flat

surfaces represent the walls of a bounding box of the upper face of the columns in the heightfield.

In order to examine if a collision occurs between a spherical particle and a plane, the dot product ()

of the plane's normal with the position vector of the centre of the particle () needs to be

calculated as shown below:

Then it is checked if the value of is greater than the radius of the particle in order to determine if

there is collision or not. An additional check need to be considered, in order to define that the

particle is inside the dimensions of the plane.

 5.4 Heightfield-Object Collision

 An important event of this simulation is happening when an object in the environment is

falling on the sand surface that is represented from the heightfield described in the previous chapter.

The collision detection between the object and the heightfield was a changeling task, as it is vital for

the implementation of the ground granular model.

 As far as the collision detection is concerned, a ray is cast from the vertex at the top of each

column of the heightfield along the normal direction of the column. Because we use spherical

objects in the environment, the collision can become a ray-sphere collision which is described in

details below. First of all, the object is defined as a sphere with its centre position at a point

 and a radius . Then we consider as the centre position of a sphere at a point

 . Given the equation of the sphere as:

18

we define the equation of a sphere centred at as

So, having a ray in the direction () of the normal of each column of the heightfield ,

parameterized by , and given the starting point () of the ray as the position of the centre of each

column, we get in above equation as .

So the sphere equation transformed into the following equation:

Having defined all the above values, a hit is examined by solving the quadratic form of this

equation. The discriminant of the quadratic equation is calculated as:

Now we check if the value of computed discriminant is greater than 0 or not. If >0, it means that

an object is detected in the direction of the ray and by solving the equation, the hit points can be

found. By computing the distance between the first hit point and the height of the column, collision

detection is occurred when this distance is equal to zero. In the opposite case (<0), no collision is

detected and, therefore, no further calculations needs to be done. The ray-sphere algorithm used in

this simulation is as follows:

 A = m_heightfield->m_Normal.dot(m_heightfield->m_Normal);

 t=m_heightfield->m_heightPos-m_object->m_Position;

 B= m_heightfield->m_Normal.dot(t)*2;

 C=t.dot(t)-r*r;

 discrim = B * B - 4*(A * C);

 In order to restrict the calculations for the ray-sphere collision, the bounding box of the

spherical object is projected into the surface and, as a result, only the columns that are inside the

dimensions of the bounding box is considered in the collision detection algorithm. So the

computational cost is reduced for this type of collision.

19

 As far as the collision response in this case is concerned, an opposite force from the ground

surface is applied to the object with the same magnitude as the gravity of the object. Due to the

granular material of the surface, a dissipation of energy is happening and, therefore, the object is

sinking in the surface until its vertical velocity becomes zero. This dissipation factor is applied to

the velocity of the object and can be defined by the user according to the desired type of sand

surface in the simulation.

20

6. SIMULATION

 6.1 Spatial Hashing

 An important part of any physical-based simulation is its optimization. In this sand

simulation, the use of a large number of particles demands the computations to be as few as possible.

One computationally expensive procedure in this simulation is the search for the neighbours of each

particle. This procedure is performed in every time-step of the simulation and it actually affects the

physical accuracy of the simulation, because it determines the particles that are going to interact

with the internal forces. For this reason, a spatial decomposition has been implemented to reduce

the time of this procedure.

 This spatial decomposition has been succeeded using a spatial hashing algorithm developed

by Teschner et al. (2003). The use of this algorithm for the optimization of the neighbouring search

procedure has a great advantage. It actually decreases the complexity from to when

the simulation needs to find the neighbours of each particle in every time-step.

 The spatial hashing algorithm that is used in this simulation uses a hash function that

converts the position vector of each particle to an integer hash value. This value is then stored in the

suitable cell in the hash table. So, the search for neighbours becomes a procedure of finding the

particles that are inside the same cell in the hash table. One important parameter in the algorithm is

the appropriate selection of the cell size and it depends on the radius of the particles that is used in

the simulation.

 After having defined the cell size, a hash function is used in order to create the values that

correspond to each position. Particles with same hash values are stored in the same cell. This hash

function takes as input the discretised components of the 3D position vector () of the particle and it

returns a value as follows:

where: - are the discretised values of respectively.

21

 These discretized values are the result of a function that computes these values as follows:

 are three large prime numbers that are proposed from Teschner et al. (2003)

as:

 is the size of the hash table and it is a predefined prime number, in order to generate

the right values for each particle's position.

 The next step is the use of the hash function for all particles in the simulation. By generating

the hash value for each particle, the insertion of each particle in the hash table is taken place. In this

simulation, the hash table has been implemented as a std::multimap that takes a pair of an integer

(hash value) and an instance of the particle (*particle). Finally, the search for the neighbours of each

particle is restricted in a search of particles with the same hash value from the hash map that is

created. This spatial hashing algorithm is repeated in every time-step and the hash map is refreshed

as the position of the particles has changed as the simulation is running.

 6.2 Integration

 The motion of each particle in the simulation is dependent on the acceleration vector in each

time-step. The acceleration can be calculated using Newton’s second law of motion:

a = F/m

where F is the total force that is applied on the particle and m is the mass of the particle.

 The integration of the acceleration is vital for the motion of the particles as it is used in order

to calculate the velocity and the position of the particle in each time-step. In this simulation two

22

integration methods has been tested: semi-implicit Euler and Verlet integration.

 6.2.1 Semi-implicit Euler

 Euler Integration is one of the most basic integration methods to implement. It is based on

Newton’s second law of motion and uses the notion of derivatives to find the velocity and the

position. While the energy is conserved in each time-step, this method appears several numerical

instabilities in this simulation and is not always preferred. The next position of each particle is

implemented with the following algorithm:

 6.2.2 Verlet Integration

 Verlet Integration is a fast method for numerically integrating the equations of motion for

the movement of each particle in the simulation. It is quite stable as it bypasses the calculation of

velocity and calculates the next position directly from the acceleration. It is also useful as it stores

the old and the new position of the particle, as this information is necessary for the calculation of

the shear force when the particle is in contact with another particle. The algorithm that was used for

the implementation of verlet integration in this sand simulation is shown below:

 –

23

 6.3 Hybrid Approach

 The two main models that are implemented in this simulation have been described in the

previous chapters. The DEM algorithm is responsible for the simulation of the particles and their

interactions with the environment and themselves. The ground granular model is responsible for the

simulation of a sand surface. The changeling part of this thesis project was to combine these two

models into one. This hybrid approach is going to speed up the sand simulation without losing in

physical accuracy. The DEM method has a significant computational cost and when the number of

particles becomes pretty large, the simulation runs in a low frame rate. In contrast, the ground

material model with the use of heightfield is a suitable model for real-time deformations of a

surface. Therefore, the combination of these two parts would create an interesting result.

 By taking advantage of the fact that the sand is an opaque material, the static and invisible

particles in a sand pile or a sand surface with a heightfield. As a result, the computations in every

time-step of the simulation are decreased and the simulation runs in an acceptable rate of frames per

second. The algorithm of the replacement of these particles is the follow one:

 In every update of the simulation, the distance between the current position and the

previous position for each particle is being checked. If this distance becomes very small and

approaches to zero, then the particle is defined as inactive. Being inactive means that the particle is

stable in the simulation and there is no need for further calculations of the total force that is applied

to it until another new particle interact with it. So, the inactive particles that are not on the outside

layer of the surface of the sand pile are candidates for replacement.

 The algorithm for the creation of the heightfield and the replacement of the inactive particle

s checks all the candidates and it creates vertical columns in the position of the replaced particles.

The height of these columns defines the volume of the replaced particles. So the total volume of the

sand is preserved with fewer particles in the current time-step. The heightfield that is formed in this

case belongs to the ground material model that is described in chapter 3. Therefore, all the physical

properties of sand are still there with a lower computational cost than before, as a smaller number of

particles is now active in the simulation.

24

6.4 Visualisation

 For the visualisation of this simulation, simple OpenGL representation models have been

used. Due to time constraints, the visualisation of this project was not a primary task as the most

amount of time was spent in the implementation of the functionality of the sand simulation.

Nevertheless, the sand particles are represented either as spheres in one scene, where the number of

particles is not too big, or as points, where a large amount of particles are needed for the creation of

the sand surface. The heightfield is represented as a 2D grid and the vertices of the height of each

column are connected in order to form a triangulated surface. A simple shader is also used that

gives a defined colour to particles via the ngl library.

 Three scenes have been created for the visualisation of this simulation. In the first scene,

particles of sand are falling from a predefined height in a constant rate and they form a sand pile

when they touch the bottom surface of the box. In the second scene, the sand particles are falling

from the same height but now there is a spherical object in the scene that interacts with them. In the

third scene, the particles form a sand surface and an object is falling causing deformations on the

sand surface. All these three scenarios are suitably chosen in order to show the functionality of this

simulation and to test the physical accuracy of sand as a granular material.

25

Figure 6. Scene 1

Figure 7. Scene 2

26

Figure 8. Scene 3

27

7. CONCLUSION

7.1 Performance

 The implementation of sand simulation was a changeling task from the very beginning of

the project. Sand has unique physical properties that are different from other materials and, as it has

mentioned before, it cannot be simulated in real-time. Using a hybrid approach by combining a

particle system with a mesh represented by a heightfield was an effective way of simulating sand

particles in pretty good frame rates.

 In this simulation, the Discrete Element Method is used for the implementation of the

necessary forces that are applied to the particles. The DEM method is very similar to Molecular

Dynamics methods that perform the calculations for the motion of each element in each particle in

the system. It has been previously found that the DEM method is an accurate approach to the

physical properties of the granular materials, such as the sand. Therefore the simulation in this

project appears a nice visual result in terms of physical accuracy.

 By using the ground model, the simulation gains in speed without losing physical accuracy.

This was tested by comparing the creation of a sand pile when one thousand particles are poured

from a defined height. By using the ground model, the particles that are invisible and stable are

replaced by the ground model that was described before. So the time of the simulation is improved

by almost 30%. The basic advantage of this hybrid approach is the fact that a significant amount of

sand particles with computationally expensive contact forces do not need to be considered for the

appearance of the simulation as they are replaced by the heightfield. Therefore, the simulation does

not suffer from the rather small time steps that the DEM usually requires. In addition, the

computational cost of the ground granular model is trivial in comparison with the DEM model.

However, if more particles are used, the improvement in terms of run time is decreasing.

Nevertheless, this speed up in the simulation is significant and can be improved more in the future.

28

 7.2 Limitations

 During the implementation of this simulation, many limitations have been appeared. First of

all, the issue of handling a ton of particles was the main problem of this project. The DEM method

is a computationally expensive and in most cases is not used in real-time applications. Despite the

use of some optimizations techniques, which were explained before, the simulation cannot run in an

acceptable frame rate if the number of particles is increased significantly. This issue could be

overcome in an extent by the use of parallelisation of the algorithms. Maknickas and Kaceniauskas

(2006) proposed a parallelisation of the DEM method with pretty good results. The speed up in the

simulation running time in this project could be succeeded by the use of parallel programming in

CPU or even better in GPU.

 Another limitation of the use of this simulation is the missing of an appropriate visualisation.

In the initial proposal of this thesis, a implementation for the Maya software was proposed for the

visualisation of the simulation. However, due to difficulties of the hybrid approach and the

combination of two different systems, the implementation via Maya API C++ was rejected.

Furthermore, only spherical objects can be used for the interaction with the sand in this simulation.

The use of polygonal objects was not a primary task for this project. But with the appropriate

algorithm, any object can be represented by spherical particles and can be used for testing with the

sand in this project.

 7.3 Future Work

 The sand simulation in this project using the proposed hybrid approach offers a nice visual

result in terms of physical accuracy with a respectable run time. Of course, many improvements can

be taken place for improving this technique in order to be applied in more complex scenes. A

significant improvement for this technique will be a parallel implementation in the GPU of the

described algorithms using OpenCL or CUDA. By taking advantage of the speed up that the

graphics card's processors offer, the sand simulation could be run in close to real-time speed for a

29

large number of particles.

 Furthermore, the nature of the project has a great potential for more work. Not only would a

parallel implementation boost up the speed of the simulation, but also the finding of a quicker way

to identify the neighbours of each would also be quite effective in terms of computational cost. The

spatial hashing algorithm that is used in this simulation is a good approach, but when the number of

particles becomes extremely big, this algorithm has its limitations. Finally, a way of handling more

complex objects in the environment would be a good consideration as future work. For now, the

simulation can handle only collision and interactions with spherical objects. By adding algorithms

of collision detection and response with complex polygonal objects would add interesting results to

the application.

30

REFERENCES

Alduan, I., Tena, A., and Otaduy, M. A. 2009. Simulation of high-resolution granular media. In

Proc. of Congreso Espanol de Informatica Grafica.

Ammann C., Bloom D., Cohen J., Courte J., Flores L., Hasegawa S., Kalaitzidis N., Tornberg T.,

Treweek L., Winter B., Yang C.: The birth of sandman. ACM SIGGRAPH 2007 sketches (2007).

Aradian A., Rapahel E., and De Gennes, P. Surface flows of granular materials: A short

introduction to some recent models. Comptes Rendus Physique 3 (2002), 187–196. 10 pages, 3

figures, published in a special issue of C. R. Physique (Paris) on granular matter.

Benes, B. and Roa., T. Simulating desert scenery. Winter School of Computer Graphics SHORT

communication Papers Proceedings, pages 17–22, 2004.

Benes B., Dorjgotov E., Arns L., Bertoline G.: Granular material interactive manipulation:

Touching sand with haptic feedback. In Proceedings of the 14-th International Conference in

Central Europe on Computer Graphics, Visualization and Computer Vision

2006 (2006), pp. 295–304.

Benes, B. and Forsbach., R., Layered Data Structure for Visual Simulation of Terrain Erosion. In

Tonisao Kunii, editor, IEEE Proceedings of the Spring Conference on Computer Graphics, pages

80–86. IEEE Computer Society, 2001.

Duran, J., 1999. Sands, Powders and Grains: An Introduction to the Physics of Granular Materials.

Springer.

Hudak, M. and Durikovic, R., 2011. Terrain Models for Mass Movement Erosion. In Theory and

Practice of Computer Graphics, pages 9-16, 2011.

Holz, D., Beer, T. and Kuhlen T., 2009. Soil Deformation Models for Real-Time Simulation: A

Hybrid Approach. Workshop on Virtual Reality Interaction and Physical Simulation.

31

Macey, J. (2010). Ngl graphics library. Available from:

http://nccastaff.bournemouth.ac.uk/jmacey/GraphicsLib/ [Accessed 19 Aug 2012].

Lenaerts, T., and Dutre, P. 2009. Mixing fluids and granular materials. Computer Graphics Forum

28, 213–218(6).

Narain, R., Golas, A. and Lin, M., Free-Flowing Granular Materials with Two-Way Solid Coupling.

In Proceedings of the 2010 ACM SIGGRAPH Asia, Volume 29, Issue 6, December 2010.

Nathan B., Yizhou Y., and Mucha., P. Particle-based simulation of granular materials. In

Proceedings of the 2005 ACM SIGGRAPH / Eurographics Symposium on Computer

Animation, pages 77–86, July 2005.

Onoue, K. and Nishita, T. Virtual sandbox. In PG ’03: Proceedings of the 11th Pacific Conference

on Computer Graphics and Applications, page 252. IEEE Computer

Society, 2003.

Parent, R., 2008. Computer Animation: Algorithms and Techniques. 2
nd

 Edition. Massachusetts:

Morgan Kaufmann.

Pla-Castells, M., Garcia-Fernandez, I., and Martinez, R., 2006. Interactive terrain simulation and

force distribution models in sand piles. In Cellular Automata. 392–401.

Pla-Castells, M., and Garcia-Fernandez, I., Physically-based interactive sand simulation. In

Eurographics 2008 - Short Papers (2008), pp. 21–24.

Sumner, R., O’Brien, J., and Hodgins, J., 1999. Animating sand, mud, and snow. Computer

Graphics Forum 18, 1, 17–26.

Teschner, M., Heidelberger, B., M• uller, M., Pomeranets, D., and Gross, M. (2003). Optimized

spatial hashing for collision detection of deformable objects. In Proceedings of Vision, Modeling,

Visualization VMV03, pages 47{54. Available from:

http://www.beosil.com/download/CollisionDetectionHashing_VMV03.pdf [Accessed 19 Aug

2011].

Yongning Zhu and Robert Bridson. Animating sand as a fluid. ACM Trans. Graph., 24:965–

972, 2005.

http://nccastaff/

32

Zhu, B., and Yang, X. 2010. Animating sand as a surface flow. In Eurographics 2010, Short

Papers.

