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Abstract

The rendering of objects under distant diffuse illuminati@as been considered. The illumi-
nation has been projected into spherical harmonic spac¢éhancbefficients are stored in the
geometry to reconstruct the lighting. RenderMan has beerlhbice of platform for the im-
plementation. Using a plugin, the existing functionalifyfRenderMan has been extended to
make it capable of spherical harmonic lighting.



Chapter 1

Introduction

1.1 Objective

The objective of this project is to use Spherical Harmon&id)(for illumination calculations.
Using comparative examples, the thesis will demonstratadvantages of this precomputation
technique over standard ray trace lighting in terms of béfttiency and quality.

Photo Realistic RenderMan (PRMan), the well establishederer from Pixar, has been
used for the project. The functionality of the renderer hasrbextended to make it capable
of computing spherical harmonic data and some of the stdriddats have been extended to
make them capable of spherical harmonic lighting.

1.2 Motivation

The general drive in computer graphics is to achieve beftgénsore believable imagery and to
achieve them within feasible time frames. An obvious soluis better hardware but a more
beneficial solution would be to have software that uses efftatalculations and can also be
incorporated as an artist-friendly tool within the prodaotpipeline.

PantaRay, the novel system for precomputing directioneluseon caches developed by
Weta Digital and Nvidia for the production of the feature fikwatar, is an influential example



of accelerating cinematic lighting in the domain of spharitarmonics.

The movie Avatar featured unprecedented geometric contyl@ith production shots con-
taining anywhere from ten million to over one billion polygo(Pantaleoni et al. 2010). Re-
lighting methods based on spherical harmonics (Ramamdoidanrahan 2001a) and image-
based lighting made it possible to render such complex scamé to provide artists with fast
iterations for lighting.

The key feature of PantaRay is to make the expensive predatigouof spherical harmon-
ics practical by implementing ray tracing calculations ba GPU and generating directional
occlusion caches. A GPU implementation is beyond the scop@sothesis, but the idea of
precomputed caches has been used for this project.

Figure 1.1 Top: This forest was assembled for testing PantaRay. Thegerearker in the
image indicates the close-up area shown on the right. Tleealp area is 7 x 4 pixels at film
resolution. Bottom: The final render of a shot from the feafilm Avatar. On the right is the
SH render of the portion of the set that was used to test Pagt@antaleoni et al. 2010).



1.3 Structure

The structure of this thesis follows the sequence of stegeniaken to understand the concepts
behind the topic and then to implement them as a test benchin IEthen moves on to PRMan
shaders followed by examples.

Chapter 2 introduces the background knowledge that ish#timre progressing to the partic-
ular topic of Spherical Harmonics. The principles of illuration in CG have been described.
The general principles of rendering and the working conbepind Prman has been discussed.

The project requires a thorough understanding of the mattiesnbehind Spherical Har-
monics and hence Chapter 3 deals with the fundamentals oft 8keffines SH functions, their
properties and the application of SH functions in lighting.

The implementation is described in Chapter 4. The evaloatfespherical harmonic func-
tions is tested in stand alone C++ using known light equatimoefficients. The tested and
verified C++ code is then modified to a RenderMan Shading Lagg@RSL) Plugin that can
be called by a shader as a Dynamic Shared Object (DSO). Theishiat execute the neces-
sary task of pre-baking data are discussed and then a ligtieskhat reads in the pre-processed
data is described. The extended SH versions of some of théssthlights in PRMan have also
been demonstrated.

The results obtained from using SH lighting are compared standard techniques in Chap-
ter 5. Statistical demonstrations along with the rendezsshown to illustrate the advantages
of Spherical Harmonic Ligting. To further demonstrate thleustness of the extended SH light
shaders a couple of examples dealing with complex geometryldferent lighting conditions
have been used.

Finally, Chapter 6 presents a summary of the project andigéss its shortcomings. It also
presents several suggestions for further improvemenedfabl and a better integration of it in
the production pipeline.



Chapter 2

Background and Related Work

2.1 Illlumination

Light propagation and interaction with surface materisaks complex process and several light-
ing model have been developed in CG to represent the behafilbbght and the way it interacts
with different surfaces.

2.1.1 Direct Light or Local lllumination

The simplest lighting model is based on Lambert’s cosine (laengyel 2011). The average
effect of the model is the surface’s diffuse reflection cdiemg reflected uniformly in every
direction.

As shown in Figure 1.1, a beam of light with cross-sectioma&al illuminates a surface
area ofA/ cos # whered is the angle between the light directiérand the surface normal.

The intensity of the incoming light can be calculated frora tlosine of the angle between
the incoming light vector and the surface normal multipliydsurface reflection function. For
this reason, the model is also known as dot product lighting.



where

L;, isthe light intensity received by the surface

Lg  the light intensity emitted by the light source

0 the angle between the incoming light vector and the surfacenal
L the normalized light vector of the incoming light

N the surface normal

Figure 2.1 The surface area illuminated by a beam of light increasebeaangled between
the surface normal and direction to the light increasesgdesimng the intensity of light per unit
area (Lengyel 2011).

2.1.2 Indirect Light or Global lllumination

Greater realism in image synthesis requires global illamnam models which can account for
interreflection of light between surfaces (Cohen & Walla883). The first global illumination
model introduced was with the recursive application of raging to account for reflection,
refraction and shadows. It was recognized then, that thii@van of global illumination
required determining the surface visibility in variousetition from the point to be shaded.
Eventually more accurate physically based local reflectiodels were developed using results
from the field of radiating heat transfer and illuminatioresgy.

In contrast to earlier empirical techniques, the radiogigthod begins with an energy bal-
ance equation which is approximated and solved numericdlhile ray tracing evaluates the
illumination equation for directions and locations deteraa by the view and the pixels of the



image, radiosity solves the illumination equation at lawad distributed over the surfaces of
the environment.

Radiance and irradiance are basic optical quantities usetdracterize emmission from
diffuse sources and reflection from diffuse surfaces rdspdg. A Lambertian surface reflects
light proportional to the incoming irradiance, so analysfishis physical system is equivalent
to a mathematical analysis of the relationship betweennmieg radiance and irradiance (Ra-
mamoorthi & Hanrahan 2001b). In other words, the radiosigthad is an inverse rendering
approach that estimates the incoming light from the obsensof a Lambertian surface.

2.1.3 The Rendering Equation and Radiosity

The rendering equation (Kajiya 1986) is a unified contextgpraximate several rendering
algorithms that attempt to model the phenomenon of lighttsgag off various types of sur-
faces.

L(z,z) = g(x,x)[e(z, z) + /Sp(x,x/, x) L(xt, z11)dz1] (2.2)

where

L(z,xz/) isthe energy of light at point coming from pointz/

g(x,zr) isthe geometric relation betweenandz, defined as O if they are not mutually
visible or1/dist(x, z)? if they are not

e(z,xr) isthe energy of light emitted fromv to
S is the integral over all surfaces

p(x,zr) s the intensity of light scattered fromi to = by a patch of surface at derived by
the BRDF

One way to solve the rendering equation is the radiosity otelased. The radiosity equa-
tion makes some substitutions in Equation 2.2 based on therggion that the illumination is
distant and the illumination field is homogeneous over thiéasea i.e. independent of surface



positionz and depends only on global incident an@lg ¢;). This allows us to represent the il-
lumination field ag.(0;, ¢;). Since the illumination field is distant we may also repartamizee
the surface by the surface norma{Ramamoorthi & Hanrahan 2001b).

E(n) :/Q/L(é’i,@)cos@i/dﬁl (2.3)

where

E(n) is the irradiance independent of the surface position
L(6;,0;) isthe radiance of the light field.

primes denote quantities in local coordinates

With an appropriate rotation on the lighting, we can conited the local coordinate®,/, ¢;/)
L(6;, ¢;) = LR (01, ¢i1)) (2.4)

whereR*% is the rotation operator expressed in terms of standard-&nigle representations.

Figure 2.2Diagram showing how the rotation correspondingi@, 3, ) transforms between
local (primed) and global (unprimed) coordinates (Ramantiho& Hanrahan 2001b).



Finally, we plug Equation (2.4) into Equation (2.3) to deriv

E(a,B,7) = /Q IL(RYPY (0,0, 931)) A(0;1)dSu (2.5)

where for convenience, we define a transfer functigé,/) = cos 6,/

Ramamoorthi points out that this equation is essentiallpravalution, although we have a
rotation operator rather than a translation.The irracéazan be viewed as a convolution of the
incident illuminationZ and the transfer functiod = cos#,;/. Different observations of the
irradianceF, at points on the object surface with different orientasicsorrespond to different
rotations of the transfer function, which can also be thawglas different rotations of the
incident light field.

This analogy of the radiosity model with convolution is wka will use to transform the
light field into Spherical Harmonics. We will deconvolve tinediance to recover the inci-
dent illumination. The next chapter will deal Spherical imanic functions and their use for
lighting.

2.2 RenderMan

The first release of the RendeMan API was defined as a set of €@idns which could be
called by modelling programs to pass instructions to a rerdé modelling program makes
calls to the C API internally to create a RenderMan stand#d fihe RenderMan Interface
Byte (RIB) file format stream is the format that RenderMan pbamt renderers read. RIB
files define the geometry and RenderMan distinguishes betveeshape of a geometry and its
surface detail (Stephenson 2007).

Each piece of geometry is bounded by a bounding boxsgtitlandbounded recursively
until the primitives reach a séucket size. Thebucket sized polygons ardiced into smaller
rectangulamicropolygons. Each of thesemicropolygons cover the same amount of screen
space.

The vertices of thesmicropolygons is what the shading engine runs on. After displacing
and shading, RenerMan determines which of theropolygons are to beculled depending
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on a visibility test and frustrum. The final image is calcathtvith a user-defined number of
samples. A number cfamplesare fired to collect the color values. This is normally done on
a sub-pixel base to avoid aliasing. The user-defined recaigin filter then determines the
final colour from the transition between neighboring pix&lgstill 1989).



Chapter 3
Spherical Harmonics

We have established in Section 2.1.3 the analogy of the sagimethod with convolutions.
Just as the Fourier basis is used to evaluate convoluti@rsgloe unit circle for one-dimensional
functions, spherical harmonics can do the same over thesphére for two-dimensional func-
tions (Sloan 2008).

3.1 Orthogonal basis functions

Similar to basis vectors that form a vector space, basistifume combine with other basis
functions to form &unction space. A function space defines a set of possible functions. For
example, the radiosity function is in the space.éffunctions over some finite domai(e.g.
the surfaces) Cohen & Wallace (1993)

Basis functions are small pieces of signal that can be s@lddcombined to produce an
approximation to an original function. The process of wogkout how much of each basis
function to sum is called projection (Green 2003).

Figure 3.1 shows an example of a set of linear basis functgvnsg us a piece-wise linear
appropriation to the input function. We can use many basgistfans, but we are interested
here in a family of functions calledrthogonal polynomials.

10
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Figure 3.1 Approximation of a function using linear basis function®f@n & Wallace 1993).
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Orthogonal polynomials exhibit an interesting propertyewlhe product of any two such
polynomials is integrated. The integral is a constant if/taee the same and zero if they are
different.

Fo(x)F,(x)dx = (3.1)
1 c for,n=m

/1 0 for,n#m
If the rule is made more rigorous such that integration metsirn eithe® or 1, then this would
make a sub-family of functions called tbethonormal basis functions.

One such family of functions we are interested in is callexlAbsociated Legendre Poly-
nomials. They are traditionally represented by the symBand have two argumentandm
defined over the range [-1,1]. These two arguments breakpotials intobands of functions
wherel is theband index that takes a positive integer value starting fropand the argument
m takes an integer value in the rangeJOWithin a band, the polynomials are orthogonal w.r.t.
a constant term and between bands they are orthogonal wiffeeedt constant. This can be
represented as a triangular grid of functions per band. dta¢ humber of coefficients fat
band approximation is(n + 1).

()

Pj(x)

P(x)
/—\ PIx)

Z\ Px) /

-1 -0.8 -0.6 -04 -0.2 ‘ 02 04 0.6 08

PII(X) =14

Figure 3.2The first six associated Legendre polynomials (Green 2003)
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For an efficient computation of the Associated Legendre iotyials, we use a set recur-
rence relations that generate the current polynomial frariez results in the series (Green
2003).

This is the first identity to begin with as it takes no previeoakies

P = (—=1)™(2m — D)II(1 — z%)™/? (3.2)
The next equation is used to find a higher band polynomial.

Pr, = z(2m + )P (3.3)

The third equation is the recursive calculation where weficaththenth Legendre polynomial
using two previous bands- 1 and/ — 2

(L =m)P" =zl = 1)F" — (I+m — 1), (3.4)

3.2 Spherical Harmonics

Spherical Harmonics define anthonormal basis over the sphereUsing the standard param-
eterization

s = (x,y,2) = (sin b cos ¢, sin O sin ¢, cos ) (3.5)
wheres are simply locations on the unit sphere. The basis funcéoasiefined as

Y0, ¢) = K" P/™ (cos6),1 € N,—l <m < (3.6)

whereP" are the associated Legendre polynomials Afidare the normalization constants

m [@RUA1)(I=]m])!
ki _\/ 4r(l+ | m|)! (3-7)
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The above definition is for the complex form (most commonlgdis the non-graphics litera-
ture), a real valued basis is given the transformation {SR208)

V2Re(Y™) m >0 V2K cos me P (cos 6) m >0
y'=x=qV2Im(Y;") m<0=q+V2K"sin|m | gbf}'m'(cos ) m<0 (3.8)
Y m=0 KP P(cos ) m=0
[=0 ©
I=1 @ L

' §es
[=2 I o ‘ ’ x.
=3 .*.¥".*.”.|.
=4 ® ® (] e @ > @ o [ J
ik 3k 2 D RE A A8
Figure 3.3 The first 5 SH bands plotted as unsigned spherical functigrdidtance from the

origin and by colour on a unit sphere. Green (light ray) argtpe values and red (dark gray)
are negative. (Green 2003).

3.3 Spherical Harmonic Projection
Projecting a function into basis functions is in effect wiackout how much of the function is

like the basis function. To calculate a single a single coieffit for a specific band we integrate
the product of the functiorf and the SH functiory.
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Since the SH Basis is orthonormal the projectin of a scalactfan f defined over is done
by simply integrating the function you want to projefts), against the basis functions

s = / F(s)yp(s)ds (3.9)

These coefficients can be used to reconstruct an approwimaitihe functionf

n !
F(s)=2_ > f"u"(s) (3.10)
=0 m=—1
which is increasingly accurate as the number of bandagreases.Projection toth order
generates? coefficients. For convenience a single index for both théggtin coefficients
and the basis coefficients is used.

f(s)=>_ fiwils) (3.11)
=0

wherei = [(I + 1) + m.
This formulation makes it clear that approximating the tiorcat directions is simply a dot
product between? coefficient vactorf; and the vector of evaluated basis functigy(s) (Sloan
2008)

3.4 Properties of SH functions

Orthonormality

One of the properties of SH functions that makes them ddsigbbasis functions is that they
are not just orthogonal but also orthonormal. This meanifimegratey,y; for any pair of:
andj, the calculation will return 1 it = j and 0 ifi # j (Refer to Equation(3.1)). This makes
it easy to recontruct the approximation function.

Rotational invariance
SH functions are rotationally invariant. This means if adtion g is a rotated copy of function

15



/., then after SH projectiofi(s) = f(R(s)). This rotational invariance is similar to the transla-
tional invariance in the Fourier transform. This means thate would be no aliasing artifacts
or fluctuation in the light sources when CG scenes have aathiights and models.

Efficient Integration

In the context of lighting, the incoming illumination wouhdve to be multiplied by the surface
reflectance to get the resulting reflected light. This iraéign is done over the entire incoming
sphere

Js L(s)t(s)ds

whereL is the incoming light and is the surface reflectance. If both these functions are pro-
jected into SH coefficients then orthogonality reducesitegral of the functions’ products to
just the dot product of their coefficients.

/ P(s)ils)ds = 3 Lit (3.12)
S -

For further reading, the articles by (Sloan 2008) and (G&2&868) provide a deeper insight
into spherical harmonic lighting.
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Chapter 4
Implementation

The preceding chapters described general CG principlekercontext of lighting and the
solution spherical harmonics can provide to solve the gmbinore efficiently. This chapter
deals with the actual implementation of it first as a test hen€++ to verify the computations
and then goes on to describe the shaders that have been iempézhin RenderMan.

4.1 C++ TestBench

Based on the sample codes in Green’s paper a simple congnaiprototype was imple-
mented in C++. The paper provides a sample light equationtlaa®&H coefficients for it.
Once the basis functions were calculated, this known ligjuagon was projected and the
values were compared.

Implementing this basic computation gave an idea of theauilmes that the program would
need to be broken into to provide extended functionality éaderMan.

4.2 Dynamic Shared Object

It is possible to write arbitrary functions in RenderMan &ing Language (RSL) but it has
certain limitations. The RSL compiler inlines a functioreey time the function is called and

17



thus the function code is not shared among its invocatiohss hot possible for different
shaders to call the same function without additional rednbdefinition.

C++ functions that are linked as plugins to RSL can overcdnsditmitation. Once the C++
function is compiled and linked to RSL as a plugin, the resglobject code from it is shared
among all its invocation. The C++ function can call funcgdrom the standard C/C++ library
or even third party libraries. Another advantage is thatGke function is not limited to RSL
datatypes unlike RSL functions. One can create complexsiatatures or read external files
or do anything that one might do in a compiled program (Pix{6).

Plugins do have some limitations that should be borne in nfftagins have access to only
the information passed to them as parameters and they cealhahy RSL built-in functions.
They do not support Objective C and have no knowledge of tpelégy. The new interface
supersedes the oldgnadeop which is something to be aware of as a developer (Pixar 2006).

The C++ file includes the headd®s| Pl ugi n. h which contains the class definitions and
macros that will be used. RSL requires plugins to use C-sitykage for the plugin loading
system. To ensure thisxt ern " C' was used around tables and functions.

The RslPublicFunctions Table describes two functionsaioet in the plugin.
shadeop_sh(float, float, float, float)
shQccl usi on(float[], vector)

The functionshadeop_sh calculates the SH basis functions. It takes as parameters th
bandl , min the range [0,| ] and the spherical coordinates het a, phi . The function is
called for every shading point and the shader is given bazkasis coefficients for that point.

The functionshQccl usi on reads in the array of basis coefficients from a shading point
and projects the light vector passed to it as a parametem Ere directional visibility deter-
mined by the basis coefficients and given the light vectorftinetion calculates how illumi-
nated or unoccluded that point is.

The following sections will describe how these functions ased in the shader.

18



4.3 RenderMan Workflow

Given the geometry and the lights in a scene RenderMan wiligore the lights to make them

capable of Spherical Harmonic Lighting in three passes. approach is to read in the RIB

file, generate a point cloud of it and thbake data into the point cloud file. The SH-configured
light will then read in the information in the point cloud file determine the light and shade
of the point.

A point cloud is just a cloud of points in 3d space that corgaine or more channels of data
(lighting, occlusion, area, etc) at each point. They ardrtiraediate precursor tolarickmap,
which is a useful structure for caching data &slaexture.

RenderMan generates point clouds very efficiently becatiseeoway the REYES algo-
rithm dices geometry. For every micropolygon, it can simphte a point to the point cloud
(or optionally a point for each corner of the micropolygaiat contains the point’s location
in space, its normal, and any data that the user specifiear(204.3).

Figure 4.1 Shows an example of point cloud data (Pixar 2013)

4.4 simpleBake.sl

The first shader to be invoked is teenpl eBake. Itis an extended version of the bake areas
surface shader (Pixar 2013). It generates a point cloudeo$tiene geometry that the subse-
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guent shaders can bake data into. The shader writes outathéastl shader output variable
fl oat _areatothe point cloud.

im /home/i7279017/Masters_Project/RenderMan/SHLighting/SH_Light_Types - 0O x

Render Stile

Color

foggle Background | Point Badif
Aeset View

Focus View

Quit

Figure 4.2 Shows a point cloud snapshot of a simple test scene

4.5 shBasis.sl

This shader is at the heart of the pipeline. The shader reatie iprevious point cloud file and
for eachmicropolygon it generates the basis coefficients. It is a time consumiagppocess as
we will see in the statics shown in the next chapter.

Using thegat her function, the shader collects visibility information. Feachmicropoly-
gon a number of rays are cast across the hemisphere. The raystdraect are not of interest
to us. The ones that are missed are the visitilgropolygons. These missed ray directions
accessed from the output variaBleay: di r ect i on", are converted into spherical coordi-
nates and stored in an array.

20



The shader then computes the coefficients by looping caaftitimes (i.e(l+ 1) (I + 1))
over the samples and calling tthadeop_sh plugin function with the appropriate band value
[, m, and the array the spherical coordinates as parametersoBffficcents are then multipied
by a weighting factorr /samples i.e the area of a unit sphere divided by the number of sam-
ples.

The coefficients are then baked into the point cloud as chansang thébake3d function.

m /home/i7279017/Masters_Project/RenderMan/SHLighting/SH_Light_ Types _ o0 x

2\ Render Stile

Figure 4.3 Shows coeff ‘00 channel in the point cloud. All the coeffitselbaked in the point
cloud and store directional visibility

4.6 shProjection.sl

The projection shader reads in the previous point cloud thighbasis coefficients and projects
the light vector into it. The shader generates another whiot file with the channels
"unoccl uded"” and" | i ght Col ". The"unoccl uded" channel represents how illumi-
nated the surface is at that point ahdi ght Col " is the colour of incoming light at that

21



point.

Thei | | um nance statement integrates the incoming light over a cone angkdé the
i I I um nance block, we can access the light colour and the light directiom the prede-
fined variableCl andL respectively.

The basis point cloud is read inside thel um nance block and the coefficients are stored
in an array. This array and the light vector are passed asyedeas to theshQOccl usi on plu-
gin function. TheshQOccl usi on function converts the light vector into spherical coordasa
and projects it into SH space. The integration then is reditee single dot product over the
SH coefficients (Refer to Section(3.4)).

The result of the integration is a single scalar value thhalsed into the point cloud in the
"unoccl uded" channel. The colour of the light from that direction is alskéd into the
"I 1 ght Col " channel. This is done so that we can call the same shaderjexpnonochro-
matic as well as coloured lights. Projecting an environntight then becomes just a special
case of coloured light.

m /home/i7279017/Masters_Project/RenderMan/SHLighting/SH_Light_ Types _ o0 x

Render Shile [>

Color I White
foggle Background | Point Badii
Reset View unoccluded
Focus View figitt

Gt

Figure 4.4 Shows the unoccluded channel in the point cloud after thegtion of the light.]

22



4.7 shLight.sl

The shlight is a light shader that can now use the projectmntgloud to create shadows.
There is an intermediate step to convert the point cloudsitkinaps for the sake of effi-
ciency but it is not a necessity. Apart from efficiency, bnokps also provide certain filtering
parameters that can be used to tweak the output.

The light shaders used for demonstration are extensioriedtandard RenderMan lights.
Thei | | um nat e statement casts light into the scene in different direstidepending on
the parameters specified. But unlike the standard lightswbald usually call theshadow
function or ther ayi nf o function to compute shadows, the shLight can just usenthe
function to blend the light and shadow colours using themoccl uded" channel as the
blend value.

4.7.1 Types of Light

Once the pre-process is done it is fairly simple to supplylityite shader the brickmap to use
for shadowing using theext ur e3d function. One of the benefits of reading the SH data
using thet ext ur e3d function is that it can be used as just a texture or surfacar.cdlhis
would make the data available in a surface shader which ipiaalyproduction practice with
ambient-occlusion passes and light passes.

Shown below are renders of a simple scene using the diffstdright shaders that have
been developed. The same projection has also been usedrésca shader to demonstrate the
results. The decision between surface or light shadergslaa matter of choice and workflow
on the part of the user.
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Surface SH Direct Light SH Direct Light SH, Indirect RT

Point Light

Spot Light

Environment Light

Figure 4.5 Shows a simple scene with the different types of light thaehaeen implemented
across rows. Along the columns are the different shadets#fian the baked brickmaps

24



Chapter 5
Results and Analysis

The PRMan shaders described in the previous chapter widdied against standard methods
in this chapter. The tests are conducted to analyze theesftigi of the pre-computed SH
method and the quality of the result.

5.1 Efficiency

The simple scene used earlier for light demonstrations kag lnsed as an example in this
section. Similar differences in performance have been sattnthe other examples that will
be illustrated in this chapter.

The scene was rendered with a raytraced ambient occlusitacewshader and compared
with the render time of the SH directional occlusion alsol&ggpas a shader to the surface.
The following graph compares the performace of the two nethdhe scene contains 210
micropolygons and was rendered with 256 samples in both cases.

The SH data is computed for 16 coefficientgi-e 3, which is considered a fairly sufficient
approximation for production lighting. The precomputatiome for the SH method is 1260
seconds and then it can reuse the baked data to render a frailmeLt 2 seconds. The standard
ray-tracing method takes about 24 seconds per frame.
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Figure 5.1 The graph shows the cumulative render time (in seconds)heith the methods
over 70 frames. SH stands for spherical harmonics while Ridst for ray-tracing.

We see that although the time taken to pre-compute the SHaeafts is seemingly long in
the beginning, yet the extra expense gets amortized oveatarcaumber of frames. The two
methods take the same duration to render about 52 frameghé&net onward, the cost of SH
render is significantly less than the standard method.

5.2 Quality

One of the enhancements of SH Lighting this project was aiate@as directional ambient
occlusion. Like lighting and shading, ambient occlusionsad lot more readability to the
form of a geometry but unfortunately the standard methodasient occlusion do not take
into account the direction of the light in the scene.

The standard ambient occlusion is computed over a luminenrdphere covering the entire
geometry. This results in unrealistic dark shading neabtittom of a geometry. When the
key light direction is significantly strong and grazing thisrealism becomes more apparent.

The Spherical Harmonic basis functions are directionability coefficients of themicrop-
olygons. Once the light is projected into SH space it is possible tmmate soft diffused
lighting effects using spherical harmonics. SH functiorsv/le very good approximations of
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low frequency lights and are thus preferred for renderingpiant occlusion and environment
lights.

The figure below shows renders of the same scene with staadastnt occlusion (AO)
and directional ambient occlusion. In both cases the AOmgpded from a surface shader. It
is quite noticeable that the image on the left gives no sehgealirection of light in the scene
while the image on the right clearly suggests a light souoeeatds the top right side of the
frame.

(a) Standard Ambient Occlusion (b) SH Directional Ambient Occlusion

Figure 5.2 Shows compared renderings of the ambient occlusion pass.(ae standard
ambient occlusion from a hemispherical visibility, and i&jhe SH directional visibility am-
bient occlusion.

27



5.3 Examples and Comparisons

This section will use SH lighting on more complex scenes ggidihg scenarios to demonstrate
the robustness of the shaders developed and stress on igabgity of the images rendered
using SH lighting.

5.3.1 SH Direct

The Sponza Atrium with 114,965 vertices was chosen as a emmpbdel for lighting. The
scene uses an environment light and an SH spot light. Equnva¢énders have been created
with the standard spot light for comparison.

After the SH precomputation is done, the scene renders int& seconds while the with
ray-tracing, the scene takes 2 minutes and 34 seconds terrend

Although the shadows from the SH lighting seem softer arerielukeeping in mind that
the scene is sunlit, the spread of the light seems more bélevThis is because the SH light
is only an approximate reconstruction of the spot light thet been projected into SH in an
earlier pass when the geometry is shaded using shProjestteaier. The differences between
the renders seems patrticularly apparent near the forednwtere the shadow of the pillar is
seen.
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(a) Raytraced (b) Spherical Harmonic
Direct Shadows Direct Shadows

(c) Raytraced (d) Spherical Harmonic
Final Image Final Image

Figure 5.3(a) shows the shadow layer from ray-traced direct light (loyes the same layer
but the light is an SH approximation of the previous light {fa¢ final beauty render using
standard light and ray-traced shadows (d) the final beangereusing SH lighting. Model by
Marco Dabrovic (Crytek 2013)
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5.3.2 SH Indirect

The next example uses SH for indirect lighting. This dregsable image was chosen as a
reference because it had a soft diffuse lighting. The stotiie image was replaced with a CG
one and the lighting was matched as an exercise to see howgBithg could integrate better
with the image.

We can see two significant directions of light in the imageingshe directional ambient
occlusion shader, a separate occlusion pass was rendeieotiicthe lights. The results were
combined to produce the final image.

The same CG setup and lighting was used to create a comganmai@ge using standard
ambient occlusion. The environment light in both casesesdme.

Shown below are the actual photograph used as referenc€Ghsetup and the two dif-
ferent occlusion renders. In the standard occlusion imhagestool looks as if it were lit by
a diffuse light from top.The creases and crevices in theiegron the leg of the stool seem
unusually dark as they are occluded from the uniform lumsneemisphere of light. The SH
occlusion on the other hand seems more believable when gethpathe standard occlusion
as the directional occlusion is computed from the particdiigections of the two lights used to
illuminate the scene.
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(c) Standard Ambient Occlusion (c) Directional Ambient Occlusion

Figure 5.4 (a) Shows the original photograph (NEST Furniture 2013)sfiws the CG

setup (c) is the final image with standard ambient occlusipns(the final image with direc-
tional ambient occlusion
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Occlusion Renders Occlusion Close up Statistics
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Figure 5.5Shows the raw ambient occlusion renders in the first colundrttaeir respective
close-ups in the second column. The third column shows thaerestatistics. (Render time is
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in hh:mm:ss)
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Chapter 6

Conclusion

6.1 Summary

A set of shaders have been presented that can extend thohaiity of RenderMan to perform
spherical harmonic lighting and all the necessary precaatioms. This has been achieved by
writing an RSL Plugin for RenderMan that is compiled as a DyitaShared Object(DSO).

A good part of the project has been dedicated to understgrii theoretical concepts
behind spherical harmonics. General CG principles fortilghand rendering have also been
discussed.

The efficiency of the results have been demonstrated throagtputational times and the
quality of the renders, through the use of examples that apewss different lighting condi-
tions.

6.2 Discussion

The implementation discussed in this thesis bakes pointdsldrom the camera view. If the
bake happened over a larger area from an orthographic topreartnen the data would be
more useful.
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Only a limited set of lights have currently been implementdich is a bit restrictive when
trying to light a scene believably. A few more types of ligitplementations are needed to
make this a complete set of SH lights.

6.3 Future work

The shaders are currently not integrated well into a prodngiipeline. They could be inter-

faced neatly with RenderMan for Maya and made availableeaier like a pass, much like
the standard globalillumin pass. The SH shaders can bededdn be used with lightshaders
from stdrsl. Getting these SH shaders to work with plausshigders would be an important
area of work.

This implementation does not calculate caustics or coleedihg. It would be beneficial to
incorporate such light effects. Subsurface scatteringagheer effect that is suitable for being
projected into spherical harmonics and hence another aregmturing.

On the lines of PantaRay’s implementation, the calculatioandled by the plugin can be
outsourced to the Graphics Processing Unit to further ezéhafiiciency.
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