
Art Directed Ant Crowd
Simulation in Houdini

Tushar Kewlani

Master of Science,

Computer Animation and Visual Effects

Bournemouth University, Talbot Campus

August, 2013

Contents

Table of contents . i

Abstract . iii

Acknowledgements . iv

1 Introduction 1

2 Related work 3

2.1 Crowd Simulation Tools 4

2.1.1 Craig Reynolds Flocking 4

2.1.2 Particle Based Tools 4

2.1.3 Massive . 6

2.1.4 MPC Alice- (Artificial LIfe Crowd Engine) 6

2.1.5 Continuum Crowds 8

3 Technical Background 10

3.0.6 Solver Surface Node 11

3.0.7 VEX . 11

3.0.8 HOM . 12

3.1 Ant Colony Optimization 12

4 Design and Implementation 14

4.1 Introduction . 14

4.2 Design . 15

4.2.1 Character . 15

4.2.3 Brain . 17

4.2.4 Finite State Machine 17

4.2.5 Instancing/Rendering 17

4.3 Technical Implementation in Houdini 18

i

4.3.1 Character . 18

4.3.2 Ants . 18

4.3.3 SOLVER-AI Brain 19

4.3.4 Behaviours . 20

4.3.5 Flow Fields . 22

4.3.6 Obstacle Avoidance 23

4.3.7 Mind . 25

4.3.8 Stick To Surface 26

4.4 States and State Machine 28

4.4.1 State 1.x-Wander 29

4.4.2 State 2.x-SeekFood 29

4.4.3 State 3.x-Digger 30

4.4.4 State 4.x-seekHome 31

4.4.5 State 5.x-seekPheromones 32

4.5 Geometry Instancing and Rendering 32

4.5.1 Instance . 33

5 Applications and results 34

5.1 Crowd Simulation Results 34

5.2 Pheromone Path Following Results 36

6 Conclusion 45

6.1 Summary . 45

6.2 Future work . 46

References 48

ii

Abstract

This project presents a crowd simulation system in Houdini for use in

the computer animation industry. Crowd simulation algorithms such as

ant colony optimization allows for building complex simulations without

overly complicated individual agents. The aim of this thesis is to design

a modular agent based crowd solution that could be used to build a

variety of swarm AI simulations.

The pheromone based ant foraging behaviour and other states like

digging are implemented to analyse the solution developed against this

behaviour model. Finally a render time Delayed Geometry Loader is

used to render the crowd in an efficient manner.

iii

Acknowledgements

I would like to thank Jon Macey and Zhidong Xiao for their feedback

and guidance through the project. Peter Claes for suggesting the initial

ideas and suggestions that led to the thesis. Finally I would like to thank

all my professors and classmates in the MSc.

iv

Chapter 1

Introduction

Crowd simulation for film and animation has become demanding of large

scale photo-real solutions. Standalone softwares such as Massive have

been extremely successful at creating crowd simulation systems that cre-

ate impressive results. But the proprietary nature of these solutions and

the need to export custom rigs and other data through the pipeline re-

duces the flexibility and can increase turn around time in projects. Also

since the development of such a software is run by a separate company

sometimes substantial internal development has to be done to use them

for custom effects.

Hence a lot of companies build there own crowd simulation solutions.

DNEG, MPC, ILM all use their own software for crowd simulations as

they offer greater flexibility and even license costs can be a big factor for

these decisions(Bielik 2004).

This thesis explores the option of building such a system inside of

Houdini. The system developed will aim to build a pheromone based

ant foraging solution using a Houdini pipeline. Keeping the engine in-

side Houdini offers various advantages such as attributes and agents can

be modified on the fly. Geometry and attributes can be visualized inside

Houdini for quick visual debugging. We will demonstrate that the sys-

tem developed utilizes the algorithms used for ant foraging behaviour.

Also, the final simulation produces results that can be used in a film or

1

animation sequence. The behaviours can be art directed to follow paths

which can be generated and added by artists using the digital assets

created.

The development has been carried out in Houdini 12.5.316.22 on linux-

x8664 − gcc4.4platform.

2

Chapter 2

Related work

Figure 2.1: Climbing Zombie pyramid from WWZ by MPC in ALICE

Research on crowd simulations has been of interest since the late 19th

Century. Although researchers from various fields like architecture, Com-

puter Graphics, physics etc. have been working on crowd simulations,

exchange of information and ideas in this field has remained limited. A

reason for this could be because most of the behaviour modelling tech-

niques used are application specific.(Thalmann et al. 2004)

Still crowd simulation can be broadly categorized into two separate

fields. One field being scientific and technology related areas where re-

alism and quantitative results are the focus of work. These can include

3

evacuation simulations, crowd flow bottlenecks, traffic planning etc. The

results of the simulation are paramount here and not the visual appeal.

The visualizations are carried out with the sole purpose of validating

findings.

Another area of research is crowd simulations for the entertainment

industry. With the demand for greater scale and visual realism in films

and computer games crowd simulations have become an important area

of development. The focus here is on visual realism and aesthetics rather

than computational validity. Since the area of research for this thesis is

crowd simulations for VFX, we will limit ourselves in the discussion to

the second category of research.

2.1 Crowd Simulation Tools

2.1.1 Craig Reynolds Flocking

(Reynolds 1987) published his paper on modelling emergent behaviours

based on dense interaction of relatively simple steering behaviours. In

this system each agent was called a boid. Although each boid had access

to all of the flock, the motion of the boid would be dictated by only a few

of its immediate neighbours. By providing simple behaviour algorithms

like separation, alignment and cohesion each boid would be a self pro-

pelling character with some apparently simple decision making ability.

The motion of these boids would give an appearance of a brain.

2.1.2 Particle Based Tools

ILM create a particle based simulation tool for ”Star Wars ep1: THe

Phantom Menace” . They used maya’s particle system to create the

global motion of the particles based on a set of attributes the particles

had. These attributes can be defined as Position, orientation, mass etc.

Once the global motion of the particle has been determined an action

from a collection of clips can be used on an instanced geometry on the

4

particle. By using a random collection of geometry and texture files with

varied animation cycles it is possible to create a vast array of crowd.

PDI also created a crowd system for use in the movie ”Shrek 2”

called Mob. The mob system allows a large crowd to be built by com-

bining a small number of animations with small numbers of character

types, body types, hair styles, clothing styles, hat styles, materials, col-

ors, behaviours, and so on, plus customizations for final tweaking. As-

signment of these features, as well as placement of the characters and

their direction of motion, can be controlled and simultaneously random-

ized(Thalmann et al. 2004).

The mob system had a motion simulator and a rendering simulator.

They also used a cycle based animation system like ILM. To meet the ad-

ditional challenges during the making of ”Madagascar”, PDI/Dreamworks

update the system to handle high level behaviours. This included pro-

viding a look at control for the animators to place. The mob system

would handle the rest of the simulation(Kermel 2005).

Figure 2.2: Madagascar crowd with High level lookat behaviour for the
foreground characters

Double Negative also built a crowd simulation solution based on par-

ticles for their work in ”Angels and Demons”. By establishing a set of

rules, the particles were run through a simulation to generate their mo-

tion, followed by motion capture clips to create characters. CHOPS in

houdini was used to blend between multiple clips.(UKScreen 2013)

5

2.1.3 Massive

Massive is probably the most popular tool used for crowd simulation in

VFX. Initially developed at Weta digital for the battle sequences in the

Lord of the Ring Trilogy (Thalmann et al. 2004) it has since become a

commercially available software.

Massive uses a brain that employs a set of fuzzy rules for each agent

to determine what action it should perform next based on its immediate

environment. A graph of interconnected nodes input data to the logic

nodes(AND,OR,NOT) and the logic nodes using a set of fuzzy rules

determine the movement of the agent. A typical brain of a warrior in

lord of the rings had 6000 to 9000 nodes equating to some 2000-3000

rules per agent(Griggs 2003).

Figure 2.3: Crowd Simulation in Massive,

Each agent also has a motion tree, which is a set of actions that it can

perform. Based on the input from the fuzzy rules an action is executed

by the agent.

Massive also provides high level control of the crowds with agent place-

ment tools, flow field editors, agent variation etc.(Thalmann et al. 2004)

2.1.4 MPC Alice- (Artificial LIfe Crowd Engine)

MPC has a properietery crowd simulation system called ALICE. Origi-

nally developed for the movie Troy, ALICE has been used on some com-

plex crowd simulations in films. Lately in ”World War Z” it was used to

6

build crowds of zombies climbing on each other to form pyramids.

Figure 2.4: Crowd Simulation in Maya,(Kolve 2004)

ALICE originally built in maya has now moved away from its depen-

dence on Maya, while still providing with a MEL bridge into maya. AL-

ICE gives the artists the ability to connect node graphs to build complex

behavioural states, which in turn drive motion clips to create animated

characters on screen(Pieke 2008).

Figure 2.5: Crowd Simulation in Maya, (Kolve 2004)

Some of the crowd control networks built into ALICE include, (fuzzy)

logic, state machices, flow control etc. Alice has also been integrated

into maya’s particle system for generating effects such as arrow impacts,

dust kicks, blood splashes etc(Kolve). MPC has also integrated ALICE

with their proprietery physics engine PAPI, to allow for transitions from

motion clips to ragdoll dynamics.

7

Figure 2.6: Battle crowd in Alexander, (Kolve 2004)

For rendering the agents, MPC used a combination of C++ DSO’s

and Lua scripts to control the renders. This work-flow allowed them to

quickly script new features based on the changing requirements of the

production(Haddon & Griffiths 2006)

2.1.5 Continuum Crowds

Another very interesting approach to crowd simulations is to drive the

motion of the particles based on fluid dynamics. In this system a dynamic

potential field is calculated per timestep. Simulations created using this

system run at interactive frame rates for millions of particles and exhibit

emergent phenomenon as well. In this system a potential function guides

the particles to their goal with the use of discomfort fields to handle

geographical preferences(Treuille et al. 2006)

Figure 2.7: General Algorithm Overview(Treuille et al. 2006)

So a slope with a higher gradient has a lower potential field thereby

making sure the agent would prefer a route where the slope is lesser,

hence simulating some intelligence in the particles.

Although a very efficient method for simulating a large number of

particle based crowds, there is not enough control over the parameters

8

of the simulation to make it useful for the computer animation indus-

try. Though some aspects of this system could be adapted in a Houdini

pipeline to create large crowds for wide shots. By generating flow fields

for terrain using a cost potential system would allow us to avoid com-

plex obstacle avoidance and even guide the agents around obstacles in a

smooth manner.

9

Chapter 3

Technical Background

Houdini’s open node based workflow and ’open’ access to data allows a

high level of flexibility and control for complex simulation work. Since the

crowd simulation system developed here is primarily aimed at computer

animation, Houdini provides a perfect platform for development.

Houdini provides built in point cloud architecture based on KD-trees.

This allows for extremely fast lookups for neighbours. In combination

with VEX and VOPS this point cloud functionality provides a robust

and efficient framework for point cloud iterations. Houdini provides two

separate areas for development of dynamic simulation. One is the POPS

context which is essentially a particle simulation environment. The other

is DOPS which is Houdini’s dynamic simulation environment.

Although POPS has some powerful built in functionalities like state

and event for building behaviours, there are certain limitations to work-

ing in the POP context. The simulation needs to be played from the

first frame and you cannot skip ahead in the timeline.

In addition the access to point attributes and SOP geometry operators

is limited. Houdini has also revamped its SOP context in Houdini 2012

with an order of magnitude jump in performance. Hence SOP’s were

chosen to create the agent simulation.

10

3.0.6 Solver Surface Node

A SOP solver allows the DOP simulation to use a chain of SOP’s to

evolve over time. This allows the user to access the simulation from the

previous time step as a starting point for the next time step. This can

be used to generate effects that evolve from oner frame to another like

automata or simulation. (Side Effects Software 2013)

Usually in SOPS time dependent effects are implemented by using

variables like $F to create a new seed value every frame. This results

in effects that are independent of the previous frame and create random

looking results every frame. Whereas by using a solver node network the

effect takes into account the previous frame and appears to evolve over

time.

If you jump into the solver node, it is essentially a node made up

of using subnet–DOPNet–SOPsolver. Inside the solver node there are

multiple input nodes. PrevNode is cooked every frame with the output

of this node containing the geometry from the previous frame. The node

with the ”Display Flag” turned on is used as an input for the next frame.

The Input1 node contains the original geometry fed into the node. This

is useful in case the rest position is of use in the simulation.

3.0.7 VEX

VEX is the vector expression language in Houdini. Initially implemented

as a shading language its role has been expanded to create new custom

operators in COPS, POPS, SOPS and CHOPS. VEX is based on the C

language, and provides performance similar to compiled C/C++ code.

VEX is also multi-threaded. Any nodes written in VEX will benefit from

this feature as well. In many cases VEX will outperform Houdini nodes

written in C++.(Side Effects Software 2013)

Houdini’s more visual programming paradigm of VOPS is based on

VEX code. All VOPS essentially have VEX code running underneath

the hood. Although VEX code is pretty efficient at iterating point data,

11

there are other limitations to the language.

VEX cannot generate points. It can manipulate and create attributes

on pre-existing points.

Most of the behaviours which utilize iterating through the the agents

and nearest neighbour search have been written in VEX for these reasons.

3.0.8 HOM

HOM or Houdini object model is an API that allows you to access infor-

mation in Houdini using the python scripting language. HOM has access

to point, primitive and detail/Global attribute in houdini unlike VEX.

Also, new points can be created in houdini using python unlike VEX.

Since HOM does not have access to the point cloud functionality of

houdini, nearest neighbour searches are a big bottleneck on the pipeline.

Although using python would make some of the design choices simpler

in the future due to the extensive access to all the attributes in Houdini,

this was considered to be a big disadvantage and early in the project it

was decided to avoid using python for any functionality that required

iterations across the agents.

3.1 Ant Colony Optimization

Multi-Agent research has taken inspiration from social insects such as

Ants. According to Luke and Panait(2004). A very large number of

agents will yield sophisticated collective action by following some rela-

tively simple behaviours.

Ants use Pheromones for a variety of purposes to communicate with

each other. If an ant finds a food source it will drop pheromones around

the food and also on the path back to the nest. Other ants can detect this

pheromone and follow it back to the food source based on the strength

of the scent. If the food source is finished then they don’t drop any more

pheromones. As the pheromones vaporize the ants seek other sources of

12

food nearby. Over a period of time ants choose the shortest path as the

pheromone being deposited is strongest on these trails.

Figure 3.1: Shortest route in ACO, (Dro 2006)

Pheromones can have other utilities in an ant colony as well. They

can be used for finding home and threat perception as well. When under

threat an ant will emit pheromones notifying the ants nearby causing a

chain reaction that allows the whole colony to be aware of the threat.

The ant colony optimization is widely used to solve optimization and

distribution problems in networking. One of the more successful uses is

in solving the Travelling Salesman Phenomenon(TSP).

In the simulation the pheromones are used for pathfinding. The use

of pheromones helps reduce the complexity of individual agents as a

mechanism for inter-agent communication(Panait & Luke 2004).

13

Chapter 4

Design and Implementation

4.1 Introduction

Agent based simulations have been used in VFX for some time now and

provide a great result. Creatively being able to direct a simulation as

per the director’s vision is one of the main requirements of any simulator

for the entertainment industry. But having said that all simulations

must be based on reality. Nature provides some extremely interesting

emergent behaviour that is useful for modelling complex behaviours in a

multi-agent system

The purpose behind creating a multi-agent system for this thesis was

to make a system that would be based on practical algorithms for emer-

gent behaviour. It should be possible to implement accurate mathemat-

ical behaviour models in the system which are quantifiable. As a mean

of evaluation, it was chosen to model the pheromone based ant foraging

behaviour. Though this was the model created, it should be noted that

the same system can be adapted for other behaviour models as well.

This might be battle scenarios, crowd evacuation procedures etc. We

will discuss this further in the next section when we discuss the design of

the program. The final aim of the project was to develop the simulation

with a strong bend to realism. The agents should transition smoothly

from one state to another and their locomotion must be believable.

14

Houdini was chosen as the development environment for this system

as it has an open node based architecture, but also manages SIMD multi-

threaded evaluation very efficiently. This makes it ideal for point-cloud

based distance calculations etc. Also due to its very open programmable

expression language VEX and Python scripting integration it allowed for

implementing custom algorithms.

4.2 Design

Since the plan was to have a system that was extendible in the future, at

the design phase the project was broken into several modular steps that

would communicate with each other. The program was broken into a set

of classes that could be replaced in the future with a separate feature,

without affecting how the other modules performed.

The basic design paradigm for the program.

Figure 4.1: Initial Design

4.2.1 Character

This is where all the characteristics of an agent are defined. Attributes

like size, velocity, force, age, specie can be added here. This section would

control any generic AI features that the character would demonstrate

before entering the simulation.

15

Each agent has a random velocity in the zx axis assigned to it. We

also maintain an up vector and a forward vector at all times through the

simulation. This is essential to make sure the orientation of the agent

is always in the direction of velocity and the normal of the surface its

travelling on. With these two axis always available calculating a third

axis becomes a trivial matter of a cross product. Each agent is assigned

a random mass as well to ensure variation in the crowd. Houdini assigns

a point number to all points in the scene. These can be accessed at

any time during the simulation, but due to the constantly evolving point

counts across the nodes, and the fact that Houdini does not maintain a

consistent point number it becomes extremely difficult to create or access

attributes consistently across the simulation. Also, a pretty useful feature

would be to just remove any point that is not required in the simulation

due to technical or aesthetic reasons. Hence the point number of all

agents at birth is saved as a separate attribute

This is the class where all the behaviours are modelled. A developer

would program behaviours of any level of complexity. These behaviours

are saved in a digital asset as a collection of geometry nodes in either

VEX or python. Although the behaviour algorithms are quite complex

and would have to be written by a programmer, TD’s or artists can use

these pre-programmed nodes. Theoretically a tree of connected nodes

should allow an artist to model any behaviour required.

The behaviour section is a layered system. There are certain state

specific behaviours which form the base layer of the simulation. These

can be pheromone seek, wander etc. and would be considered local. The

next layer is the more generic behaviours that are applicable globally

to the whole simulation. These would be separation, cohesion, obstacle

avoidance. Also it must be pointed out here that behaviours themselves

are independent of such characterization and can be either local or global

based on their usage.

16

4.2.3 Brain

This is the mind of the system where all the behaviours are calculated.

A priority sorting model has been used along with the force weighting

method. This allows for some additional flexibility with force weighting

as the agents are not totally dependent on the forces and not all forces

are constantly fighting to control the locomotion of the agent.

4.2.4 Finite State Machine

This is where the state changes of the agent are defined. Particular effort

has been made to keep this module in the VOPS functionality of Houdini.

Since this is a visual programming model even artists not very familiar

can build or modify state machines. This is the area of the system that

would need the maximum tweaking at a creative level and hence the

decision to keep this in VOPS.

Figure 4.2: Initial State Machine Design

4.2.5 Instancing/Rendering

This module manages the stamping of geometry on the simulated points.

Pre-cached simulations are passed into this area of the system and ani-

mation cycles are applied to the geometry. To reduce the memory foot-

print and speed up the work-flow point instancing is used. The animated

mesh is cached to the disk. This mesh is then read back and the speed

of playback is managed based on the velocity of the points.

17

4.3 Technical Implementation in Houdini

This section will detail the actual code and algorithm implementation in

Houdini.

The actual simulation environment for the crowd has been converted

to a digital asset. Since the behaviour nodes are all designed as digital

assets, The system can be managed without an external hi-level UI pretty

seamlessly. There is also a help card that has been generated for this

parent asset which explains all the parameters in the UI.

Figure 4.3: Help Card for Digital Asset

4.3.1 Character

This node contains all the attributes that define the generic behaviour

of the agents. These are the attributes that would be common to any

crowd simulation irrespective of the species being simulated. The UI

allows the user to customize most of the attributes.

4.3.2 Ants

Inside this node all the AI crowd is simulated. Since ants are terrain

based creatures a ray SOP is used to place the agents on the terrain

18

Figure 4.4: Character Generation UI

before being added to the simulation. An attributecreate node is used to

add any ants specie specific attributes to the simulation. These are the

specie specific simulation parameters that help define the behaviour of a

specific specie. All pheromone and food related attributes are added at

this stage.

4.3.3 SOLVER-AI Brain

This is the solver node explained in the Technical Background section.

This is the heart of the engine that is updated on a per frame basis to

create a dynamic simulation. For more details look through the Technical

Background section of the report.

One of the challenges of using the solver node over POPS is that

all points that are a part of the simulation will be carried through the

simulation. Hence any additional points that need to be added to the

simulation for calculation are grouped and merged with the agent points

and fed into the simulation. Once inside the Solver these are then sepa-

rated out at the top of the simulation tree and each set of points is only

used where required. For example the SDF volume and the pheromone

points are only required at the early stage of the simulation where local

behaviours as per the state machine are simulated and at the end when

19

the state machine is updated. Hence there is no reason to keep them as

a part of the data stream when global behaviours such as separation and

obstacle avoidance is calculated. This only reduces the efficiency of the

whole program and makes the data cumbersome to manage. By splitting

the points into separate data streams a remarkable increase in efficiency

was observed.

Figure 4.5: Split Data Stream

4.3.4 Behaviours

The first layer of behaviours are programmed according to Reynolds(1999).

Some of the behaviour algorithms implemented in the crowd digital asset

include Arrive, pursuit, seek, separation, cohesion and alignment. The

algorithm were derived from Reynolds flocking system.

The nearest neighbour search makes use of the point cloud function-

ality in Houdini and is extremely efficient. As mentioned earlier VEX

was used primarily for these behaviours as they handle SIMD extremely

well.

Some key behaviours are described below.

20

Wander

The wander function projects a circle ahead of the agent. On each itera-

tion a random point is chosen on the perimeter of the circle and a force

is exerted on the agent to move towards the point.

Figure 4.6: Wander, (Reynolds 1999)

Seek

Seek is primarily used in the simulation for tracing the path back to the

home or finding the food source.

Figure 4.7: Seek Flee, (Reynolds 1999)

The seek behaviour implemented in this project has two options. One

is to seek a single point irrespective of the distance of the point from the

agent. This is particularly useful when a permanent steering behaviour

is to be applied in a certain state. The other option is to use multiple

points(point Cloud) for the seek behaviour. The agents only seek the

point if they are within a certain user specified distance from the point.

Offset Pursuit

A simple pursuit example would be to seek an animated target. But a

smarter looking solution is to look ahead in time based on the current

21

velocity of the target and pursue a position that predicts the location

of the target at that time in the future. Also if the target is directly

in front of the agent then the agent should seek out the target else it

should pursue the target with a force that is proportional to the distance

between the two but inversely proportional to the speed of the agent and

the target(Buckland 2005)

Figure 4.8: Seek Flee, Reynolds(1999)

4.3.5 Flow Fields

To be able to art direct the motion of the ants, flow fields were im-

plemented into the behaviour module. Reynolds(1999) considered them

particularly valuable as they provide the ability for artists to customize

the movement of the characters. The utility digital asset provides the

user with the ability to convert any curve into force fields. Custom force

fields can also be generated in Houdini by painting or combing normals.

Force fields have been used in the current project to lead the ants into

the hill and to keep them inside the terrain boundaries. This is a par-

ticularly useful method as this is a completely procedural way of setting

the boundary and can be modified on the fly based on requirements.

The force fields can be generated in two separate manners. One being

one being parallel to the flow of the curve or look at a target and point

either towards or away from it.

Create Ray Vectors PseudoCode

• input curve

• resample curve to add evenly spaced points

• add normals attribute N

22

Figure 4.9: Flow Field Target(left), Tangent(Right)

• for each point i in curve compute Pi − Pi+1 = VN = normalizeV.

A more detailed explanation of some of the custom behaviours is pro-

vided in the relevant state machine descriptions in the sections ahead.

4.3.6 Obstacle Avoidance

Collision Detection To avoid interpenetration of agents with the en-

vironment all the agents check for collision with any obstacles in their

path. The algorithm used for checking for collisions with the obstacles

is a ray-triangle collision. Houdini provides an intersect function in vex

that returns the (u,v) and world position co-ordinates of a ray intersec-

tion with a polygon.

For each agent three rays are calculated based on the velocity of the

agent. The first ray is parallel to the direction of travel i.e. straight

ahead. Two other vectors are created based on the first vector. Both

these vectors are rotated around the up vector of the agent. These are

essentially side vectors that are used to check for lateral proximity to the

obstacles.

Create Ray Vectors PseudoCode

•• create ray vector from agent velocity

• create a 3x3 matrix

• transform matrix by Θ angle(radians) along axis ‘Up Vector‘

23

Figure 4.10: Wall Avoidance setup

• multiply the second ray vector with the matrix to rotate

the vector

• transform matrix by angle(radians) along axis ‘Up Vector‘

• multiply the second ray vector with the matrix to rotate

the vector

Collision Response Based on the (u,v) position of the hit on the

polygon we can retrieve the normal of the polygon with which the colli-

sion occurred. The agent is pushed away from the obstacle based on the

length of the ray penetration into the polygon. This ensures the force is

inversely proportional to the distance between the obstacle and the agent.

Collision Detection and Implementation Pseudo-Code

• detect collision ray-primitive intersection.

• retrieve the co-ordinates of the collision.

• detect length of penetration into the polygon

• retrieve face normal at point of collision

• multiply normal with a constant and divide by length

24

• multiply the second ray vector with the matrix to rotate

the vector

Although computationally a bit more expensive the additional ray

vectors ensure that the agents always maintain a distance from the ob-

stacle even at sharp angles. If not used the collision response fail if the

obstacle has sharp edges. Especially with longer agents such as ants, as

they move around an obstacle their rear end can turn into an object.

4.3.7 Mind

The mind is the brain of the crowd simulation engine developed here.

This is where all the forces are combined to move the agent in a particular

direction.

Instead of using a simple weighted sum method where all the forces are

randomly truncated based on the behaviour needed, this crowd engine

implements a more refined priority based system for calculating the final

force.

All the forces and priorities are added to an array. The forces are

sorted based on the priority defined by the user using a sorting algorithm.

Based on the order we cycle over each of the forces in the array. Before

adding an individual steer force to the final steering force, we check if

the current steering force has exceeded the maximum possible force set

by the user as an agent characteristic. If the length of the steering force

does not exceed the length of the maximum force, we add a new steer to

the final steering force.

The final steering force is used to calculate the acceleration based on

the Newtonian formula:

~a = ~f/m

Based on the acceleration we append to the current velocity of the

agent using:

~v += ~a * t where t is the timestep

25

Instead of offsetting the position based on velocity in this function we

update the ~v of the agent on this frame and leave the position to the

stick on surface function.

4.3.8 Stick To Surface

Since this simulation was required to implement a terrain based specie,

a stick to surface node was implemented in Houdini.

Initial research presented with a few methods of implementing this

feature. One was to project a grid from the top on the environment

in the negative Y axis and use this grid as a ground plane. Each time

step the agent would compute its new position in xz axis and the Y axis

would be determined by the point of intersection of the vector from its

previous position to its current position with the surface if the projected

grid. One disadvantage of this method was that it required the scene

geometry to be conducive to a projection. It would require a substantial

set-up time for artists to create a version of the environment where this

would be possible. Also if the agent has terrain based locomotion then

we limit the y position of the agent to the previously calculated position

of the current Y position of the terrain.Also since there can be only one

Y position of the grid it is not possible to use this method with complex

geometry shapes which overlap each other. Thirdly the agents would

not walk on inverted geometry like overhanging cliffs or the down facing

geometry of a bottle or coke can.

Another method is to use a displacement map for the ground and have

the agents offset in Y based on the value of the displacement map. But

this was an even more limiting option and not accurate or feasible for

high quality VFX work.

A third option was chosen which used a ray intersect technique similar

to the first option. But instead of just firing a ray in the negative Y axis

we also fire a ray in the same direction as the velocity of the agent but

rotate it upwards. Then on each frame we compute the distance from

the tip of the ray to the point of intersection to the geometry. The ray

26

that is longer determines the new position of the agent which is the point

of intersection for that ray.

P += ~v * t where t is the timestep

Along with the new position we also calculate the new heading for the

agent. The heading ensures that the agent is always facing the direction

of travel.

We have already defined an ”up” vector for the agent earlier and

updated it based on the normal from the terrain.

The copy sop in Houdini updates the direction of the template ge-

ometry based on the normal of the points being copied on to. Hence

we update the normal of the point with the new heading to orient the

geometry being copied.

Another approach could be to create a quaternion name ”rot” based

on the axis of rotation and the angle of offset of the new heading from

the basis vector 1,0,0. But for this engine we have chosen to update the

normal as it provides for better debugging and we don’t have to create

any additional attributes.

Stick to Surface PseudoCode

• create a ray dir01 in the negative y direction

• create a ray dir02 parallel to the velocity of the agent

• calculate ~side = cross(heading,up)

• create a rotation matrix to rotate by angle Θ along axis ~side

• multiply dir02 with rotation matrix

• calculate intersection of dir01,dir02

• calculate normal ~N at point of closest intersection I

• update the position P = i

• update heading at new position where heading = cross(~N , ~side)

• update the normal ~N of the agent where ~N = heading

27

By decoupling the heading from the velocity and smoothing the head-

ing over a few frames we can get rid of the jitters that can be caused by

conflicting forces acting on an agent(Green, 2000).

4.4 States and State Machine

The initial challenge of implementing a state machine was to be able to

define multiple states in Houdini in an efficient manner. Since Houdini

attribute types are limited to int, float, vector and string it was not a

simple matter to store states that would be easy to use and remember.

The most effective method for this project was chosen to be to define

each state as a floating point value. Each state would have an entry

and exit floating point value. All state entry floating point values were

saved as 1.0, 2.0 etc and exit values depending on the number of states

as 1.x,2.x etc. where x != 0.

Although adding entry and exit states and switching them using the

FSM was a complex design problem, the effort put in at an initial stage

was quite useful in the end. While changing the food and pheromone

values it was a simple matter of adding an attribute create node and

modifying these values as an entry and exit state for each ant. In the

current implementation multiple motion clips have not been implemented

for each state but it will be a simple matter of detecting the state and

adding a motion clip based on the current state of the agent.

In addition to the current state of the ant, each agent has two other

state attributes.

Previous State- This attribute defines the previous state of the

agent. This is particularly useful when transitioning to states which

are utility states and don’t change the locomotion of the agent. It was

especially useful while transitioning to and back from the digger state.

Since the ants would need to transition to the digger state and once dug

immediately transition back from it. The various states implemented in

this program and their descriptions are detailed in the next few sections.

28

Next State This attribute defines the next state of the agent. Every

agent on a state change has its current state updated to the exit state

of the current state and its next state attribute updated to the future

state it needs to transition to. Once the exit state attributes have been

updated for the ant the ant transitions to the next state.

4.4.1 State 1.x-Wander

Wander state is the basic state of the ants. This is also the state that

the ants retreat back to when they have no other function to perform in

the simulation. It essentially just implements the wander function and

switches to the next state based on input.

Unlike other forces wander does not reset to zero every update cycle.

Hence the ants have a graceful random motion that evolves and not a

jittery random motion that updates every frame.

4.4.2 State 2.x-SeekFood

Seek food function implements the seek behaviour with the food node

as a target. Since this function is only activated once the ant is within

a specific distance of the food source, it steers the agent to the closest

found food source. This state imitates the ability of an ant to smell a

source of food from some distance away.

Each food item has a foodHome attribute. This attribute defines the

quantity of food the item carries. Every time an ant seeks the food

source the foodLoad value of the food item reduces. Keeping track of

which item the ant has tracked and updated turned out to be quite tricky

since it is not possible to save an array or a list in Houdini. To achieve

this each food item was given an ID and each agent keeps track of which

food ID it has visited.

Digger State 3.x PseudoCode

• if an ant is within range of food and foodLoad =̄ 0

29

• seekfood

• if ant has reached food or exit state activated

• set foodLoad == 1

• check for food item accessed and update index value on agent

• accumulate agent count with index values per food item

• deduct foodLoad based on total count per food id.

• update phReward attribute for the ant

4.4.3 State 3.x-Digger

This is a fairly complex state of the ant behaviour. This state allows the

ant to dig through areas of the environment that are considered to be

soft.

To achieve this the geometry of density the object to be dug is con-

verted to an SDF with an iso surface representation in Houdini. Then

with the help of Houdini Volume VOP the ant that initially reach the

isosurface tunnel through it and leave a trail for the ants that follow can

follow. Once a surface has been tagged as being dug the ants that are

in wander state either avoid the surface or if they are within a certain

distance of the entrance to the tunnel they follow the trail left behind

by the digger ants and pass through the obstacle.

Although the actual algorithm once deduced appeared trivial it turned

out to be especially challenging.Firstly VEX does not generate points but

only allows manipulation of point data. Since python allows creation of

geometry, a python node was created to birth points to dig through the

geometry. But python iterations across multiple points was extremely

inefficient. Eventually a pop operator was used to dig through the ge-

ometry. This turned out to be one of the most challenging parts of the

project and consumed a substantial amount of time.

Digger State 3.x PseudoCode

30

• if SDF value at agent position ¡ threshold

• update density attribute on agent = δ

• add all agents with density == δ to group diggers

• generate particles at position of agents in group delta

• generate a vector field parallel to particles

• for all SDF sample where distance ¡ threshold set value = 1

• if an agent is within threshold distance of entrance agent ~V = ~V F

where ~V F is the vector field

4.4.4 State 4.x-seekHome

If an agent has picked up food it returns home. In the current implemen-

tation of the project the agent always knows where its home is. There

is no pheromone path set for them to follow. Though if required this

would be pretty trivial as the workflow would be the same as the seek-

food workflow that has already been defined for the food pheromones.

If an ant is carrying food it deposits pheromones along the route it

follows home. Every time an ant finds the food source there is a positive

reward that is provided to the ant, this increases the strength of the

pheromone laid by the ant.

Figure 4.11: Panait & Luke (2004)

This by itself is not a sufficient factor. A key ingredient in the simu-

lation was to generate a falloff in the pheromone strength deposited as

the ant moves away from the food source. Initially it was decided to up-

date the distance of the ant per frame from the food source visited and

divide the pheromone value being deposited. But this was eventually

determined to be too computationally expensive and a simpler solution

was found.

31

The pheromone trail is stored on the points in the ground plane. Each

point has an attribute phFalloff which stores the distance of the point

from the food source. Since each agent has to access the point to update

the pheromone strength once per time increment it is trivial to factor it

by the distance attribute stored on the point as well.

seekHome State 4.x PseudoCode

• if found Food and foodLoad ¿ 0

• seek home

• find the closest point in the pheromone trail grid

• update the phStrength of the point where phStrength += phReward

÷phfalloff

To compute the decay in the pheromone strength a separate VOPSOP

was used higher up in the chain. This was important as the decay was

independent of the state of the agent and would update per time step.

4.4.5 State 5.x-seekPheromones

In this state the agent query the pheromone points. Each agent iter-

ates through 16 pf its closest points to find the point with the greatest

phStrength value. A value of 16 was chosen as this would ensure that

the search area is limited to the 9 grids in the immediate vicinity of each

agent at any time. VEX does not allow updating the primitive attributes

of a geometry.

4.5 Geometry Instancing and Rendering

Houdini’s implementation of the copy tool is pretty powerful for generat-

ing a wide variety of complex effects by copying a geometry on template

points. Any template point attribute can be stamped back to the source

geometry tree to offset or drive any random attribute. Although this is

a powerful tool it comes at a prize. For a large number of points it can

32

Figure 4.12: Pheromone Search Range

be a serious bottleneck as a copy of the geometry is stored in memory

for each point.

This would lead to a large memory footprint during rendering. A more

efficient method is to generate geometry at render-time. Houdini offers

a Delayed Load Shader that loads a geometry at render time, similar to

the delayed read archive functionality in Renderman. A .bgeo sequence

of an ant walk cycle is exported from Houdini and loaded back in this

shader.

4.5.1 Instance

To load the geometry at rendertime, the instance node has been utilised.

The point simulation of the agents is referenced inside the instance node.

The Delyed Load Procedural material is applied to the instanced geom-

etry. By overriding the geometry load expression the speed of the walk

cycle is modified procedurally using an expression.

Although this works to some extent it does not give a very accurate

result. A better method might have been to calculate the length of one

footstep and use that in conjunction with speed to drive the value of the

walk cycle. The optimum solution is to calculate the position of each

step independently for each leg based on the position offset. This would

require skinning the object at render time on to the skeleton rather than

a pre cached mesh.

33

Chapter 5

Applications and results

5.1 Crowd Simulation Results

Here are a few renders of the actual crowd simulation program.

Figure 5.1: Crowd Render

500 ants

34

Figure 5.2: Crowd Render

ants Travel through tunnel and climd on the can

Figure 5.3: Crowd Render

ants seek the food

35

Figure 5.4: Crowd Render

15000 ants simulated

5.2 Pheromone Path Following Results

The pheromone based path following that has been implemented can be

used for investigating the influence of a variety of factors on the output

of the simulation. A comparison of the results is published below. The

standard simulation values that have been compared are given below.

ALl simulations have been carried out using these default parameters

except for the parameter values mentioned in the captions which have

been changed to obtain results.

• Use VectorFields - off

• Pheromone Reward - 20

36

Figure 5.5: Crowd Render

15000 ants simulated, they bottle and stones are set as obstacles.

• Vaporisation Factor - 0.9

• separation FOV - 35

• seekPriority > separationPriority

37

Figure 5.6: Default Parameters

Simulation run on default parameters

38

Figure 5.7: Pheromone Reward 0

Pheromone trail is weak. Ants are able to form a trail to the apple but
the Donut is too far away and the trail keeps dissipating. Donut is still
left on frame 5001

39

Figure 5.8: Vaporisation Factor 1

The pheromones do not vaporize and stay in the scene. The ants get
confused and once the first food source is finished they move around in
cicles following the everpresent trail. The Donut stays unfinished on
frame 5000 and the ants do not create a new trail.

40

Figure 5.9: Pheromone Reward 50

Though the pheromone trail is formed, the excess pheromones take longer
to dissipate and the ants take longer to move to the second food source.
Donut is over on frame 3831 as compared to frame 3261 in figure 5.1.

41

Figure 5.10: Agent Count 100

A smaller number of agents are quite efficient at finding the apple and
consuming it but are not able to make a trail to the Donut that is further
away.

42

Figure 5.11: use VectorFields ON

With vectorfields in place to guide the agents into the anthill and out,
we get a much more visually appealing result with ants actually entering
the ant hill and streaming out of it. The trails are also quite linear. The
results are skewed though as the ants take only 2571 frames to finish the
Donut as compared to 3261 in figure 5.1.

43

Figure 5.12: SeparationPriority > seekPriority

In figure 5.7 we see that the order of the priority of forces can change
the simulation by an large magnitude. By keeping the separation priority
higher than the seek priority we see that with a larger crowds the agents
find it tough to find their way back home. The ants take a long 1491
frames to finish the apple as compared to the 1121 in figure 5.1. Single
agents tend to get isolated for a long period of time as the pheromone
value around the ant is always greater than the environment. One way of
tackling this would be to give the ant a limited pheromone amount which
would depreciate with each time step. Eventually if the ant does not
find its way back home in a certain amount of time it will stop emitting
pheromones.

44

Chapter 6

Conclusion

The aim of creating a crowd simulation system that is driven by un-

derlying behaviours but still is art direct able has been successful.Based

on the needs of a particular species sop nodes can be added using any

number of Houdini’s built in tools like vex, python or c++ to create a

range of crowds.

6.1 Summary

This project demonstrates that by decoupling the behaviours from the

decision making we can build a modular system that can be extended

ahead in the future. A lot of time was spent in managing data in Houdini

as it has limited attribute type. Although arrays have been introduced

in VEX they are limited to being used for computation and cannot be

used as an attribute.

Python was explored and although it would simplify the development

time it would greatly affect the simulation times.

As a comparison some nodes were initially built in python and VEX

both. For just one python node in the simulation the difference in per-

formance was staggering.

• VEX 1000 frames in 17 sec which amounts to 58.8 frames/sec

45

• Python 239 frames in 60 sec which amounts to a low 3.98 frames

per sec.

Although trying two separate workflows initially increased the devel-

opment time as familiarity with both API’s has to be created, the results

speak for themselves and led to a efficient design choices later in the cycle.

Performance was not the primary criterion in design of the solution,

the crowd system is pretty efficient. The biggest bottleneck is the volume

data that has to be carried by the engine every timestep for the digger

state. The ray intersect checks for collision are also expensive with 3

feelers per agent. In the future a bounding box based collision detection

as a level of detail enhancement can be added. Based on the distance

from camera, agents can just check for collisions against the bounding

box of the geometry in the scene.

• With the volume data and 500 agents we got a speed of 9 fps

• with the volume data and 15000 agents we got a speed of 3 fps.

Although we increased the number of agents by a factor of 30, the

performance reduction was only by a factor of 1/3. Also, based on some

tests removing volume data from the simulation can increase the fps by

about 5.

Another area that of Houdini that needs to be explored further in

the future is floating point precision. VEX in Houdini still uses 16-bit

floating point precision. This made comparison of float values tough. To

work around this problem all floating point values were compared to a

min and max range. A better floating point solution would make the

code more efficient and cleaner.

6.2 Future work

The current walk cycle implementation of the ant is based on their ve-

locity. A more powerful system would be allow the agent to place the

footstep per frame based on the new position. This would enhance the

46

realism of the simulation.. Instead of the finite state machine a fuzzy

logic decision making system can be implemented. Although the state

machine was successfully setup in the VOPSOPS a fuzzy logic system

might be more complex and the possibility of exploring the Houdini HDK

to expand on to the current setup is being can be explored.

The digging behaviour was a challenge and has been implemented

Houdini’s standard volume tools. Although most of the challenges of

creating a robust digging solution have been solved, it needs to be refined

further before it can be used effectively. The state machine is simplistic

and a more complex decision making structure can be implemented to

create interesting effects. A separate simulation where ants just dig an

anthill out of a volume could be implemented as well to create an anthill

with tunnels going through it for added realism. The use of VDB can

be explored further as the standard volume tools make the system too

slow.

The current simulation is extremely dependent on weighting of forces

and the priority assigned. A more procedural solution and introducing

flow fields with a cost function could be explored as well. The use of flow

fields would make the ants easier to art direct and the cost function would

procedurally weight the forces based on various factors like elevation,

terrain etc.

VEX in houdini allows users to make custom header files that can be

loaded into VEX operators in Houdini. Currently only a seek behaviour

is implemented as a header file. By adding the simpler behaviour to these

header files we can keep the code in the VEX operator a lot cleaner and

simpler. In fact a whole library of VEX header files could be made as

the crowd simulation got more and more complex to simplify the code

in the VEX operators.

The rendering module is pretty simplistic and has to be built upon

further. While the principles of instancing and deferred rendering will

remain the same, the asset is currently dependent on the cycles created.

In the future as mentioned, by developing a system that allows skinning

of the mesh on a skeleton driven by the crowd system at render-time,

47

we can build a more powerful system where the logic of the agent would

define what geometry is rendered and would be fully controlled by the

AI. This would also help generate variations in the crowd. For example

there could be a library of arms, legs, hats, costumes etc with the same

topology that would be skinned individually based on the AI. This would

lead to a wide array of characters from a smaller group of assets.

48

Bibliography

A. Bielik (2004). ‘Troy: Innovative Effects on an Epic Scale’. Available

from: http://www.awn.com/ [Accessed 12.07.2013].

M. Buckland (2005). Programming Game AI by Example. Wordware

game developer’s library. Wordware Pub.

J. Dro (2006). ‘File:Aco branches.svg’. Available from:

http://en.wikipedia.org/ [Accessed 18.07.2013].

K. Griggs (2003). ‘Assault on the senses [PC-run computer program for

movies]’. IEE Review 49(3):24–27.

J. Haddon & D. Griffiths (2006). ‘A system for crowd rendering’. In

ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06, New York, NY,

USA. ACM.

L. Kermel (2005). ‘Crowds in Madagascar’. In ACM SIGGRAPH 2005

Courses, SIGGRAPH ’05, New York, NY, USA. ACM.

C. Kolve (2004). ‘alice1’. Available from:

http://www.kolve.com/vfxwork/vfxwork.htm [Accessed 12.07.2013].

L. Panait & S. Luke (2004). ‘A Pheromone-Based Utility Model for Col-

laborative Foraging’. In Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems - Volume

1, AAMAS ’04, pp. 36–43, Washington, DC, USA. IEEE Computer

Society.

R. Pieke (2008). ‘The Digital Eye: MPC’s RD Confronts a Changing In-

dustry’. Available from: http://www.awn.com/ [Accessed 12.07.2013].

C. Reynolds (1999). ‘Steering Behaviors For Autonomous Characters’.

49

C. W. Reynolds (1987). ‘Flocks, herds and schools: A distributed behav-

ioral model’. In Proceedings of the 14th annual conference on Computer

graphics and interactive techniques, SIGGRAPH ’87, pp. 25–34, New

York, NY, USA. ACM.

Side Effects Software (2013). ‘Houdini: 3D Animation Tools’. Available

from: http://www.sidefx.com [Accessed 18.07.2013].

D. Thalmann, et al. (2004). ‘Crowd and group animation’. In ACM

SIGGRAPH 2004 Course Notes, SIGGRAPH ’04, New York, NY,

USA. ACM.

A. Treuille, et al. (2006). ‘Continuum crowds’. ACM Trans. Graph.

25(3):1160–1168.

UKScreen (2013). ‘DOUBLE NEGATIVE RECREATE THE

VATICAN FOR ”ANGELS AND DEMONS”’. Available

from:/news/articles.htm?aId=2245 [Accessed 08.08.2013].

50

	Table of contents
	Abstract
	Acknowledgements
	Introduction
	Related work
	Crowd Simulation Tools
	Craig Reynolds Flocking
	Particle Based Tools
	Massive
	MPC Alice- (Artificial LIfe Crowd Engine)
	Continuum Crowds

	Technical Background
	Solver Surface Node
	VEX
	HOM

	Ant Colony Optimization

	Design and Implementation
	Introduction
	Design
	Character
	Brain
	Finite State Machine
	Instancing/Rendering

	Technical Implementation in Houdini
	Character
	Ants
	SOLVER-AI Brain
	Behaviours
	Flow Fields
	Obstacle Avoidance
	Mind
	Stick To Surface

	States and State Machine
	State 1.x-Wander
	State 2.x-SeekFood
	State 3.x-Digger
	State 4.x-seekHome
	State 5.x-seekPheromones

	Geometry Instancing and Rendering
	Instance

	Applications and results
	Crowd Simulation Results
	Pheromone Path Following Results

	Conclusion
	Summary
	Future work

	References

