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Abstract

Fluid simulation has been a popular topic over the last few decades now that computers are

fast enough to perform the necessary calculations in a reasonable amount of time. This thesis

is on the topic of incompressible Eulerian smoke simulation and covers the Navier-Stokes

equations, the expanding of the equations into differential equations, and the discretization to

simulate the equations on the computer. This thesis also covers the implementation of a basic

smoke solver that is comprised of elements and techniques from a variety of sources. After

reading this report, one would have enough knowledge to implement their own basic smoke

solver that calculates the buoyant, turbulent and rotational motions evident in real smoke. The

research topics and methods in this thesis have already been implemented in other smoke

solvers however there are areas and aspects that can be improved. These improvements are

discussed in this report.



Chapter 1

Introduction
The flow of fluids can be observed in everyday life. Examples of fluid flow include rivers,

waterfalls, smoke, lava flow, and the air flow around a plane’s wings. Two elemental properties

govern the motion of a fluid: viscosity and inertia. Griebel et al (1998) used laminar flow to

describe the viscosity and inertial forces. Imagine individual cards stacked on top of each

other that are all moving in one direction. If the bottom card abruptly stops, the cards above

will keep moving forward due to the inertial force. Friction between the cards will eventually

bring all of the cards to a stop and the resulting pattern of the cards will look like a set of

stairs. This friction between cards can be thought of as the viscosity of the fluid. Viscosity is a

physical property of fluids that generates frictional forces that eventually brings the motion of a

fluid to a rest (Griebel et al. 1998). Liquids like molasses have high viscosities and their motion

comes to rest far sooner than fluids that have lower viscosities like air and water. For gases

the viscosity is so low that it can be disregarded in the simulation. Because of this, gases are

known as inviscid fluids.

Compressible fluids can be compressed. This means that ”fluid of the same mass does not

always occupy the same volume” (Griebel et al. 1998). On the other hand, incompressible

fluids cannot be compressed. The mass of incompressible fluids ”will always occupy the same

volume” (Griebel et al. 1998) and the total density will remain constant. This report will only

cover incompressible fluid flow.

This thesis is on incompressible Eulerian smoke simulation. The topics that will be discussed

include an overview of Eulerian fluid simulation, the Navier-Stokes equations, a breakdown

of the equations to differential equations, and the discretization process. This report also

explains all of the steps to build a basic smoke solver like advecting the velocity field, convecting

energy, and calculating the pressure. It also covers topics like vorticity confinement, buoyancy,

turbulence, stability, boundary conditions, and obstacles. To conclude the report, the design

and problems of this smoke solver are discussed.
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Chapter 2

Previous Work
The Marker and Cell (MAC) method was developed by Francis Harlow and J. Eddie Welch

in 1965. It made use of finite-difference approximations of the Navier-Stokes equations with

an explicit time integrator (Harlow and Welch, 1965). The method was originally designed for

2D fluid simulation but can be translated to three dimensions. Particles (markers) are traced

through the velocity field to represent the flow of a fluid. Harlow and Welch’s work was highly

referenced in most of the conducted research on fluid simulation that has taken place over the

last few decades and is still referenced in recent reports.

In 1997, Foster and Metaxas wrote a paper called Modeling the Motion of a Hot, Turbulent Gas.

This was one of the first papers to address the turbulent, buoyant, and rotational motion of gas

in three dimensions. Their model accounted for convection, turbulence, buoyancy, vorticity

and smoke flowing around obstacles (Foster et al. 1997). Their model solved the Poission

pressure equation using a modified version of Harlow and Welch’s solution. The drawback to

their approach is that it is stable only when the time step is considerably small. The change in

time, ∆t, needs to be less than h/|u| where h is the width of the voxel.

In 1998, Griebel et al. wrote a book on numerical simulation called Numerical Simulation in

Fluid Dynamics: a Practical Introduction (Griebel et al. 1998). The method in the book was

based off of Harlow and Welch’s marker and cell method and it used an explicit time integrator.

It also used the donor-cell discretization along with central differences for extra stability during

the advection step. The book covered the mathematical description of flows, the numerical

treatment of the Navier-Stokes equations and everything from boundary conditions to turbulent

flows and parallelization.

In 1999, Jos Stam wrote a SIGGRAPH paper called ”Stable Fluids.” It described his method

which uses a semi-Lagrangian advection technique and solves the partial differential equa-

tions using the ”method of characteristics” (Stam 1999) Stam’s fluid solver used an implicit

integration of the viscosity which resulted in an unconditionally stable solver. This was a big

improvement to Foster and Metaxas’ solver which required small time steps to be stable. The

unconditional stability allowed for larger time steps which resulted in faster simulations.

In 2001, Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen wrote a SIGGRAPH paper called

Visual Simulation of Smoke. Their model was stable, fast, and properly dealt with numerical

dissipation (Fedkiw et al. 2001). This paper introduced vorticity confinement which is a force

2



CHAPTER 2: PREVIOUS WORK

that puts energy back into the swirls that was previously lost due to numerical dissipation. The

new energy made swirls more evident in the simulation which led to a much more realistic

result.
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Chapter 3

Technical Background

3.1 Simulating Fluid Flow

Fluid mechanics is governed by the Navier-Stokes equations, ”a precise mathematical model

for most fluid flows occurring in nature” (Stam 2003). They are a description of the evolution

of a velocity field over time (Stam 2003). The ultimate goal is to compute the Navier-Stokes

equations numerically. There are hundreds of books published with different methods of solv-

ing these equations (Stam 1999). Fluid solvers should enable the user to achieve fluid-like

effects in real-time (Stam 1999). Physical accuracy is not as important when it comes to com-

puter graphics because it can be computationally expensive. What matters most is that the

simulations are fast and believable (Stam 2003). The simulation needs to demonstrate the tur-

bulent, buoyant, or rotational motion that develops as a gas interacts with itself and obstacles

(Foster et al. 1997).

This implementation is influenced heavily by the marker-and-cell (MAC) method. The MAC

method uses finite differences with an explicit time integration. However there are no particles

(markers) in this simulation because of the fact that this solver uses the Eulerian fluid simulation

technique, a topic that is covered in the next section.

3.2 Eulerian Fluid Simulation

In a Eulerian fluid simulator the 3D space is split up into a grid of evenly spaced cubes called

voxels. A notable difference between other fluid simulation methods is that there are no par-

ticles traced through the velocity field. Each voxel has a scalar value associated to it that

changes depending on the fluid flow out of and into the voxel which is determined by the ve-

locity field.

In the case of smoke, it would be impossible to simulate every particle. If particles are used,

”it would be unclear how interaction between volumes of gas is modeled using forces between

particles” (Foster et al. 1997). Also, gas is a continuous medium and needs to mix with its

surrounding atmosphere. This cannot be achieved with the use of particles.

Instead of using particles, a scalar density value is used at each voxel. The density value is a

4



3.3 NAVIER-STOKES EQUATIONS CHAPTER 3: TECHNICAL BACKGROUND

value between zero and one. A value of zero implies that there is no smoke and a value above

zero indicates that there is smoke present (Stam 2003). The velocity and sources of energy at

each voxel are pushed, or convected, by their neighbours (Foster et al. 1997).

3.3 Navier-Stokes Equations

∂u
∂t

= −(∇u)u− 1

ρ
∇p + λ∇2u + F (3.1)

∇u = 0 (3.2)

The two differential equations above are the Navier-Stokes equations for incompressible fluids.

The equations describe the velocity field of a fluid, u, over time (Cline et al. 2004). Bold is used

to indicate a vector quantity and italic is used to indicate a scalar quantity. λ is the kinematic

viscosity of the fluid, ρ is the density and F is the external forces acting on the fluid. A term that

is frequently used in fluid simulations is the Reynolds number, Re, which is basically the ratio of

inertial forces to viscous forces (Griebel et al. 1998). The kinematic viscosity, λ, is equivalent

to 1
Re .

Equation 3.1 is for the conservation of momentum. It accounts for the internal and external

forces that act on the fluid (Cline et al. 2004). This equation models the convective, viscous,

and rotational motion in the smoke (Foster et al. 1997). Equation 3.1 is broken down into its

individual terms in section 3.3.2.

Equation 3.2 is for the conservation of mass. This equation implies that the amount of fluid

flowing into any volume must be equal to the fluid flowing out of that volume (Cline et al. 2004).

In other words, the divergence of the velocity field must be equal to 0 (Cline et al. 2004).

For the purposes of the discretization which will be discussed in Section 3.5, the velocity vector

field u needs to be separated into three scalar values for each component of its velocity vector.

These three scalar values will be called u,v, and w. u will represent the x direction, v will

represent the y direction, and w will represent the z direction.

3.3.1 Operators

There are two operators that are in the Navier-Stokes equations. These include the gradient

operator: ∇ and the Laplacian operator: ∇2. The dot product of the gradient operator and a

vector field, ∇·, is called the divergence of a vector field.

5



3.3 NAVIER-STOKES EQUATIONS CHAPTER 3: TECHNICAL BACKGROUND

3.3.1.1 Gradient of a Scalar Field (∇)

∇ = (
∂

∂x
,
∂

∂y
,
∂

∂z
) (3.3)

The gradient operator tells how a scalar field changes spatially (Cline et al. 2004). It is a vector

field that points in the direction of the rate of increase. The two scalar fields in this smoke

solver are density and temperature.

3.3.1.2 Divergence of a Vector Field (∇·)

∇ · u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(3.4)

The divergence of a vector field is the dot product of the gradient operator and a vector field.

Its result is a scalar field that is ”the net flow out of or into points in the vector field” (Cline et

al. 2004). The mass conservation equation (Equation 3.2) basically says that the divergence

of the velocity vector field needs to be 0.

3.3.1.3 Laplacian (∇2)

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.5)

”The Laplacian operator is the dot product of two gradient operators” (Cline et al. 2004). Ap-

plying the Laplacian operator to a scalar field basically describes how the values in the scalar

field differ from their neighbourhood average (Cline et al. 2004).

3.3.2 Terms of the Momentum Equation

The conservation of momentum equation, Equation 3.1, can be broken down into four terms:

convection, viscosity, pressure, and external force.

3.3.2.1 Convection

−(∇u)u (3.6)

This term is the convection term. The momentum of the fluid must be convected through space

along with the fluid itself (Cline et al. 2004).
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3.3.2.2 Pressure

−1

ρ
∇p (3.7)

This term is the pressure gradient. The pressure is important for ensuring that the divergence

of the velocity field is 0. If the velocity field is divergence-free, the mass will be conserved

meaning that there will be no mass gained and/or lost during the simulation.

3.3.2.3 Viscosity

λ∇2u (3.8)

This term can also be thought of as drag. It is the internal friction of the fluid. The fluid moves

slower with higher viscosity values. This term can be disregarded in a smoke solver because

gas is inviscid.

3.3.2.4 External Force

F (3.9)

This term accounts for external forces like gravity, buoyancy, wind, turbulence, and vorticity and

is simply added onto the end of the momentum equation.

3.4 Breakdown of Momentum Equation to Differential Equations

The Navier-Stokes equations can be expanded into a series of first and second order differ-

ential terms (Foster et al. 1997). This section walks through the steps to break down the

momentum equation into the final expanded differential equations.

Recall the Navier-Stokes equation for the conservation of momentum:

∂u
∂t

= −(∇u)u + λ∇2u− 1

ρ
∇p + F (3.1)

Equation 3.1 can be split into an equation for each of the three velocity components of u: u, v,

and w.

7
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∂u

∂t
= −(∇u)u+ λ∇2u− 1

ρ
∇p + Fu (3.10a)

∂v

∂t
= −(∇u)v + λ∇2v − 1

ρ
∇p + Fv (3.10b)

∂w

∂t
= −(∇u)w + λ∇2w − 1

ρ
∇p + Fw (3.10c)

3.4.1 Convection Term to Differential Equations

The first step is to expand the convection term into three differential equations.

Convection term = −(∇u)u

Recall the divergence of a vector field differential equation:

∇u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(3.4)

Using the divergence equation, we can determine the differential equations of the convection

term for u, v, and w.

−(∇u)u = −∂uu
∂x
− ∂uv

∂y
− ∂uw

∂z
(3.11a)

−(∇u)v = −∂vu
∂x
− ∂vv

∂y
− ∂vw

∂z
(3.11b)

−(∇u)w = −∂wu
∂x
− ∂wv

∂y
− ∂ww

∂z
(3.11c)

3.4.2 Viscosity Term to Differential Equations

The next step is to expand the viscosity term into differential equations.

Viscosity term = λ∇2u

Recall the Laplacian differential equation:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.5)

We can use the Laplacian equation to break down the viscosity term into differential equations

for u, v, and w.

8
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λ∇2u = λ(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
) (3.12a)

λ∇2v = λ(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
) (3.12b)

λ∇2w = λ(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
) (3.12c)

3.4.3 Putting It All Together

Now that the partial derivative equations of the convection and viscosity terms have been

determined, they can be substituted into the momentum equation to get the final differential

equations needed before the discretization step.

∂u

∂t
= −∂uu

∂x
− ∂uv

∂y
− ∂uw

∂z
+ λ(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
)− 1

ρ
∇p + Fu (3.13a)

∂v

∂t
= −∂vu

∂x
− ∂vv

∂y
− ∂vw

∂z
+ λ(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
)− 1

ρ
∇p + Fv (3.13b)

∂w

∂t
= −∂wu

∂x
− ∂wv

∂y
− ∂ww

∂z
+ λ(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
)− 1

ρ
∇p + Fw (3.13c)

3.5 Discretization

Figure 3.1: The 3D space divided into evenly spaced voxels. (Fedkiw et al. 2001)

The 3D space needs to be discretized into a grid of cube-shaped voxels like in Figure 3.1. h is

the width of each voxel and i, j, and k are the x, y, and z indices of the voxel in the 3D grid of

voxels. Figure 3.2 shows the location of the velocity components u,v, and w in a voxel. They

are located on the minimal faces of the voxel. The density, temperature, and pressure values

are stored at the center of the voxel.
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3.5 DISCRETIZATION CHAPTER 3: TECHNICAL BACKGROUND

Figure 3.2: Location of the velocity components (u,v, and w) in a voxel. (Cline et al. 2004)

Now that the Navier-Stokes momentum equation are expanded into three differential equations

(Equation 3.13), there needs to be a finite approximation scheme for the discretization. Each

partial derivative translates to a simple algebraic equation involving the adding and subtracting

of the values of neighbouring voxels.

3.5.1 Finite Differences

Figure 3.3: Exchanging energy with neighbours (Stam 2003)

The finite difference approximation scheme must preserve the turbulent and swirliness of

gaseous motion (Foster et al. 1997).

There are three methods of finite differences: backward, forward, and central.

3.5.1.1 Backward Difference

For the backward difference, the previous cell is subtracted from from the current cell.

∂u/∂x =
u(i, j, k)− u(i− 1, j, k)

h
(3.14)

10
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3.5.1.2 Forward Difference

For the forward difference, the current cell is subtracted from the next cell.

∂u/∂x =
u(i+ 1, j, k)− u(i, j, k)

h
(3.15)

3.5.1.3 Central Difference

For the central difference, the previous cell is subtracted from the next cell.

∂u/∂x =
u(i+ 1, j, k)− u(i− 1, j, k)

2h
(3.16)

3.5.2 First and Second Order Derivative Approximations

Each partial derivative in the momentum differential equations (Equation 3.13) can be mapped

to a finite difference approximation using forward, backward, or central differences. The first

order derivative approximations using forward differences are listed in Appendix A, Section A.1

and the second order derivative approximations are listed in Appendix A, Section A.2.
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Chapter 4

Solution
This smoke solver uses a finite difference approximation scheme with an explicit time integra-

tion method (RK4). The advection function is based on the Griebel et al. (1998) solver and

uses central differences with the donor-cell discretization for stability purposes. To solve for

the pressure, it uses the Geiss-Seidel successive relaxation technique also used by Griebel et

al. (1998). To calculate the buoyancy force, this solver uses the equation provided by Cline et

al. (2004) and for the turbulence force, the libnoise1 library by Jason Bevins provided the noise

calculations. The vorticity confinement force equation was provided by Fedkiw et al. (2001).

4.1 Algorithm

The following steps are carried out at each time step.

1. Emit energy.

2. Apply external forces (buoyancy, turbulence, gravity, etc.).

3. Calculate and apply the vorticity confinement force.

4. Advect the velocity field.

5. Calculate the pressure using a relaxation technique.

6. Apply the pressure.

7. Force the velocity of the voxels inside the obstacle (if any) to 0.

8. Convect and dissipate the energy.

4.2 Emitting Energy

For smoke, there are two sources of energy that need to be emitted and convected in the simu-

lation: density and temperature. In this implementation, the user is able to change the position

and size of the emitter. The user can also change the rate that the density and temperature

are being emitted. The emitter is associated to a cube of voxels based on the emitter’s po-

sition and size. Interpolation with the sine and power functions work to emit the energy in a

semi-spherical shape inside the cube of voxels.
1http://libnoise.sourceforge.net/
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4.3 Dissipation

Figure 4.1: Smoke with a low dissipation value (left) and a high dissipation value (right)

Dissipation is necessary for smoke because of the fact that smoke evaporates and mixes with

the atmosphere over time. Also the temperature of the smoke gets cooler over time. Dissipation

is easy to implement because it is basically the subtraction of a uniform value at each time step

from the scalar density value at each voxel. The following equation is used for the dissipation

of the smoke’s density:

ρn+1 = max(0, ρn − kdissipation ·∆t) (4.1)

(Cline et al. 2004)

ρ is the density of the smoke and kdissipation is a user-defined constant controlling the amount

of dissipation. Figure 4.1 shows smoke with a low dissipation value and a high dissipation

value.

4.4 External Forces

4.4.1 Buoyancy Force

Smoke tends to rise and fall depending on its density and temperature. If the smoke is hotter

and/or less dense than the surrounding air, it rises. If the smoke is colder and/or more dense

than the surrounding atmosphere, it falls. Equation 4.2 was used to calculate the buoyancy

force:

13
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Figure 4.2: Smoke with no buoyancy force (left) and a high buoyancy force (right)

Fbuoyancy = (krise · (t− tatmosphere) + (−1 · kfall) · ρ) · gravity
||gravity||

(4.2)

(Cline et al. 2004)

t is the temperature of the smoke, tatmosphere is the temperature of the atmosphere, ρ is the

density of the smoke, and krise and kfall are user-defined constants for the rising and falling of

the smoke. The gravity force vector does not affect the x and z components of the buoyancy

force so the buoyancy force is applied either straight up or straight down. Figure 4.2 shows

how the buoyancy force affects the smoke.

4.4.2 Noise/Turbulence

After emitting energy and applying a buoyancy force, the smoke uniformly rises up in the air.

There needs to be some way to add a little variation to the way the smoke rises and falls

to make the simulated smoke more smoke-like. The best way is to use noise. An excellent

library to use is libnoise2 by Jason Bevins. This smoke solver uses libnoise’s perlin noise and

turbulence feature. The noise is used in conjunction with the buoyancy force to add some

variance to the motion of the smoke. Because of the use of the libnoise library, the user can

change the frequency, octave count, persistence, and power of the noise. The user can also

change the speed of the noise which is basically how fast the noise evolves over time.
2http://libnoise.sourceforge.net/
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Figure 4.3: Smoke with no turbulence force (left) and high turbulence force (right)

4.5 Vorticity Confinement

Numerical simulation results in a loss of energy (Fedkiw et al. 2001). The swirls that are

evident in real smoke are not as evident in smoke that is numerically simulated because of this

”numerical dissipation” (Fedkiw et al. 2001). To maintain the swirliness, there is a principle

called vorticity confinement. Vorticity confinement results in a force that adds energy back into

the simulation to make up for the loss of energy (Fedkiw et al. 2001).

To calculate this force, there are a series of steps that need to be taken. The first step is to

calculate the curl. The curl is the cross product of the gradient operator and the velocity field

(∇× u) and is calculated using Equation 4.3.

∇× u = (
∂w

∂y
− ∂v

∂z
,
∂u

∂z
− ∂w

∂x
,
∂v

∂x
− ∂u

∂y
) (4.3)

(Cline et al. 2004)

The next step is to create a scalar field of the magnitude of the curl, n, and use that value to

calculate the gradient direction, N (Cline et al. 2004).

N =
∇n
||∇n||

(4.4)

(Fedkiw et al. 2001)

The gradient direction, N, is a ”normalized vorticity location vector field that points from lower
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vorticity concentrations to higher vorticity concentrations” (Fedkiw et al. 2001). The last step is

to calculate the vorticity force which is a force in the direction of the swirl using Equation 4.5.

Fvorticity = kvorticity · (N× (∇× u)) (4.5)

(Cline et al. 2004)

kvorticity is a user-specified constant to control the magnitude of the vorticity confinement force.

After the force is applied and the velocity field is updated, swirls are more evident in the simu-

lation.

4.6 Advecting the Velocity Field

Figure 4.4: Advection of the velocity field.

The velocity field needs to be advected to satisfy the conservation of momentum equation

(Equation 3.1). The goal is to use finite differences to solve Equation 3.13 without the pressure

and external force terms. The first order and second order finite difference approximations are

in Appendix A. After substituting the finite difference approximations into Equation 3.13, the

resulting velocity field can be calculated. This result is then stored in the voxel so it can be

accessed later to compute the new velocity after the pressure is calculated.

When central differences are used, oscillations occur in convection-diffusion problems (Griebel

et al. 1998). A way to avoid stability problems is to use the donor-cell discretization scheme

described by Griebel et al. (1998). It involves using values at the spatial interval mid-points to

calculate a more accurate result.
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4.7 Pressure

The pressure term is important for satisfying the mass conservation equation of the Navier-

Stokes equations (Equation 3.2). Its purpose is to maintain a divergence-free velocity field

at every time step. If the velocity field is not divergence-free, mass will be lost and/or gained

during the simulation. The pressure field needs to be calculated and then applied to the velocity

field.

4.7.1 Calculating Pressure

Figure 4.5: Subtracting the pressure gradient from the velocity field to get a divergence-free field (Stam

2003).

To ensure that the divergence of the velocity field is 0 and satisfy the conservation of mass

equation (Equation 3.2), the smoke solver needs to have a solution to Poisson’s pressure

equation. There are several ways to solve the pressure equation however this solver uses a

relaxation technique. More specifically, this solver uses the Geiss-Seidel method with succes-

sive overrelaxation. This relaxation method is an iterative solution. ”Each cell is successively

processed once in every cell in such a way that the equation is solved exactly” (Griebel et al.

1998). The following pseudocode is the relaxation method described by Griebel et al. (1998):

iter = 0,...,iterMax

i = 0,...,iMax,

j = 0,...,jMax,

k = 0,...,.kMax,

-Calculate pressure using central differences

-Calculate residual

-Calculate residual norm

-Copy calculated pressures to grid

-If residual norm is lower than absolute tolerance, break out of loop

The residual is calculated for each voxel and the iteration stops when the norm of the residual

falls below an absolute tolerance value or if the number of iterations exceeds the max number

of iterations (Griebel et al. 1998).
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4.7.2 Applying Pressure

Applying the pressure is a matter of subtracting the calculated value of the pressure gradient

from the vector field computed in the advection step. This can be visualized in Figure 4.5. After

the pressure is subtracted, the velocity field should be at least close to divergence-free.

4.8 Convecting Energy

Figure 4.6: Temperature being convected through the velocity field.

The energy emitted into the simulation, density and temperature, need to be convected through

the velocity field at each time step. The scalar energy values at each voxel are pushed by the

velocities of the neighbouring voxels. The energy is drawn into areas of greater velocity and

lower pressure (Foster et al. 2001). Equation 4.6 is the equation for the convection of energy.

∂E

∂t
= −(∇E)u + λ∇2E (4.6)

(Foster et al. 2001)

E is the scalar energy value and λ is a constant that controls the magnitude of the diffusion

process. As you can see, this equation is similar to the conservation of momentum equation

(Equation 3.1) except for the fact that it does not have a pressure and external force term.
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Figure 4.7: Setting velocity and temperature conditions at a boundary (Foster et al. 1997)

4.9 Boundary Conditions

A boundary is an edge/wall of the voxel grid domain. There are four boundaries in a 2D fluid

simulator and six boundaries in a 3D fluid simulator. The condition of the boundary strongly

influences the flow of the fluid. Below are three boundary conditions that are implemented in

this smoke solver.

The no-slip boundary condition: all of the fluid next to the boundary is motionless and doesn’t

flow through the boundary (Griebel et al. 1998). The velocity components of u for the no-slip

boundary condition can be found in Appendix B, Section B.1.

The free-slip boundary condition: the fluid flows freely next to a boundary without any friction

and does not flow through the boundary (Griebel et al. 1998). This can be thought of as a

”non-adhering (’greased’) surface” (Harlow and Welch 1965). The velocity components of u for

the free-slip boundary condition can be found in Appendix B, Section B.2.

The outflow boundary condition: the fluid flows freely out through the boundary. This condition

basically acts as if the boundary does not exist. The velocity components of u for the outflow

boundary condition can be found in Appendix B, Section B.3.

4.10 Obstacles

A great feature to have in a smoke simulator is to have the smoke interact with OBJ meshes.

To do this, the voxels inside the mesh and the voxels intersecting with the mesh need to be

behave differently than the other voxels. The velocity in each of these solid voxels needs to be

set to 0 at the end of every time step before the energy is convected.
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Figure 4.8: The smoke interacting with obstacles.

The difficult part is determining which voxels are inside the mesh. This can be accomplished

with signed distance fields. An ideal library to use is Mathieu Sanchez’s SDF library (NCCA).

Due to some OS incompatibility issues, the library could not be incorporated into this simu-

lation. This smoke simulator determines the solid voxels based on the mesh’s vertices. The

issue with this method is that it does not account for the voxels inside of the mesh. Also, if the

faces of the OBJ are bigger than the width of each voxel, then some voxels that intersect with

the mesh will be skipped and the smoke will flow into the obstacle.

4.11 Visualizing the Smoke

A vital step to a smoke simulator is the displaying of the smoke itself. The best way to show

the smoke is to use point sprites. The picture used for the sprite is basically a blurry gray

dot. One sprite is drawn at the center of each voxel and the sprite’s opacity is determined

by the voxel’s density value. The size of the sprite needs to be bigger than the voxel so the

blurry gray dots will blend together. The use of sprites makes it possible to alter the colour

of each individual sprite at each voxel with the use of GLSL. So adding a self-shadow and

displaying the temperature at each voxel is fairly easy to implement because it can be written

in the fragment shader.
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Figure 4.9: The sprites being drawn at each voxel.

4.12 Stability

If the time steps and finite space differences are small, the results will be close to continu-

ous. Large time steps and large spatial differences (voxel widths) lead to instability problems

and produce an unrealistic result (Harlow and Welch 1965). Ideally an implicit time integrator

would be the best choice for a time integrator because it leads to an unconditionally stable

solver. Being that it is somewhat difficult to implement, this solver uses the Runge-Kutta fourth

order method (RK4) which is one of the more accurate and stable explicit time integration meth-

ods. RK4 basically samples the result at four different intervals during a time step and uses a

weighted average to determine the most accurate prediction of the result.

4.13 Design

Figure 4.10 is the high-level class diagram of the smoke simulator. The design of this smoke

solver uses primarily aggregation. The SmokeSystem class, (Figure C.4 in Appendix C) has

all of the global variables of the smoke simulator like the kinematic viscosity constant, the dis-

sipation constants, the pressure constants, and the buoyancy and turbulence force constants.

It also has all of the functions that do the heavy duty calculations like calculating the pressure

and advecting the velocity.

The GLWindow class (Figure C.5) contains the methods for drawing the different elements of

the smoke simulator: the voxel grid domain, the velocity field arrows, the smoke sprites, and the
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Figure 4.10: The high-level class diagram of the smoke simulator.

obstacle. It has methods for initializing the shaders and lights, moving the emitter, and updating

the transform stack. The GLWindow class contains all of the public slots for receiving signals

from the UI and all of the generic openGL functions like initializeGL, paintGL, and resizeGL.

The VoxelGrid class (Figure C.3 in Appendix C) contains the attributes and functions of the 3D

voxel grid domain. It contains a 1D array of Voxels (Figure C.8) called m voxels and functions to

return the index of the voxel in that array based on a coordinate or three indices. When the class

is constructed, the three precision values and the voxel width values are calculated based on

the width of the domain in the three dimensions and the base resolution. Its m boundaryVoxel

private member is used as a special way of handling boundary voxels.

The Emitter class (Figure C.6 in Appendix C) contains the attributes and functions associated

to the emitter and the Obstacle class (Figure C.2) contains the attributes and functions asso-

ciated to the obstacle. The Perlin noise and Turbulence classes are part of the libnoise library

by Jason Bevins (http://libnoise.sourceforge.net/) and do all of the noise calculations for the

turbulence force.

4.14 Problems

An issue with this smoke solver is that it is considerably slow to simulate. This is due to the

pressure relaxation method and the fact that it does not take advantage of any parallelization

techniques. Also, there are no efficiency methods to minimize the amount of voxels that are

iterated.

The speed of the pressure calculation is dependent on the velocity field at that time step. If the

velocity field gets too varied and random, the pressure relaxation method sometimes does not

reach a divergence-free field in a reasonable amount of iterations. When the max number of

iterations is reached, the simulation gets unstable because of a sudden gain or loss in mass

due to the fact that the velocity field is no longer divergence-free.

This leads to another issue: instability. This solver is somewhat unstable at large time steps
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because of the explicit time integrator. The instability due to the time step and pressure causes

the simulation to explode on occasion. It would be more stable if the time integrator was implicit

and if a more reliable pressure calculation method was implemented.
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Chapter 5

Conclusion
The end product of the research and implementation of this smoke solver was fairly successful.

The smoke is believable and the features of the the smoke simulator can be easily controlled

by an artist. It has all of the necessary forces and features of a basic smoke simulator.

There are definitely a lot of areas that could be improved especially in terms of efficiency,

speed, and stability. The solver could use a better time integration technique. If the solver is

more stable, the simulation will run faster because it would be possible to use bigger time steps

and coarser grids. For calculating the pressure there are newer and more efficient techniques

other than the Geiss-Seidel relaxation method that could help speed up the simulation.

The smoke interacting with obstacles could also be improved. Instead of determining the solid

voxels based on the vertices of the OBJ mesh, it would be better to use signed distance fields

to account for the voxels inside of the mesh. As an additional feature, the obstacles could have

a friction force to account for different materials.

To make the simulation faster, the calculation processes can be parallelized and could take

advantage of the GPU. This can be accomplished using OpenCL1 or CUDA2. Caching of the

smoke to render it is something that will need to be implemented in the future. There are

libraries like Field3D3 and OpenVDB4 that can be used to export voxel data and import it into

an application like Maya or Houdini.

This smoke simulator may have issues with stability and efficiency but it is successful because

it is believable, artist-friendly, and it demonstrates the turbulent, buoyant, and rotational motion

evident in real smoke.

1http://www.khronos.org/opencl/
2http://www.nvidia.com/object/cuda home new.html
3http://opensource.imageworks.com/?p=field3d
4http://www.openvdb.org/
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Appendix A

Derivative Approximations

A.1 First Order Derivative Approximations

∂u/∂x =
u(i+ 1, j, k)− u(i, j, k)

h
(A.1a)

∂v/∂y =
v(i, j + 1, k)− v(i, j, k)

h
(A.1b)

∂w/∂z =
w(i, j, k + 1)− w(i, j, k)

h
(A.1c)

∂uu/∂x =
1

h
· [u(i+ 1, j, k) · u(i+ 1, j, k)− u(i, j, k) · u(i, j, k)] (A.2a)

∂uv/∂y =
1

h
· [u(i+ 1, j, k) · v(i, j + 1, k)− u(i, j, k) · v(i, j, k)] (A.2b)

∂uw/∂z =
1

h
· [u(i+ 1, j, k) · w(i, j, k + 1)− u(i, j, k) · w(i, j, k)] (A.2c)

∂vu/∂x =
1

h
· [v(i, j + 1, k) · u(i+ 1, j, k)− v(i, j, k) · u(i, j, k)] (A.2d)

∂vv/∂y =
1

h
· [v(i, j + 1, k) · v(i, j + 1, k)− v(i, j, k) · v(i, j, k)] (A.2e)

∂vw/∂z =
1

h
· [v(i, j + 1, k) · w(i, j, k + 1)− v(i, j, k) · w(i, j, k)] (A.2f)

∂wu/∂x =
1

h
· [w(i, j, k + 1) · u(i+ 1, j, k)− w(i, j, k) · u(i, j, k)] (A.2g)

∂wv/∂y =
1

h
· [w(i, j, k + 1) · v(i, j + 1, k)− w(i, j, k) · v(i, j, k)] (A.2h)

∂ww/∂z =
1

h
· [w(i, j, k + 1) · w(i, j, k + 1)− w(i, j, k) · w(i, j, k)] (A.2i)

A.2 Second Order Derivative Approximations

∂2u/∂x2 =
1

h2
· [u(i+ 1, j, k)− 2 · u(i, j, k) + u(i− 1, j, k)] (A.3a)

∂2u/∂y2 =
1

h2
· [u(i, j + 1, k)− 2 · u(i, j, k) + u(i, j − 1, k)] (A.3b)

∂2u/∂z2 =
1

h2
· [u(i, j, k + 1)− 2 · u(i, j, k) + u(i, j, k − 1)] (A.3c)
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∂2v/∂x2 =
1

h2
· [v(i+ 1, j, k)− 2 · v(i, j, k) + v(i− 1, j, k)] (A.3d)

∂2v/∂y2 =
1

h2
· [v(i, j + 1, k)− 2 · v(i, j, k) + v(i, j − 1, k)] (A.3e)

∂2v/∂z2 =
1

h2
· [v(i, j, k + 1)− 2 · v(i, j, k) + v(i, j, k − 1)] (A.3f)

∂2w/∂x2 =
1

h2
· [w(i+ 1, j, k)− 2 · w(i, j, k) + w(i− 1, j, k)] (A.3g)

∂2w/∂y2 =
1

h2
· [w(i, j + 1, k)− 2 · w(i, j, k) + w(i, j − 1, k)] (A.3h)

∂2w/∂z2 =
1

h2
· [w(i, j, k + 1)− 2 · w(i, j, k) + w(i, j, k − 1)] (A.3i)
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Boundary Conditions
The following equations are based off of the equations provided by Griebel et al. (1998).

B.1 No-Slip Boundary Condition

Min X Boundary:

u0,j,k = 0 j = 1, ..., jmax k = 1, ..., kmax (B.1a)

v0,j,k = −v1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.1b)

w0,j,k = −w1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.1c)

Min Y Boundary:

ui,0,k = −ui,1,k i = 1, ..., imax k = 1, ..., kmax (B.1d)

vi,0,k = 0 i = 1, ..., imax k = 1, ..., kmax (B.1e)

wi,0,k = −wi,1,k i = 1, ..., imax k = 1, ..., kmax (B.1f)

Min Z Boundary:

ui,j,0 = −ui,j,1 i = 1, ..., imax j = 1, ..., jmax (B.1g)

vi,j,0 = −vi,j,1 i = 1, ..., imax j = 1, ..., jmax (B.1h)

wi,j,0 = 0 i = 1, ..., imax j = 1, ..., jmax (B.1i)

Max X Boundary:

uimax,j,k = 0 j = 1, ..., jmax k = 1, ..., kmax (B.1j)

vimax,j,k = −vimax−1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.1k)

wimax,j,k = −wimax−1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.1l)

Max Y Boundary:

ui,jmax,k = −ui,jmax−1,k i = 1, ..., imax k = 1, ..., kmax (B.1m)

vi,jmax,k = 0 i = 1, ..., imax k = 1, ..., kmax (B.1n)

wi,jmax,k = −wi,jmax−1,k i = 1, ..., imax k = 1, ..., kmax (B.1o)
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Max Z Boundary:

ui,j,kmax = −ui,j,kmax−1 i = 1, ..., imax j = 1, ..., jmax (B.1p)

vi,j,kmax = −vi,j,kmax−1 i = 1, ..., imax j = 1, ..., jmax (B.1q)

wi,j,kmax = 0 i = 1, ..., imax j = 1, ..., jmax (B.1r)

B.2 Free-Slip Boundary Condition

Min X Boundary:

u0,j,k = 0 j = 1, ..., jmax k = 1, ..., kmax (B.2a)

v0,j,k = v1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.2b)

w0,j,k = w1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.2c)

Min Y Boundary:

ui,0,k = ui,1,k i = 1, ..., imax k = 1, ..., kmax (B.2d)

vi,0,k = 0 i = 1, ..., imax k = 1, ..., kmax (B.2e)

wi,0,k = wi,1,k i = 1, ..., imax k = 1, ..., kmax (B.2f)

Min Z Boundary:

ui,j,0 = ui,j,1 i = 1, ..., imax j = 1, ..., jmax (B.2g)

vi,j,0 = vi,j,1 i = 1, ..., imax j = 1, ..., jmax (B.2h)

wi,j,0 = 0 i = 1, ..., imax j = 1, ..., jmax (B.2i)

Max X Boundary:

uimax,j,k = 0 j = 1, ..., jmax k = 1, ..., kmax (B.2j)

vimax,j,k = vimax−1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.2k)

wimax,j,k = wimax−1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.2l)

Max Y Boundary:

ui,jmax,k = ui,jmax−1,k i = 1, ..., imax k = 1, ..., kmax (B.2m)

vi,jmax,k = 0 i = 1, ..., imax k = 1, ..., kmax (B.2n)

wi,jmax,k = wi,jmax−1,k i = 1, ..., imax k = 1, ..., kmax (B.2o)

Max Z Boundary:

ui,j,kmax = ui,j,kmax−1 i = 1, ..., imax j = 1, ..., jmax (B.2p)

vi,j,kmax = vi,j,kmax−1 i = 1, ..., imax j = 1, ..., jmax (B.2q)

wi,j,kmax = 0 i = 1, ..., imax j = 1, ..., jmax (B.2r)
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B.3 Outflow Boundary Condition

Min X Boundary:

u0,j,k = u1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.3a)

v0,j,k = v1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.3b)

w0,j,k = w1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.3c)

Min Y Boundary:

ui,0,k = ui,1,k i = 1, ..., imax k = 1, ..., kmax (B.3d)

vi,0,k = vi,1,k i = 1, ..., imax k = 1, ..., kmax (B.3e)

wi,0,k = wi,1,k i = 1, ..., imax k = 1, ..., kmax (B.3f)

Min Z Boundary:

ui,j,0 = ui,j,1 i = 1, ..., imax j = 1, ..., jmax (B.3g)

vi,j,0 = vi,j,1 i = 1, ..., imax j = 1, ..., jmax (B.3h)

wi,j,0 = wi,j,1 i = 1, ..., imax j = 1, ..., jmax (B.3i)

Max X Boundary:

uimax,j,k = uimax−1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.3j)

vimax,j,k = vimax−1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.3k)

wimax,j,k = wimax−1,j,k j = 1, ..., jmax k = 1, ..., kmax (B.3l)

Max Y Boundary:

ui,jmax,k = ui,jmax−1,k i = 1, ..., imax k = 1, ..., kmax (B.3m)

vi,jmax,k = vi,jmax−1,k i = 1, ..., imax k = 1, ..., kmax (B.3n)

wi,jmax,k = wi,jmax−1,k i = 1, ..., imax k = 1, ..., kmax (B.3o)

Max Z Boundary:

ui,j,kmax = ui,j,kmax−1 i = 1, ..., imax j = 1, ..., jmax (B.3p)

vi,j,kmax = vi,j,kmax−1 i = 1, ..., imax j = 1, ..., jmax (B.3q)

wi,j,kmax = wi,j,kmax−1 i = 1, ..., imax j = 1, ..., jmax (B.3r)
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Appendix C

Class Diagrams

Figure C.1: The MainWindow class.

Figure C.2: The Obstacle class.
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Figure C.3: The VoxelGrid class.
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Figure C.4: The SmokeSystem class.
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Figure C.5: The GLWindow class.
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Figure C.6: The Emitter class.

Figure C.7: The Sprite struct.

Figure C.8: The Voxel struct.
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