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Introduction

Creating digital hair involves three main procedures: styling, simulation, and rendering. These
tasks are challenging in that hair is a collective of thin, inextensible strands with complex and
varying qualities. Unlike materials like fluid, hair is not as well-studied. However, similar materials
like thread have been modeled, exhibiting behaviors similar to a strand of hair. These techniques
are being adapted to simulate hair not only as single strands, but also its behavior as a
collective. By examining the model of a strand of hair a thin, inextensible rod, it is possible to
achieve more realistic simulations than alternative methods.

Previous Work

Early models of hair simulation focused on mass-spring systems, such as that proposed by
Rosenblum (1991). These models treat hair as chains of hinges attached by stiff springs. The
rigidity of the springs is to maintain the condition that a strand of hair cannot stretch, making it an
inextensible material. While simple to understand and implement, the drawback of these the
mass-spring method is that it cannot model twist and it is difficult to represent characteristics
such as curl. Selle (2008) proposed a mass-spring system in which particles are linked by a
system of tetrahedral springs, making it possible to create curled hairs.

A more thorough history of hair and strand simulations can be found in the survey conducted by
Ward et al (2007) and and the course notes by Hadap (2007). Though they do not include
systems developed in the time since 2007, the fundamentals of the most popular methods and
their practical applications in the industry are well covered.



A Super-Helix with 5 segments

Dynamic Super Helices Model

For the notation of symbols in the equations, scalars will be represented as italics a and vectors
with an overhead line @. Primes indicate spatial derivatives a'= gf

Cosserat Rods

The cosserat model is a continuous model for a strand, which is an extremely thin
material. Bergou (2008) demonstrated efficient ways of simulating such a material, as it
compactly stores information about twist and bend.

Reconstruction

In the discretized model of Kirchhoff rods, the material curvatures for twist and bend
represents its degrees of freedom. Since the rod s € [0,L] is broken down into N segments, the

rod has 3N degrees of freedom. These segments S,where QO (1 <Q<N) can be of different
lengths, but for simplicity it is easier to make all segments the same length.

The generalized coordinates are stored in a 3N vector ¢(7), so that q:0(t) stores
ki, k,, and ko =t and the material curvatures and twists can be explicitly expressed as



N
ki(s, 1) = le qi,0(0) xo(D) »

where y,(t) =1if s €§;,and 0 otherwise (Bertails 2006).

From the generalized coordinates and the material frame, the strand at time tis
reconstructed by integrating along 7, as it is the tangent to the centreline r such that:

(s, 1) = no(s,1)

and 7’ is the space derivative (Bertails, 2006). The beginning of the centreline 7, is clamped to
the starting position of the strand, which would be the vertex from which it is grown. Since the
Darboux vector Q is constant along each element as given by:

Q=Ykn;+QxQ=0

so we can use the Darboux vector of a segment Q in the reconstruction equations. For the
equations we need ‘5) , the length of the Darboux vector, and @ = 5/‘5. , which is the unit vector

aligned with the Darboux vector. We also need the vectors a
given by:

| parallel and a@* perpendicular to @,

a=(@ o)
a=a-a
For the integration, the material frame rotates around ® at the constant rate of Q along the
length of the curve. The angle is given by Q(s —sLQ). Then to reconstruct the material frames we

use
n(s)=7 IQL“ + ﬁl.QLlcos( Q(s —sé )) + @ % ﬁl.Qi'Sin(E(S _SLQ))

for i=0,1,2. Since the curve is continuous, ﬁl.QL =7 lsé, or the material frame at the end of that

segment is equal to the material frame at the beginning of the next segment. Then we integrate

over ny(s ) to get the centreline:

o — =0l _ L — 0L sin(ﬁ(s—sLQ)) _ _ Qll—cos(a(s—sLQ))
fs) =T (s=sg) + g, e WXy Q|

Then the position of the centreline can be propogated as 7; =7(sLQ)

Degenerate cases
For some values of 1,k!, k?, the hair behaves differently.

When t=0,and k' #00rk*#0 , the rod forms an arc of a circle. When k' =k* =0, the rod
forms a straight line, which is twisted if t #0 and untwisted if 1 =0.



t=0,and k' #00rk*#0

K=KE=0

Internal Energy
The dynamics of the super-helix are derived from Lagrangian equations of motion, which model
kinetic energy, internal energy, and dissipation potential. In Bertails (2005), the configuration is
calculated from the energies of the system. The potential energy of the rod is equal to:

Ehair = Eg +Ee
where E, is the potential energy due to gravity and E, is the internal elastic energy.

The eccentricity of the elliptical cross section of the hair is gives the moments of inertia



for the equations. The eccentricity of the ellipse is given by
e=1/1 _1a£2

—ath
r==

and

so that a is the major axis along »; and b is the minor axis along n, (Weisstein 2013b). Then it is
solved for a and b using

a - 2r
1+V1—¢2
b=2r—a

Then the moments of inertia 7, along n,, I, along n,, and the axial moment of inertiaJ are
calculated using the moment of inertia for an ellipse (Weisstein 2013a).

Energy Minimization

The part | struggled with was finding the configuration of the generalized coordinates that
achieved the lowest energy. The idea is to travel in the direction negative to the gradient of the
energy equation, as the the gradient usually leads to a maximum. Some methods to achieve this
might include following the gradient of steepest descent, testing with the Rosenbrock method, or
the Davidon—Fletcher—Powell method (Bertails 2005).

The algorithm is basically (Bertails 2005):

1. Initialize the hair energy and generalized coordinates
2. Until the energy stops decreasing, keep computing the elastic energy, reconstructing the
curve, calculating the potential energy from gravity, and minimize.

Lagrangian Equations of Motion

In Bertails (2005), the method described uses minimizing the potential and elastic
energies of the strand to solve for the configuration of the generalized coordinates. Alternatively,
other sources such as Bertails (2006) use Lagrangian motion to model forces, including gravity,
twist, and collisions. | had originally planned to implement collisions using the penalty forces like
in Bertail (2005).

Initialization
The most important initial values for each strand are determined by the clamped root
position and the shape of the helix. The initial axis of the material frame, n,, is the normalized

tangent of the strand and given by the normal to the vertex from which the hair is grown. The
helical radius gives the starting curvatures t,k!, &%, given by equations:



o =AL

=2
k=%
=0

where ' is the helical radius and A#is the helical step.

From the normalized tangent r,the remaining axes of the material frame can be calculated. To
get an orthonormal basis from the unit vector n,, the method proposed by Hughes and Mdller
(1999) is used as it is simple and efficient. In this method, the smallest component of the vector
is set to 0, while the other two components are swapped and the first is negated. This yields the
vector n,, so the last vector n,is calculated by taking the cross product ny x n; .

The default values | chose came from Bertails (2005) and Bertails (2006), which were taken
from measurements of real clumps of hair. The papers give different values according to the
type of hair desired, which range from thick and straight for smooth Asian hair, slightly curly for
wavy and curly hair, or frizzy and tightly curled for African hair.

While incomplete, my original plan had also been to implement a styling tool for the super helix
model that perhaps could make the unintuitive system easier to use. Since the natural
curvatures of the hair define its initial resting shape, and the energy equations make use of the
natural curvatures in calculating its potential energy, it would be simple to export the generalized
coordinates as a way to save a hairstyle. This could also make it easier to save simulations as
the generalized coordinates over each time step could be written out to a file and played back.

Results

The complication of the energy minimization step and trying to figure how to calculate the
gradients and directions to solve for the minimum was where | ran into trouble. While the logic of
finding the configuration of the curvatures that would yield the lowest energy made sense,
calculating that configuration proved to be an entirely different matter. In Bertails (2005), the
energy minimization step is barely mentioned, making it look deceivingly simple. | believe | set
myself up for failure trying to tackle these equations without the mathematical background
necessary. At the surface the equations seemed fair enough, but implementing them was
much, much more difficult than | anticipated.

| had attempted to solve the equations by importing math libraries for solving the minimization
step, but the trouble was more about being unable to derive the equations for the gradient. There
are a multitude of math libraries, though | found little describing how to utilize them to solve for
multidimensional systems. As the super helices model depends on generalized coordinates
around local material frames, solving for directions of the gradient and steps to take were far
more confusing. Perhaps the approach of using the Lagrangian equation for motion may have
been more successful,.



The papers gloss over many of the crucial details assuming an audience well versed in physics,
such as how to arrive at a configuration of the generalized coordinates from the dynamics
equations. There is little said about time integration in any paper, making it unclear if the
minimization was supposed to go until the minimum energy configuration was reached
completely for a time step, or if each trial for finding the lowest energy might be a time step. The
same system also switches between different methods of calculating the motion, going from
energy minimization to Lagrangian motion. Perhaps this topic would have better been suited to
an implementation in a technical computing program like MatLab. | spent entirely too long thinking
| was so close to figuring it out instead of abandoning the topic. Instead of being stuck on this
energy minimization step, | should have used the time to finish other components like the
growing the hair from a mesh, interpolating strands, and create a user interface.

Conclusion

The super-helices model for hair simulation is a very unintuitive method, yet realistic results for
hair simulation are known to have been achieved. The details of the simulation are complex and
scattered through different papers, and some important parts do not seem to be easily studied
without a background in complex mathematics. While deciphering the inconsistencies of the
notation and equations makes implementation difficult, the most difficult part was switching from
the mindset of particle dynamics to a discretized adaption of a continuous model.

Overall, the intimidating task of untangling these equations proved to be too much for me to take
on in this project. Perhaps it would have been achievable if | had spent less time earlier in the
project looking into implementations with OpenCL and trying to decide exactly what the project
should focus on, and rather let those ideas develop as the project came along. However, this
project of implementing the Cosserat rod model and its reconstruction as a discrete system is a
solid foundation for continuing work with achieving simulated behavior, styling tools, and potential
as a plugin for other packages.
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