
Soft Body Deformation
Dynamics Based on Shape

Matching

Honey Sharma

Master of Science,

Computer Animation and Visual Effects

August, 2013

Contents

Table of contents . i

List of figures . iii

Abstract . iv

Acknowledgements . v

1 Introduction 1

2 Related work 4

3 Technical Background 7

3.1 Meshless Animation . 7

3.2 Integration Schemes . 9

3.2.1 Modified Euler Integration 9

3.3 The Algorithm . 10

3.3.1 Shape Matching 11

3.3.2 Extensions . 13

4 Design and Implementation 17

4.1 Design . 17

4.1.1 Architecture Description 17

4.2 Collision Handling . 22

4.2.1 Collision Detection 22

4.2.2 Collision Response 24

4.2.3 Spatial Partitioning 24

5 Applications and Results 25

5.1 Basic . 25

5.2 Linear . 26

i

5.3 Quadratic . 27

5.4 Clustering . 29

6 Conclusion 32

6.1 Summary . 32

6.2 Known bugs and issues 33

6.3 Future work . 33

7 References 34

References 35

ii

List of Figures

2.1 Two node mass spring system by Wikipedia 4

2.2 Free Form Deformation. 5

3.1 An explicit scheme integrating linear spring by Muller et

al. (2005) . 10

3.2 The original shape that is xoi is matched with the shape

xi and these are pulled towards the goal positions gi by

Muller et al. (2005) . 11

3.3 The extensions presented by Muller et al. (2005) 13

3.4 Overlapping regions sharing the particles. 16

3.5 Clustering with different number of clusters (Muller et al.

(2005) . 16

3.6 Plasticity presented by Muller et al. (2005) 16

4.1 The complete class diagram. 18

4.2 The sphere plane collision. 22

4.3 The sphere box collision (Ericson, 2005). 23

iii

Abstract

Soft body deformation has become one of the areas of intense research

and recently has attracted a lot of attention specially towards the real

time implementation which is not only computationally is cheap but easy

and efficient to implement. One of the recent breakthroughs in simula-

tion of soft bodies is ”Meshless Deformation Based on Shape Matching”.

This thesis will explore the concepts behind the implementation of this

technique in detail along with handling of collisions. The results achieved

includes the implementation of the basic algorithm along with four ex-

tensions mentioned in the paper.

iv

Acknowledgements

I would first like to thank Dr. Jian Chang and Dr. Xiaosong Yang for

helping me decide this project and guiding me throughout the course

of the implementation. I would also like to thank Jonathan Macey and

Mathieu Sanchez for always helping me with everything which also in-

cludes answering to my silly quesitons.

v

Chapter 1

Introduction

Soft body deformation is an area in computer graphics emphasising on

visually convincing physical simulation of deformable entities. Unlike

rigid objects, when an external force is applied on a deformable or a soft

body it will change shape and it is expected to retain its original shape

to a certain extent. Thus, soft objects in virtual environment should also

exhibit this property to increase the authenticity and realism in various

applications like games, films and even scientific visualization like virtual

surgery. Due to the broad spectrum of soft body deformation it can be

used to simulate quite different range of materials like skin, muscle, cloth

and various other things.

Most of the methods for simulating soft bodies provide physically plau-

sible results but there are other methods as well which are known to

produce physically accurate simulation such as Finite Element Meth-

ods.

Problem statement

Recent breakthroughs in various fields of computer graphics be it hard-

ware or rendering have enabled the development of realistic real time

simulations. But inspite of these improvements most of the current ap-

1

plications are using the approach based on rigid bodies because of sim-

plicity, ease of control and easily available libraries. Another reason can

be the efficiency and cost of computation which can spike up while en-

suring the stable solution.

In 2005 Muller et al. introduced “Meshless Deformation Based on

Shape Matching” as a new approach to solve all the underlying issues

by providing a geometrically motivated model which is simple enough to

ensure the ensure the efficiency, stability and controllability.

Objectives and contributions

The following were the objective of the thesis and their accomplishment

will be analysed in the end of the thesis.

1. Implement the basic algorithm to simulate a deformable object as

presented in the paper by Muller et al. (2005).

2. Implement the other extensions given in the paper like:

• Rigid Body Dynamics.

• Linear Deformation.

• Quadratic Deformation.

• Cluster Based Deformation.

• Plasticity.

3. Implement collision detection and response for deformable bodies.

Structure

The following is the overview of the thesis:

Chapter 2 : Related Work - discusses the approaches introduced by

various authors to simulate the deformation of soft bodies, particularly

2

those which have influenced this project.

Chapter 3: Technical Background - discusses the approach presented

in the paper in detail along with all the extensions.

Chapter 4: Implementation - discusses the in depth implementation

of the concepts presented in the paper including all the algorithms used

to accomplish them along with problems or challenges faced during the

course of implementation.

Chapter 5: Application and Results - discusses the results of the im-

plementation and its applications in different forms.

Chapter 6: Conclusion - discusses the known bugs, limitations and

issues along with future work to enhance the current tool.

3

Chapter 2

Related work

There are many approaches to realise the simulation of deformable bod-

ies:

Rigid-body Dynamics can also be used to deform an object by us-

ing multiple connected rigid bodies with constraints and for rendering

purpose a surface mesh can be generated, for example by using matrix-

palette skinning as demonstrated in Havok physics engine.

Mass Spring System is represented by a set of nodes connected by

an elastic spring following a modification of Hook‘s law. The set of

nodes and springs can form an one dimensional (hair strand or rope) ,

two dimensional (cloth) or a three dimensional (jello cube) network (see

Figure 2.1). By applying the Newton‘s second law of motion to a node

or point mass comprising of external as well as spring forces a system of

differential equations can be obtained which can be solved by methods

for computing Ordinary Differential Equations (ODEs).

Finite Element Method is traditionally being used in serious engi-

neering but it is also gradually finding its roots in feature films and

Figure 2.1: Two node mass spring system by Wikipedia

4

Figure 2.2: Free Form Deformation.

gaming industry. In 2001 Muller et al., presented a hybrid technique

to simulate deformation and fracturing of materials in real time. They

were calculating the effects of impact forces at discrete collision events.

The deformations are computed based on internal stress tensor. The

underlying technique uses finite elements to calculate static equilibrium

response. In 2009 Parker et al., simulated real time deformation and

fracturing using corotational tetrahedral finite element method. Using

the underlying method they created an engine robust and fast enough

to handle any situation at real time.

This approach is more physically accurate and solves partial differen-

tial equations to simulate an elastic material but it is computationally

more expensive compared to the other less physically accurate models

even with recent breakthroughs, which makes it less suitable for many

real time applications.

Free Form Deformation or FFD was introduced by Serderberg and

Parry in 1986 and since then it has become an important technique in

computer graphics which allows to deform an object by deforming a par-

allelepiped region or lattice in which it is enclosed. The deformation of

lattice is based on hyper patches that are similar to parametric curves

like Bzier or NURBs (see Figure 2.2).

Shape Matching is a different approach on simulating deformable ob-

jects by managing the point based objects without bothering about con-

5

nectivity information unlike finite element methods. Here the target

positions are approximated by generalizing shape matching of unmod-

ified state with modified state of point cloud. According to approach

forces are applied to the points or the particles to move them towards

their original shape. Rotation of the deformable object must be calcu-

lated properly by using polar decomposition.

In 2007 Rivers et al., presented a lattice based shape matching tech-

nique to approximate volumetric large deformation dynamics for simu-

lation. They introduced a fast lattice based shape matching (FastLSM)

to simulate many soft bodies in real time on CPU.

The various approaches mentioned above can be divide into two cate-

gories, namely Physically Based and Non-Physically Based. Both

approaches have their respective advantages and disadvantages. While

physically based approaches are more accurate and parameters can be

taken from real world objects for example Finite Element Method but

they are computationally expensive and on the other hand non-physically

based approaches are less accurate but cheap to compute but in this case

parameters cannot be taken from the real world objects for example Mass

Spring System and Meshless Shape Matching.

6

Chapter 3

Technical Background

The main concept behind meshless deformation based on shape match-

ing is to provide a simple model represented as points with mass which

is easy to implement and can be animated like a particle system without

connectivity information which makes it ideal for real time applications

like games as no volumetric structure is needed and each particle is up-

dated individually which makes it efficient, unconditionally stable with

less memory requirements.

3.1 Meshless Animation

Almost all the physically based simulations like rigid body dynamics,

fluid simulation and others require the understanding of the Newton‘s

second law of motion. It is important to have a clear understanding of

the dependency among force, acceleration, velocity and distance. The

forces are generated by derivations from equilibrium which accelerate the

object back to its equilibrium state.

And in order to calculate the location of the object acceleration and

velocity and are numerically integrated with respect to time and deriva-

tion is other way round, the velocity is the derivation of the location

with respect to time and acceleration is the derivation of velocity with

7

respect to time. Mathematically it can be represented as:

v(t) = x(t) (3.1)

a(t) = v(t) (3.2)

where, x is position, v is velocity, a is acceleration and t is time.

Newton‘s law of motion gives the relation between the force, mass and

acceleration of an object. It depicts that how much force should be

applied to accelerate an object of certain mass.

F = ma (3.3)

It is one of the most important equation which shows how the location

and the velocity of an object will be affected with the change in the force.

As mentioned above that acceleration is the derivation of velocity with

respect to time and hence it will change when there is a change in force

which in turn, will also change the location.

The gravitational acceleration or simply gravity is multiplied with mass

to generate external force which is added to each particle as h
fext(t)

mi

where, fext(t) is the external force which is same for every particle, mi

is the mass of each particle and h is the time step. Since gravity does

not depend on the actual algorithm of shape matching so it can easily

be added to each particle by increasing the velocity in each step.

8

3.2 Integration Schemes

The most important issues in numerical integration are efficiency and

stability. Implicit integration is stable without depending on the time

step but it is very expensive to compute because it is required to solve

a system of equations that are expensive to calculate on the other hand

explicit integration is faster and but it is not unconditionally stable.

3.2.1 Explicit Euler Integration

The explicit Euler integration or forward Euler integration is the sim-

plest of all integrators solving ordinary differential equations. It takes

into account past values f(x) and its state derivatives hf ′(x).

f(t+ h) = f(x) + hf ′(x) (3.4)

3.2.2 Implicit Euler Integration

The implicit Euler integration or backward Euler integration scheme

solves the ordinary differential equations but requires to take one step

ahead for integration hf ′(x+ h).

f(t+ h) = f(x) + hf ′(x+ h) (3.5)

3.2.1 Modified Euler Integration

Consider an example of mass spring system where force is:

f = −k(x(t)− lo)

where, k is the spring constant, lo is the spring length and one point is

fixed at the origin and the other point is free with mass m The velocity

9

Figure 3.1: An explicit scheme integrating linear spring by Muller et
al. (2005)

and position can be calculated with modified Euler integrator as:

v(t+ h) = v(x) + h
−k(x(t)− lo)

m
(3.6)

x(t+ h) = x(t) + hv(t+ h) (3.7)

The velocity is calculated by explicit Euler step and position is calculated

by implicit Euler step.

3.3 The Algorithm

As discussed briefly above that the main idea behind the given algorithm

is to provide a simple model which is represented by a set of particles

with initial positions x0i and masses mi without any interactions and

connectivity among the them. But they do response to the external force

and the collisions. At each time step the particles are moved towards

their goal position and to calculate the goal positions each particle’s

original position x0i is matched with the actual position xi. And the

velocity of the particle is changed and the object tries to retain its original

shape based on the difference to the original shape (Figure 3.2).

10

Figure 3.2: The original shape that is xoi is matched with the shape xi
and these are pulled towards the goal positions gi by Muller et al. (2005)

3.3.1 Shape Matching

The main idea behind the algorithm is to take two set of positions,

namely original position x0i and actual position xi and find translation

vectors t0 and t and the rotation matrix R which gives:

∑
i

wi(R(x0i − to) + t− xi)2 (3.8)

where, wi are weights but considered as masses (wi = mi). The trans-

lation vectors are in turn the center of mass of initial and actual shape

which can be calculate by taking the partial derivate with respect to to

and t, i.e.

to = xocm =

∑
imix

o
i∑

imi

(3.9)

t = xcm =

∑
imixi∑
imi

(3.10)

It is simple to understand why it depends on the two translations and

one rotaton, first translate the object to the origin and then perform

rotation and then translate it back to its position.

In order to find the rotation which is a little bit more involved, we calcu-

late the relative positions of particles with respect to its center of mass:

qi = xoi − xocm (3.11)

pi = xi − xcm (3.12)

11

Now place the equations (1.11) and (1.12) in equation (1.8).

∑
i

mi(Rqi − pi)2 (3.13)

The problem of finding the optimal rotation matrix has been reduced to

finding the optimal linear transformation matrix A.

∑
i

mi(Aqi − pi)2 (3.14)

To calculate linear transformation matrix, set the derivates with respect

to all the enteries of matrix A to zero.

A = (
∑
i

mipiq
T
i)(
∑
i

miqiq
T
i)−1 = ApqAqq (3.15)

The second term, that is Aqq gives a symmetric matrix which only has

scaling information and no rotation information. The rotation part is

contained in the term Apq which can be found using polar decomposition.

Apq = RS (3.16)

where, S =
√
AT

pqApq gives the symmetrix part while R = ApqS
−1.

Hence, the goal position can be calculated as:

gi = R(xoi − xocm) + xcm (3.17)

The initial center of mass xoi , qi and the matrix Aqq can be pre-computed.

At each time step, we need to calculate the 3x3 matrix Apq =
∑

imipiq
T
i .

And the matrix S can be calculated by diagonalising the matrix AT
pqApq

using Jacobi rotations.

3.3.2 Extended Integration The goal position gi calculated in equa-

tion (1.17) can now be used to create an integrator which avoids over-

shooting:

vi(t+ h) = v(t) + α
gi(t)− xi(t))

h
+ h

fext(t)

mi

(3.18)

12

Figure 3.3: The extensions presented by Muller et al. (2005)

xi(t+ h) = x(t) + hvi(t+ h) (3.19)

where α = [0...1] controls the stiffness of the deformable object. The

differnce between this scheme and the one discussed earlier (equation

(1.6) and (1.7)) is treatment of the internal elastic forces. When α = 1

then particles move directly towards the goal position and when α < 1,

they will move towards the goal position.

Since the shape matching is done using center of mass which ensures

that all the impulses are applied in equations (3.18) and (3.19) add up to

zero and conserve the momentum. Even considering mass as the weights

while calculating the matrix Apq enforces the angular momentum.

3.3.2 Extensions

The authors have extended the basic algorithm discussed so far into five

other extensions and out of those four have been implemented as the

part of this thesis.

Rigid Body Dynamics

Rigid bodies can be simulated by assigning α = 1 which ensures that the

particles move to goal position instantly at each time step (Figure 3.3).

In this case positions are translated and rotated with respect to initial

position.

13

Linear Deformation

Linear deformations extends the range of deformations by allowing an

object to shear and scale (Figure 3.3). So far only rotation was consid-

ered in calculating the goal position by in this case linear transformation

matrix A calculated in equation (1.15) will be taken into account to per-

form the shape matching from initial position to the actual position. An

additional parameter β will be added to the combination of linear trans-

formation matrix A and rotation matrix R for calculating goal position

equation.(?)

gi = βA+ (1− β)R (3.20)

where parameter β = [0...1] controls the amount of linear deformation,

the more value of beta means that shape will be deformed from its origi-

nal shape or will not retain its original shape. To ensure that the volume

remains conserved the matrix A is divided by the term 3
√
det(A) which

makes sure that det(A) = 1.

Quadratic Deformation

Quadratic deformation further extends the range of motion by introduc-

ing twist and bends (Figure 3.3). Again the equation to calculate the

goal position will be updated. The transformation matrices (3x9) for

performing the quadratic deformation are quite larger when compared

to the linear deformation (3x3) where the only transformations allowed

were scaling, rotation, translation and shear. The equation for goal po-

sition is given as:

gi = [AQM] q̃i (3.21)

where gi ∈ R3, q̃i =
[
qx, qy, qz, q

2
x, q

2
y, q

2
z , qxqy, qyqz, qzqx

]T ∈ R9, A ∈ R3x3

which holds the coefficient of linear deformation, Q ∈ R3x3 which holds

the coefficient of the quadratic deformation and M ∈ R3x3 holds the

mixed terms. We can minimize the equation (1.13)

∑
i

mi(Ãqi − pi)2 (3.22)

14

where Ã = [AQM] q̃i ∈ R3x9 The quadratic transformation will be:

Ã = (
∑
i

mipiq̃
T
i)(
∑
i

miq̃iq̃
T
i)−1 = ÃpqÃqq (3.23)

The symmetric matrix Ãqq ∈ R9x9 and q̃i can again be pre computated.

And the rotation matrix is R̃ ∈ R3x9 = [R00]. Similar to linear deforma-

tion goal positions can be calculated as:

gi = βÃ+ (1− β)R̃ (3.24)

Cluster Based Deformation

To further extend the spectrum of motion cluster based deformation is

introducted where particles are divided among the overlapping clusters

by subdividing the bounding space around mesh into overlapping bound-

ing regions (Figure 3.4). For each cluster shape matching is performed

to calculate the goal position and for each particle which has more than

one goal position, the average of the goal position is taken before the

integration to calculate velocity and position (Figure 3.5). Each cluster

gives the following term

4vi = α
gci (t)− xi(t)

h
(3.25)

to all the particles contained in it, where gci (t) is the goal position of the

particle for cluster c.

Plasticity

The idea behind plasticity is to retain the deformed shape when the ap-

plied force exceeds certain threshold. The algorithm to perform linear

deformation can be extended to simulate plasticity. According to the

equation (3.16) we obtained a symmetrix matrix S = RTA which stores

the deformation of the particles before any rotation. The plastic de-

formation can be store in matrix Sp which is initialized to the identity

15

Figure 3.4: Overlapping regions sharing the particles.

Figure 3.5: Clustering with different number of clusters (Muller et al.
(2005)

matrix I. The plasticity state matrix is only changed when actual defor-

mation ||S−I||2 (squared determinant) exceeds the given threshold cyield

which means lesser the value of cyield, the lesser the amount of force is

required for an object to undergo plasticity (Figure 3.6). The plasticity

matrix Sp can be updated at each time step as:

Sp ← [I + hccreep(S − I)]Sp (3.26)

where cyield and ccreep controls the plasticity and h is the time step.

Figure 3.6: Plasticity presented by Muller et al. (2005)

16

Chapter 4

Design and Implementation

The main motive behind the development of this project was to create an

efficient system which can simulate soft body deformation of an object

efficiently and can be extended easily for furture improvements.

4.1 Design

The Figure 4.1 is the complete class diagram of the implementation.

4.1.1 Architecture Description

The important classes are as follows:

Mesh3D is a subclass of ngl::Obj class which is responsible for loading

and drawing a wavefront .obj file. It takes the positions of the vertices of

a mesh and assign particles at those positions. As there is no information

in the paper on how to distribute the particles on a surface mesh this

assumption of allocating the particles at the position of vertices was

taken.

It calculates the bounding box and sphere around the particles for various

purposes like clustering, collision detection and optimization.

It is also responsible for calculating the overlapping bounding boxes to

17

Figure 4.1: The complete class diagram.

18

implement clustering. For now clustering can only be done on individual

axes like x, y and z.

Finally it redraws the mesh after every time step by updating the old

vertex positions.

BoundingRegion is subclass of ngl::BBox which contains the func-

tionalities to calculate the the closest point and squared distance for

collision detection and response.

It is also has the functionality to determine whether it contains a particle

or not.

Particle class is one of the most important classes. According to the

paper an object is represented as a set of particles, it can be a point or

can also be represented as a tiny sphere. To keep the implementation

simple the particles are represented as small spheres. These particles

not only have position (center of the sphere), velocity and radius but

also have the original, goal and new position paramters along with mass

which is essential in calculating the center of mass to perform shape

matching. It can also store multiple goal positions in case it is shared

among different clusters so that the average of the goal positions can be

take before integration step as described in section 3.3.3.4

Every particle is updated individually at each time step. According to

equations (3.18) and (3.19), the acceleration is calculated to get the ve-

locity and position along with the external forces like gravity. And after

every update, a check is performed to detect and response to collisions

with the environment and other deformable objects. (Figure 5.4 showing

particles of a mesh)

Cluster is the subclass of BoundingRegion class, it performs the check

whether it contains the particles or not and if it does then they are

stored to perform shape matching on them. All the pre computations

mentioned earlier like xoi , qi and the matrix Aqq are performed and at

every time step it is updated to perform two important steps:

19

FOR EACH PARTICLE

Calculate external forces like gravity

Update goal position

DeformableBody is the class representing the soft body. It takes

the parameters like emit position and mesh name to create and draw

the input surface mesh. Just like cluster class it also needs to perform

the pre computations for shape matching of the particles associate to it

when clustering is not enabled and if clustering mode is enabled then it

is responsible to update every cluster.

It is also responsible for performing integration on each particle at every

time step and this step is independent of enabling and disabling of cluster

mode.

FOR EACH PARTICLE

if clustering is disabled, then

Calculate external forces like gravity

Update goal position

else

update cluster

integrate

update mesh

Mat3 is a simple 3x3 matrix class for not only performing regular ma-

trix opertations but also sligtly adavanced ones also. Mat3 is capable of

calculating the rotation matrix R = ApqS
−1 mentioned in equation (3.16)

of Chapter 3 which is required at each step of the implementation. Cal-

culation of rotation matrix is slightly complicated since it involves the

computation of square root of the matrix S =
√
AT

pqApq. So to get it, we

need to calculate the polar decomposition by diagonalizing the matrix

AT
pqApq using Jacobi rotations.

It also helps in computing the inverse of the matrix by calculating the

eigen values and eigen vectors because the conventional way of calculat-

ing the inverse does work well in case of linear deformations of arbitary

20

meshes.

After calculating the diagonal matrix it is easy to calculate the matrix

S by taking the square root of its values.

ShapeMatching is the class performing all necessary implementation

explained in Chapter 3. It just requires a set of particles on which we

want to perform the shape matching and it perform the required steps

to calculate the goal position depending on the selected deformation

mode. It calculates the original and actual center of masses xocm and

xcm and relative coordinates pi and qi and matrices R, Apq, Aqq and A

for default and linear mode and q̃i, R̃, Ãpq, Ãqq and Ã for quadratic

mode. As we know from section 3.3.3.3 of chapter 3 that quadratic

deformation requires as large as 3x9 and 9x9 matrices. Matrices upto

3x9 can be calulated using conventional two dimensional arrays as they

do not involve any complicate calculation but the matrix Ãqq ∈ R9x9 and

we need to calculate it’s inverse for quadratic deformation. In order to

calulate the inverse of this matrix, boost matrix libray was used which

does so by computing LU decomposition.

Utilities is the class responsible for storing the values from user inter-

face events and also for passing them to the appropriate classes where

this data is required. Considering the fact that this data is consistent

throught the implementation or in order words it cannot be changed

apart from user interface this class has been designed as a singleton.

Scene is the class which sets up the environment for simulation. It

takes the user input to add an object randomly and maintains a list of

objects on the scene it then updates each DeformableBody at each time

step and checks whether it is colliding with another DeformableBody or

not through DeformableBodyOctree. To make the system more efficient

the each DeformableBody is added by a DeformableFactory.

21

Figure 4.2: The sphere plane collision.

Interface class is mainly responsible for receiving the user interface

events related to mesh and simulation and storing their values in the

class Utitlities so that they can be made available.

Renderer class is responsible for handling the drawing routines which

is quite evident from its name. It also update the Scene at each time

step. The time step is also corrected using the approach suggested by

Fiedler (2006).

4.2 Collision Handling

Collision handling has been the most trickest of all the implementations.

It was the one which took a lot of time because of the fact that paper

does not provide any information regarding the collision handling of an

object deforming through a set of particles. As mentioned in the pa-

per that there is no connectivity information among the particles which

makes it more complicated to understand that how collision detection

and importantly collision response should work.

4.2.1 Collision Detection

Collision detection with the environment such as walls is pretty straight-

forwad. A simple sphere to plane collision detection was performed. As

we already know that the particles are assumed to be small spheres with

certain position, velocity and radius. These particles are checked against

a plane represented as wall(a, b, c, d) (Figure 4.2).

One of the most complicated part was to detect collisions among two

22

Figure 4.3: The sphere box collision (Ericson, 2005).

soft bodies. It was really difficult to understand how one can detect

collisions when the particles do not have any connectivity information

ruling out the option of using the conventional methods. Finally after a

lot of considerations and trying out different options a very simple sphere

to box collision detection method was used. Where collision among every

particle is checked against the bounding box of other (Figure 4.3). It is

not only simple to detect but it greatly improves the efficiency of the

entire system compared to the particle against particle collision which

was initially used and discarded because of these reasons:

(1) In order to detect proper particle to particle collisions the mesh

should be sampled enough that the particles should not penetrate the

other object from the space between two particles

(2) And if we sample the mesh enough so that there is no chance of

missing the collisions then the system becomes too slow to be real time.

(3) And lastly if we think of detecting the collision among the particle

of one object with the edge or the face of the other object then it is not

only slow but also breaks the notion meshless deformation where there

is no connectivity information among the particles.

Another important issue not mentioned in the paper is, what if two

clusters of the same surface mesh collides with themselves as sphere to

bounding box collision detection does not work efficiently may be because

there are particles shared among the clusters.

23

4.2.2 Collision Response

Responding to the collisions was once again a very time consuming issue.

Getting correct collision response for wall was simple.

But getting proper collision response for two colliding soft bodies was

very challenging. Though still collision response is not efficient enough

but when applied with correct parameters it does work quite well.

4.2.3 Spatial Partitioning

Even after taking a very simple approach for detecting the collision

among the two soft bodies, still it was not that efficient to simulate ob-

jects more than a certain amount. To over come this issue Octree spatial

partitioning was used which recursively subdivides the given three di-

mensional space into eight octants. There were certain issues which had

to be considered before applying this as while detecting collisions among

objects, the collision of a particle was checked against the bounding box,

so to check the position of the particles in the octree bounding spheres of

the objects were taken into account. The results of this implementation

will be discussed later.

24

Chapter 5

Applications and Results

As mentioned earlier that apart from basic algorithm there are five other

extensions and for the purpose of this thesis four out of five have been

implemented.

Here are the few examples of the various implementations.

5.1 Basic

25

Figure 5.1: The images are showing the basic algorithm for two

different alpha values. For the image above the α = 1 and for the image

below α = 0.6.

And we already know that α controls the stiffness and α = 1 gives almost

rigid object.

Figure 5.2: A total of ten duck models are simulated having 15,220

particles.

5.2 Linear

Figure 5.3: The linear deformation is shown using the a cube where

left is the state before collision with the wall and right is the

deformation obtained after it with is controlled by β.

26

Figure 5.4: The linear deformation of a duck is represented by

particles only.

Figure 5.5: The deformation of different objects in linear mode.

5.3 Quadratic

Again the output of quadratic deformation can be best representated by

particles on a cube.

27

Figure 5.6: The left side of the image is showing the state before

collision and right one is after collision.

It can be noted that the cube is slightly curved due to quadratic defor-

mation.

Figure 5.7: Multiple duck models are simulated using quadratic

deformation.

28

5.4 Clustering

Clustering helps in increasing the freedom of deformation. Here are few

results obtained through it.

Figure 5.8: The image on the left deformes a bar using three clusters

and the right one is using five clusters.

With the increase in the number of clusters the degree of deformation is

also increase and it becomes more smooth.

Figure 5.9: Another example showing the deformation using different

number of clusters and different types of objects.

Below is the car model deformed with various modes and number of

clusters.

29

Figure 5.10: The above model is deformed with two clusters and the

below one is deformed with five clusters. Both cases are deformed

under default deformation.

Note that the above car model has more than 10,000 particles.

One more example of an old car deforming under linear deformation is

shown below.

30

Figure 5.11: The above model is deformed with two clusters and the

below one is deformed with five clusters. Both cases are deformed

under linear deformation.

Figure 5.12: A comparision the time complexity of each model with

the number of particles simulated by Muller et al. (2005).

31

Chapter 6

Conclusion

A lot of time was spent in researching about the various implementations

followed to perform soft body deformation. Meshless shape matching is

definitely one of the fastest algorithm to simulate soft bodies in real time.

It can efficiently be included in almost all the environments requiring the

real time interaction such as games and virtual surgery. This approach

can successfully be implemented for a volumetric tetrahedral mesh.

6.1 Summary

Initially the goal of implementing the entire paper was set but unfor-

tunately one could not be achieved due to the time constraints that it

Plasticity. Rest of the achieved goals are as follows:

• Successfully implemented the basic algorithm.

• Successfully implemented four out of five extensions given in the

paper.

• A very basic collision detection and response methods have been

implemented to avoid collisions among soft bodies and environment

and also among soft bodies themselves.

• A proper user interface is also provided.

32

6.2 Known bugs and issues

There are some known bugs which still need attention:

• Sometimes Quadratic deformation mode behaves unexpectedly and

does not produce any simulation resulting the disappearing parti-

cles and in turn mesh.

• Because of unexpected behaviour of quadratic deformation the

clustering can not be done with this mode. That is why there

are only two modes available for clustering.

The most important limitation is due to the lack of efficient collision

detection and spatial partitioning methods it is really difficult to simu-

late large amount of soft bodies. Soft bodies upto ten to twelve can be

simulated efficiently with nearlly 15,000 to 20,000 particles. It is recom-

mended to use low resolution mesh if more number of soft bodies are

needed to be simulated.

There is one more drawback, if the emit position of the soft bodies is

same then the octree spatial partitioning fails to optimize the system.

6.3 Future work

The following are the task which should be done to improve the current

implementation.

• Implement efficient collision detection and response methods.

• Implement plasticity as mentioned in the paper.

• Implement a plugin or a tool for any 3D software package.

• GPU implementation can be done to improve the over all efficiency

of the system.

• Algorithm can be manipulated to perform fracturing, tearing and

cutting operations.

33

Chapter 7

References

anon, no date. Technical Game Development. http://web.cs.wpi.

edu/~imgd4000/d07/slides/Physics.ppt [Accessesd 07 Aug 2013].

Ericson, C., 2005, Real - time Collision Detection. Second Edition.

Burlington USA : Morgan Kaufmann Publishers.

Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite element

for robust simulation of large deformation. In Proceedings of ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation 2004, Aire-

la-Ville, Switzerland, 131-140.

Muller, M., Dorsey, J., Macmillan, L., Jagnow, R., and Cutler, B.

2002. Stable Real-Time Deformations. In Proceedings of ACM SIG-

GRAPH Symposium on Computer Animation 2002, 49-54.

Muller, M., and Gross, M. 2004. Interactive virtual materials. In of

Graphics Interface 2004, Ontario, Canada, 239-246.

Muller, M., Heidelberger, B., and Gross, M. 2005. Meshless Deforma-

tions Based on Shape Matching. In Proceedings of ACM SIGGRAPH

2005, New York, USA, 471-478.

Muller, M., McMillan, L., Dorsey, J., and Jagnow, R. 2001. Real-time

simulation of deformation and fracture of stiff materials. In Proceedings

of Eurographics Workshops, Eurographics Association 2002, 99-111.

Rivers, R. R., and James, D. L. 2007. FastLSM: fast lattice shape

34

http://web.cs.wpi.edu/~imgd4000/d07/slides/Physics.ppt
http://web.cs.wpi.edu/~imgd4000/d07/slides/Physics.ppt

matching for robust real-time deformation. In Proceedings of ACM SIG-

GRAPH 2007, New York, USA.

Parker, E. G, and O Brien, J. F. 2009. Real-time deformation and

fracture in a game environment. In Proceedings of ACM SIGGRAPH

2004/Eurographics Symposium on Computer Animation 2009, 165-171.

Sederberg, T. W. and Parry, S. R. 1986. Free-form Deformation of

Solid Geometric Models. In Proceedings of Communications of ACM

1986, 20(4) 151-160.

Voigt, H., Flower D., and Weisser, D. 2006. Group Report on Meshless

Deformation, University of Auckland.

35

	Table of contents
	List of figures
	Abstract
	Acknowledgements
	Introduction
	Related work
	Technical Background
	Meshless Animation
	 Integration Schemes
	Modified Euler Integration

	The Algorithm
	Shape Matching
	Extensions

	Design and Implementation
	Design
	Architecture Description

	Collision Handling
	Collision Detection
	Collision Response
	Spatial Partitioning

	Applications and Results
	Basic
	Linear
	Quadratic
	Clustering

	Conclusion
	Summary
	Known bugs and issues
	Future work

	References
	References

