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Abstract

Extracting a polygonal mesh from an existing scalar field has been a

discussed topic over many years in the Computer Graphics field. Many

algorithms have been developed which perform the task to a satisfac-

tory level. But only a few claim to solve all known existing problems.

However, due to greater complexitytheir usage never become widespread.

One such algorithm is the Cubical Marching Squares (CMS) Ho et al.

(2005), which claims to solve nearly all issues which other algorithms

face. Now, a decade after its conception, any further research on it is

scarce, and there are hardly any implementations. This thesis verifies its

plausibility by developing an isosurface extraction library loosely based

on a partial implementation of the CMS algorithm.

Keywords: Isosurface Extraction, Implicit Surfaces, Scalar Field Poly-

gonisation, Meshing
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Chapter 1

Introduction

1.1 Problem statement

Visualisation of Volumetric Data

Functions of space are being generated by numerous sources, around us

every day. From algebraic functions to medical apparatus, a myriad

of areas could produce such functions or data sets of such functions.

This data, more often than not, serves a purpose when visualised, thus

the need for visualisation of volumetric data occurs. Two of the most

prominent ways of representing such data are volumetric representations

and Boundary representations (BReps).

The Computer Graphics problem which arises, related to this issue is

the visualisation of such volumetric data. This document focuses on the

extraction of an isosurface from a volumetric data set, into a polygonal

mesh, which is a subset of Boundary representation (BRep). A polygonal

mesh is a standard way of representing a geometric object by describing

it’s surface through a web of interconnected, approximating polygons.

Thus it provides a robust way of visualising a volumetric data set by

describing a gradient at a specific isovalue. Representing the volumetric

data in that manner allows for efficient rendering, as modern day graphics

hardware is highly optimised for working with such representations.
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Applications

Medical Visualisation

One of the primary usages of an isosurface extractor is extracting a

boundary representation from medical volumetric datasets. Medical vi-

sualisation has been used since the dawn of Computer Graphics. One

can argue that it has pushed the field forward in many aspects, and has

played a crucial role in the development of many of the algorithms known

to us today. Medical visualisation refers to the visual representation of

medical data. This data is in most cases a set of discrete samples in

three-dimensional space, which produce a volumetric dataset, as in the

case of Magnetic Resonance Imaging (MRI) scans. In most cases this

data is rendered straight away with the help of a volumetric renderer,

which usually produces a gray-scale image of the rendered region, Figure

1.1. Need exists that sometimes a boundary representation of a layer

should be constructed. This is where an isosurface extraction algorithm

will come into play and create a polygonal representation of a certain

isolevel of the provided discrete scalar field. This model could be used

for a detailed 3D view of individual layers or for a better polygonal ren-

dering of certain organs, tissues, or any object of interest, which could

be extracted from within the data set.

Figure 1.1: Volumetric render of medical data. Image source: Levoy
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Contouring an algebraic scalar field

Sometimes, functional representations Functional representations (FReps)

are preferred over BReps, due to the ease of performing geometric oper-

ations. Such an approach provides a continuous function of space, which

could be used as a scalar field and a polygonal mesh could be extracted

at any isovalue. Equation 1.1, is an implicit equation of a sphere of

radius R, which is defined at the isovalue of 0.

x2 + y2 + z2 −R2 = 0 (1.1)

Point cloud reconstruction

Reconstruction of a mesh from an existing point cloud is a field in its

own right. There are many techniques that deal with the topic. A good

and robust isosurface extractor would be able to tackle this problem too.

It is possible to do so by a conversion of the point cloud to a scalar field.

From there on the algorithm would run as usual to produce a polygonal

mesh from the point cloud scalar field, Figure 1.2.

Figure 1.2: An elephant point cloud reconstructed CGAL’s point cloud
reconstruction algorithm. Image sourced: CGAL

Mesh retopologisation

Some procedurally derived meshes come with redundant geometry or bad

topology. In the first case, there might be too much polygons, where the

detail of the model could be described with fewer. Figure 1.3, shows

the simplification of a ’Stanford Bunny’ model into half of it’s original

3



poly-count, whilst preserving most of the detail. In the case of bad

topology, which can be caused by a number of reasons, as for example,

very disproportional triangles, which result in heavier computation and

greter error when rendered. An example of such a mesh, which is often

obtained from the polygonisation of letters in 3D Software packages can

be seen in Figure 1.4. Both of the cases described above could be handled

with an adaptive isosurface extraction technique, which would produce

a mesh with consistent topology and reduce the amount of polygons to

the bare minimum, based on its reduction condition, whilst preserving

the detail of the original mesh.

Figure 1.3: A stanford bunny model, consisting of 69,666 polygons
(left), and a simplified mesh with 34,350 polygons (right). 3D Model
Courtesy of: Stanford.

Figure 1.4: Retopologisation of meshes of letters, with bad topology.
Image sourced: Ho et al. (2005)
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Problem

There are vast amounts of methods which aim to tackle the problem of

isosurface extraction. Each of these methods has its pros and cons, and

they are often used as is appropriate for the task at hand. Some extract

meshes with too much polygons, even where they are not necessary,

some lose any sharp features or small detail in the underlying surface,

others suffer from topological inconsistencies, self-intersections, inter-cell

dependencies, etc.

A robust and standard way, which handles all of those problems is

still not truly developed and agreed upon. There are however a few

candidates, which have high claims, one of them is the CMS algorithm

Ho et al. (2005). Now, nearly ten years since its official debút, this

algorithm’s plausibility, still remains a mystery to a vast majority of the

Computer Graphics world. The fact that, as of this date, there are very

few actual implementations or even descriptions of the algorithm, to be

found in the public domain, despite its problem solving claims, speaks for

itself. Apart from the authors’ original source code, during this research,

only one partial implementation of the algorithm was found. It is located

in the libfab C library of the ’Kokopelli project’ Keeter.

1.2 Objectives

The goal of this project is the creation of a robust stand-alone C++

library, which could be extended and improved in the future. The library

would contain the core of the CMS algorithm, so that it can put its

claims to the test. This project is limited to implementing adaptive and

manifold meshing with the CMS algorithm, without any additional post-

processes, such as crack-patching. Based on such an implementation all

other features considered by the original algorithm, would eventually

be possible to accomplish without the need for cumbersome combination

with other algorithms or techniques. The core algorithm, should produce

meshes topologically equivalent to Marching Cubes, however a successful
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implementation of the CMS idea, would allow for adaptive resolution

based on a user controlled heuristic.

The application created should take in a discrete scalar field of some

type, and then extract a polygonal mesh representing the input field at

a specified isolevel. The generation of the function of space, is beyond

the scope of this project. It is rather provided by the user, as an actual

algebraic function or some type of scalar or Adaptively-sampled Distance

Field (ADF), which allows it to be sampled or interpolated at any point

in space.

1.3 Structure

Chapter 2: Literature Review provides a overview of the previous

work in the field of isosurface extraction, beginning at the dawn of Com-

puter Graphics and leading up to nowadays. It portrays the cause-effect

relationship between the different techniques, highliting their downsides

and respectively their solutions.

Chapter 3: Technical Background describes, in brief, the way

isosurface extraction algorithms, of the spatial partitioning type, work,

starting with the Marching Squares algorithm and then expands the idea

into 3D as in the original Marching Cubes. Then builds on that founda-

tion with the Cubical Marching Squares algorithm in greater detail.

Chapter 4: Implementation takes a detailed approach to describ-

ing the main steps which were taken during the loose implementation of

the Cubical Marching Squares algorithm in this project.

Chapter 5: Results and Discussion displays some of the acquired

results and comparisons. Then forms a discussion based upon the results

and comparisons obtained from the program created in this project.

Chapter 6: Conclusion continues with final remarks on the dis-

cussion started in the previous chapter, drawing conclusions from the

6



outcome of the project. Then describes possible future work, in terms of

additional features, optimisation and algorithm expansion.
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Chapter 2

Literature Review

2.1 Visualisation of Implicit Surfaces

“An implicit surface {p ∈ R3 : f(p) = 0} is a two-

dimensional manifold, provided that f is continuous

and 0 is a regular value of f (that is, the gradient is

defined for all points p on the surface). This means

that the surface may be triangulated.”

(Bloomenthal and Wyvill (1997), p.128)

Implicit surfaces are surfaces defined by a specific value of a scalar

functions in 3D space. They, therefore, could be expressed as single

equations with three variables. The visualisation of such surfaces has

been a matter of discussion over the years, ever since the dawn of Com-

puter Graphics.

There are two main ways to visualising Implicit Surfaces. The first

is the incorporation of ray tracing techniques for the direct rendering of

implicit surfaces Hanrahan (1983) or even directly of Constructive Solid

Geometry (CSG) trees Wyvill et al. (1986). The second method is the

polygonisation of an implicit surface (isosurface), which then allows for

rendering of a polygonal mesh. Both schemes have been extensively re-

searched over the years and have been immensely used, incorporated in

a large amount of software products. They both have their pros and
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cons. In simple terms, if precision and minimal visual error are of higher

priority, the ray tracing technique would be preferable, however due to

it’s ray-tracing nature, it would come at a higher computational cost.

Furthermore rendering in real-time, depends greatly on the isosurface at

hand. Thus it cannot be guaranteed even with the hardware solutions of

this day. On the other hand, if robustness, and real-time visualisation are

key, a technique revolving around the extraction of the implicit surface

as a polygonal mesh, could be relied upon. This extracted surface can

then be visualised using standard online or offline rendering techniques

and could be manipulated using polygonal editing techniques.

2.2 Isosurface Extraction

Isosurface extraction is not a new problems in the field of Computer

Graphics. The first attempts to tackle it date back to the early 70s of

the XX-th century, with researches such as Keppel (1975), on IBM’s side.

However it is in the last two decades of the same century that work with

it really begins. MC Lorensen and Cline (1987) is probably, one of the

most well-known algorithms in Computer Graphics and by far the most

cited resource in the field, according to the ACM Digital Library ACM.

Lorensen and Cline lay the foundation for what would become, one of the

most prominent technique for extracting a polygonal mesh from function

of space, widely used in it’s ’original’ form even to this day. This led to a

great number of techniques virtually based on MC’s principles of spatial

partitioning.

When it comes to isosurface extraction there are a few distinct method-

ologies, which take a very different approach to the same problem. They

can be classified into three main groups:
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Spatial Partitioning

(or Spatial Sampling) (e.g. MC) All such algorithms, have in common,

that given a constrained domain in 3D space, they begin by applying

spatial decomposition on that domain into sub-domains (also referred to

as: cells, cubes, voxels, etc.), discarding sub-domains which do not con-

tain (intersect, straddle) the isosurface. These algorithms then proceed,

to reproduce the original isosurface by approximating it with polygons

in every surface-containing sub-domain. Figure 2.1, demonstrates the

general concept with a 2D example.

Figure 2.1: A 2D variant of a 3D spatial partitioning isosurface extrac-
tion algorithm on a regular grid. The red curve being the isosurface, the
latice represents the regular grid, and the red circles denote the corners
of the ’voxels’ which are considered inside the surface. Image source:
Upvoid

Surface Tracking

(or Continuation methods ) Surface Tracking methods could be grouped

into two classes based on the approach they take. Cellular approaches

Allgower and Gnutzmann (1991), given an initial surface straddling cell

as input procedurally find other such neighbouring cells, thus tracking

down the surface. They share all the problems of classical Spatial Sam-

pling algorithms. Delaunay-based or Particle approaches, Szeliski and
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Tonnesen (1992), Witkin and Heckbert (1994), are certainly more fa-

mous of the two. They generate particles on the boundary of the implicit

surface and then polygonise the particles to create the approximating

mesh. In most cases, Delauney triangulation is employed, for that sec-

ond part of the algorithms, hence the name. One such algorithm is the

original Marching Triangles (MT) technique Hilton et al. (1996), along

with its more recent improvements such as adaptive meshing Akkouche

et al. (2001). Figure 2.2, shows two of the stages of the MT algorithm

and how the particles on the surface are polygonised, while Figure 2.3

demonstrates the algorithm in action, progressively meshing a spherical

object.

Figure 2.2: Stages of the Marching Triangles algorithm, where the sur-
face is tracked down using Delaunay constraint, and searching for an
overlapping particle. Image source: Hilton et al. (1996)

Figure 2.3: The Marching Triangles algorithm sequentially generating
the mesh, approximating the surface. Image source: Hilton et al. (1996)
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Surface Fitting

Surface Fitting techniques sequentially approximate an initial ’seed mesh’

to the implicit surface. Such algorithms could be further classified under

two main types. The first being the Element Driven approaches Des-

brun et al. (1995) and Crespin et al. (1998), which provide a base mesh

enclosing for each primitive, then approximate the surface and combine

all resultant meshes into one global one. This technique offers efficiency

and robustness due to it’s hierarchical approach, however, it also suf-

fers from many drawbacks, of which, possible inconsistent topology and

wrong tessellation, are only some. Figure 2.4 demonstrates the main

stages in the polygonisation of implicit sweep surfaces algorithm.

Shrink Wrap approaches, as the original technique Overveld and Wyvill

(1993) and an improved version which handles arbitrary geometry Bot-

tino et al. (1996), on the other hand, are global, unlike the element driven

ones. A base mesh is supplied surrounding the implicit surface, this mesh

then systematically converges towards the implicit surface. This proce-

dure results in loss of any concavity details. Further improvements on

the technique add so called, critical points which are established on the

boundary of the implicit surface, so that such details are detected and

preserved.

Figure 2.4: A surface fitting technique, demonstrating the three stages
of production: (from left to right) (a.) Initialization, (b.) migration and
validation and (c.) the output of the final mesh. Image source: Crespin
et al. (1998)
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Comparisons

There is a tendency for comparisons between techniques belonging to dif-

fering categories of the ones specified earlier. In many cases such compar-

isons could be ambiguous and the conclusions drawn could be deceiving,

as techniques of different categories do not pertain to one another. This

comment is applicable in most cases, unless the goal is a general ob-

servation on the topic of isosurface extraction. This project tackles the

problem of isosurface extraction based on a spatial sampling algorithm,

therefore it will focus on comparisons and a deeper investigation into

precisely such methods. Further in-depth analysis and comparisons with

Surface Fitting or Surface Tracking techniques fall beyond the scope of

this project. Figure 2.5 depicts the hierarchical structure of the field,

highlighting the branch which this project occupies, for maintaining clar-

ity.

Figure 2.5: A hierarchical graph visualising the branch of isosurface
extraction that this project focuses on.
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2.3 Spatial Sampling Algorithms

Many derivatives of the original MC algorithm, will preserve the voxel-

based approach pioneered by Lorensen and Cline. The algorithm is intu-

itive and relatively easy to comprehend, degenerating an infinite amount

of surface variations into 256 possible test cases which, using symme-

try, could be even further simplified into 15 general patterns, as seen in

Figure 2.6. All this comes at a relatively low-cost compared to previ-

ous techniques and even more so, a much lower-complexity. According to

later evaluation of the original algorithms, the original MC, suffered from

three main issues, topological inaccuracies, cracks at adaptive resolution

and loss of sharp features, Ho et al. (2005). In the next sub-sections

those problems would be addressed as well as the work done to address

and solve them.

Figure 2.6: The 15 configurations into which the 256 variations of
straddling cubes, decompose, in the MC algorithm. Image Source: Foun-
tainComputer

Holes - Inaccurate Topology

Inaccurate topology in MC is caused due to face ambiguities, see Figrure

2.8 and internal ambiguities, see Figure 2.10. They can cause the mesh to

be non-homeomorphic to the surface, however handling these ambiguities

in a wrong manner could result in the mesh being non-manifold, due to
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holes. Holes in a mesh polygonised with the original MC, were a direct

result of such face ambiguity.

When considering the problem in 2D Marching Squares (MS), there are

two configurations, which could result in ambiguous topology. That is

to say, that the decision of which case should be used is undefined by the

algorithm. Those cases, for the MS algorithm are visible in Figure 2.7.

Figure 2.7: The black corners are inside the surface. For this specific
case in 2D there are two possible configurations. This is then considered
a face ambiguity. Image Source: Ho et al. (2005)

Face Ambiguity

In 3D the problem remains, and even gets worse, as 6 out of the 15

topologies could potentially end up creating holes, Figure 2.8 visualises

the problem.

Figure 2.8: A hole that will occur due to face ambiguity, on the face
between those two cubes, formed with inconsistent usage of the original
MC algorithm. Image Source: Nielson and Hamann (1991)

The easy workaround for this problem, which does not guarantee topo-

logical correctness, with regards to the isosurface, however guaranteeing

that the surface would be without holes, is being consistent throughout

the meshing. Being consistent involves tessellating always in the same

manner for each specific case. This would avoid holes generated by face

ambiguities.
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More complex solutions were later developed which overcame this

problem altogether. They would guarantee tessellation accurate to the

geometry with each choice of configuration, at the same time preserv-

ing consistent topology. The Asymptotic Decider Nielson and Hamann

(1991), is one of them. It decides by making a comparison between the

surface value and the value acquired from the bilinear interpolation of

the intersection point at the asymptotes, across a face.

Other schemes dealing with disambiguation of the original MC, in-

volve a modified lookup table, Montani et al. (1994), gradient-based

methods Wilhelms and Van Gelder (1990), feature-based methods, a tech-

nique referred to as prefered polarity Bloomenthal (1988) and cell decom-

position, refered to as, domain tetrahedralization Bloomenthal (1988),

Payne and Toga (1990), where tetrahedra are used, which is covered in

greater depth below. Some publications which offer a more detailed ac-

count on topological disambiguation in MC-based isosurface extraction

are Ning and Bloomenthal (1993) and Newman and Yi (2006).

Face ambiguities could be avoided altogether by adopting different

cell decomposition or simplical decomposition strategies. In many cases

the base shape of decomposition is a tetrahedron, an idea borrowed from

molecular modeling publications such as Koide et al. (1986), which was

later incorporated in isosurface polygonisation techniques, as described in

Bloomenthal (1988) and Payne and Toga (1990), see Figure 2.9. Others

decompose into sub-cubes, Wilhelms and Van Gelder (1990). CMS, Ho

et al. (2005) also decomposes a cell into six 2D quads, however it is

not solely for disambiguation purposes and a quad is technically not

considered a simplex, therefore CMS does not fall into this category

of algorithms. Simplical decomposition methods often result in meshes

with more vertices than a standard MC-based cellular algorithm. The

increase in vertices is on average by a factor of two Ning and Bloomenthal

(1993).

Internal Ambiguity

Internal ambiguities, are an extension of the face ambiguities, into three-

dimensional space. However, solving face ambiguities does not automat-

16



Figure 2.9: The two most common ways of decomposing a cube into
tetrahedra. Image Source: Chu et al. (2009)

ically solve internal ambiguity. This is the case in Figure 2.10, where

the surfaces formes a cylindrical structure within the cell. This issue has

to be dealt with separately as even a face disambiguator would fail to

locate it.

Figure 2.10: A case of internal ambiguity and a solution to it with an
extra sample point in the centre of the cell. The sample result is outside
the surface in (a) and inside the surface in (b). Image Source: Tsuzuki
et al. (2007)

Internal ambiguities were dealt with by two independent researches

producing similar results Nat (1994) and Marching Cubes 33 (MC33)

Chernyaev (1995), who proposed a new, thirty-three-case table to replace

the fifteen-case table of the original MC, and solve the internal ambiguity

issue in three basic steps.
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In 2003, a full implementation of Chernyaev’s method, under the ti-

tle “Efficient implementation of Marching Cubes’ cases with topological

guarantees” Lewiner et al. (2003) provided a topologically consistent im-

plementation of MC, dealing with all topological issues, Figure 2.11.

Figure 2.11: The image depicts two linked torii, original MC on the
left and the topologically consistent implementation of the right. The
left part of the figure showcases the artifacts in the mesh caused by the
ambiguities, resulting in topological error, to the underlying isosurface.
The right side is the disambiguated solution. Image Source: Lewiner
et al. (2003).

All those techniques are based on the original MC and deal with topo-

logical inaccuracy in the original MC. For clarity, those methods which

deal with this issue in the original MC, would be referred to as Topology-

Consistent Marching Cubes (TMC), through the rest of this document.

One thing that must be considered is that topological correctness

does not necessarily mean topological equivalence with the surface.

Topological equivalence, guaranteeing that the mesh would be homeo-

morphic to the surface requires additional information about the under-

lying scalar field, as stated by Etiene et al. (2012).
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Cracks in Adaptive Resolution

“When the cells are fixed in size, a fixed resolution

(or uniform space) partitioning occurs. When the

cell size is locally proportional to the size of surface

detail, an adaptive resolution partitioning occurs.”

(Bloomenthal and Wyvill (1997), p.129)

Due to the nature of the original MC algorithm, and its sampling on

a regular grid, it has a Nyquist-like limit and suffers from classical signal

processing problems such as under-sampling, in which case detail is lost,

and over-sampling, which results in redundant sampling and unnecessary

data storage, as the portion of the surface could be represented correctly

within less samples. Under-sampling the underlying field function results

in three-dimensional aliasing.

Types of adaptive datastructures

Shortly after the initial MC algorithm, sampling on adaptive struc-

tures was introduced, resulting in a more optimised sampling process

and as a positive consequence - simplified meshes Bloomenthal (1988),

such algorithms rely on hierarchical data-structures to expand and ex-

plore only regions of interest to the algorithm. This interest could often

be classified simply as surface detail. Different algorithms take different

approaches to the conditions of subdivision of space. Some of the most

popular adaptive data-structures used in the field include Adaptive Oc-

trees Bloomenthal (1988), Shu et al. (1995), Ju et al. (2002), Ho et al.

(2005), Restricted Octrees Westermann et al. (1999), Kazhdan et al.

(2007), Branch-on-need Octrees (BONOs) Wilhelms and Van Gelder

(1992), and others.

Generation of the Adaptive Structure In most cases the struc-

ture is constructed using cubic cells, resulting in cuboidal structures

(octrees). Other non-cellular methods for subdivision exist. The next

most wide-spread type is tetrahedral subdivision Hall and Warren (1990).

Note that not all tetrahedral adaptive algorithms, subdivide tetrahe-

draly, but rather cubically, and then decompose the cube into tetrahedra
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Bloomenthal (1988).

Different techniques, subdivide based on different criteria when cre-

ating the adaptive structure. Some check for intermidiate surface inter-

sections, or high divergence of the surface normals at the corners of the

checked cell. Whilst others rely on the anticipated polygonisation of the

surface in that cell and subdivide if it results in too many polygons, if

a polygon centre is at a low proximity to the surface, or based on the

surface normals at the polygon vertices. Other more sophisticated an-

alytical ways of checking for potential complex surface within the cell,

exist which are based on interval arithmetics Duff (1992).

Adaptive resolution could be achieved with another approaches, one

of which being iterative surface refinement. In that technique it is not

the spatial data structure which gets subdivided, but rather, the actual

polygonal representation gets iteratively refined at places which require

more polygons in order to preserve surface detail, as such approaches

normally commence with a course polygonal representation of the sur-

face, Allgower and Gnutzmann (1991).

Cracks problem

The adaptive feature, leads to the second problem, namely cracks at

adaptive resolution, as stated earlier. They occur when two adjacent cells

have different resolution, Figure 2.12. Some techniques avoid them alto-

gether by incorporating different methods. Bloomenthal (1988) and Ning

and Hesselink (1991), make the larger cell use the edges of its smaller

neighbours, whilst Mullner and Jablokow (1993) combines vertices based

on their spatial proximity, instead of their edge membership. This how-

ever might not always produce correct results, and comes at the expense

of accuracy. Hall and Warren (1990) propose the honeycomb method,

which avoids cracks, using tetrahedral subdivision, in a manner which

does allow for the propagation of the subdivision throughout the spatial

partitioning.
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Figure 2.12: A crack on a shared face, between cells of different subdi-
vision, Bloomenthal and Wyvill (1997).

One wide-spread variety of techniques for dealing with the cracks,

involves a post-process known as crack-patching. It is done in different

ways by different algorithms. Shu et al. (1995), locate and polygonise

the cracks, which however, results in a G1 discontinuity in the surface.

Crack-patching is usually a heavy and undesired post-process therefore

many algorithms, try and avoid it by dealing with surface ruptures during

the main stage of the algorithm. CMS Ho et al. (2005) avoid cracks by

using the data from sub-faces on shared faces between cells of different

subdivision.

Updates and improvements to those methods have been proposed over

the years. Some offer similar approaches, differing in the generation of

the octree. As some would create the octree to its final level and then

decimate the cells which are not surface straddling Shekhar et al. (1996).

Others achieve adaptiveness by merging smaller cells, into bigger ones,

if they lack sufficient detail Ning and Hesselink (1991).

Sharp Feature Preservation

The problem with loss of sharp features was not tackled until much later,

compared to the other problems considered so far. Sharp features were

preserved in the, so called Extended Marching Cubes (EMC), Kobbelt

et al. (2001), which managed to do so, by storing additional informa-

tion. Along with the plain scalar field data, it also stores normals to

the surface. It then detects and samples sharp features in cells and
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performs an edge flipping operation in order to preserve sharp features.

An year later, Ju et al. develop the Dual Contouring (DC) algorithm

Ju et al. (2002), inspired by the additional data which Kobbelt et al.

(2001), were storing, which they name, Hermite Data. DC also borrows

from Sarah Frisken’s previous dual method called Surface Nets (SN),

Gibson (1998), which uses numerous cells to create individual polygons.

This feature, which is common for all ’dual’ methods, however, gives rise

to another problem, namely inter-cell dependency, which does not allow

for the algorithm to be truly ’parallel’, Ho et al. (2005). Furthermore,

the original DC, produces self-intersecting meshes, which are therefore

non-manifold. This problem is dealt with in the publication Manifold

Dual Contouring (MDC), Schaefer et al. (2007). On the other hand the

MC approach has also been used along with a dual approach in order to

preserve sharp features, Nielson (2004).

Those are some of the main publications and techniques derived as a

’direct consequence’ of the original MC. Figure 2.13, provides a visual

overview of the chapter, with the relationships between the techniques

and their influence.
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Figure 2.13: A visual overview of the techniques discussed in this chap-
ter, their relationships and influences are also depicted.
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Chapter 3

Technical Background

The goal of this project was, investigating into the field of robust poly-

gonisation of a scalar field and creating a C++ library for isosurface

extraction. Some of the proposed features, towards which this project

was aimed are: producing manifold (watertight) meshes e.g. no holes,

cracks or self-intersections, and meshing at adaptive resolution. From

the spatial partitioning algorithms, there are few which claim those, and

other, features. They usually consist of complex combinations of previ-

ously existing algorithms. Some algorithms that are worth mentioning

are, Dual Marching Cubes (DMC) Nielson (2004), MDC Schaefer et al.

(2007) and CMS Ho et al. (2005). There are some others, which claim

more or less similar results to theirs, but those mentioned stand out from

the rest. They all have their pros and cons, and non of them is perfect.

This project is loosely based on the latter, CMS algorithm, as it takes

an interesting approach, which will be covered in greater detail below.

DMC and MDC are both combinations of variations of the MC Lorensen

and Cline (1987) algorithm and one of the earliest ’dual’ algorithms, SN

Gibson (1998) as well as the later DC Ju et al. (2002).

On the other hand, CMS stays loyal to the original MC approach,

however deals with some of its downsides, by simplifying the problem to

squares instead of cubes. Therefore the original MC is decimated into six

MS algorithms. This results in a much more complex algorithm, as the

cells not only have to be decomposed but also have to be reconstructed
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in order to produce the end result, however in the midst of this process

many of the problems with the original MC can be addressed.

3.1 Marching Squares

Before proceeding it is important that some of the main concepts of the

foundational techniques are briefly described. MS is a special case of

the MC algorithm, restricted to two-dimensional space. Therefore it is

used for the extraction of isocurves and isolines. R2 space is sampled on

a regular grid f(x, y), each square is defined by four of those sampling

points, as denoted in Figure 3.1.

Figure 3.1: A marching square. The points at the corners denote the
sample points. In this example, red are outside the isoline (or isoband)
and yellow inside the isoline. The dotted line, marks the isoline, and the
blue colour defining the ’inside’.

Each sample could be either inside or outside the surface, based on the

value that the function has returned. In this thesis the signs are defined

as negative inside and positive outside, however this could vary between

different implementations. The four corners of each square provide 24 =

16 possible configurations, Figure 3.2.

The surface then is approximated by creating lines between the edges

corresponding to the correct configuration in each cell which crosses the

isoline. There are two cases from those sixteen in Figure 3.2, which

are ’ambiguous’ as they could potentially produce different line results.

This is known as a face ambiguity. There are techniques which deal

with the disambiguation of face ambiguities, however, staying consistent
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Figure 3.2: The 16 configurations of the Marching Squares algorithm.
Image Source: Gervaise and Richard

in a concrete line configuration, guarantees a curve which would not be

ruptured. These sixteen cases could further be simplified into only four

unique cases, using symmetry and mirroring, one of which would have

the mentioned face ambiguity, Figure 3.3.

Figure 3.3: The 4 unique configurations of the Marching Squares algo-
rithm, which are necessary to reproduce all others. Image edited from:
Gervaise and Richard

When a configuration is chosen and the edge(s), between each two

sampling points, which the surface is crossing, are discovered, it is pos-

sible to further enhance the approximation by finding the exact crossing

point. This could be done by finding the isovalue-crossing point of the

isocurve on the edge, which is the exact crossing point of the isocurve on

that particular edge. This is often done by iterative linear interpolation

along the edge, closing down on the surface, until a certain threshold

is reached or a limit in the iterations is hit. This technique produces

results as seen in Figure 4.16, which produce a better approximation of

the isocurve. The 3D equivalent of using this approximation method can

be seen in the comparison on Figure 4.17.
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3.2 Marching Cubes

Marching Cubes and Marching Squares are essentially the same algo-

rithm in different dimensions. Therefore the backbone of both algorithms

is exactly the same. They only differ on implementational details, pro-

ceeding from the difference in dimensionality. MC, therefore, extracts

an isosurface rather than an isocurve or isoline and works with a pro-

vided 3D scalar field. Hence, it uses cubes, rather than squares. Because

each cube has eight corners the possible configurations become 28 = 256,

which can be further simplified to fifteen, as in the original MC Lorensen

and Cline (1987), Figure 2.6.

3.3 Cubical Marching Squares

The CMS algorithm, bases its structure on the MC algorithm, but im-

proves it in many ways. Some of the major downsides of MC were covered

in the Literature Review section 2. Most of them are addressed by CMS

as well as other issues, which have arised from other developments based

on the original MC.

Input

The original CMS algorithm Ho et al. (2005) starts by taking input

data and converting it into a unique standard format. The input could

vary from polygonal meshes, point cloud sets, scalar fields, ADFs, or

an algebraic functions. Any input is then converted into the standard

type, which is Hermite Data, first employed for the purpose in Isosurface

Extraction, by EMC Kobbelt et al. (2001) and DC Ju et al. (2002).

Hermite data is gathered on a signed grid with exact intersection points

(laying on the surface) and the normals at the points (sample points and

sample normals).
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Construction of the Signed Adaptive Octree

The adaptive sampling process in CMS starts with sampling a course

uniform grid up to a certain level, which then continues to be subdi-

vided and sampled until either, there is no need for subdivision, or the

maximum level of the octree is reached.

The adaptive subdivision of cells is done based on two conditions, edge

ambiguity and a potential complex surface.

• The Edge Ambiguity check makes sure there is a single sign change

on any cell edge, expressing a sign change. If this check fails, there

is an edge ambiguity and the cell to which this edge belongs, must

be subdivided.

• The Complex Surface checks if there is a tendency that the cell

might contain a ’complex’ surface, which is detected by a heuristic

based on the sample normals on that face. If the angle between the

normals is above a certain, predefined threshold, the cell should be

subdivided.

In CMS, faces are subdivided first, before the actual cell is subdi-

vided and the relationships between sub-faces and sub-cells is stored for

reference.

Generating Segments on Leaf Faces

After the signed adaptive octree is constructed, the algorithm proceeds

with the generation of segments on every leaf (surface containing) face.

This is done by running the MS algorithm for every such leaf face. Be-

cause of the fact that the simplified MS table also has an ambiguous case,

the face disambiguation process is performed at that stage by checking for

overlapping face sharp features based on the sample normals, as could be

seen in Figure 3.4. The face sharp features detection is done by finding

the intersection point of the tangent lines that the two sample points de-

fine with their sample normals. The exact intersection point is recorded
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and a new segment is generated to reflect the face sharp feature. Figure

3.5, visualises the face segments and their combination in a single cube.

Figure 3.4: A cell face which has intersecting sharp features. Self-
intersection should not happen in a volume, therefore the algorithm
chooses the correct disambiguated configuration, with preserved sharp fea-
tures. Image source: Ho et al. (2005)

Figure 3.5: An exploded cube showing the segments created on each of
its faces, and the combined cube which depicts the surface passing through
it, matching the created components. Image source: Ho et al. (2005)

Extracting Surface from Leaf Cells

When all the face segments are generated, the CMS algorithm proceeds

by extracting a surface for each leaf (surface containing) cell. This stage

of the algorithm could be decomposed into four subsections, each of

which consists of smaller algorithms for achieving their specific purpose.

The extraction stage consists of the following steps, tracing of the com-

ponents, detecting of cell sharp features, resolving internal ambiguity

and triangulation.
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• Tracing components is done by linking together the segments of

the six faces of a cell into a circular ’component’, which is a 3D

contour approximation of the surface in that cell.

• 3D sharp feature preservation is achieved in CMS by additional

sampling and solving an equation by singular value decomposition.

Again, the position of the exact sharp feature in the cell is saved,

as with the face sharp features.

• Internal disambiguation is related, once again, with the sharp fea-

tures. If the cell’s corner signs allude that there might be a internal

ambiguity, the sharp features are checked for intersection with the

other components in the cell. If there is an overlap in the volumes

of any two components, they are to be classified as joined.

• Triangulation of the cell surface is dependent on the case. If there

is no sharp feature, the average of all the vertices in the component

is found and is used as the center of a triangle fan. If a component

has a sharp feature, the point at the sharp feature serves as the

centre of the triangle fan. If there was an internal ambiguity and

the volumes of two of the components are signified as joined, then a

dynamic programming algorithm is ran, that correctly triangulates

the resultant cylindrical surface approximation.

Listing 3.1, gives an overview of the CMS algorithm through the three

major steps which where covered.
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Listing 3.1: The overview algorithm of the CMS publication. Algorithm

source: Ho et al. (2005)

procedure CubicalMarchingSquares ( HermiteData H)

I n i t i a l i z eBa s eG r i d (B)

for each c e l l C in B

Subd iv ideCe l l (H, C)

end for

for each l e a f f a c e f

GenerateSegment ( f ) ;

end for

for each l e a f c e l l C

ExtractSur face (C)

end for

end procedure

3.4 This Project

As stated earlier the goal of this project was the development of a C++

library for isosurface extraction, which is based on an existing algorithm,

which claims to have some of the technical features spoken of, above. The

choice for basing the project on the CMS algorithm was made after ex-

tensive research in the area and the advice of experts in the field. This

project does not implement all of the features of the CMS algorithm

as describes by Ho et al. (2005). This project does not also implement

the strict algorithm, however stays faithful to the main ideas, namely

the simplification of Marching Cubes into Marching Squares, and mesh-

ing with an adaptive resolution without cracks or the need for crack-

patching. It does this, whist maintaining inter-cell independence, and

produces manifold polygonal meshes.
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Chapter 4

Implementation

This chapter uncoveres the backbone of the technique and lays the foun-

dation of this specific implementation of the CMS algorithm. As this has

been a loose implementation of the algorithm, not all parts of the origi-

nal algorithm are covered. Also there are some sections which have been

done in a different way, from the original CMS. The naming convention

of the terminology is not followed strictly from the original paper and

some new terms are introduced, as necessary. Some of the tables used

are modified from the Kokopelli project Keeter, which also uses similar

conventions.

4.1 Algorithm Logic, Tables and Structures

Logic

Before laying the foundations of the program it is important that some

abstract rules are established and kept consistently throughout the entire

algorithm. Such rules include the coordinate system (frame of reference),

the dimensions, the sampling order, the indexing of vertices, edges and

faces in a cell, as well as their relationships. The tables and figures,

shown below, depict the approach taken in this project. They do not

resemble the only way of addressing the problem, however, as mentioned
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earlier, a ’way’ must be agreed upon, and kept consistently throughout.

In this project a ’lef-handed’ coordinate system is used, as seen in Figure

4.1, which visualises the coordinate system and the ordering adopted

throughout this project. The ordering is also explicitly laid out in the

ordering table, Table 4.1.

Figure 4.1: The coordinate system used throughout this project, follow-
ing the ’left-hand rule’ and the ordering of the all 3D operations.

Table 4.1: Order Table - a signed table visualising the order in which
operations are undertaken.

X Y Z

- - -
- - +
- + -
- + +
+ - -
+ - +
+ + -
+ + +

The order in which faces are visited in each cell, follows the convention

established in Figure 4.1. This is the same order as the order of sampling,

which the algorithm runs, namely Z, Y and X. Hence the numbering of

the faces and verties of the cell are indexed in a likewise manner, Figure

4.2.
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Figure 4.2: The vertex and face indices in a single cube. The corners
vertices are marked with ’Arial’ font, whilst the faces are marked with
’Times New Roman’.

Similarly the cell edges are defined and kept consistent through the

whole implementation, Figure 4.3.

Figure 4.3: The indexing of the cell edges.

Because of the nature of the CMS algorithm, each face in a cell is

evaluated individually and then all six faces are combined as a cube

(cell). Therefore, it is necessary that the face vertex and edge order are

also predefined. In this project, the configuration is the following, as seen

in Figure 4.4. Whereas Figure 4.5 depicts the whole configuration of

the way faces are ordered and the relationship between local face edges

and vertices, on an exploded cube.
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Figure 4.4: The ordering of the face edges (left) and vertices (right),
required for the Marching Squares algorithm.

Figure 4.5: An exploded cube, showcasing the indexing and ordering of
the cell faces (black), cell vertices (red), and face edges (blue).

Tables

In the core of the algorithm only one table is necessary. That is the

classic Marching Squares lookup table, which has 16 cases. The 16 cases

could be simplified to 4 cases, by using symmetry and mirroring. This

’simplification’ has been left out, in order that confusion is avoided, as

the face edges are considered when linking the segments. Thus a single

uncompressed table was employed, Table 4.2.

The tessellation process is done dynamically and a table is not needed
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Table 4.2: Marching Squares Table

Case Strip 0
Edge A

Strip 0
Edge B

Strip 1
Edge A

Strip 1
Edge B

Corners
Inside

Case 0 -1 -1 -1 -1 . . . .
Case 1 0 2 -1 -1 . . . 0
Case 2 2 1 -1 -1 . . 1 .
Case 3 0 1 -1 -1 . . 1 0
Case 4 3 0 -1 -1 . 2 . .
Case 5 3 2 -1 -1 . 2 . 0
Case 6 3 0 2 1 . 2 1 .
Case 7 3 1 -1 -1 . 2 1 0
Case 8 1 3 -1 -1 3 . . .
Case 9 1 3 0 2 3 . . 0
Case 10 2 3 -1 -1 3 . 1 .
Case 11 0 3 -1 -1 3 . 1 0
Case 12 1 0 -1 -1 3 2 . .
Case 13 1 2 -1 -1 3 2 . 0
Case 14 2 0 -1 -1 3 2 1 .
Case 15 -1 -1 -1 -1 3 2 1 0

to generate the triangulations of the separate cases, in this project. Such

a table is employed for the Marching Cubes triangulation process. It is

possible that a similar table be derived for the much simpler Marching

Squares algorithm.

The Next Position table 4.3 is required for the component tracing

stage. This is an important table as it helps the cube ’re-construction’

process. Given a face and a face edge, the Next Position table, returns

the next face and face edge, which are actually the same edge in the

combined cube. Figure 4.6, makes the point clear as to how this table

works.

This project uses a few other lookup tables, however they are not part

of the MS algorithm, but rather are used for ease, clarity and optimi-

sation. They mainly define the relationships between the different data

structures used, which would be covered in the Structures section of the

chapter. Some of the other more vital tables in the specific implementa-

tion can be seen in Appendix A.
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Table 4.3: Next Position Table - segment linkage table. Given a cell
face and a face edge it returns the corresponding face and edge, which
would be shared in a joined cube.

Face Edge 0 Edge 1 Edge 2 Edge 3

Face 0 3, 0 2, 0 4, 0 5, 0
Face 1 2, 1 3, 1 4, 1 5, 1
Face 2 0, 1 1, 0 4, 3 5, 2
Face 3 0, 0 1, 1 5, 3 4, 2
Face 4 0, 2 1, 2 3, 3 2, 2
Face 5 0, 3 1, 3 2, 3 3, 2

Figure 4.6: This is an example of how the ’Next Position’ table works,
showing how just two segments on two faces are being linked together.
Using the table, the program will see that the strip on face 1 continues
onto face 5 and edge 1, therefore it will merge the vertices on face 1 edge
3 and face 5 edge 1, because they are actually the same vertex.

Some other parts of the code could be further simplified into look-up

tables.

Structures

The main data structures which are used in the algorithm are the two

monolythic arrays used to contain all the sample data, and all the edge

blocks. Storing such great amounts of memory in a single one-dimensional

array is the most efficient and optimal way of storage. For the ease of

data manipulation a Array3D class is build as a wrapper, which then

accesses the correct elements in the large block of memory underneath.
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Some of the other more notable data structures used are, a vertex ar-

ray and a signed adaptive octree, which holds pointers and indices to

the arrays mentioned, linking the data together. The cells of the octree

are stored in dynamic memory as their number could be very different

depending on the input, and the resolution, due to it’s adaptivity.

A Cell, Cube, or Voxel, all refer to one and the same thing in this

project, and that is an abstract cube in space, which has exact position

and dimensions and is part of the Adaptive Octree data-structure. Each

cell, except the root, has a parent cell. Each cell could have strictly either

zero or eight children. The octree does not support an arbitrary amount

of children, as it is not a Branch-on-need Octree (BONO). However,

adjacent cells could be on very different levels of subdivision, unlike re-

stricted octrees. The faces between such cells of different subdivision, are

called transitional faces. Transitional faces are the reason for cracks in

adaptive resolution, as seen in Figure 4.7. Figure 4.8 offers a screenshot

of a manifold crack-free cube, and a non-manifold cube with cracks. Note

that they are not visible, regardless of that the vertices which are not

connected between faces, created by different cell, rupture the surface.

The cells containing a surface, are known as Leaf cells. Leaf cells, do

not have children. Therefore the surface is stored only in the leafs of

the octree. The rest of the cells are known as Branch cells. Branch cells

should have eight children and should not have surface data. As only

leaf cells are used for the extraction, the union of the surfaces produced

by all the leaf cells would result in the complete polygonised surface.

In this projects the relationship between cells and faces is stored us-

ing a half-face data structure, which is similar to the half-edge, however

simplified. The data which the half-faces store is enough for the con-

struction of the separate segments and components in all cells, therefore,

no other neighbouring information is stored.

Half-face is a data-structure employed for the cell faces and their

relationships, both with neighbours, as well as with their parents and

children. Each half-face can have four child faces, in which case it is
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considered to be a branch face. If a face does not have any children and

has a surface, this face is a leaf face, if it has no surface it is considered

empty. There exists another type of face which is called a Transitional

face. A transitional face occurs when its twin, or the other half-face on

the other side of it, is a different subdivision and they both have surfaces.

Transitional faces are a special case and must be dealt with separately.

A simplified half-face structure is required as it will store the infor-

mation of the transitional faces. It is simplified as, the only additional

information that is stored is the address of the ’opposite’ face on the

adjacent cell, also called it’s twin face. This is done, to avoid the need

for storing a complex array of faces, which have multiple owners. In the

case of a transitional face, resulting from different subdivision level on

adjacent cells, the half-face structure will allow acquiring the additional

strips from the cell containing children of ’deeper’ subdivision. If those

where not taken into account when creating the segments on it’s neigh-

bouring cell, the result would be cracks in the mesh at that place where

the two cells meet, Figure 4.7.

Strip is a data-structures which contains information about two con-

nected mesh vertices. It is similar to a mesh edge, however it stores

additional data, as it holds not only the indices of the two vertices in the

global vertex array but also the indices of the local face edges which they

occupy, as well as some implementation specific flags. This extra infor-

mation is required by the component tracing algorithm. There could be

a maximum of four strips on a single leaf face. That could happen only

in one of the two ’ambiguous’ cases and provided that both sides have

a face sharp feature. In practice in most cases there is a single strip on

each face.

Segments are linked strips, on a face. Where there could be a max-

imum of two segments on a leaf face and an arbitrary amount on a

transitional face. That is so because segment loops can exist on more

complex transitional faces, however in practice, this is very rare, and
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Figure 4.7: A sphere with gaps and cracks. The cracks are due to
inapropriate handling of the transitional faces. The red circles highlight
the cracks.

Figure 4.8: A manifold cube mesh without cracks (left) and a non-
manifold cube mesh, with cracks (right).

more than three segments on a single face are more or less fictional, in

the average case. On the other hand, segments consisting of one single
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strip could exist, and are perfectly valid.

Components are formed by tracing the segments from each face of

a cell and forming loops. Every component must form a loop within a

cell, otherwise this would result in topological inconsistency and a non-

manifold mesh. In a cell without transitional faces, there could be a

maximum of two components. The components in a cell correspond in

the most general case to the MC cell configurations. However they can

be made up of a significantly coarser piecewise curve if they have had face

sharp features and/or transitional faces. Similarly a component could lie

on a single face if it forms a loop on that face and does not propagate

onto other faces of the cell. This would only be possible on a transitional

face, where some part of the surface is passing through that face without

coming into contact with its corners, Figure 4.9.

Figure 4.9: A view of a transitional face and its twin sub-faces. The
transitional face has two segments, each made-up of multiple strips, the
one in the middle, which closes in on itself is considered a single face
component.

Each component is individually tessellated, however keeping track and

registering with the vertices and edges of the global data-structures so

that duplicates are avoided. Each tessellated component forms a piece

of the final mesh.
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4.2 Sampling

The first stage of the extraction of a surface begins with the sampling

function. The sampling process is done on a regular grid of the highest

resolution of the user specified maximum depth of the octree. As an

example if the user input for the extracted mesh is a resolution between

3 and 8, which evaluates to a minimum depth of 23 and a maximum of

28. This would result in a sampling rate of 28.

A different approach is taken to the original CMS algorithm, where

all initial input is converted into a standard format, namely Hermite

Data, which consists of points and normals at the points. This type of

data, first used in the EMC algorithm by Kobbelt et al. (2001), serves as

the base data on other techniques, such as the DC algorithm, Ju et al.

(2002). When adaptive sampling techniques are used this data storage

is reasonable, however when the surface is sampled on a regular grid, at

the finest resolution, the amount of data becomes too great, and a vast

majority of it wont be used, therefore it is not practical to sample the

function into Hermite Data, unless adaptive sampling is incorporated,

which is not the case in this thesis.

The only information that is stored in the initial sampling is just the

value of that position in 3D space, which the scalar function, provided by

the user, has evaluated. This data is stored into a single one-dimensional

array of fixed size:

sizeOfArray = (samplesOnX * samplesOnY * samplesOnZ)

A 1D array is used over a 3D array for the actual storage of the data,

as the sampling process is usually one of the heaviest computations in

the algorithm, due to its O(n3) complexity. Therefore a 1D array is more

suitable, as the data is stored in a single continuous block of memory,

allowing for faster data access. The 1D array is masked by an Array3D

wrapper class for ease of use.

The sampling process, has proven to be one of the more difficult el-

ements in this project, as well as the generation of a correct adaptive

42



octree on top of it. If done incorrectly it could introduce many small

bugs which might have consequences in later stages of the project, caus-

ing unwanted behaviour in the program. Extra care should be taken

when converting discrete space sizes based on samples, into 3D coordi-

nates from a container of a given size in 3D space.

Note that, both the number of samples and the octree cells have a

size which is a power of two. However, there is always one more sample,

to ensure that all cells are mapping to the correct samples and that the

last cell does not exceed the length of the sample array, as each cell

has overlapping samples with it’s neighbouring cell. This again could

produce problems if not handled properly as the cell which reaches the

end of each row will have it’s last values out of scope. This is so, because

each cell’s last sample overlaps with the first sample of its neighbouring

cell, which is done to maintain consistent topology, otherwise the octree

would become incorrect, resulting in gaps as could be seen in Figure

4.10.

Figure 4.10: Gaps in the mesh, produced due to a bad implementation
of the octree, and cells with non-overlapping samples.

4.3 Creating the Signed Adaptive Octree

The next stage of the program involves the creation of the signed adaptive

octree using the sampled data, which was acquired in the sampling stage.

In this thesis, the octree creation procedure is performed in four distinct
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stages. They are the following:

• The construction of the octree, via recursive subdivision of the

cells.

• The creation and population of the half-face data structure, which

is part of the cell face relationships, required for the main algo-

rithm.

• Setting up the parent-child relationships of the cell faces.

• Finding and tagging all the transitional faces in the octree.

This is by no means the most optimal solution for preparing the octree

data structure that is needed. The four stages, mentioned above, could

be combined and shrunk into fewer more concise functions, paving a way

for a more optimal solution. Any such improvements will be addressed

as matters of future work. The established bottleneck of the program

written for this thesis happens to be in the stage which sets up the

half-faces, in the octree creation stage, which can vary between a few

milliseconds to a number of hours, depending on the mesh which has to

be constructed, and the amount of leaf cells that has to be checked.

Recursive Subdivision

The first step in the construction of the final octree is the actual creation

of the cells, through recursive, depth-first subdivision. The algorithm

recursively subdivides cells, by testing against two subdivision conditions,

until there is no need for further subdivision, or the finest level of the

Octree is reached.

Condition 1: Edge ambiguities.

Cell edges are traversed sample by sample, checking each sample against

its neighbouring samples, on that edge, and comparing their signs. If

there is more than one sign change on any edge in a cell, that edge is

considered as ambiguous and that cell must be subdivided, in order that

correct topology is maintained. Since, the finest level of the octree is

the same resolution as the sampling grid, cases in which, a subdivision is
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required but not permitted, should not occur from this condition. Figure

4.11, demonstrates a the process on a 2D cell.

Figure 4.11: A 2D illustration of a surface passing through a cell edge
twice, resulting in a edge ambiguity. The red dots, are sample points and
the values are the values that the field function has evaluated at that point
in space. Such a cell requires subdivision.

Condition 2: Complex surface.

The second subdivision condition, checks the normals of the cell corners.

The normals themselves are acquired using a forward difference equation,

which returns the gradient at the point in space, where the corner is

located. This gradient is then normalised so that, the vector might

be used as a normal approximation of the isosurface at that point in

space. This second check is based on a heuristic, which is defined by

the difference in any two of the corner normals in a cell, as shown in

Figure 4.12. This is to say, that if the angle between the normals on any

of the corners is greater than some predefined threshold, the condition

returns true, as there is a potential complex surface. Unlike the previous

condition this one could demand a subdivision even when the maximum

level of the octree is reached, in which case no further subdivision is

possible, resulting in loss of precision and therefore a guaranteed non-

homeomorphic mesh.

The two conditions complement each other and no further check is

required. Care must be taken that the threshold value of the maximum

allowed difference between the normals is sensible if the default is not

used, as it could be user specified. If the value is too small then the

octree would subdivide similar to a regular grid. If the threshold is
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Figure 4.12: Two cases, scaled down into 2D. In the case of a sensible
threshold, one would not register a ’complex surface’ (left), and the other
would registers a possible ’complex surface’, thus that cell would need to
be further subdivided.

too big, some details might be lost as it would not subdivide when a

subdivision is required.

Half-face Construction

For the construction of the half-face structure, all cells which are at

the same subdivision level should be checked for adjacency. In the case

when two cells are exact neighbours the appropriate faces are assigned

the addresses to their twin face. Where the requirement for exact neigh-

bourhood is that four of the cell corners are shared, as depicted in Figure

4.13.

Establishing Face Parent-Child Relationships

In order to set the parent and children relationships to all half-faces,

the tree must be traversed from the root down. The current cell ID

resembles the position of that cell, relative to its parent. Because of

that fact, the three faces of that cell which are sub-faces to the parent

cell, are known based on the cell ID, Figure 4.14 shows the order of

the sub-cells. Those three face are all parented to the three parent-cell

faces, which they touch. Likewise those faces are added as children to
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Figure 4.13: The ’exact neighbours’ of cell ’A’ in a 2D case. 3D would
extend to two more exact neighbours, on the top and bottom of the cell.
In this image ’B’, ’C’, ’D’ and ’E’ are the exact neighbours of ’A’. Cells
’F’, ’G’, ’H’ and ’I’ are not.

the parent-cell’s faces. This process is done recursively for all cells until

the whole tree is traversed. At the end of this procedure, a correct

parent-child relationship is established for all cell faces.

Figure 4.14: A visualisation of the ordering of sub-cells in a parent
cell.

Finding Transitional Faces

The octree generation concludes with the tagging of the trasitional faces.

As it was established earlier, a transitional face is considered to be a
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face of a leaf cell which is ’shared’ with a branch cell - which has leaf

subcells touching the transitional face. A more loose description would

be, the face between neighbouring cells of different subdivision, which

both straddle the isosurface, Figure 4.15. If the transitional faces are not

handled properly, the surface of the mesh would be ruptured, with what

are commonly called, ’cracks’. This results in non-watertight meshes.

Over the years cracks, in adaptive resolution have been dealt with by

different methods, most of which involve a post-process, known as crack-

patching. There are numerous methods in which crack-patching could

be executed, however it often produces unsatisfactory results. One of the

features of the CMS algorithms is that, it meshes at adaptive resolution

without cracks, and therefore without the need for crack-patching.

Figure 4.15: Two cells at different subdivisions. Provided that the cell
on the left and the children of the cell on the right are Leaf Cells, the
separating face belonging to the larger cell is considered as transitional
(grey).

The location and tagging of the transitional faces is easily done using

a brute-force approach. All the octree cells are iterated over, and every

cell which is of a ’leaf’ state, has to have it’s faces checked. The cell faces

are iterated and are individually checked for a valid twin face, and if true,

the twin face is checked for valid children. If there is a twin and the twin

has valid children, this means that the current face should be marked as

’transitional’. This information would be used during the main algorithm

so that segments from the twin faces’ children are taken into account.

This process will ensure that the mesh is ’crack-free’ and thus watertight.
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4.4 The CMS Algorithm

As previously stated, this project does not follow strictly the steps of

the CMS algorithm neither does it implement all its features, however

remains loyal to the main contributions of the publication by Ho et al.

(2005). The main algorithm, as implemented in this project, can be seen

in Listing 4.1.

Listing 4.1: The overview of the Cubical Marching Squares algorithm

as implemented in this thesis.

procedure CMS( Octree oct ree , Mesh mesh )

C <− oc t r e e . c e l l s

for each l e a f C e l l C

for each f a c e f

f <− generateSegments ( )

end for

end for

for each l e a f C e l l C

for each f a c e f

i f f . i sT r a n s i t i o n a l ( )

f <− r e s o l v eTrans i tFace s ( )

f i

end for

end for

for each l e a f C e l l C

s t r i p s [ ] <− co l l e c tSegment s ( )

components [ ] <− l inkSegments ( )

mesh <− tr iangulateComponents ( components [ ] )

end for

end procedure

Each of the main algorithms’ sections would be described separately

as they are made up of smaller algorithms, which perform separate tasks.

It is important to mention that the actual mesh vertices are generated

during the main algorithm. They are found on every cell edge which has
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a sign change, and therefore a crossing point of the isosurface, which is

the point in space where the, user provided, field function evaluates to

the user-specified isovalue.

Before moving on to the description of the main algorithm, two func-

tions of great importance have to be established, as they are used during

the stages of the algorithm to find the points and their normals, which

would later become the mesh vertices. Those functions are the findEx-

actCrossingPoint() and findNormal() functions, which respectively re-

turn a positional and a directional vector. They approximate the isosur-

face position and the normal of the isosurface at that point in space.

Finding the Exact Crossing Point

The zero crossing point is the point in space at which the scalar function

returns zero. If the isovalue is zero, then the exact crossing point of

the isosurface would be all points in space which evaluate to zero. The

isovalue, can be any value, provided that the field function evaluates to

such a value in space. The surface value is continuous through space, but

isosurface extraction algorithms of the spatial partitioning type, such as

CMS, only aim to approximate the surface at reasonable intervals, there-

fore space is discretised by the sampling process. If two adjacent sample

points have opposite signs, this means the isosurface passes somewhere

between them. The aim of such algorithms is to approximate, as accu-

rately as possible, this point in space where the isosurface is equal to the

isovalue. Therefore, it is necessary to approximate to that point in space,

as opposed to just using one of the sample points with opposite signs,

Figure 4.16. The approximation is done, by closing in onto the surface,

by initially giving only the positions of those two adjacent sample points

of opposite signs.

This is a recursive function which progresses towards the isosurface

with each next function call. The function takes in two points in space,

they are sampled using the original scalar function and if they have

an isovalue of opposite signs, the recursive function progresses further.
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Figure 4.16: An example of 2D contours, showing the difference be-
tween simply picking the closer sample point of two adjacent sample
points with opposite signs, and approximating the surface by converging
onto it through linear interpolation.

The progression could either be done through mid-points, where the mid

point between the two given points is always chosen, or through linear

interpolation, which gives a much better approximation, thus finding

the surface much faster. Therefore, interpolation is employed for this

project. Figure 4.17, provides a visual comparison of the two methods.

The quality of interpolation could be defined by the user, this value refers

to the number of recursive calls which would be made before returning

the closest approximation, unless a certain threshold from the isolevel

is reached before arriving at the interpolation quality maximum value.

Figure 4.18 shows the practical difference between a sphere extracted

with interpolation quality of two and a sphere extracted without locating

the ’exact’ crossing point.

Figure 4.17: The difference between sinply picking the closer sample
point of two adjacent sample points with opposite signs, and approximat-
ing the surface by converging onto it using linear interpolation. The mid
point method gets to 0.05 after two iterations, whilst the linear interpo-
lation finds the surface after the first.
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Figure 4.18: A sphere extracted with an interpolation quality of 2 (left).
A sphere extracted without any interpolation, by simply taking the closest
of the two sample points (right).

Surface normals

In order for surface normals to be defined along an

implicit surface, the function must be continuous and

differentiable. That is, at all points along the surface

the partial derivatives
df

dx
,
df

dy
,
df

dz
must be continuous

and not all zero.

(Bloomenthal and Wyvill (1997), p.9)

The surface gradient must be found in at any point in space. The

forward distance method is used in order that the gradient may be found

at an arbitrary sample point in space. The normal of the surface at that

point can then be extracted from the gradient. The normals are not only

used for exporting a mesh with correct normals, but for other reasons in

the algorithm, such as, the construction of the adaptive octree as they

are used for one of the subdivision conditions. In the original algorithm

they are also used for the disambiguation of the ambiguous face cases and

testing against sharp features. The method, used for finding the normals

in this thesis is a slightly simplified version of the forward difference, as
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it is sufficient for locating the normal approximations, Equation 4.1.

∆h[f ](xyz) = f(x+hx)− f(x), f(y +hy)− f(y), f(z +hz)− f(z) (4.1)

where, hxyz are half of the dimensions of the local bounding box.

Generation of Components

The ’Generation of Components’ section can be logically split into smaller

procedures, however the two main parts within the generation of compo-

nents, could be classified as the generation of segments and the linking

of segments. As mentioned earlier a component is made up of segments,

segments are made up of strips, and each strip has two vertices. This

breakdown is a result of the decomposition of cubes into squares in the

main algorithm.

*Generation of Segments The generation of the face segments is done

by recursively traversing the whole octree and for every leaf cell applying

the standard MS algorithm on all its faces. Strips are created for every

face, depending on its MS case, which is acquired from a lookup table,

Table 4.2. Each strip is populated by two vertices, and connects two

edges of the face which are taken from the MS table.

The cell edge which should contain a vertex, however, might be made

up out of numerous sample points, if the leaf cell is not at the final level

of subdivision. Then it is important that the exact two sample points

between which the sign change happens, are found and passed to the

findExactCrossingPoint() function, which was spoken of earlier. Finding

them would allow to find the exact sub-edge of the crossing point. This

is the edge which should contain a vertex.

Once this edge is found, the edge array is checked for existing vertices

on that edge. This is done so that duplicate points are avoided or existing

vertices are not overwritten.
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• If there is a vertex on that edge, then its index from the vertex

array is saved onto the current strip.

• If it is established that there is no previous vertex on that edge,

a new vertex can be created and stored on it as well as onto the

global array.

Linking of Segments

This part is also referred to as, ’the tracing of components’, because

when segments are linked together and form a closed loop they form a

component. The component is in fact an array of indices so that the

triangulation of the vertices is performed in the correct order. And so

the triangulated component results in a part of the final mesh.

Resolving Transitional Faces

Before the stage of linking all the segments on every leaf cell, the tran-

sitional faces must be taken care of. All the cells are iterated over, from

the lowest level of subdivison to the highest. Every cell is checked for

transitional faces and if such exist, its strips are modified using its twin

face, which would have a much more complex set of strips, as they would

have leaf cells of lower subdivision. Once all the transitional faces are

updated with the correct strips, the actual linking of segments can begin.

Creating Components

This procedure is done by, once again, looping through all the cells from

deepest subdivision up to the root. For every leaf cell, all the strips from

its every face are collected and stored into a temporary array. Then a

procedure is called which links the strips together, by comparing their

vertex indices, and connecting them into a single array of sequential ver-

tex indices. When the first and the last vertices are the same, that means

that the component is complete. The function returns this component

and it gets stored in the cell to which it belongs. The strips which were

used to create it are also respectivelly erased from the temporary cell

strip array, and the procedure is repeated while there strips remain in

the temporary array. In theory a leaf cell can have an arbitrary amount

of strips if it has transitional faces.
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Triangulation of Components

The last part of the algorithm, is the actual creation of the polygonal

mesh. This stage consists in the triangulation of all the components in

every leaf cell. The triangulation process is done based on the number

of vertices in a component. A component actually stores only indices to

vertices in the vertex array. Since a component, cannot have less than

three vertices, the minimum is three. If a component has strictly three

vertices then their indices are passed directly to the mesh object, as a

single triangle.

Triangle fans

If there are more than three vertices in a component, then the algorithm

proceeds by finding the mid point of all the vertices in that component

by averaging their positions. A new vertex is created at the mid point,

then the component is triangulated using a triangle fan from the mid

point and onto every vertex of the component.

Snapping the mid-point to the surface

Since finding the midpoint through the average of all the vertices of the

component can result in a point which does not lie on the exact isosurface,

an additional step is taken, so that a more accurate position is found for

the central vertex of the triangle fan. This step clamps the mid point

onto the crossing point of the isosurface using linear interpolation. This

step however, is provided as an user option, as it does not always produce

more visually appealing results. Figure 4.19, shows two spheres created

using the same settings, however one has the ’clamp midpoint to surface’

option, set to true and the other, to false.

The Library

The finished program is compiled as a stand-alone C++ library, for iso-

surface extraction. It provides an intuitive and easy to implement tem-

plated interface, which could be implemented as shown in the examples

provided with the source code.
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Figure 4.19: A sphere with mid-points of the traingle fans clamped to
the isosurface (left). And a sphere with just averaged triangle fan mid-
points (right).

Exporting Meshes

Meshes are exportable into the standard Wavefront .OBJ file format. The

user can export an OBJ of the produced mesh by using the mesh function

call to exportOBJ(), which takes an export path as a parameter. The

program will then automatically export the .OBJ mesh to the specified

location once the meshing is complete.

Exporting Octrees

The library also allows for exporting the constructed octree cells, as a

python script for Maya. When the script is ran in Maya it creates a

cube with the exact dimensions for every cell of the octree, at its precise

position. This feature has an option to export only leaf cells or the entire

octree. It could be used for visualisation purposes, Figure 4.20, Figure

4.21 and Figure 4.22.
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Figure 4.20: A low-res pyramid mesh and its octree.

Figure 4.21: An orthographic view of a cube and the way its topology
matches the octree cells.
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Figure 4.22: Minecraft Bunny - Only the leaf cells of the octree produced
when meshing the ’Stanford Bunny’ model.
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Meshing and Exporting Individual Cells

This feature was used as a debugging tool, however it could be useful for

visualisation purposes, therefore it remained in the final version of the

library. It allows the user to specify desired cells based on their unique

ID. The program will then only mesh the surface in the desired cells,

and if the octree export is on, it will also only export the desired cells,

Figure 4.23.

Figure 4.23: An individually meshed cell, with it’s octree cell and mesh
surface exported into Maya.
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Chapter 5

Results and Discussion

5.1 Results

This section demonstrates meshes, polygonised with the library created

for this project, based on functions of space. Each mesh, has its features

and resolution highlighted.

Figure 5.1 depicts a cube meshed from a function. It show how the

topology simplifies on in the middle of the cube faces and gets denser as

surface detail approaches, which in this case happens to be the corners

of the cube.

Figure 5.2 shows two cones meshed from an algebraic function. The

difference between them is only the complex surface threshold, which is

0.88 for the left cone and 0.98 for the right cone. The complex surface

threshold is the cosine of the angle between the normals and is checked

against all pairs of corners in a cell. As it can be seen a slight change in

this value can lead to a big change in the resultant mesh.

The three torii in Figure 5.3 are meshed by different isosurface ex-

traction algorithms, at the same resolution. Here adaptive resolution is

turned off for the CMS torii by setting both its maximum and minimum

levels to the same value. In this case all meshes are produced at a resolu-

tion of 32. MC on the left and DC on the right polygonise with a smaller

poly-count due to the way they triangulate. The DC torus displays some
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Figure 5.1: A cube function, Algorithm: CMS, Vertices: 6,222, Trian-
gles: 12,440.

Figure 5.2: A cone function, Algorithm: CMS. LEFT: Complex Suface
Threshold: 0.88, Vertices: 1,865, Triangles: 3,708. RIGHT: Complex
Suface Threshold: 0.98, Vertices: 9,183, Triangles: 18,286

self-intersections in its centre.

The rest of the results are not obtained from algebraic functions but

rather from signed distance fields from existing meshes. Thus a compar-

ison with the original mesh could be drawn and retopologisation could

be considered. Figure 5.4 shows two models of spanners. The original
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Figure 5.3: Linked torii function. All Resolutions: 32, Algorithm: MC
(left), CMS(centre), DC(right). MC[vertices: 2,224, triangles: 4,464].
CMS[vertices: 3,888, triangles: 7,776]. DC[vertices: 1,888, triangles:
3,840].

model is to the right of the image, whilst its retopologised version is on

the left.

When considering adaptive resolution or sharp features, a CAD/CAM

model which is often used is the ’fandisk’ model. Figure 5.5, compares

the original to the extracted CMS mesh, whilst Figure 5.6 compares the

CMS with a MC extraction sampled at the same resolution - 256.

The following images take the same comparison approach, and com-

pare an original model, with two models meshed by this project’s CMS

and the original MC, both sampling at the same resolution, Figure 5.7,

Figure 5.8, Figure 5.9 and Figure 5.10.

Figure 5.11 shows a Stanford bunny model on the right and its ex-

tracted version on the left. Detail is lost in this version as the complex

surface threshold is set to 0.7, which is too low, to be able to capture all

the surface detail.

Figure 5.12 is another extracted mesh based on a model from the

Stanford 3D Repository, Stanford. The dragon is meshed between a

resolution of 4 and 256. This is a complex model for extraction due to
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Figure 5.4: LEFT[Algorithm: CMS, Resolution: 4 - 256, Vertices:
11,421, Triangles: 22,838 ] RIGHT[Original Model]. Model modified
from: BlendSwap (b)

its vast amounts of miniature surface detail and many concavities, the

algorithm, does a good job at preserving the detail at a reasonable level,

whilst remaining adaptive at a complex surface threshold of 0.85.
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Figure 5.5: LEFT[Algorithm: CMS, Resolution: 4 - 256, Vertices:
28,029, Triangles: 56,054 ] RIGHT[Original model].

Figure 5.6: LEFT[Algorithm: CMS, Resolution: 4 - 256, Vertices:
28,029, Triangles: 56,054 ] RIGHT[Algorithm: MC, Resolution: 256,
Vertices: 86,698, Triangles: 173,428].
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Figure 5.7: LEFT[Algorithm: CMS, Resolution: 4 - 256, Vertices:
43,277, Triangles: 86,550], RIGHT[Original Model.]

Figure 5.8: LEFT[Algorithm: CMS, Resolution: 4 - 256, Vertices:
43,277, Triangles: 86,550], RIGHT[Algorithm: MC, Resolution: 256,
Vertices: 167,756, Triangles: 335,508].
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Figure 5.9: LEFT[Algorithm: CMS, Resolution: 4 - 256, Vertices:
72,938, Triangles: 145,892 ] RIGHT[Original Model]. Model modified
from: BlendSwap (a)

Figure 5.10: LEFT[Algorithm: CMS, Resolution: 4 - 256, Vertices:
72,938, Triangles: 145,892 ] RIGHT[Algorithm: MC, Resolution: 256,
Vertices: 86,698, Triangles: 173,428]. Model modified from: BlendSwap
(a)
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Figure 5.11: LEFT[Algorithm: CMS, Resolution: 4 - 256, Com-
plex Surface Threshold: 0.7, Vertices: 36,036, Triangles: 72,064 ],
RIGHT[Original Model]. Model courtesy of: Stanford

Figure 5.12: Algorithm: CMS, Resolution: 4-256, Complex Surface
Threshold: 0.85, Vertices: 131,054, Triangles: 262,080. Model courtesy
of: Stanford
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5.2 Discussion

From the results depicted above, it is visible that the CMS algorithm is

theoretically plausible, even from the loose implementation based on it,

which was developed for this thesis. This implementation lacks many of

the features which are mentioned in the original algorithm, as preserva-

tion of 2D an 3D sharp features and face and internal disambiguation,

as they have been beyond the scope of this project. Nevertheless, the

current state of the algorithm allows for its expansion in that direction,

as those features are based upon the foundation of the algorithm which

was successfully developed until the current state.

The comparisons throughout this project were made with the original

MC and the DC algorithms. They were mainly aiming to portray the

benefit of the adaptive nature of the CMS algorithm, without cracks or

crack-patching.

Another thing that draws attention is the usage of the extractor as a

retopologisation tool which guarantees manifold results. There is room

for improvement in every aspect, however the implementation done for

this project proves that there is in fact great potential in the algorithm,

despite its complexity. Overall it offers a robust isosurface extractor

which could potentially outperform most other algorithms or combina-

tions of algorithms, in terms of mesh quality.
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Chapter 6

Conclusion

6.1 Conclusion

Overview

This project aimed to make a partial implementation of the CMS isosur-

face extraction algorithm. The original algorithm was described in light

of previous work in the field and algorithms which are directly related or

opposed to the one in focus. The technique implemented in this project

was also described in great detail, so that it could be reproduced solely

though this document. As this has been a loose and partial implemen-

tation of the original algorithm, some of the aspects in the publication

by Ho et al. (2005) are not identical. Nevertheless, the results achieved

match the claims described by the authors of the original algorithm. A

comparison was then drawn between this implementation and some other

existing techniques, as they were tested on identical input data. This led

to a discussion on the plausibility of the algorithm and its potential for

expansion, leading to the outcome of this project, which was established

to be successful and with great potential.
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Outcome

This project resulted in an isosurface extraction C++ library, which can

polygonise a user provided function of space.

The function could be specified directly as a field function, or could

be provided through some other means. Any scalar field or ADF would

be valid input.

The main contributions of the CMS algorithm is that it decomposes

a Marching Cubes cell into six Marching Squares faces. Henceforth it is

able to achieve all its features as a result of this decomposition. All of its

claims are based upon this main idea. This project was based upon the

CMS algorithm as it demonstrated potential to be one of the most robust

isosurface extraction algorithms to that day. The original CMS claims to

have similar speed with MC Lorensen and Cline (1987), preserve sharp

features as DC Ju et al. (2002), without DC’s self-intersections and in-

tercell dependecy, which is the downside of most dual methods. Also

it claimed ’cheap’ disambiguation, both face and internal, which comes

along with the sharp feature preservation, therefore maintaining consis-

tent topology. And most importantly it allowed for constructing meshses

of adaptive resolution, without the need for crack-patching. All those

functionalities add up to one of the most robust algorithms for polygo-

nising scalar fields even to that day.

This being said, the algorithm, never gained wide spread popularity

or acknoledgement by the community. This project set forth the goal

to review the claims of the authors of the CMS algorithm, and put its

plausibility to the test. The thesis accomplished, what it set forth to

do, by a loose and partial implementation of the whole algorithm. By

implementing its core features, and proving its claims credible.

Other feature which were spoken of in the original algorithm, which

have not fallen in the scope of the project, are the disambiguation proce-

dures and the preservation of both 2D and 3D sharp features. However

they are addressed in the Future Work section of this document, as they

are possible to achieve with much greater ease, than some the competing
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algorithms, and without most of their downsides.

The program created for this thesis, succeeds in providing a loose im-

plementation of the main ideas of the original algorithm, and achieves

meshing at adaptive resolution, without crack-patching, resulting in man-

ifold meshes. In addition to that, intercell-independence, is maintained

as an outcome, because of the way the algorithm works, which would

allow for a potential extension onto the graphics hardware.

6.2 Future work

Additional Features

Since this project resulted in a software library for meshing implicit sur-

faces. One of the most basic extensions to the work, would be the addi-

tion of small features to the library itself. They need not necessarily be

an expansions of the algorithm itself, but could be any type of features

which will imporve the usability of the library, extend the users options,

or improve on the final result. Some suggestions are listed below.

Topological Verification

Etiene et al. (2012), present an idea and methodology for topological

verification of a mesh extracted from an isosurface. Their methods could

’prove’ with high accuracy if a mesh is homeomorphic to the original

surface. Furthermore they say that their technique could be implemented

as a tool in any isosurface extraction software, and could be used to verify

the produced results. The implementation of such a topology verification

tool is beyond the scope of this project, however it is an interesting idea

and any similar software library could benefit from such a tool.

Mesh Post Processes

Since the output of the program are polygonal meshes, and often such

spactial partitioning isosurface extraction algorithms, could produce dis-

proportional triangles, which are either very thin or very small. For this

reason the library could benefit from mesh-specific post process func-
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tionalities. Some such processes include: Vertex Wedling for vertices

at close proximity, lying below a certain threshold. Relaxation of trian-

gles, sliding the triangle vertices along the isosurface, to achieve more

proportional triangles. Recalculating and exporting the normals. At the

moment the normals at the vertices are being calculated but not ex-

ported with the .OBJ file. Also, there are other more accurate ways for

computing the normals, than using the Forward Difference method. A

number of functions could be provided for the user, such as indexing or

analytical normals.

Optimisation

This thesis has focused on the theoretical implementation of the CMS

algorithm, thus the optimal software engineering has been overlooked in

some parts of the project. Certainly, the improvement of the code quality

and the optimisation of some of the algorithms, in terms of datastructures

and programming practices, is a matter of future work. However, listed

below are some optimisation suggestions on a larger scale.

Adaptvie Sampling

Currently, the program samples the, user provided, scalar field at a uni-

form grid of the deepest level of the specified octree. For example, if

the octree has been declared between level 3 and level 8, the program

would sample the function at level 8, which would result in 28 or 256

samples. Many of those samples are never considered, thus a much more

efficient solution would be the adaptive sampling approach, similar to

the ADFs, proposed by Frisken et al. (2000). Unfortunately a great part

of the program is build upon the assumption of sampling on a regular

grid, therefore, such a modification would result in major refactoring of

the code.

Online Assignment of Twin Faces

The bottleneck of the current application is located at one of the stages

of the octree creation process, namely the assignment of the twin faces

or establishing the half-face datastructure. This is so, because it involves
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a nested iteration through all the cells, followed by a series of compu-

tationally expensive checks, such as exact neighbourhood and others.

This stage still remains the bottleneck of the program, and a more ade-

quate refactoring of this stage could lead to a change the total algorithms

time complexity by an order of magnitude. The most efficient way to

dealing with this problem, would be the online assignment of the twin

faces, during the octree construction and recursion. This, however is not

straightforward and was therefore left as a matter of future work.

GPU Implementation

Another possible optimisation, is one that the authors of the CMS al-

gorithm, suggest themselves. The benefit of one of the features of the

CMS algorithm, namely its intercell independence is that it allows for a

full implementation of the algorithm onto the GPU.

Improvement and Extensions

The improvements and extensions of this project’s library into full im-

plementation of the main algorithm are some of the main ways through

which the algorithm could be further improved and upgraded, to handle

more isosurface extraction problems.

Sharp Feature preservation Preservation of face sharp features is

the next logical thing to be implemented into the library produced for

this thesis. Due to the fact that the solution to this problem is based

on the backbone of the main algorithm, this further add-on should not

be very difficult to achieve. The theory behind it, is checking for a face

sharp feature based on the surface normals of surface-straddling faces,

projected onto them. The intersection point of the tangents which are

defined by the points and their normals, is a potential 2D sharp feature,

which is taken into account when constructing the strips for the face.

The original CMS publication, also calims to preserve 3D sharp fea-

tures by sampling each resultant component, with already preserved face

sharp features. This is done “by solving [. . . ni . . . ]
Tp = [. . . nisi . . . ] by

singular value decomposition, where s is the location of a sample point,
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n is a sample normal, and p is the location of the sharp feature” Ho

et al. (2005). If there is a 3D sharp feature, the triangulation is done

by a triangle fan similar to the standard method, however the 3D sharp

feature position is used as the centre of the fan. This techniques was

not covered in this thesis, as it is vaguely touched in the original paper.

This feature essentially comes at a relatively low complexity with this

algorithm, as it does not require any special approach to achieving 3D

sharp feature preservation, as opposed to other specialised techniques,

as DC Ju et al. (2002).

Internal and Face Disambiguation A problem that must be ad-

dressed in order for maintaining homeomorphic topology is the need for

disambiguation of the ambiguous cases, both face and internal. In prac-

tice, the face ambiguity is much more common for nearly any model,

therefore a higher priority should be given to it. It also happens to be

much easier to disambiguate than internal ambiguity.

Another feature spoken of in the original CMS paper is the method

for Internal Disambiguation. As covered in the Technical Background

section of this document, Internal Ambiguities are caused by ambiguous

configurations of the cell corner signs, when determining whether two

components are joined or separated, cannot be established just from the

corner signs. The technique for internal disambiguation is based on top

of the the extraction of 3D sharp features, as they are used to detect

any such ambiguity. They are detected in a similar way to the detection

of 2D sharp features. However, in the 3D case, the two components’

volumes have to be checked for intersection. If such exists, there is an

ambiguity and it could be resolved by meshing the resultant component

in a specialised way, which resembles a cylindrical shape, matching the

underling surface.

Reduction of Vertices The triangulation process was covered in

the implementation section of this document. It was taken from the

original CMS paper, however it suffers from one drawback and that is the

excessive usage of triangle fans. In this thesis, as in the original paper, if

there are more than three vertices which need to be triangulated, this is
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done by finding their mid point and performing triangle fan triangulation.

This is done in order that the triangulation might be consistent with any

sharp features. This however, results in many new vertices, even on faces

which do not require that additional vertex, as no sharp feature is found

on them. The produced mesh could be thus simplified by applying the

triangle fan triangulation only on segments with 2D or 3D sharp features,

but if no sharp feature was detected, then triangulate the ’standard’ MC

way, Figure 6.1. This is a minor detail, which is significantly easier to

implement than many of the other proposed future works, however it

can make a big difference in the number of vertices on high-resolution

meshes.

Figure 6.1: Triangle fan triangulation, with an extra vertex, (left).
Simple triangulation as performed in MC, (right).

ECMS An extension of the algorithm to use an adaptive structure

is another interesting future work. Such an extension is first proposed

by Ho et al. (2006) in the Extended Cubical Marching Squares. Such an

extension is based on the contour of the underlying model, and would

improve the accuracy, the performance of the algorithm, as well as the

mesh quality, 6.2.

Figure 6.2: Isosurface extraction on a cuboidal vs adaptive structure.
Image sourced: Ho et al. (2006)

Extraction of Normal Maps Barry and Wood (2007) propose a
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method for extracting normal maps along with extracting a low-resolution

mesh, from the volume data-set. They acquire very convincing results, by

simultaneously generating the normal map whilst generating the poly-

gons, 6.3. However, their extraction algorithm of choice is a ’robust

Dual Contouring algorithm’, their technique does not work as well with

Marching Cubes, according to the results from the original thesis based

on which the publication was made. A direct extraction of normal maps

could be an interesting perspective for visualisation purposes of heavy

meshes, with great amounts of small detail. As of this date, this tech-

nique has not been tried with the CMS algorithm, and could potentially

lead to good results.

Figure 6.3: Direct extracting of normal mapped meshes. Meshes ex-
tracted from a human head data set. Left: 56,637 quads, Centre: 1,406
quads, Right: 1,406 quads - normal mapped. Image sourced: Barry and
Wood (2007)
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Appendix A

Appendix A

Table A.1: Vertex Map Table - given a face edge, returns it’s two
corresponding face vertices.

Face
Edge

Vertex
A

Vertex
B

Edge 0 0 2
Edge 1 3 1
Edge 2 1 0
Edge 3 2 3

Table A.2: Face Vertex Table - given a cell face and one of it’s four
verices, get the corresponding cell vertex index.

Face Vertex 0 Vertex 1 Vertex 2 Vertex 3

Face 0 2 0 6 4
Face 1 1 3 5 7
Face 2 0 1 4 5
Face 3 6 7 2 3
Face 4 2 3 0 1
Face 5 4 5 6 7
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Table A.3: Face Edge Table - given a face and a face edge this table
returns the corresponding cell edge index.

Face Edge 0 Edge 1 Edge 2 Edge 3

Face 0 0 1 2 3
Face 1 4 5 6 7
Face 2 1 4 8 9
Face 3 0 5 11 10
Face 4 2 6 10 8
Face 5 3 7 9 11

Table A.4: Face Edge Table - given a cell edge, returns its two cell
vertex indices.

Edge Vertex A Vertex B

Edge 0 2 6
Edge 1 0 4
Edge 2 0 2
Edge 3 4 6
Edge 4 1 5
Edge 5 3 7
Edge 6 1 3
Edge 7 5 7
Edge 8 0 1
Edge 9 4 5
Edge 10 2 3
Edge 11 6 7
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