RIGID BODY DYNAMICS

PONGPAT SOMBATPANICH

AUGUSsT, 2014

MASTER OF SCIENCE,
COMPUTER ANIMATION AND VISUAL EFFECTS

Contents

1 Introduction 2
2 Technical Background 3
2.1 Unconstrained motion 3
2.2 Collision Detection 4
2.3 Collision Response o 4
2.3.1 Impulse Method)
2.3.1.1 Impulse Based Friction 6

3 Solution 8
3.1 Design oo 8
3.2 Problem e e 9
3.21 MajorlIssueo 9

3.22 MinorIssueo 9

4 Conclusion 10
4.1 Future Worko 10

Chapter 1

Introduction

The study of rigid body dynamics has a long history in the field of computer
graphics. Its application can be seen extensively in games and computer anima-
tion these days as the concept itself is an important factor to create a believable
virtual world. The simulation of rigid body dynamics, which can be refered
as a physics engine, will calculate the approximated movements of objects in
the system, including collision detection and gravity. This creates an illusion
that objects in the virtual world are also subjected to the law of physics, which
greatly enchances user experience.

As the name implied, rigid body system focuses on non-deformable objects.
By representing objects as rigid, we can greatly reduce the amount of calculation
we have to deal with, which is important in real-time application.

As mentioned, a physics engine is a fundamental system in many application
in computer graphics field. By developing one, the developer can learn a great
deal from it, which can further extend to the other areas of study.

Chapter 2

Technical Background

A physics engine can be divided into four subsystems: Unconstrained motion,
Collision detection, Collision response and lastly, constraint resolution which is
not in the scope of this project.

2.1 Unconstrained motion

The motion of rigid body can be explained with Newton’s second law of motion,
which can be extended to explain the relation between position z, velocity v and
acceleration a

Newtonion Dynamics also give us

P=mv

L=1w

which represents linear momentum P where m refer to mass of rigid body.
Similarly, angular momentum L, is the product of angular velocity w and inertia
tensor I which will be described below.

For simplicity, we can just think of inertia tensor as an angular version of
mass. However, inertia tensor is subjected to the body rotation, so we need to

recalculate it every time the rotation changes from the original local inertia by

I = Rlyoay RT

CHAPTER 2. TECHNICAL BACKGROUND 4

where R represent a rotational matrix of rigid body. R is its transpose.

As we will use ordinary differential equation to describe unconstrained mo-
tion, it is easier if represent the motion of rigid body as a state vector.

(1)
(t)
(t)
L(t)

Together with the above equations, we can explained the derivative of X ()

x(y=| o

as
g';((t)) r
¢ R(t skew 71
K= pay | =| el DR
L

®) L(t)
However, it is recommended that the rotation of rigid body can also be

represented as quaternion, which is proved to have less numerical error in real
implementation.

2.2 Collision Detection

This topic covers the techniques that have been used to sort and query a set of
rigid bodies, as well as pinpoint the colliding location. Collision detection gen-
erally can be divided into phases such as broadphase and narrowphase. Broad-
phase involves quickly determining whether the two bodies have potential to
collide, so that to avoid having to expensively compare every objects in the
scene. The technique includes using some types of spatial structure such as
grid and dynamic tree to organize rigid bodies, as well as using cheap and less
accurate representation of the actual object such as bounding sphere, or axis
aligned bounding box.

On the other hand, narrowphase is where we process the actual detection.
Depending on the type of collision shapes, the simple primitive shapes, which are
easier to implement, need to be implemented with special-case detection algo-
rithms per each shape combination e.g. sphere-sphere, sphere-box, and box-box.
There are also algorithms that are independent from shape type like the Gilbert-
Johnson-Keerthi or GJK which handles convex shapes by using set operations
between collided pair. Regardless of methods chosen, the algorithms suppose to
accurately determine collisions and return collision details for response solver.

2.3 Collision Response

After detect that objects collide, A physics engine must decide on how to re-
solve the penetration. One approach is described as to force the nonpenetration

CHAPTER 2. TECHNICAL BACKGROUND 5

constraint to the objects. The concept is that in order to prevent objects from
further interpenetration the solver will generate impulsive forces along the con-
tact normal, which will abruptly change the objects velocity. In order to do
this, we need contact these information from collision detection system.

e Contact point

e Contact normal

e Penetration depth

e Contact type : vertex-face or edge-edge

The need of these information can be varied depending on implementation, but
contact point and normal are essential in any case. The following section will
describe different method in details.

2.3.1 Impulse Method

The impulse method resolves the penetration by manipulating the velocities of
objects. Impulse j is a term in physics defined as the accumulated forces F'
applied to a body over a period of time At.

j=FAt
Playing further with Newton’s second law, we get

Av = —

m

Assuming the system is frictionless, the direction of impulse will be in the
normal direction, thus we can define the post-collision velocity v’ as

/ Jjn
Vg =0Vp+ —
ma
/ jn
vg =UB + —
mp

Similarly, the post-collision angular velocity w’ is
Wy =wa + I (ra xn)

wh = wp JrjI*l(TB X 1)

Where r is distance from object center to collision point, then we can find
velocity at collision point by

V=v+wxr

Substitute post-collsion velocity equation for rigid body A, we get

CHAPTER 2. TECHNICAL BACKGROUND 6

Vi = Va4 j(—= + T (ra x 2) X 74)
ma

We apply the same to rigid body B, then subtract both equaion, we get
LY — (V- YR ; -1 ;
Vi—Vi=Va—Vs)+j(+ + I (raxn)xra+I""(rgxn)xrg)
ma mpg
at the last step, we introduce restitution coefficient to scale down the impulse
n-(Vi—Vg)=en-(Va—Vp)

‘/;‘el =Vs—-Vg

Substitute the above equation, finally, we obtain

. (14)W 11
7= T
— 4+ — 4 (raxn)-(I71(raxn))+ (rg xn) - (I~Yrp x n))
ma mp
After we achieve the impulse magnitude, we will apply it via rigid body
momentum

2.3.1.1 Impulse Based Friction

The impulse reaction will only apply along collision normal. we also need reac-
tion force along the surface. Coulomb Friction model is one of the most popular
model. The model separates friction coefficients into two: static friction us and
dynamic friction pg. Imagine pushing a heavy object along the surface, at first
the object will resist until we exert force pass certain limit. Suddenly, the body
starts to slide easily. This is when it changes coefficient from static to the lighter
one, dynamic.

Friction impulse j; will be applied along a tangent vector t, which is per-
pendicular to normal vector 7. can be found by

vp — (U -
|UT - (UT :

fe - (fe) ﬁ)ﬁ
|fe - (fe ' ﬁ)ﬁr|
0

>
I
4
>
I

where f. is external forces affect on the body. Frictional force can be com-
puted fy as

—(fy -t v, =0f-t<
fr=X—f vp=0fo-t>
_fth ’UT#O

CHAPTER 2. TECHNICAL BACKGROUND

According to Coulomb Friction cone, the relationship between impulse re-
sponse and impulse friction is
Js = Msjr
Jd = HdJjr

Finally, the integration of frictional force yields

>
AVARVAY

»

—(mv, -t v, =0 mu, -
.jf = _js£
7jdt (U 7é 0

<

3
|
)
<

3
>
»

Chapter 3

Solution

The project implements a physics engine with special-case collision detection
algorithms. For collision response Impulse method has been chosen as the algo-
rithm of choice.

3.1 Design

The present physics engine was implemented using C++ language and incoper-
ated NGL library, which is a graphic programming support library for students
here in NCCA. The application design employs Physic World as a main class that
wraps around all RigidBodys in the system and forward the simulation in time.
During each step, CollisionEngine and ImpulseSolver are the essential classes
which handle interaction between objects. The first is responsible for collision
detection, while the latter calculate collision responses on collided pairs based
on the engine output. GLWindow class is responsible for all rendering works,
as well as connecting UI to the lower level application.

RigidBody the class represents an individual rigid body properties including
its motion-related variables. It also contains pointer to CollisionShape
class which represent its bounding shape. The class is inherited from an
abstract class RK/4Integrator which provides ode solving ability.

CollisionShape is inherited by SphereShape, PlaneShape and BoxShape. These
classes represent the rigid body bounding shapes which are used in col-
lision detection and rendering. Each contains methods and properties
related to its shape for example BoxShape knows its extent size and can
calculate its vertices position in relative to worldspace.

CollisionEngine is responsible for all collision detection activities both broad-
phase and narrowphase. It contains several case-specific collision detec-
tion methods such as sphereVSsphere, boxVSplane. Each special-case de-
tection method will determine whether the pair collide, if collide it will

CHAPTER 3. SOLUTION 9

generate manifold and contact information. The main method is doColli-
sionDetection() which will decide the appropriate algorithm for each rigid
body pair. The method will return manifolds list which will be passed to
ImpulseSolver later.

ImpulseSolver is responsible for collision response. It employs Impulse method
for the resolution. The solve() method takes a list of manifolds as an in-
put and solve each manifold sequentially. After all collisions have been
resolved, it will call update() on each rigid body.

3.2 Problem

Unfortunately, the project currently has major bug issues which are listed below.

3.2.1 Major Issue

Currently, the collision detection system break. The application in current state
cannot handle any other collision except against the ground plane. This happens
after introducing friction to the system. Unfornately, there is simply not enough
time to fix.

3.2.2 Minor Issue

While the application works fine under the condition of only one object per
scene. Notice that when trying to balance boxshape on one of its corner. The
box will sway then topple down, then swing back again. This could happen
from excessive angular momentum. By introducing some damping forces to the
system, the problem should be fixed.

Chapter 4

Conclusion

Due to confusion and misdirection during the initial of this project, this project
has less time to develop to its full potential. Most key features have already been
implemented. However, the project has serious bug issue which unfortunately
cannot be fix within the deadline.

4.1 Future Work

There are several features which can enchance the current simulation as follow-
ing

e Implementation of spatial structure such as dynamic aabb tree which
greatly improve the efficiency of the system as it allows the simulation
to handle more objects

e Develop island processing system which will process interacting rigid bod-
ies together as a group, which is believed will improve the stability espe-
cially when bodies stacking.

e Develop a better collision detection algorithm such as GJK

e Implementation of constraint system which enable rigid bodies to interact
with each other in interesting ways

10

Bibliography

[1] Eberly, H, E., 2010. Game physics. Second Edition. New York: Elsevier
Science Inc.

[2] Begen, V,D,G., 2004. Collision detection in interactive 3d environments.
New York: Elsevier Science Inc.

[3] Vella, C., 2008. Gravitas: An extensible physics engine framework using
object- oriented and design pattern-driven software architecture principles.
Thesis (Master). University of Malta

[4] Baraff, D., 2001. Physically based modelling: Rigid body simulation. Sig-
graph 2001 course notes.

[5] Muller, M., 2008. Real time physics. Siggraph 2008 course notes.

11

