
Rigid Body Dynamis

Pongpat Sombatpanih

August, 2014

Master of Siene,

Computer Animation and Visual Effets

Contents

1 Introdution 2

2 Tehnial Bakground 3

2.1 Unonstrained motion . 3

2.2 Collision Detetion . 4

2.3 Collision Response . 4

2.3.1 Impulse Method . 5

2.3.1.1 Impulse Based Frition 6

3 Solution 8

3.1 Design . 8

3.2 Problem . 9

3.2.1 Major Issue . 9

3.2.2 Minor Issue . 9

4 Conlusion 10

4.1 Future Work . 10

1

Chapter 1

Introdution

The study of rigid body dynamis has a long history in the �eld of omputer

graphis. Its appliation an be seen extensively in games and omputer anima-

tion these days as the onept itself is an important fator to reate a believable

virtual world. The simulation of rigid body dynamis, whih an be refered

as a physis engine, will alulate the approximated movements of objets in

the system, inluding ollision detetion and gravity. This reates an illusion

that objets in the virtual world are also subjeted to the law of physis, whih

greatly enhanes user experiene.

As the name implied, rigid body system fouses on non-deformable objets.

By representing objets as rigid, we an greatly redue the amount of alulation

we have to deal with, whih is important in real-time appliation.

As mentioned, a physis engine is a fundamental system in many appliation

in omputer graphis �eld. By developing one, the developer an learn a great

deal from it, whih an further extend to the other areas of study.

2

Chapter 2

Tehnial Bakground

A physis engine an be divided into four subsystems: Unonstrained motion,

Collision detetion, Collision response and lastly, onstraint resolution whih is

not in the sope of this projet.

2.1 Unonstrained motion

The motion of rigid body an be explained with Newton's seond law of motion,

whih an be extended to explain the relation between position x, veloity v and

aeleration a

ẋ = v(t)

v̇ = a(t)

Newtonion Dynamis also give us

P = mv

L = Iω

whih represents linear momentum P where m refer to mass of rigid body.

Similarly, angular momentum L, is the produt of angular veloity ω and inertia

tensor I whih will be desribed below.

For simpliity, we an just think of inertia tensor as an angular version of

mass. However, inertia tensor is subjeted to the body rotation, so we need to

realulate it every time the rotation hanges from the original loal inertia by

I = RIbodyR
T

3

CHAPTER 2. TECHNICAL BACKGROUND 4

where R represent a rotational matrix of rigid body. RT
is its transpose.

As we will use ordinary di�erential equation to desribe unonstrained mo-

tion, it is easier if represent the motion of rigid body as a state vetor.

X(t) =

x(t)
R(t)
P (t)
L(t)

Together with the above equations, we an explained the derivative of X(t)
as

Ẋ(t) =

ẋ(t)

Ṙ(t)

Ṗ (t)

L̇(t)

=

P

m
skew(I−1L)R

Ṗ (t)

L̇(t)

However, it is reommended that the rotation of rigid body an also be

represented as quaternion, whih is proved to have less numerial error in real

implementation.

2.2 Collision Detetion

This topi overs the tehniques that have been used to sort and query a set of

rigid bodies, as well as pinpoint the olliding loation. Collision detetion gen-

erally an be divided into phases suh as broadphase and narrowphase. Broad-

phase involves quikly determining whether the two bodies have potential to

ollide, so that to avoid having to expensively ompare every objets in the

sene. The tehnique inludes using some types of spatial struture suh as

grid and dynami tree to organize rigid bodies, as well as using heap and less

aurate representation of the atual objet suh as bounding sphere, or axis

aligned bounding box.

On the other hand, narrowphase is where we proess the atual detetion.

Depending on the type of ollision shapes, the simple primitive shapes, whih are

easier to implement, need to be implemented with speial-ase detetion algo-

rithms per eah shape ombination e.g. sphere-sphere, sphere-box, and box-box.

There are also algorithms that are independent from shape type like the Gilbert-

Johnson-Keerthi or GJK whih handles onvex shapes by using set operations

between ollided pair. Regardless of methods hosen, the algorithms suppose to

aurately determine ollisions and return ollision details for response solver.

2.3 Collision Response

After detet that objets ollide, A physis engine must deide on how to re-

solve the penetration. One approah is desribed as to fore the nonpenetration

CHAPTER 2. TECHNICAL BACKGROUND 5

onstraint to the objets. The onept is that in order to prevent objets from

further interpenetration the solver will generate impulsive fores along the on-

tat normal, whih will abruptly hange the objets veloity. In order to do

this, we need ontat these information from ollision detetion system.

• Contat point

• Contat normal

• Penetration depth

• Contat type : vertex-fae or edge-edge

The need of these information an be varied depending on implementation, but

ontat point and normal are essential in any ase. The following setion will

desribe di�erent method in details.

2.3.1 Impulse Method

The impulse method resolves the penetration by manipulating the veloities of

objets. Impulse j is a term in physis de�ned as the aumulated fores F

applied to a body over a period of time ∆t.

j = F∆t

Playing further with Newton's seond law, we get

∆v =
j

m

Assuming the system is fritionless, the diretion of impulse will be in the

normal diretion, thus we an de�ne the post-ollision veloity v′ as

v′A = vA +
jn̂

mA

v′B = vB +
jn̂

mB

Similarly, the post-ollision angular veloity ω′
is

ω′

A = ωA + jI−1(rA × n̂)

ω′

B = ωB + jI−1(rB × n̂)

Where r is distane from objet enter to ollision point, then we an �nd

veloity at ollision point by

V = v + ω × r

Substitute post-ollsion veloity equation for rigid body A, we get

CHAPTER 2. TECHNICAL BACKGROUND 6

V ′

A = VA + j(
n̂

mA

+ I−1(rA × n̂)× rA)

We apply the same to rigid body B, then subtrat both equaion, we get

V ′

A − V ′

B = (VA − VB) + j(
n̂

mA

+
n̂

mB

+ I−1(rA × n̂)× rA + I−1(rB × n̂)× rB)

at the last step, we introdue restitution oe�ient to sale down the impulse

n̂ · (V ′

A − V ′

B) = ǫn̂ · (VA − VB)

Vrel = VA − VB

Substitute the above equation, �nally, we obtain

j =
−(1 + ǫ)Vrel · n̂

1

mA

+
1

mB

+ (rA × n̂) · (I−1(rA × n̂)) + (rB × n̂) · (I−1(rB × n̂))

After we ahieve the impulse magnitude, we will apply it via rigid body

momentum

2.3.1.1 Impulse Based Frition

The impulse reation will only apply along ollision normal. we also need rea-

tion fore along the surfae. Coulomb Frition model is one of the most popular

model. The model separates frition oe�ients into two: stati frition µs and

dynami frition µd. Imagine pushing a heavy objet along the surfae, at �rst

the objet will resist until we exert fore pass ertain limit. Suddenly, the body

starts to slide easily. This is when it hanges oe�ient from stati to the lighter

one, dynami.

Frition impulse jf will be applied along a tangent vetor t̂, whih is per-

pendiular to normal vetor n̂ an be found by

t̂ =

vr − (vr · n̂)n̂

|vr − (vr · n̂)n̂r|
v · n̂ 6= 0

fe − (fe · n̂)n̂

|fe − (fe · n̂)n̂r|
v · n̂ = 0 fe · n̂ 6= 0

0 v · n̂ = 0 fe·n̂ = 0

where fe is external fores a�et on the body. Fritional fore an be om-

puted ff as

ff =

−(ff · t̂)t̂ vr = 0 fe · t̂ ≤ fs

−fst̂ vr = 0 fe · t̂ > fs

−fdt̂ vr 6= 0

CHAPTER 2. TECHNICAL BACKGROUND 7

Aording to Coulomb Frition one, the relationship between impulse re-

sponse and impulse frition is

js = µsjr

jd = µdjr

Finally, the integration of fritional fore yields

jf =

−(mvr · t̂)t̂ vr = 0 mvr · t̂ ≤ js

−jst̂ vr = 0 mvr · t̂ > js

−jdt̂ vr 6= 0

Chapter 3

Solution

The projet implements a physis engine with speial-ase ollision detetion

algorithms. For ollision response Impulse method has been hosen as the algo-

rithm of hoie.

3.1 Design

The present physis engine was implemented using C++ language and inoper-

ated NGL library, whih is a graphi programming support library for students

here in NCCA. The appliation design employs PhysiWorld as a main lass that

wraps around all RigidBodys in the system and forward the simulation in time.

During eah step, CollisionEngine and ImpulseSolver are the essential lasses

whih handle interation between objets. The �rst is responsible for ollision

detetion, while the latter alulate ollision responses on ollided pairs based

on the engine output. GLWindow lass is responsible for all rendering works,

as well as onneting UI to the lower level appliation.

RigidBody the lass represents an individual rigid body properties inluding

its motion-related variables. It also ontains pointer to CollisionShape

lass whih represent its bounding shape. The lass is inherited from an

abstrat lass RK4Integrator whih provides ode solving ability.

CollisionShape is inherited by SphereShape, PlaneShape and BoxShape. These

lasses represent the rigid body bounding shapes whih are used in ol-

lision detetion and rendering. Eah ontains methods and properties

related to its shape for example BoxShape knows its extent size and an

alulate its verties position in relative to worldspae.

CollisionEngine is responsible for all ollision detetion ativities both broad-

phase and narrowphase. It ontains several ase-spei� ollision dete-

tion methods suh as sphereVSsphere, boxVSplane. Eah speial-ase de-

tetion method will determine whether the pair ollide, if ollide it will

8

CHAPTER 3. SOLUTION 9

generate manifold and ontat information. The main method is doColli-

sionDetetion() whih will deide the appropriate algorithm for eah rigid

body pair. The method will return manifolds list whih will be passed to

ImpulseSolver later.

ImpulseSolver is responsible for ollision response. It employs Impulse method

for the resolution. The solve() method takes a list of manifolds as an in-

put and solve eah manifold sequentially. After all ollisions have been

resolved, it will all update() on eah rigid body.

3.2 Problem

Unfortunately, the projet urrently has major bug issues whih are listed below.

3.2.1 Major Issue

Currently, the ollision detetion system break. The appliation in urrent state

annot handle any other ollision exept against the ground plane. This happens

after introduing frition to the system. Unfornately, there is simply not enough

time to �x.

3.2.2 Minor Issue

While the appliation works �ne under the ondition of only one objet per

sene. Notie that when trying to balane boxshape on one of its orner. The

box will sway then topple down, then swing bak again. This ould happen

from exessive angular momentum. By introduing some damping fores to the

system, the problem should be �xed.

Chapter 4

Conlusion

Due to onfusion and misdiretion during the initial of this projet, this projet

has less time to develop to its full potential. Most key features have already been

implemented. However, the projet has serious bug issue whih unfortunately

annot be �x within the deadline.

4.1 Future Work

There are several features whih an enhane the urrent simulation as follow-

ing

• Implementation of spatial struture suh as dynami aabb tree whih

greatly improve the e�ieny of the system as it allows the simulation

to handle more objets

• Develop island proessing system whih will proess interating rigid bod-

ies together as a group, whih is believed will improve the stability espe-

ially when bodies staking.

• Develop a better ollision detetion algorithm suh as GJK

• Implementation of onstraint system whih enable rigid bodies to interat

with eah other in interesting ways

10

Bibliography

[1℄ Eberly, H, E., 2010. Game physis. Seond Edition. New York: Elsevier

Siene In.

[2℄ Begen, V,D,G., 2004. Collision detetion in interative 3d environments.

New York: Elsevier Siene In.

[3℄ Vella, C., 2008. Gravitas: An extensible physis engine framework using

objet- oriented and design pattern-driven software arhiteture priniples.

Thesis (Master). University of Malta

[4℄ Bara�, D., 2001. Physially based modelling: Rigid body simulation. Sig-

graph 2001 ourse notes.

[5℄ Muller, M., 2008. Real time physis. Siggraph 2008 ourse notes.

11

