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Abstract

Adding detail to implicit surfaces is difficult due to a lack of surface

parameterisation, which significantly limits their current applications.

This thesis proposes a recent technique of adding small scale features to

implicit surfaces through calculating a surface‘s local parameterisation

using implicit decals - particle like objects scattered on the surface. The

parameterisation is used to perform a geometric operation on the implicit

surface, effectively refining it locally. The research is focused on applying

details with use of texture maps, however different methods of local

modification are also discussed.

Keywords: implicit decals, implicit surfaces, modeling with textures,

implicit texturing
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Chapter 1

Introduction

1.1 Implicit surfaces

In majority of nowadays computer 3D modelling, geometrical objects are

expressed in a form of boundary representation, such as polygonal and

triangular meshes or NURBS surfaces. However, these are not optimal

and the most efficient when trying to represent soft and organic objects.

A good solution to express such entities is to use volumetric representation,

such as isosurfaces running through a scalar field defined by some field

function (also known as scalar field function, space function or defining

function), a method often referred to as implicit surfaces.

In this technique, geometry is represented by a field function f(x) and

can be visualised by using so called polygonisation. It is a process which

constructs a mesh that approximates the isosurface of the scalar field

defined by f(x). Therefore different field functions result in different

polygonal meshes.

Furthermore, a number of field functions can be combined together using

a geometric operation (union, intersection, etc.).
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Figure 1.1: Implicit surface created from two sphere functions. Bourke

1.2 Why is it difficult to modify them locally

The field function f(x) used in implicit surfaces is in a form which

is difficult for user to visualise and interact with, ie. its interface is

unnatural, the workflow‘s turnaround is slow. Only after the isosurface

is polygonised and displayed, user may make quick, intuitive decisions

about its look. Still, putting these decisions in action by modifying the

field function is yet not quite intuitive and the workflow does not provide

a quick feedback

Consider an example:

• An implicit surface Ps is defined by the field function

Pf(x,y,z) = y (1.1)

which constructs a plane

• After visualising the Ps through polygonisation, user decides to

modify the surface around one of its corners.

• To modify an implicit surface one has to change its field function
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f(x). Therefore the simple f(x, y, z) = y has to be exchanged with

much more complex function that would identify the coordinates

around the plane‘s corner and modify them according to user‘s

expectations.

• After modifying the field function f(x), the program needs to

repolygonise the scalar field.

• If the modification turns out to be incorrect or unsatisfying, the

whole process needs to be repeated.

This workflow contains some major drawbacks:

1. The process is very difficult and involving since it requires extraordinary

spatial intelligence, as well as great understanding of geometry.

2. Without having appropriate programing knowledge, user is unable

to add small scale modifications to the implicit surface.

3. It proves to be very slow, as each time a modelling decision is

made the field function needs to be modified manually and then

repolygonised.

1.3 How implicit decals could serve as a

solution

A way of overcoming the problems outlined in the last paragraph could

be use of implicit decals. These, as first described by Pedersen, later

enhanced by Schmidt et al. and de Groot et al., are particle-like objects

defined on, or near the surface of an underlying geometry. Implicit decals,

as described by de Groot are used to calculate a local parameterisation

(or more specifically texture coordinates) using a spherical field function,

centered on decal‘s position, therefore avoiding computationally-expensive

global parameterisation proposed by Schmidt et al.. Instead, Euclidian

distance between the surface point q and the decal is used to calculate the

parameterisation. This method is quick enough to execute in real time,
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allowing intuitive interaction with the decaling interface in the viewport,

even at high quantities of decals.

Figure 1.2: Using decals to add small scale features

The principle of calculating local parameterisation proposed by de Groot

et al. can be employed to modify the result of an implicit surface‘s

field function, without needing to change the function itself. There is a

number of ways in which a decal could affect the field function‘s output,

dependant on required implementation. This project present an interface

which combines the idea of implicit decals with marching cubes algorithm

used to polygonise implicit surfaces. Resulting tool allows to modify an

implicit surface in a similar way an implicit decal - as described by de

Groot - would modify a texture of a surface, as if it was embedding

the textures onto the surface. The main advantage of the proposed

system is the fact that decals are fast and intuitive to create and modify,

which resolves the issues of slow turnaround and workflow‘s difficulty

and unnaturality present in traditional implicit surfaces.
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Figure 1.3: Implicit decal technique used with polygonisation to imprint
the texture onto a planar implicit surface

This thesis is constructed in the following way. Having outlined other

relevant approaches of using implicit decals in (2), it describes in detail

the idea of a decal (3.1), of texturing with decals (3.2) and the marching

cubes algorithm (3.3). Afterwards, the concept of combining that algorithm

with implicit decals to modify an implicit surface along with a detailed

implementation of geometric implicit decals is presented in chapter (4).

Later it describes the underlying interface of the program (5), along with

the project‘s history (5.3). Finally, chapter (6) contains results, tests

and evaluation, followed by a conclusion drawn in chapter (7). Note

that symbols and class names appearing in this thesis are outlined and

briefly described in the Appendix A. Also, some examples refer to parts

of a video that should be submitted along with this document.
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Chapter 2

Related Work

2.1 Implicit decals

Concept of texturing a surface through local parameterisation is a subject

that has been researched in various forms over the past 20 years. Pedersen

was one of the first to develop a technique that gave an ability to

define patchinos (patches) on an implicit surface, which then could be

used to derive a local parameterisation needed to apply a texture onto

the surface. These effectively were one of first definitions of implicit

decals, described as independent objects bound to be positioned on the

underlying surface.

Figure 2.1: Pedersen‘s patchinos. Pedersen
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A more advanced technique was developed in 2006 by Schmidt et al. as

an improvement of Pedersen‘s decaling interface. In this approach, a

local parameterisation in form of an exponential map is calculated from

a decal‘s centre and a geodesic radius, requiring the underlying surface

to be a continuous mesh. Nevertheless being computationally expensive

and difficult to implement, the method provided a good way for texturing

animated surfaces, as the parameterisation was preserved under changes

of the underlying geometry. Furthermore, Schmidt‘s proposed a simple

compositing tool allowing to combine and reuse decal textures in form

of patches.

Figure 2.2: Schmidt‘s exponential map based decals. Schmidt et al.

Another approach, similar to Schmidt‘s work, that geometric implicit

decals are basing on was researched in 2010 by de Groot et al. and

published in a paper named Implicit Decals in 2013. In his work, de

Groot describes implicit decals as a similar tool to exponential maps

of Schmidt, yet relying the parameterisation on Euclidian distance and

spherical field functions instead of geodesic calculations. Resulting interface

is a much faster tool, however constrained by the size of the textures as

it assumes to be used in large quantities on a relatively smooth and

continuous surface. Nevertheless, it proves to be an effective and quick

implicit texturing method, which is employed to modify polygonisation

of an implicit surface, a technique proposed in this thesis. Furthermore,

de Groots decals can be distorted as their parameterisation functions

allow for field deformation and implicit composition operators. His

work also implements a particle scattering system, allowing to evenly

generate decals on the underlying surface, simplifying the process of decal
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placement.

de Groot sums the advantages of implicit decals as:

• The very fast computation of local parameterizations based on the

Euclidean distance over a model. This local parametrization can be

computed at arbitrary resolution and is independent of the underlying

geometric representation.

• The technique is simple enough to implement in a pixel shader,

without modifying the graphics pipeline nor limiting the use of other

shaders, and it allows thousands of decals to be placed and edited

interactively.

• Our decals can compete for space and deform when they interact

with nearby decals. Surface connectivity is not required thus a decal

can be placed across multiple objects or across gaps in an object

without changing the object representation.

Figure 2.3: de Groot‘s implicit decals used in high quantities to add
small small textures onto the geometry. de Groot et al.
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2.2 Implicit surfaces

In 1994 Bourke published Polygonising a scalar field, a document describing

an algorithm for polygonising an implicit surface named marching cubes.

Author accurately sums the method as follows:

The fundamental problem is to form a facet approximation to an isosurface

through a scalar field sampled on a rectangular 3D grid. Given one grid

cell defined by its vertices and scalar values at each vertex, it is necessary

to create planar facets that best represent the isosurface through that grid

cell.

Figure 2.4: Visualisation of the marching cubes algorithm, illustrating
the 3D cell grid. Bourke

This was executed through usage of a lookup table which stored all

possible cases in which an isosurface could pass through a cell. In more

detail, marching cubes are explained in section 3.3.
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Figure 2.5: Illustration of a the principle behind marching cubes. In
this example cell corner number 3 was found on the opposite side of
the isosurface then the rest of the corners, hence a triangle was created.
Bourke

This algorithm have been improved and continued in various forms over

the last two decades, however in its original form is still one of the

quickest methods of polygonising an indiscrete scalar field. Yet, it is

not effective in creating sharp features and is not adaptive, which results

in a relatively large topological density of resultant meshes. A number

of solutions is proposed by different algorithms such as dual contouring,

marching squares, or marching triangles, however all prove to be slower

and not as robust as marching cubes. Since geometric implicit decal

aim to approach realtime user interface, marching cubes was selected as

the polygoniser. Nevertheless, the concept described in this work can be

used with other similar polygonising algorithms.

2.3 Other work

Topic of adding small scale features to implicit surfaces has been researched

by Zanni et al., who in his publication from 2012 proposes a modeling

technique able to enhance implicit surfaces with procedural geometric

detail. Considered as one of the first research publications in the subject,

Zanni‘s method uses Gabor noise, automatically aligned with respect to

the orientation of the underlying geometry. It allows to add distributed

anisotropic detail over implicit surfaces, providing an intuitive control
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over their transformation and enables blending of the small scale features

without blurring them.

Figure 2.6: Zanni‘s implicit surfaces with details, one of the currently
available solutions of adding small scale features. Zanni et al.

Interestingly, in his work he states:

Although many methods are available to add detail to mesh-based surfaces

(...), methods to add detail (or texture) to implicit surfaces are scarce due

to the difficulty to add coherent surface detail when no parameterization

is available.

Ability of implicit decals to quickly derive local parameterisation can

be used to overcome this problem, hence implementing them into an

algorithm of isosurface polygonisation presents a technique of adding

small scale details to implicit surfaces.
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Chapter 3

Background

3.1 Decal

Word decal is short for Decalcomania or Decalcomanie. It is a plastic,

cloth, paper or ceramic substrate that has printed on it a pattern or

image that can be moved to another surface upon contact, usually with

the aid of heat or water.

Figure 3.1: Real decal application. Turner

In real life decals are solely made for texturing, however this not necessarily

must be true in computer graphics, as it will be discussed later in section

4.1.2. The concept of a decal translates to computer graphics as follows.

12



Each decal:

• Is relevant only in relation to an object it is parented to, hence its

position, orientation and scale in relation to the parent is crucial.

• Has position attribute Dp that can be defined in a number of ways.

One of the simplest ways of expressing decal‘s location would be

Cartesian coordinates, relative to its parent or absolute (ie. world

position). Still, it may as well be a set of any other values, such as

polar coordinates or some parent-related embedded attributes.

• Has a way of modifying the parent in some way. This is solely

implementation dependant. For instance, a decal could modify the

geometry, texture, shader properties, or density of its parent.

Furthermore, in most cases each decal:

• Has a local frame of reference made of three axes - DX, DY and

DZ, which is usually orthonormal.

• Has a radius Dr or a scale.

• Is positioned on the surface of its parent, as if it was sliding on it.

Considering this project, parent object P is an implicit surface, but in

different applications it could describe any other geometrical object.

A rough real-life analogy of a decal would be a round fridge magnet. It

is possible to move it around the fridges surface, rotate it or put it away.

Even though not permanently, it changes the way the fridge looks in

small proximity of magnets center. In this simple example the magnet

is the decal D, its orientation is its frame of reference, while the fridge

is decals parent P .
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3.2 Texturing decal

3.2.1 Outline

To follow up with the real life purpose of decals, one of their applications

in computer graphics is defining the texture of the parent surface Ps.

There is a number of approaches to this topic, such as ones presented by

Pedersen and Schmidt et al., however one used in this project is based on

the technique proposed by de Groot et al. since it allows for a real-time

interaction, even with higher quantities of decals. Nevertheless, the

algorithms described by Pedersen and Schmidt present valuable solutions

to some of the shortcomings of geometric implicit decals, what will be

further discussed in the Results section 6.4.

Figure 3.2: Texturing with decals. The texture map is sampled using
parameterisation computed using the decal (the teal sphere).

Employing a concept of a decal for texturing implies that:

• Each decal D is linked to a certain texture map Dt.

• When positioning D on the parent surface Ps, its DY axis is

automatically modified according to Ps‘ normals. DX and DZ

14



are then aligned with DY appropriately.

• Decals‘ properties are used to calculate the texture coordinates of

its underlying surface Ps and later sample the texture Dt in order

to define the colour of Ps.

For each processed point q of a surface Ps a number of operations needs

to be performed:

1. Select a decal D

2. Calculate the local parameterisation, what in case of texturing is

equal to the UV coordinates

3. Sample the texture Dt

3.2.2 Selecting a decal D

Firstly, program must decide whether q is in range of any of available

decals. It is achieved through comparing q with positions of all decals

(however this can be enhanced through spatial partitioning) and selecting

the decal D that satisfies some form of a rule.

In a simple form it means that the closest decal available is used, while it

may also implement more complicated formulas, implementing deformable

functions, geodesics or exponential mapping.

3.2.3 Calculating UV

The idea behind using decals for texturing comes down to calculating

the correct [u, v] (sometimes named [s, t]) coordinates of the currently

processed/shaded point q.

These can be acquired in a number of ways. de Groot et al. in his paper

suggest the following method. For any point q and its proxime decal D:
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1. Calculate the polar radius of q:

radius =
g−1
(
f(q)

)
g−1
(

1
2

) (3.1a)

where

f(q) = g

(
||q − pi||
Dr

)
(3.1b)

g(d) =

{
(1− d2)3 if d ≤ 1

0 if d > 1
(3.1c)

Unfortunately, de Groot et al. does not specify the g−1(q). A

following function was found to be working in its place:

g−1(d) =

{ √
1− 3
√
d if d ≤ 1

0 if d > 1
(3.1d)

Above procedure is defined to accommodate more advanced types

of f(q), such as deformable functions. For a simpler case it can be

replaced with a more uncomplicated equation:

radius =
||q −Dp||

Dr

(3.2)

2. Calculate the polar angle theta of q :

θ = arctan

(
DZ · (q − pi)

DX · (q − pi)

)
(3.3)

3. Convert polar coordinates to square coordinates:

u = radius ∗ cos(θ) (3.4a)

v = radius ∗ sin(θ) (3.4b)
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3.2.4 Sampling the Dt

After the [u, v] coordinates of q are found, program uses them to sample

the texture Dt of the selected decal D in order to calculate the colour of

q.

If no decal is satisfying the selection rule, eg. none is in close proximity

of q, another value can be calculated to define the colour of q, such as a

diffuse colour calculated with the Lambert shading model.

3.3 Polygoniser

3.3.1 Overview

Geometric implicit decals facilitate the method described in the previous

seciton to extend a polygonisation algorithm (also called a polygoniser),

effectively creating an interface which allows to modify an implicit surface

using implcit decals.

There is a number of polygonisation algorithms used, such as :

• Marching cubes

• Marching tetrahedra

• Dual contouring

• Adaptive skeleton climbing

• Transvoxel algorithm

The concept of geometric implicit decals can be applied to different

polygonisers, while one selected for this project is marching cubes, due

to its simplicity and speed. Its more detailed description can be found

at Bourke or at Shirley et al. however in short the marching cubes

algorithm, also known as 3D contouring or surface reconstruction, will

be outlined in the next section.
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3.3.2 Marching cubes algorithm

Polygonisation is aiming to create a polygonal mesh that approximates

a certain isosurface of the scalar field defined by Pf(q), sampled over a

voxel grid. In general case, the isosurface is set at an area in which the

value of Pf(q) is changing from a positive to negative value, ie. is equal

zero.

To create a boundary representation of an implicit surface Ps, that has

a field function Pf(q), where q is normally a 3D coordinate in form of

[x, y, z]:

Defining the sampling boundary

Define a regular voxel grid over a 3D space in which the polygonisation

is to be executed.

256 cases

Since a cube is used as the polygonising object (cell), there is 256

ways in which the isosurface may pass through it.

For example, the Pf(q) may return a value above zero only at a

location of one of the eight corners of a cell, meaning that only

that corner is inside of the isosurface. In another case, four top

corners may return a value above zero, meaning the isosurface is

cutting the cell along its y-axis. Isosurface may not pass through

the cell at all when it is fully inside or outside the manifold.

Each of such cases is stored in a lookup table.

For each cell

1. Calculate a value of the Pf(q) at each corner of a cell q, using

its coordinates as attributes of Pf(q).

2. Having all 8 values calculated, the algorithm finds if and how

the isosurface passes through the voxel. It then uses that

information on the lookup table to decide what polygons to

construct.

18



Figure 3.3: Some of the cases in which an isosurface may pass through
a cell. Geiss

Performing that operation on all voxels in the space produces a boundary

representation of Ps.

It is worth noting that accuracy of the result is dependent on the algorithm

used as well as on the level of interpolation used. This will be further

discussed in a latter section of this document.
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Chapter 4

Geometric implicit decal

4.1 Theory

As outlined in the introduction 1, modifying the implicit surface Ps is

a slow and unintuitive process, requiring to alter the Pf(q) in some way.

Geometric implicit decal is an extension of an implicit decal described

by de Groot et al., proposing as solution to that shortcoming of implicit

surfaces.

In addition to features previously listed in 3.1 and 3.2, each geometric

implicit decal has:

• An implicit functionDf(q) used to calculate the local parameterisation

of decal‘s underlying surface. This, as described by de Groot,

is equal to - but not limited to (see 4.1.2) - calculating texture

coordinates.

• A confidence function Dc(q) that alters the result of Df(q)

• A calling function Dcall(q), returning Df(q) +Dc(q)

When calculating a value of Pf(q) at a corner q of a cell, the polygoniser

would also find a value of Df(q) of one or more decals that are satisfying

a certain rule (eg. are proxime to q). These resultant values would then

be combined together to define whether the q is inside or outside the

isosurface.
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Figure 4.1: Geometric implicit decal extends capability of an implicit
decal, allowing to add texture-based features to an implicit surface.

4.1.1 Geometric implicit decals‘ algorithm

An algorithm using geometric implicit decals is combining the field function

evaluation with an implicit operation of Dcall(q).

Pf(q) +
n∑

i=0

Di
call(q) (4.1)

where n ∈ N is the number of decals

and Di
call(q) = Di

f(q) +Di
c(q)

In more detail, when the polygoniser processes a cell‘s corner q :

1. It finds a value of Pf(q) at q

2. Selects decals that are satisfying a rule (eg. are proxime to q)

3. Looping through all selected decals, polygoniser calls for their function

Dcall(q) passing q as a parameter.

n∑
i=0

Di
call(q) where n ∈ N is the number of decals (4.2)
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4. At each call of Dcall(q) :

(a) Coordinates of point q are used to find [u, v] coordinates.

(b) The colour value of Dt sampled at [u, v] is found.

(c) The resultant value is scaled by the confidence Dc(q) and

returned.

5. It combines the result of Pf(q) and all Dcall(q) with a geometric

operation.

6. That combined value is then used by the polygoniser to determine

whether corner q is inside or outside the isosurface.

The rest of the polygonisation is executed normally. This as a result

produces a mesh that approximates an implicit surface different from

the original Ps, that effectively contains the textures of decals embedded

onto it.

4.1.2 Modifying the Dcall(q)

Basing implicit decals on decalcomania introduces an assumption that

a decal would be used in relation with a texture map. However it is

easy to observe that Dcall(q) may be performing any other calculation,

not necessarily related with texture sampling.

• One such modification of the decal function would be to calculate

its own field function, similar to one used within implicit surfaces.

For example

Df(q) = sin(dist) (4.3)

where dist = ||q −Dp||

will embed a wavy pattern on Ps around the Dp. This can be seen

in the attached video in section 3.2 Geometric implicit decals at

3:12.

• The concept of acquiring local parameterization - texture coordinates
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or any other - can be used to sample any other form of data, such

as a signed distance field or a vector field

• Essentially any calculation may be performed at this stage, which

reveals true potential of implicit decals.

Furthermore, Dcall(q) facilitates calculation of a confidence function Dc(q).

Such confidence zone would scale the Df(q) in order to produce a certain

modification to its normal result, as can be seen in Figure 4.2

An example of a confidence zone could be:

Dcp(q)

Planar confidence - the DY along with Dp may be used to create

a plane W , used to diminish Df(q) as q becomes further away from

W .

Dci(q)

Implicit confidence - the Dcall(q) may accept the result of Pf(q) as

well as q as an attribute. That will allow to scale Df(q) as q becomes

further away from the original surface Ps

Dcg(q)

Geodesic confidence - a geodesic distance between Dp and q can

used to scale the Df(q) as the distance becomes larger

4.2 Implementation

4.2.1 Repolygonisation in detail

At repolygonisation, the marching cubes algorithm is looping through

all voxels in its 3D space and calls Ps to calculate a value at each corner

q of a voxel, similarly to how a regular polygonisation would execute.

This call will now be referred to as Pcall(q). Differently from normal

polygonisation, the algorithm will also calculate the results of Dcall(q)

and combine it with the Pf(q).
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Pcall(q) = Pf(q) +
n∑

i=0

Di
call(q) (4.4)

where n ∈ N is the number of decals

For each cell’s corner q of the voxel grid, a parent surface Ps and a

number of decals D parented to it:

1. The parent‘s field function Pf(q) at point q is called and its result

is stored as valueP

2. Because Ps could have been transformed, the point q is multiplied

with the current transformation matrix of Ps and stored as transQ

3. Then, the algorithm loops through all children that are implicit

decals (there could be other types, as is explained in a further

section 5.2.2) and calls their Dcall(q) 4.2.2 function, passing transQ

and valueP as attributes.

4. Results of all Dcall(q) are summed to a variable valueD

5. At the end the the function returns valueP + valueD

This result is back again processed normally - like in a regular polygonisation

- to define q‘s location in relation to the isosurface.

After all voxels are processed, the produced mesh is an approximation

of the isosurface running through the scalar field defined by Ps (ie. by

Pcall(q)). The tool developed for this project adds a final step to this

process, converting the resulting mesh to an OpenMesh.

4.2.2 Dcall(q)

On repolygonisation, geometric implicit decals extend the abilities of

a polygoniser by allowing it to sample functions from implicit decals.

This, as mentioned earlier in this chapter 4.1.1, is executed through a

call of Dcall(q) function during the Pcall(q). Input from the Pcall(q) are two

attributes: q and valueP .
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The algorithm is executed in the following order:

1. Distance check

• Vector between q and Dp is stored as

diffV ec = (q −Dp) (4.5)

• Its length is stored as

diffD = ||diffV ec|| (4.6)

• If diffD is found larger than the radius Dr the function

returns 0, otherwise carry on.

2. Calculate polar angle theta and polar radius

x = DX · diffV ec (4.7a)

y = DZ · diffV ec (4.7b)

θ = atan(y, x) (4.7c)

radius =
||q −Dp||

Dr

(4.7d)

3. Convert to UV

u = (radius ∗ cos(θ)) (4.8a)

v = (radius ∗ sin(θ)) (4.8b)

4. Sample Dt and find luminosity

• The texture Dt is sampled using bilinear sampling at [u, v] to

acquire the colour value.

• From this, a call value is calculated through extracting the

luminosity using the following equation.

call = R ∗ 0.375 +G ∗ 0.5 +B ∗ 0.125 (4.9)
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• Where R, G, B are the colour components of the sampled

colour.

5. Scale call by confidences

Dcp - Planar confidence

• Calculate projection of q on a plane W defined by Dp and

DY and store it as qW

• Calculate length of qW − q and store it as qWD

• Scale current value of call by the qWD

Dci - Implicit confidence

• Calculate absolute value of valueP and store it as absoluteP

• Define a threshold in which call will be scaled down, by

specifying minP and maxP range of absoluteP in which

scaling will happen.

• If absoluteP is smaller than minP no scaling will happen.

If it is greater than maxP , call will be scaled to zero.

Otherwise, call will be scaled to smoothly diminish as

the q goes away from the original implicit surface Ps.

Finally, resulting call value is returned.

Figure 4.2: Texture used, polygonisation with Dci and Dcp
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Figure 4.3: Repolygonisation algorithm. Note that the combination of
Pf(q) and Dcall(q) is performed as a geometric operation.

Rewriting the equation 4.4, above can be expressed as follows:

Pcall(q) = Pf(q) +
n∑

i=0

(
Di

f(q) ∗Di
cp(q) ∗Di

ci(q)

)
(4.10)

where n ∈ N is the number of decals

The repolygonisation could be executed in real-time on each user modification,

if the polygonisation algorithm was replaced or enhanced with a faster

alternative. This will be further discussed in the Results 6 section.
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Chapter 5

Application

5.1 Geometric implicit decals tool

The tool developed for this project is a simple GUI-based application

implementing the concept of geometric implicit decals. It is written in

C++, and uses following libraries:

• OpenGL as the rendering API.

• Qt for graphical interface.

• OpenMesh to represent geometry.

• NGL for graphics-related functionality.

• ISM A to perform marching cubes polygonisation.

5.1.1 Order of usage

To better understand the workflow of the algorithm, let’s first look at

the outline of the order in which the program is expected to be used:

1. When program starts, it presents the initial parent surface Ps.

2. Ps, along with any other objects in the scene, may be repositioned

using the transformation handles
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3. Using the graphical interface user creates and modifies decals on

the Ps

4. After being satisfied with the placement of decals, user selects the

Ps and repolygonises it by pressing enter or clicking on Polygonise

button. This essentially calls Pcall(q) function, combining its original

output of Pf(q) with results of decals‘ Dcall(q)

5. Optionally, resulting mesh may be exported by selecting it and

pressing the Export Mesh button

At any point user may modify the decals or their textures and repolygonise

the Ps which will result in a new, refined mesh. This gives the user a

live update on changes made, making the modification process simpler,

quicker and more intuitive.

Figure 5.1: Transformation, rotation and scale handles allowing for
real time modifications.

5.1.2 Real time shading

To aid the placement of decals on the surface, the tool also displays their

textures on the mesh to make the process more intuitive. To perform

this operation, all data from decals and their textures needs to be loaded

to the shader each time the scene is modified.

• Dp[ ] - array with positions of decals

• DX[ ] - x - axes

• DZ[ ] - z - axes
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• Dr[ ] - radiai

• texture id of D, defining the Dt[ ]

• id[ ] of D

• total amount of decals

• all textures loaded to the program

A GLSL shader is used to display the textures on the mesh, The algorithm

of the real time decal-based texturing is almost exactly the same as one

used to calculate the Dcall(q) on repolygonisation. The only difference

is that in this case q refers to a global position of the currently shaded

point.

Since a number of information is required to be stored on the GPU, the

total number of textures had to be limited to 20, while maximum number

of decals is 80.

5.2 Interface

The backbone of this tool is a flexible and universal rendering and

scene management interface. It is based around the SceneGraph A and

Renderer A classes, that along with NGLScene A introduce a robust way

of manipulating objects, both in code and in the viewport.

5.2.1 SceneObjects and user input

The core of this system is the way in which objects are handled. Everything

is defined as a subclass of SceneObject A, while a list of these is stored

within the SceneGraph A, effectively defining the current scene.

To facilitate this hierarchical structure, SceneObject has a number of

abstract functions, such as moved(), released(), highlighted(), etc. that

allow each concrete class to handle user input individually. Below is a

list of all available input events:
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• selected

• deselected

• moved

• released

• highlighted

• dehighlighted

• update

• update parent

To facilitate that system, each object is given an object type, used

to define what concrete type of object is hidden behind the processed

SceneObject.

For instance, whenever the user moves the mouse around the viewport,

currently highlighted object is found using colour selection technique, as

described in GPWiki (2012). Later, when a mouse click event is found,

the currently highlighted objects selected() function is called. With each

of such input events it is down to the objects specialisation to define how

will the particular object handle the event.

When user clicks at an empty space an empty SceneObject is selected to

perform deselection

Figure 5.2: Inheritance relationship
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5.2.2 SceneObjects and hierarchy

To make the interface more universal, SceneObjects are capable of being

parented, effectively creating hierarchical trees. Current version of the

system allows to define many children of an object, but only one parent.

This characteristic is used in many ways. For example, if a Mesh A

has HandleMeshes A attached to it, repositioning of the Mesh would

automatically reposition all the handles. And vice versa, on mouse event

a HandleMesh is able to recognise its purpose and modify its parent Mesh

appropriately.

Another example would be the way in which an ImplicitMesh A finds

appropriate decals for repolygonisation. When a decal is positioned on a

mesh using the sticky handle, its parent is automatically set to the surface

it is sliding on. This way ImplicitMesh simply has to loop through all its

children and find ones that have an object type defining them as decals.

5.2.3 Mesh

To represent geometry more generically, a Mesh class was implemented

as an extension of SceneObjects. Since the project bases on OpenMesh,

Mesh is mainly a wrapper and extension of some of the functionality that

OpenMesh has to offer.

Inheriting from this class and using its OpenMesh allowed to easily

experiment and change the nature of this project, as described in section

History of the project 5.3. Since Mesh is subclass of SceneObject, it can

be modified and used in the interface independently of the specialistic

implementation of the program.

5.2.4 Renderer and RenderTasks

That genericity of the Mesh class is further exploited during render time.

The Renderer is setup to process ngl::VAOs, while SceneGraph and the

rest of the program uses OpenMesh to represent polygons and vertices.

32



To bridge that gap, Renderer is first preprocessing all renderable Meshes

in SceneGraph and creates a RenderTask A for each unique find. The

OpenMesh to VAO conversion is executed using the Converter class.

RenderTasks contains the shader, transformation matrix, current render

layer, selection colour, ID and VAO, all directly related to the Mesh with

the same ID.

After each frame, each RenderTask is set as inactive, and can be only

restored if the same Mesh is once again preprocessed by the Renderer.

This time, only certain attributes of the Mesh are updated, depending

on whether the Mesh was modified.

If RenderTask remains inactive (ie. its Mesh has been either deleted

or set unrenderable), it is automatically deleted before the next render

frame.

Figure 5.3: Creating and updating RenderTasks. On each frame
Renderer loops through all renderable meshes of the scene graph and
updates the RenderTask queue appropriately.

5.2.5 Render layers

To improve the graphical interface even more, Meshes can be put in

different render layers. Each layer has an ID, and Meshes within the

same layer are rendered in one depth buffer.
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This means that by specifying layer number in which the Mesh is to be

rendered, it is possible to put it on front or behind other objects.

The layer creation process is automated and happens after renderable

Meshes are preprocessed to RenderTasks.

Figure 5.4: Layered rendering can be toggled on and off from within
the tool. All handles are by default put in a layer on front of the meshes.

5.2.6 Render procedure

In short, the rendering process is as follows

1. Request a render from the NGLScene

2. Preprocess:

(a) Renderer updates and creates RenderTasks from the current

state of SceneGraph

(b) Renderer creates render layers

(c) Implicit Gallery uploads information about decals and textures

to the shader

3. Render:

(a) Clean inactive RenderTasks
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(b) Loop through all RenderLayers, cleaning depth buffer on each

loop. If layered rendering is off, all objects are processed as a

single layer.

(c) Loop through RenderTasks of the current layer

(d) Load shader of the current RenderTask

(e) Render the RenderTask. This is equal to binding, drawing

and unbinding the VAO of the task.

(f) Set the current RenderTask as inactive

5.3 History of the project

This project is a continuation of the Texturing Decals 2014 program that

I submitted for my CGIT project as part of MSc Computer Animation

and Visual Effects course at Bournemouth University.

Moreover, before reaching its final shape, a number of different applications

of implicit decals were considered and researched (see attached video,

Section 3. Work in progress at 2:03)

Below is a chronological outline of the steppes that lead to the current

form.

5.3.1 Starting off Texturing Decals

Texturing Decals was a program implementing the algorithm described

in the Background 3.2 section, based on the paper by de Groot et al.

called Implicit Decals. Different from this project, Texturing Decals -

as described by De Groot - were using a more complex function for

calculating the texturing coordinates. This was present to facilitate

deformable functions, a concept which is not implemented in geometric

implicit decals, hence the procedures are simplified. Other than that,

the algorithm was the same.
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The program was also written in C++, using OpenGL, Qt, OpenMesh

and NGL. It presents an interface that allows to create and modify a

number of decals on a surface of a mesh, essentially defining its texture.

Texturing Decals was used as a basis for this project also because of

its scene management and rendering interface. Most of this system was

extended in the current version of the program, and is discussed in the

Interface 5.2 section of this thesis.

The classes inherited from Texturing Decals are included in their original

form with this project in folder Work/other/Texturing Decals(CGIT project)

Initial aims

At the beginning, the direction of the project was set on using

decals to add detail onto existing geometry. It was not decided

which exact target would it take at the end. One of such possibilities

was an application similar to GeoBrush Takayama et al. (2011) that

would be used to clone existing geometric detail between meshes.

Otherwise, decals could be used to modify an implicit surface,

where one of considered implementations was what the project has

concluded as.

Independently of the final destination, there was a number of things

that needed to be introduced and improved at the start of this

project.

Core and NGLScene

Due to enhancements in other areas of the program, a big amount

of specialistic code could have been put in different classes, leaving

only most generic parts, such as object selection and highlighting.

Core in different iterations of the projects held other geometry, not

only the ImplicitMesh.

Both of these classes now also facilitate an ability to restart the

Core, bringing it to its original state from when the program was

run.

SceneGraph, SceneObject and Mesh
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Similarly to this project, in the heart of data management was the

SceneGraph class which worked with abstract SceneObjects and

mesh handling class Mesh. These were extended to be more generic

and therefore allocate specialistic functionality in appropriate classes,

what reduced code in NGLScene and Core.

Furthermore, code used to generate primitive geometry (spheres,

tubes, arrows, etc.) was moved to a MeshShelf A class, containing

all mesh construction functions.

Handles

Texturing Decals contained only a simple control interface in form

of three handles. Sticky - one that slides a decal on the parent

surface Ps, scale - to define decals radius, and rotation - allowing it

to twist around its DY . The y-axis itself would be automatically

calculated from the Ps normals when decal was moved.

To extend flexibility of modifying decals three-axial handles were

implemented for translation, rotation and scale. Moreover, a camera-aligned

translation handle was added, while the sticky handle was kept in

almost its original form. These can be seen in Figure 5.1 and in

the video in the section 1 Demonstration of use ( 0:13).

Therefore a HandleMesh - inheriting from the Mesh class - was

introduced to wrap all range of usabillty related to handles.

Renderer and RenderTask

RenderTask was moved to a separate file and given some updating

and initialising procedures, that were previously managed by the

Renderer.

Renderer‘s general efficiency was improved, while the class was also

extended with layered rendering functionality, normals rendering

and support for new shaders.
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5.3.2 Mesh-modelling decals

With the interface enhanced, the first aim of the project was to implement

a simple modelling tool that would allow a decal to modify polygons of

a mesh it was defined on.

This was executed by finding vertices proxime to Dp and displacing them

according to the result of Df(q)

This can be seen in the attached video in the Section 3.1 Mesh-modelling

decals at 2:03.

Nevertheless it was useful and interesting, this implementation was fairly

basic and considered not very innovative, hence a different path was

chosen to be researched for the next iteration of the project.

5.3.3 Implicit-tree decals

Having that quite generic modelling tool implemented, the project was

pushed towards the direction of implicit surfaces.

In this version of the program, each decal was treated as another ImplicitMesh

and contained its own field function and isosurface‘s mesh representation.

By defining decals on surfaces of the parent surface Ps and other already

existing decals, it was possible to create a hierarchical tree of implicit

surfaces.

Each decal would have its own way in which it would be combined with

its parent, such as union, intersection, subtraction, etc.

On repolygonisation, the algorithm would go down towards the leafs of

the tree, and polygonise the surfaces back to the trunk, creating the final

implicit surface built from the tree.

Again, this was found not innovative, more widely known as a FRep

Tree, hence the direction of the project was altered once again.
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5.3.4 Geometric implicit decals

Finally, the aim was set back on using textures, this time to refine the

implicit surfaces. This was what the project concluded as, however this

step has only clarified what other implementations could be applied using

the concept of implicit decals. This will be further discussed in the

Results and discussion 6 section.
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Chapter 6

Results and discussion

6.1 Results

To put the tool in practice, some of the meshes made with geometric

implicit decals were exported and rendered using SideFX Houdini and

Mantra. These can also be found in the attached video in Section 2.

Results at 1:25.
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Figure 6.1: Geometric Implicit Decals in use
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6.2 Evaluation

The project was implemented in C++, built and tested on an Intel Xeon

E5-1650 @3.20GHz CPU with 12 threads, 32Gb RAM, NVIDIA Quadro

K2000 2Gb GRAM machine.

In the test scene a parent surface was repolygonised with a different

number of decals on different resolutions of the voxel grid. In this

algorithm, the field function Pf(x) alone was found to be taking approximately

58.3%, 48.8%, 29.6% of the total time on resolutions of 128, 256, and

512 accordingly.

Figure 6.2: Test scene
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Res.
# of
decals

# of faces
(approx.)

Repolygonisation
time (approx.)

Estimated time of Dcall(q)

128 0 86k 0.18s 0s
128 1 88k 0.21s 0.03s
128 6 99k 0.36s 0.18s
128 30 143k 1.08s 0.9s
256 0 350k 1.2s 0s
256 1 359k 1.4s 0.2s
256 6 408k 2.45s 1.25s
256 30 638k 7.23s 6.03s
512 0 1.395m 6.62s 0s
512 1 1.433m 10.45s 3.83s
512 6 1.655m 18.08s 11.46s
512 30 2.734m 53.89s 47.27s

Figure 6.3: Polygonisation times for different resolutions and numbers
of decals

Figure 6.4: Total time of repolygonisation and resulting number of faces
(in thousands)
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The results of the program was strongly dependant on the complexity of

the scene. The biggest bottleneck was the process of repolygonisation,

which by its nature is slow. Above breakdowns, seem to confirm a clear

observation, that the complexity of the algorithm rises linearly as the

number of decals increases.

# of decals % of time
0 0%
1 14.2%
6 50%
30 83.3%

Figure 6.5: Percentage of time spent on Dcall(q)

Interestingly, not only the number of decals but also their size affected

the time taken to repolygonise. This is due to the fact that each Dcall(q)

is processed only if q is within D‘s radius, hence larger radii cause the

algorithm to run slower.

The speed obstacle on repolygonisation is difficult to overcome due to

complexity of currently used polygonisers. Using GPU to perform the

polygonisation greatly accelerates the procedure, even up to real time.

Adaptive remeshing could also improve the interface, as in most cases

only a small part of the geometry is changed at a time. Moreover,

the algorithm could use spatial partitioning to reduce the number of

unnecessary checks happening at the beginning of eachDcall(q) calculation.
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Figure 6.6: Total time taken compared against the time of Dcall(q)

Furthermore, many other areas of the geometric implicit decals‘ tool,

mainly related to processing the OpenMesh, were also parallelised using

OpenMP OpenMP. Resulting interface was able to run smoothly even

with meshes of high topology. Below is a table presenting resulting frame

rates in different cases of usage. Mesh used for testing was an icosahedron

in consecutive levels of subdivision. The figures presented are expressed

in frames per second (fps) with a top limit of 65fps.

The noticeably slower results on repositioning decals is caused by the

ray-casting algorithm, needing to loop through all existing objects faces,

find points of intersections with the mouse-click ray and return the closest

point. This can be improved by modifying the algorithm to check colour

selection prior to looping all existing faces, or by performing full checking

only through colour selection, where each triangle would be given a

unique selection colour, however this method would have limitations of

its own.
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# of faces
(approx.)

Decal
repositioning

Moving
camera

Object
highlighting

81k 60 65 63
327k 25 65 61
1.310m 4 64 49
5.243m 2 30 22

Figure 6.7: Frames per second during different operations

The way in which decals confidence Dci and Dcp is calculated is key

to prevent discontinuities and therefore reduce further artefacts. In the

current version the confidence falls-off linearly, however a type of filter

fall-off function could be applied to improve the continuity. This may be

a necessity in a different variation of the Dcall(q) however in its current

form it proves to be suffice.

Moreover, due to the nature of marching cubes algorithm, the resulting

polygonal surface contains visible artefacts, particularly present on smooth

rendering in non-smooth areas such as corners. Again, this is strongly

related with the polygonisation technique and some different algorithms

propose solutions to this unwanted outcome. The effects of this downside

can be scaled down through postprocessing the mesh by relaxing the

vertices and reducing the coplanar faces. A simple way of executing

this procedure is to export the mesh and fix it in a 3D package such as

Autodesk Maya or SideFX Houdini.
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Figure 6.8: Topology of an original and postprocessed mesh

6.3 Known limitations and issues

Numbers of decals and textures are limited

In the current version, the program limits the number of decals to

80 and textures to 20. This is due to memory capabilities of the

GPU of the machine used for testing.

Polygonisation algorithm is not quick

In cases of low polygonisation resolution time required to compute
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oscillates below one second, however as the resolution grows, the

complexity of the algorithm causes program to perform increasingly

slower. This however, does not refer to the time used on each

turnaround, outlined as a problem in the Introduction 1, which

has been in overall improved.

Texture maps work planarly

Using texture maps to add small scale features works only in or

close to a planar context. In other words, there is currently no

wrapping of the textures along the curvature of the surface. Using

Dcp allows to prevent artefacts caused by this problem, however

it also greatly limits the usability of the program. On the other

hand, Dci serves as a compromise, producing wrapped confidence

zone, whilst the texture is stretched.

Figure 6.9: Stretched texture due to planar texturing
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6.4 Future work

1. One of the solutions to the problem mentioned in the last paragraph

would be an introduction of geodesic based confidence, as well

as calculating the texture coordinates from the geodesic distance,

rather than euclidian. This could be executed through implementation

of exponential maps as described by Schmidt et al..

2. Continuing from the thought in Modifying the Dcall(q) 4.1.2, the

algorithm used on each Dcall(q) could be extended. An interesting

application would be to use 3D data, instead of 2D. This way, a

geometrical feature could be captured (using a sign distance field

for instance) and reproduced by a decal. That could push the

project towards a tool similar to a cloning/stamping known from

2D packages such as Adobe Photoshop.

3. That in fact, would be similar to a solution proposed by the Geobrush

2011, what also suggests that decals could be designed to work

with polygonal meshes, rather than implicit surfaces. In such

variation, a decal could be used to first capture polygonal mesh

within its radius, and then stamp it onto another area of the mesh.

In this case, similarly to Geobrush the geometry could have been

parameterized using an exponential map and wrapped along the

surface curvature using FFD or Green Coordinates. An advantage

of such technique over Geobrush would be that stamping decals

could have been distributed using a scatter algorithm or a particle

system, while the function used to acquire the 2D or 3D coordinates

could be deformed, as suggested in Implicit Decals by de Groot

et al..

4. Looking more at the interface itself, the rendering system could be

altered. Since currently used desktop computers come equipped

with multithreaded CPUs there was no need to further improve

the rendering workflow. However, if it was to be ported to a

more-limited machine, such as a mobile device, the interface could

use a number of improvements.
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5. The rendering system is working on a basis of a single RenderTask

queue, waiting for a queue update before each render. If a number

of objects was to increase, the rendering could have been noticeably

slowed if the updating algorithm was more complex. To overcome

this, a concept similar to a game loop could be applied, introducing

a double queue system. In such version, two versions of RenderTask

queues would be present - a render queue and an update queue.

The renderer would always render the one currently attached to

it, which would be unmodifiable while used for rendering. The

game loop would independently perform updates on the update

queue, and exchange it with the renderer after a logic calculation

is finished. This would require some synchronisation, however

it would increase the speed of execution, give a better overall

experience and mark the interface ready for less powerful devices.

6. Other than that, to improve the tool‘s usability, a number of improvements

could be added to the graphical interface:

• Changing textures of decals during the program execution.

• Adding and removing textures from the program.

• Modifying the resolution of polygonisation.

• Modifying the operation used to combine a result of a particular

Dcall(q) with the valueP .

• An additional mesh attached to each decal that would indicate

its y axis.

7. Finally, the program could be converted to a plugin for one of

widely used 3D packages, such as 3ds Max, Maya, or Houdini,

what would further extend the usability of the project.
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Chapter 7

Conclusion

This work manages to achieve a number of goals:

• It is an innovative extension of implicit decals described by de Groot

et al.. It discusses a number of new ways in which they could be

used in various applications.

• It proposes a novel method of applying small scale features to

implicit surfaces and outlines possible further research in the area.

• It improves the downsides of implicit surfaces stated in the Introduction

1, being an intuitive system allowing for quick turnaround.

• The interface implemented is quick, universal and extendable.

• Geometric implicit decals are a generic concept that can be assigned

to work with different polygonising algorithms.

Proposed technique is solely an iteration of the idea of using locally-derived

parameterisation to add detail onto implicit surfaces. Further research

in the area could lead to solidifying this promising concept and result in

a tool that would propose a strong, innovative alternative to mesh-based

computer 3D modelling.
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Appendix A

Class descriptions

NGLScene

Initialises the program, handles input from the user and executes

appropriate functions responding to the QApplication calls, such

as updating the view or handling the timer events.

Core

A placeholder and manager for program-specific data, holding objects

from the parent implicit surface Ps, through ImplicitGallery A, to

Renderer A. Moreover, it contains some utility procedures, such

as ray-casting, ray-triangle intersection, as well as commands for

Renderer.

SceneGraph

Data structure managing objects in the scene.

SceneObject

An abstract class used to represent an element of the SceneGraph

A. It contains all required functionality for transformations, rendering,

converting, inheritance and for hierarchical structure of objects in

the program.

Mesh

A generic representation of a mesh object in the program. Mesh

contains an instance of the OpenMesh, along with a number of

functions to modify it, such as flipping normals, vertex transformations,
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mesh merging, subdividing, etc. Each Mesh also has an ability of

having handles attached to it.

HandleMesh

A subclass of Mesh A, wrapping all procedures required to respond

to user‘s object manipulation.

MeshShelf

Contains code used to generate primitive geometry such as spheres,

tubes, arrows, etc.

Renderer

A class serving as the rendering interface of the program. Its

primary workflow is to directly use the SceneGraph A, converting

all declared renderable objects to appropriate RenderTasks A. Furthermore,

it supports layered rendering, normals rendering, and contains all

shader initialisation.

RenderTask

A representation of a single rendering command. By default each

object in the scene has a respective RenderTask, however if needed

one object could create more than one RenderTask.

Converter

Converts OpenMesh geometry to ngl::VertexArrayObjects used by

the RenderTasks A.

ImplicitMesh

Inheriting from Mesh A, it is used to represent an Implicit Surface

in the scene, or in other words the parent surface Ps. It is set up to

work with ISM A and with the IsmConverter A. When user defines

decals on its surface, they are automatically added to its children

list, and later used during repolygonisation.

IsmConverter

Used to convert a mesh generated by ISM A to a Mesh A.

ImplicitDecal

Inheriting from Mesh A, it represents an Implicit Decal in the scene.

55



ImplicitGallery

A manager class for ImplicitDecals A and their textures. It also

contains functionality to load decal and texture information to the

shader. These functions are called in the preprocessing stage of

rendering (see Interface 5.2).

Texture

Extends ngl::Texture with bilinear texture sampling

Other definitions

DecalShader

The shader used to display decals‘textures on their parent geometry.

This shader was taken in an almost intact shape from the Texturing

Decals project (see History of the project 5.3)

Render layer

A collection of RenderTasks A that is given its own clean buffer

depth. Render layers are rendered in order of their IDs, allowing

to set up the geometry to be displayed in a layered fashion. By

default all objects are rendered from a single layer.

ISM

Iso Surface Modelling library, courtesy of Sanchez. It is employed

along with ImplicitMesh A to create the approximation of the

isosurface using the marching cubes algorithm. It requires an

object - in this case ImplicitMesh - that has the operator() (here

meaning the Pcall(q)) overridden with field function calculation. To

achieve quicker results, ISM uses Boost boo parallel processing.

List of symbols

D Decal; Geometric implicit decal; Implicit decal

Dp Coordinates of a decal
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Dt Texture of a decal

Dr Radius of a decal

Dci Implicit confidence of a decal

Dcp Planar confidence of a decal

Df(q) Private function of a decal, calculating and using the local

parameterisation

Dcall(q) Calling function of a decal, combining distance checks, Df(q)

and confidences.

DX, DY, DZ X Y Z axes of a decal

Ps Implicit surface; Parent surface

Pf(q) Field function used to define an implicit function Ps

q Currently processed point
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