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Abstract

This thesis discusses the research and development steps for the simula-

tion of snow with the Material Point Method (MPM). In order to gain

an understanding in the technique and mathematics the MPM was re-

searched in detail. All ten steps of the MPM were implemented using

C++. First the method was implemented without the collision and im-

plicit update. Next the body-collision for the particles and grid nodes

were applied and last the semi-implicit update step was applied. The

goal of implementing and understanding all the steps of the MPM was

obtained. Test were done with snowballs: letting them drop, throwing

them against a wall and throwing a small snowball against a static big-

ger snowball. The two snowballs interacted and the big snowball was

pushed back by the small snowball while the small snowball also created

a hole in the big snowball. The collision worked correctly for the grid

nodes and particles. Finding the balance between the number of par-

ticles, their weight and the size of the grid nodes was challenging and

while this was improved the simulations improved too and became more

realistic. The results were not completely satisfactory yet and when the

snowball was dropped shear and velocity decrease was observed after a

few frames. This problem could not be solved within the available time.

Although the snow characteristics where not completely reached the La-

grangian particle and Euler grid implementation that is the basis of the

MPM method was succesfull.

Keywords: Snow, Material Point Method
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Chapter 1

Introduction

This thesis will discuss the development and implementation of the mate-

rial point method (MPM) for snow simulations. The goal of this project

was to replicate the results by (Stomakhin et al. 2013). In addition

to getting a realistic snow simulation the objective was to see whether

improvements and/or extensions can be made. In the first section lit-

erature will be reviewed. The literature review will be split into two

sections. The first section being the literature on snow simulations. The

second section discusses further uses of the MPM method. The second

section discusses the development of the MPM for Snow simulations.

The simulation was developed in C++ and the particle positions are

printed to pointcloud files. These files can be converted to bgeo and

loaded into Houdini where they are rendered with a volumetric shader.

In this section the improvements and expansions of this project will also

be discussed. The last section is the conclusion, where the goals will be

reviewed.
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Chapter 2

Related Work

In this section the findings of the literature review into snow simulations

and the different applications of the material point method (MPM) will

be discussed.

2.1 Snow simulation

In the paper by (Muraoka and Chiba 2000) the focus is on creating

the shape of a snow cover after or during snowfall using virtual snow

particles. They can also simulate the melting of the snow cover. The

moisture content of the snow is used to determine how well the snow will

adhere to an object. Snow fall and a wind field are also simulated, but

they do not take into account any dynamic behaviour of the fallen snow.

To create a snow cover (Wang et al. 2006) simulate a height field of

the ground, when enough snowflakes deposit a the same site, the height

of this point will be increased. A wind field is also created to interact

with the falling snow flakes. When the wind is strong enough snowflakes

that have already fallen can be moved across the ground which can create

a more realistic snow scene, but no snow dynamics like compression is

applied.

Instead of falling particles (Fearing 2000) describes a method for sim-

ulating fallen snow by shooting particles from the ground. This method
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also covers snow flutter in areas that are blocked from above but not from

the side. The snow pack is transformed into a set of smoothly joining

3D surfaces. This could be used for the initial set-up for a snow scene,

but no dynamics for the packed snow are discussed.

The method proposed by (Foldes and Benes 2007) also simulates snow

accumulation and partly melted snow, but it’s main focus is for large

distant views like mountains. So it can be used for background scenes,

but not for snow dynamics.

(Moeslund et al. 2005) Also combine a snowing simulation with a sim-

ulation to model accumulated snow. They use the falling snow particles

to estimate where snow will accumulate especially around objects. The

snow on the ground is represented by a triangulated mesh and the snow

flakes with particles.

The methods above all describe the accumulation of snow sometimes

in combination with falling snow. These methods can provide a good set-

up for a dynamic snow simulation, but do not lend themselves for any

dynamic simulations like throwing snowballs, people walking through

the scene or snow rolling down a hill and interacting with the snow

underneath.

In the paper by (Sumner et al. 1998) they simulate ground planes with

either sand, mud or snow that can be deformed by the impact of rigid

bodies. This is done with a height field for the material on top of the

ground plane and different properties for the different materials. This

paper simulates a specific part of snow dynamics and could be used for

fast real time simulations, but for more detailed simulations (Stomakhin

et al. 2013) would provide more realistic results.

Only (Stomakhin et al. 2013) seems to deal with the phase change

and slight compressibility of snow, since this paper is the basis for this

thesis it will be discussed in more detail in chapter 3.

Snow can be seen as a granular material, like sand, but no sand paper

other than (Sumner et al. 1998) has specificity simulated snow. Since

altought they can both be seen as granular materials their properties and
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behaviour are not quite the same. Snow sticks together and is slightly

compressible, while sand only sticks together if it’s mixed with water.

2.2 MPM

Other application of the MPM are researched to see where the snow sim-

ulation could be extended. In their paper (Stomakhin et al. 2014) expand

upon (Stomakhin et al. 2013). They extend their possible materials and

focus on phase-change, like melting or hardening of for example of but-

ter or lava. To expand the snow simulation this paper would be a basis

for simulating melting snow. Further expansion is done in (Ram et al.

2015) where they use the MPM to simulate viscoelastic fluids, foams,

and sponges. The use of the MPM for granular materials was already

proposed by (Bardenhagen et al. 2000), but the application to snow was

not mentioned in this paper. Another application is fluid-membrane

interaction (York et al. 2000). The MPM is applied to model sea ice dy-

namics or pack ice (Sulsky et al. 2007) like large deformations that can

be observed in the Arctic, as well as localized deformation, and sharp

representation of the ice edge. The MPM is also used for explicit cracks

within the model material in 2D (Nairn 2003). In his paper (Wiȩckowski

2004) applies the MPM to large strain engineering problems like granular

flow in a silo and plastic forming.
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Chapter 3

The Material Point Method

In order to fully understand the mathematical process of the material

point method (MPM) concisely presented in (Stomakhin et al. 2013) we

worked through all mathematical spets in order to get a more detailed

description which is presented in this chapter.

The MPM is divided into a Lagrangian and Eulerian part, which are

particle and grid operations respectively. The snow is represented by

the particles and the grid is used for several calculations after which the

results are applied to the particles and the grid is reset for the next step.

In figure 3.1 you can see the operations for the MPM method.

The first step is to convert the mass and velocity of the particles to

the grid nodes. No grid node values from the previous timestep are used,

thus the grid is reset at the beginning of every timestep. To convert the

mass of the particles to the grid node the following equation is used

mn
i =

∑
p

mpω
n
ip (3.1)

where mn
i denotes the mass of the grid node, mp denotes the mass of

the particle, and ωnip denotes the weighting function. ωnip is calculated

using an one-dimentional cubic B-spline for all axis. The values for the
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Figure 3.1: Material Point Method (Stomakhin et al. 2013)

different axis are multiplied using the following equation:

Nh
i (xp) = N(

1

h
(xp − ih))N(

1

h
(yp − ih))N(

1

h
(zp − ih)) (3.2)

where Nh
i (xp) = ωnip for a more compact notation, i=(i,j,k) denotes the

grid index, xp = (xp, yp, zp) denotes the evaluation position, h is the grid

spacing and

N(x) =


1
2
|x|3 − x2 + 2

3
, 0 ≤ |x| < 1

−1
6
|x|3 + x2 − 2|x|+ 4

3
, 1 ≤ |x| < 2

0, otherwise

(3.3)

where the input x denotes the distance between the particle and the grid

node. x is normalized by h so that the weighting function will extent

over 2h in all directions. The gradient of the weighting function can be

calculated as

Nh
ix = δN(x)N(y)N(z)

Nh
iy = N(x)δN(y)N(z)

Nh
iz = N(x)N(y)δN(z) (3.4)
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where

δN(x) =


3
2
x2 − 2|x|, 0 ≤ |x| < 1

−1
2
x2 + 2|x| − 2, 1 ≤ |x| < 2

0, otherwise

(3.5)

and ∇ωip = ∇Nh
i (xp) = Nh

ixN
h
iyN

h
iz. This will be used in later steps.

Using the result of formula 3.1 the grid node velocity is calculated by

the following formula

vni =
∑
p

vnpmpω
n
ip/m

n
i (3.6)

where vnp denotes the particle velocity.

Only for the first timestep the initial particle densities and volumes

are calculated. The density of a cell can be estimated with m0
i /h

3 this

can be weighted back to the particle using the following equation

ρ0p =
∑
i

m0
iω

0
ip/h

3 (3.7)

The particle initial particle volume can then be calculated as

V 0
p = mp/ρ

0
p (3.8)

For the next and third step the deformation gradient F is used. F is

split in an elastic FE and plastic FP part so that F = FEFP . The elastic

part is the reversible type of deformation. It deforms the object, but

when it’s removed the object can still return to it’s original form. The

plastic part is the irreversible type of deformation. This deformation

is applied after the elastic deformation has reached a certain threshold.

Grid forces are calculated using equation

fi(x̂) = −
∑
p

V n
p σp∇ωnip (3.9)

where V n
p = JnPV

0
p , JP = detFP , ∇ωnip denotes the weighting gradient as
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in equation 3.4, and

σp =
1

Jnp

∂Ψ

∂FE
(F̂Ep(x̂), F n

Pp)(F
n
Ep)

T (3.10)

which can be derived to

σp =
2µ(FPp)

Jnp
(FEp −REp)F

T
Ep +

λ(FPp)
Jnp

(JEp − 1)JEpI (3.11)

where JE = detFE, FE = RESE by the polar decomposition, and

µ(FP ) = µ0e
ξ(1−JP ) andλ(FP ) = λ0e

ξ(1−JP ) (3.12)

where ξ denotes the hardening coefficient, λ0, and µ0 are the initial Lamé

coefficients. The first Lamé coefficient is calculated as

λ0 =
E0v

(1 + v)(1− 2v)
(3.13)

where v denotes the poisson’s ratio which is set to 0.2, and E0 the Initial

Young’s modulus which is set to 1.4 x 105. The second Lamé coefficient

is calculated as

µ0 =
E0

2(1 + v)
(3.14)

F̂Ep(x̂) can be calculated as

F̂Ep(x̂) = (I +
∑

(x̂i − xi)(∇ωnip)T )F n
Ep (3.15)

but in the paper they set x̂i = xi for equation 3.9, which results in

F̂Ep(x̂) = F n
Ep.

The force is then used to update the velocities on the grid nodes for

step four with the following equation

v∗i = vni +4t 1

mi

fni (3.16)

To include the gravity in this equation f = f + gmi is applied after the

force is calculated.

For the fifth step the temporary grid node velocity is updated with
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the grid-based body collision. First the grid velocity v is converted to

the reference frame of the collision object by

vrel = v − vco (3.17)

where vrel denotes the velocity of the grid or particle transformed into

the reference frame of the collision object, and vco denotes the velocity

of the collision object. If the object does not have a velocity vrel = v. If

the bodies are separating no collision is applied, this is true when

vn = vrelṅ ≥ 0 (3.18)

If equation 3.18 is false the collision is calculated as

vt = vrel − nvn (3.19)

where vt denotes the tangential portion of the relative velocity. If the

snow has to stick to the object v
′

rel = 0. Otherwise dynamic friction is

applied and

v
′

rel = vt + µvnvt/||vt|| (3.20)

where µ denotes the friction coefficent, and ||vt|| is the length of vt. The

velocity is then transformed back with

v
′
= v

′

rel + vco (3.21)

With this updated velocity the implicit integration is performed as

the sixth step. Initially this was just an explicit step making v∗ the new

node velocity. The method used for the implicit step is the conjugate

residual method, which is outlined in algorithm 1.

This loop continues until the residual r falls below a certain threshold

or the maximum amount of loops is reached. At the beginning of the

implicit step F̂Ep, R̂Ep, and ŜEp are calculated by

F̂Ep = (I +4t∇vn+1
i )FEp (3.22)
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v0 = v∗

r0 = v0
calculate Ar
r0 = v0 − Ar0
p0 = r0
compute Ar
Ap0 = Ar0
for i ≤ max number of loops or r small enough do

αi =
rTi Ari
ApTi Api

vi+1 = vi + αipi
ri+1 = ri − αiApi
βi =

rTi+1Ari+1

rTi Ari

pi+1 = ri+1 + βipi
Api+1 = Ari+1 + βiApi
k = k + 1

end
Algorithm 1: Conjugate Residual Method

where the velocity gradient ∇vn+1
p is calculated by

∇vn+1
p =

∑
i

vn+1
i (∇ωnip)T (3.23)

and F̂Ep = R̂EpŜEp by the polar decomposition.

To compute Ar for the implicit update, first δFEp is computed by

δFEp =
∑
p

4tr∇(ωnip)
TF n

Ep (3.24)

and the derivative of the grid node force is calculated as

δf = −
∑
p

V 0
p Ap(F

n
Ep)

T∇ωnip (3.25)

where Ap is calculated by

Ap = 2µ(δFEp− δREp)+λJEpF
−T
Ep (JEpF

−T
Ep : δF )+λ(JEp−1)δ(JEpF

−T
Ep )

(3.26)

where JEpF
−T
Ep =cofactor (FEp), and JEpF

−T
Ep : δFEp is calculated by

JEpF
−T
Ep : δFEp = JEpF

−T
Ep · δFEp (3.27)
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δ(JEpF
−T
Ep ) can be calculated as

δ(JEpF
−T
Ep ) =

∂

∂F
(JEpF

−T
Ep ) : δFEp (3.28)

To solve δR for Ap, δF = δRS +RδS can be derived to

RT δF − δF TR = (RT δR)S + S(RT δR) (3.29)

because RT δR is skew symmetric there are only three independent values

and δREp can be solved as


S00 + S11 S21 −S02

S12 S00 + S22 S01

−S02 S10 S11 + S22


−1

(RT δF − δF TR)01

(RT δF − δF TR)02

(RT δF − δF TR)12

 =


δR01

δR02

δR12


(3.30)

Which is used to calculate δR as

0 δR01 δR02

−δR01 0 δR12

−δR02 −δR012 0

(3.31)

so δREp = REp(R
T
EpδREp).

Ar can then be calculated as

Ar = r − β4tm−1
i δf (3.32)

where β is 0 for explicit, 1
2

for trapezoidal, and 1 for backward Euler.

The grid node velocity is then used to update the particles. First of

all by updating the deformation gradient and it’s elastic and plastic part.

The deformation gradient for each particle is updated by

F n+1
p = (I +4t∇vn+1

p )F n
p (3.33)

To see what part of the deformation gradient is Elastic and what

part is Plastic the elastic deformation gradient is temporary defined by

11



F̂ n+1
Ep = (I +4t∇vn+1

p )F n
Ep. Initially attributing all the changes to the

elastic part of the deformation gradient. Which is then used to compute

the singular value decomposition F̂ n+1
Ep = UpΣ̂pV

T
p the singular values are

then clamped Σp = clamp ( ˆΣp, [1− θc, 1 + θs]). With this clamped value

the new plastic and elastic components of the deformation gradient are

computed by

F n+1
Ep = UpΣpV

T
p andF n+1

Pp = VpΣ
−1
p UT

p F
n+1
p (3.34)

F n+1
p = F n+1

Ep F n+1
Pp should always be true.

The particle velocity is updated using part flip and part pic update

using the following equation

vn+1
p = (1− α)vn+1

PICp + αvn+1
FLIPp (3.35)

where vn+1
PICp =

∑
i v

n+1
i ωnip and vn+1

FLIPp = vnp +
∑

i(v
n+1
i − vni )ωnip with α

set to 0.95. A second collision step is performed using vn+1
p .

For the last step the particle positions are updated using the following

equation

xn+1
p = xnp +4tvn+1

p (3.36)

In short:

1. Transfer the particle mass and velocity to the grid nodes

2. Compute the initial particle volumes and densities. Only for the

first timestep.

3. Compute the forces on the grid nodes.

4. Update the grid velocities with the force.

5. The grid based body collision.

6. The implicit or explicit update.

7. Update the particle elastic and plastic deformation gradient.

8. Update the particle velocities with FLIP and PIC.

9. Particle body collision.

10. Update the particle position.

12



All steps except the second one are repeated during the following time

steps.
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Chapter 4

Applications & results

The goal of this project was to recreate the paper by (Stomakhin et al.

2013) where they simulate snow dynamics using the material point method

(MPM). C++ was chosen as the programming environment, because it

was the main programming language of this course and had all the abili-

ties necessary for this project. The main challenge this paper posed was

it’s mathematical complexity. Understanding and being able to transfer

the mathematics into code was the most import part of the process. The

visual part was not a main development focus of the project therefore

the data was exported and the scene was rendered in Houdini.

4.1 Development

At the start of the simulation the particles are placed within a certain

area, and the mass, velocity, and volume of each particle is initialized.

To distribute the particles evenly, but randomly in a sphere the flowing

equation is used

x = rλ1/3
√

1− u2 cos(φ)y = rλ1/3
√

1− u2 sin(φ)z = rλ1/3u (4.1)

where r denotes the radius of the sphere, λ denotes a random value

between 0 and 1, u denotes a random value between -1 and 1, and φ

denotes a random value between 0 and 2π. As can be seen in image

14



3.1 the MPM consists of 10 individual steps. The primary goal was to

implement all steps of the MPM. Initially the collision steps were not

implemented for simplicity and the time integration was made explicit

instead of semi-implicit for the same reason.

For the first step the grid node mass and velocity had to be calculated.

This is done by looping over the particles as described by equations 3.1

and 3.6. To keep the amount of loops for the summation to a minimum

the outer loop consists of all particles. Since all particle data is needed

but not all grid nodes are active. The grid nodes relative to the particles

positions are calculated and the current formula is executed. The grid

node position relative to the particle position can be found easily, but

the other way around finding the particles within the weighting range of

the grid node is a challenge.

for i ≤ number particles do
for i ≤ grid nodes within x range do

calculate weight and weight gradient for x
for i ≤ grid nodes within y range do

calculate weight and weight gradient for y
for i ≤ grid nodes within z range do

calculate weight and weight gradient for z
calculate the final weightfunction
the summation equation

end

end

end

end
Algorithm 2: Summations

The second step is only calculated during the first time step. This

step calculates the particle density and with the density the volume with

equations 3.7 and 3.8. The density function also contains a summation

this time over the nodes, but the same algorithm as for step one is used

here. Since it loops over all the active grid nodes.

The third step that calculates the grid forces was one of the more

difficult steps and required some more research and the mathematics

from the technical report. The grid force is calculated by equation 3.9.
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The paper provided equation 3.10 which could not directly be used for

the code. The derivative was provided by the technical document and

resulted in 3.11. For the decomposition the Eigen library was used.

This library does not have a function for polar decomposition, but has

one to calculate the singular value decomposition. Which is given as

FE = UσW ∗. RE and SE can be calculated by RE = WV T and SE =

V SV T . How to calculate λ0 and µ0 was not explained in the paper and

some research had to be done to find the correct formula’s. Which are

described by equation 3.13 and 3.14 in chapter 3.

All values for the fourth step which is calculated by equation 3.16,

were already calculated in previous steps so the temporary velocity could

be calculated with ease. In the paper (Stomakhin et al. 2013) they do

not mention the gravity in this equation. Without the gravity force

integrated the snowball stays at the same position. The equation

f = f inti + f exti (4.2)

as described by (Steffen et al. 2008). Where f int is the internal force

calculated by equation 3.9, and f ext the external force calculated by

f ext = mig.

Step five was not implemented immediately after step four, but later

on because it seemed less important at the moment. But without this

step it is difficult to show the capabilities of the MPM. The snow was

falling, but without the collision the effect of the elastic and plastic

forces could not be observed. For the collision first only a ground plane

was chosen, because it was the easiest to implement and the effect of

a snowball falling apart could be shown. During the final stages the

ground plane was expanded to a box so that the grid would not get to

big. The formula for the grid and particle collision is the same and the

first step is to check is to see if the particle or grid node is inside or on

the object’s surface. A sticky impulse can be applied to let the snow

stick to the surface. Also the object can be given a velocity which is not

implemented yet. For both the grid node and particle the input to the

collision function is their new velocity.
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Step six was the implicit integration. In case the explicit integration

is used the temporary velocity became the new velocity. In the code the

new velocity was not assigned to be the velocity after this step but after

step eight because the new and old velocity where both still needed in

steps seven and eight. The implicit integration was implemented last.

This was done because the program could work without it, but would

improve from the implicit integration. Thus if there was time left at

the end it could still be implemented. Next to the computation of the

grid force the implicit update was the most challenging. In algorithm

1 the conjugate residual method is described. v0 is set to be the grid

node velocity calculated by equation 3.16. The velocity was deemed

converged when the residual value was 0.0001 or smaller. This value

was determined by testing values between the range of 0.01 and 0.00001.

Where 0.0001 converged between 10 and 30 loops like they mention in

the paper (Stomakhin et al. 2013). R̂ and Ŝ can be calculated in the

same way as F = RS in step three. Ap provided a bigger challenge. The

technical report explained it in more detail, but not all. The mathematics

was worked out in chapter 3. The matrix calculations for the cofactor

and δ(JEpF
−T
Ep ) had to be coded, because they could not be calculated

by the NGL or Eigen library.

The update of the deformation gradient,seventh step, required some

more research in the decomposition and the Eigen library. The Eigen

library returns the diagonal values for the singular matrix. These values

have to be clamped according to the critical compression and stretch.

When the elastic value is clamped the plastic value has to be updated

with the inverse of the clamped value. The elastic F n+1
Ep = UpΣpV

T
p times

plastic F n+1
Pp = VpΣ

−1
p UT

p F
n+1
p matrix should be the deformation gradi-

ent. This value cannot be compared in the code because the operations

by the Eigen library, Up
∑

p V
T
p Vp

∑−1
p UT

p returns a matrix close to the

identity matrix, but not exactly the identity matrix.

The eight step was to update the particle velocities this was done

with a Particle-in-cell (PIC) and a Fluid-implicit-particles (FLIP) part

as equation 3.35. This step was quick to implement since the summation

parts could be reused from previous code and the equation wasn’t that
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difficult.

The particle collision uses the same equations as the grid collision.

Only now the input is the new particle velocity. Thus once the grid col-

lision was integrated the particle collision could be implemented fairly

easily. The particle collision was one of the two functions that was im-

plemented in the particle class itself.

The last step of the MPM was to update the particle positions using

the particle velocity. This step was done in the particle class.

Initially the size of the grid spacing was too big. Which caused some

unpredictable effects that looked more like a flocking simulation. Ac-

cording to (Stomakhin et al. 2013) there should be 4-10 particles per

grid cell for the initially packed snow so this was the aim.

Next the code had to be checked for mistakes and missed minuses.

The final step was to create a stable simulation. This was done trough

trail and error.

Beside the fill algorithm for the sphere an obj file of points can also

be imported and simulated as snow.

4.2 Class diagram

In figure 4.1 you can see the class diagram. For the Particle and Grid

class only a few of the more important attributes were added to the class

diagram to keep the diagram organized. The class MPM calls all the

separate steps of the MPM in the Grid class. The Grid class contains

the functions of the MPM that require grid information. It also contains

a structure for the grid nodes. The particle class contains all the particle

variables and the functions for the particle object collision and to update

the particle position. All other particle variables are calculated in the

Grid class and then pushes to the Particle class. The class ExportParti-

cleData exports the particle positions to a pointcloud (.ptc) file. It only

needs to be called once every certain number of loops, depending on the

time step. Since the timestep is always smaller than the time between
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Figure 4.1: Class Diagram
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frames. The ComputePolarDecomposition class computes the singular

value decomposition with the Eigen library and also uses these values to

compute the polar decomposition. The InterpolationWeight computes

the interpolation weight and weight gradient for the inputted value. It

only computes one axis at a time. It’s used by the Grid class to calcu-

late the weight or weight derivative for the inputed value. Because of

the parallel programming with openMP the variables in this class had

to be localized.

4.3 Problems

During the development process several problems were encountered. One

of the problems was the mathematics, the wrong implementation or a

forgotten minus for the force function gave wrong results. To find and

prevent these mistakes the code was reviewed and checked several times.

The distance between the grid nodes and for the weighting function

was initially set to two meters instead of the length between two grid

nodes. The large distance between the grid nodes caused all particles to

be influenced by the same grid nodes. The large distance for the weight-

ing function had the same problem, but it was already an improvement

because there were a lot more grid nodes and the weighting function

caused the particles to be mainly influenced by the grid nodes closest to

them. Thus some strange behaviour of the particles was observed. Since

there should be between 4-10 particles per grid cell for the initial packed

snow.

The distribution of the particles in the snowball was first done by

a normalized random vector times a random number between zero and

the radius. This random function was uniform. So for the sphere the

density at the edges was lower than at the centre. This caused the

snowball to collapse in on itself. If the density is too high or too low the

snowball starts behaving wrong and the simulation crashes. In image

4.2(a) you can see what happens if the particles are packed too densely.

The particles are pushed outwards and the surface become unevenly. The
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(a) Density too high

(b) Velocity difference

(c) Shear

Figure 4.2: Problems
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paper stated a high number of particles for a simple snowball around

3x105. Which was a too high number for testing and there was not

enough time for the final simulations to be done with this amount.

The last and most difficult problem was to get the simulation stable

once everything was implemented according to the paper and finding

the right timestep and values for all parameters. This problem was not

completely solved before the deadline. A lot of different settings for the

parameters were tested and can be seen in the video’s. The paper gave

a number of parameter values, but not all. For example they mention

how many particles they use for the snowball simulations, but not what

their weight, size, or the distance between the grid nodes are. The code

was too slow to be able to run realtime so all tests were simulated and

exported to the pointcloud files. Because this took some time for each

simulation the debugging and testing was a slow process. For example

for the explicit update a timestep of 10−4 proved to be unstable so had

to be even higher. When the gravity force was applied to the snowball

the snowball was compressed in the y axis and one side seemed to fall

faster than the other side. This can be seen in image 4.2(b). To see if

the effect would disappear when α for the PIC and FLIP velocity update

was set to 1 so the velocity update was only FLIP and the other way

around did not yield any results. The only thing was that when falling

the velocity would increase, but after a while it would decrease again

before hitting the ground. This effect dissapeared when the velocity

update was only FLIP. To narrow down the source of the problem σ was

set to the identity matrix. This resulted in the snow finally falling to the

ground, but it did not keep it’s shape and the snow bounced back up see

video FLIPandGravity. The Cauchy stress σ consisted of a λ and µ part.

When only λ was used for σ the snow collapsed in on itself and looked

more like fluid when it hit the ground, see video OnlyMuAndLamda.

When only µ was used for σ the shear was observed again, image 4.2(c).

Lower stretch or compression values did not seem to have any effect on

this. Increasing the weight and adding an initial velocity to the snowball

seemed to have the most realistic effect. The snow did not break apart

in chunks, but in the paper it was also mentioned that they added a
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noise pattern to get the chunky fracture which was not implemented. As

a final test a small snowball was thrown towards a big snowball. In the

first few frames you can see the big snowball denting in where the small

snowball hits it. But when the two snowballs start falling they start to

shear together, see the video TwoSnowballSmash.

4.4 Extension

A few possible improvements and extensions include:

The first improvement would be to get the simulation working like in

the paper. Since all steps seem to be implemented correctly one of the

improvements could be to made a user interface could be added where

the user can load in any mesh and set the different parameters so a lot of

different simulations can be run. When a mesh is imported the particles

should then be assigned the right mass, corresponding with the initial

density, and start velocity. Extensions could be to be able to let the snow

melt, or combine it with a snowing method. Or extent the MPM so that

it can do more materials than just snow. In (Stomakhin et al. 2014) the

MPM is expanded with a heat function and grid, to simulate heat flow

and phase transition. Since the ten MPM steps are roughly the same

and an extra step is added to solve the heat equation. The code from

this project could be used. At the moment all the snow has to be placed

by the user. In the related work several techniques where used to create

snow landscapes. Those could be used to transform scenes into snow

scenes and then transform the snow mesh into particles so the MPM can

be applied for an interactive scene. A snowing simulation which is also

based on particles could also be added. Although it does not necessary

have to interact with the MPM since it takes a long time for snow to

build up.
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(a) Snowball drop (b) Snowball smash

Figure 4.3: Simulation Renders

4.5 Efficiency

The amount of particles and grid nodes make the program slow, but the

parallel programming increased the speed by more than a factor of 2.

The disadvantage of this algorithm is that the time step has to be quite

small to achieve a stable simulation. With more time the code could be

made more efficient and the parallel programming could be applied to

every loop.

4.6 Results

In the end several snowballs were simulated. The different simulations

were a snowball dropping without any start velocity, a snowball dropping

with a start velocity, a snowball being thrown against the wall, and

a smaller snowball being thrown against a larger snowball. Although

none of them had the desired effect that was set at the beginning of the

project several of the characteristic properties of the MPM and snow

can be observed. Two of the snowball scene were rendered out with a

volumetric shader in Houdini, image 4.3(a) and 4.3(b).
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Chapter 5

Conclusion

The main goal of this project was to implement and understand the Ma-

terial Point Method (MPM) for snow as described by Stomakhin, A., et

al. (2013). This goal can be split into the understanding of the mathe-

matics, the ability to implement the mathematics, and to get a realistic

snow simulation. The goal of understanding all the mathematics was

achieved and discussed in depth in chapter 3. Some of the steps, like the

grid node force and the semi-implicit integration were a challenge. These

steps were also the most challenging to implement. Once the algorithm,

see algorithm 2, that could be used for the different summations, was

determined it could be applied in almost every step. This resulted in not

having to loop through all the particles per grid node which saves a lot

of time.

The goal of a realistic snow simulation was not completely reached.

While several of the properties can be observed like when one snowball

is thrown towards another snowball the static snowball is pushed back

by the force and the snow in the middle where the small snowball hits is

pushed back even more. In the scene where no gravity is applied you can

see the elastic force returning the snowball to its original shape where

the plastic force hasn’t broken it. Unfortunately strange behaviour like

the shear and a velocity decrease after the snowball has fallen a small

distance are still observed. A lot of different solutions were applied, see

chapter 4, and some made the simulation more realistic none of them
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completely worked. This behaviour seemed to result from the elastic

deformation gradient. The details can be found in chapter 4 and while

the possible source could be determined all the equations seemed to be

applied correctly. Therefore a solution could not be found within the

time available. The shear and velocity decrease also occured without the

implicit update and while this step uses the deformation gradient FE too

it was not responsible for the shear and velocity decrease.

Another goal that was mentioned in the introduction was to expand

upon this paper and while the possibilities are discussed in the previous

chapter the lack of time did not lend itself for an extension upon the

MPM for snow.

So in conclusion the goal of this masters project was partially achieved

by implementing and understanding all the steps, but the simulation does

not have the desired result yet. The time necessary to get a stable and

realistic snow simulation was not foreseen at the start of this project.

With a few more weeks and a lot more tests with parameters and doing

more code reviews to see where the simulation could be going wrong a

final snow simulation could almost certainly be reached.
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