
Curvature-Adaptive Remeshing

with Feature Preservation of

Manifold Triangle Meshes with

Boundary

Master’s Project

Tanja Munz

Master of Science

Computer Animation and Visual Effects

24th August, 2015

Abstract

In computer graphics meshes are a common representation of surfaces. These

meshes are often irregular and contain more vertices than necessary to approx-

imate a surface sufficiently. With remeshing a better mesh can be created for

the underlying surface with respect to some quality criteria. In this project,

manifold triangle meshes with boundaries and feature edges are considered;

they are represented by a half-edge data structure for fast access of neighbour-

ing elements of vertices, edges and triangles. The remeshing approach used is

based on local mesh operations (edge-split, edge-flip, edge-collapse and vertex

relocation) to adjust the density of elements and to improve their connectiv-

ity for a more regular mesh. An optional back-projection of vertices to the

original surface can be used to keep the shape of the new mesh close to the

reference mesh. With a sizing field based on an approximation of the curva-

ture of the surface it is possible to adjust the sampling density to represent the

final mesh with fewer triangles in areas of low curvature. The result of this ap-

proach is curvature-adaptive isotropic remeshing of good quality with feature

preservation. The whole remeshing process is implemented in an interactive

application that allows modifications of parameters.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and

Object Modeling

Keywords: Curvature-Adaptive Remeshing, Isotropic Remeshing, Local Mesh

Modifications, Triangle Mesh, Feature Preservation, Half-Edge Data Structure

i

Contents

Abstract . i

Contents . ii

1. Introduction 1

1.1. Motivation . 1

1.2. Objectives . 2

1.3. Structure . 3

2. Related Work 4

3. Technical Background 7

3.1. Mesh . 7

3.2. Remeshing . 10

3.3. Mesh Properties . 10

3.4. General Remeshing Process . 11

3.5. Local Mesh Operations . 13

3.5.1. Edge-Split . 13

3.5.2. Edge-Collapse . 15

3.5.3. Edge-Flip . 15

3.5.4. Conditions . 15

3.5.5. Tangential Relaxation 18

3.5.6. Projection to Surface . 19

3.6. Boundary Handling . 20

3.7. Target Edge Length . 21

3.8. Feature Detection and Preservation 25

3.9. Triangle Calculations . 28

4. Implementation 31

4.1. Workflow . 31

4.2. Mesh Import and Export . 32

4.2.1. Object File Format . 33

ii

Contents

4.2.2. PLY Format . 34

4.2.3. OBJ Format . 35

4.3. Mesh Data Structure . 36

4.3.1. Desired Properties . 37

4.3.2. Half-Edge Data Structure 38

4.4. Data Preparation . 45

4.5. Implementation Details . 48

4.6. User Interface . 52

5. Remeshing Results 54

6. Conclusion 67

6.1. Summary . 67

6.2. Future Work . 68

References 69

A. OFF Example File 73

B. PLY Example File 74

C. OBJ Example File 75

D. JSON File with Example Settings 76

iii

1. Introduction

1.1. Motivation

Triangle meshes are a common way of representing surfaces in computer graph-

ics. Meshes can be generated in different ways: by modelling, sculpting, de-

formation or by scanning devices and isosurfacing of implicit representations.

Especially meshes that are generated algorithmically are often rarely satisfac-

tory. They are irregular, oversampled and contain redundant vertices.

Application areas for meshes and reasons for remeshing vary and they usually

need or create a mesh of a certain quality. Common areas to consider are

geometric modelling, shape editing, animation, numerical simulation (finite

element simulation), visualisation and storage. All of these areas benefit from

optimised representations of meshes.

With remeshing a better mesh for a surface can be determined: the complexity

of the mesh can be reduced and the quality can be improved. The first aspect –

the reduction of the complexity – is usually handled with mesh simplification.

The goal of remeshing is to additionally optimize the mesh in terms of vertex

sampling, triangle quality and regularity. Usually, it is desired to have trian-

gles with equal edge lengths. The best representation of a mesh in regard to

sampling density is if areas with small details are modelled by more triangles

while flat areas are represented by fewer elements. This is often referred to as

curvature-adaptive remeshing when the vertex distribution is related to the

underlying approximated curvature of the surface. Sharp edges and features

are important to be preserved in order to retain the general shape.

1

1. Introduction

Remeshing can be realised by determining a new mesh for the surface or

by modifying the original mesh by adding and removing vertices and chang-

ing their positions. To modify elements different methods are distinguished:

Parameterisation methods create a parameterisation for the mesh in the 2D

domain (with global parameterisation for the whole mesh; with local param-

eterisation for patches) while other methods work directly with the three-

dimensional surface.

Parameterisation is usually quite expensive but might create meshes of a bet-

ter quality. Especially for interactive algorithms it is important that the

remeshing algorithm is fast. Therefore the tradeoff between quality of the

result and speed of the operations have to be considered. Methods using local

modifications in 3D are often preferred for real-time environments.

1.2. Objectives

The objective of this project is the implementation of an interactive applica-

tion for remeshing of surface meshes. The application has to be able to import

meshes and represent them in an appropriate data structure for further pro-

cessing. The result obtained by the remeshing process should be a new mesh

that is either uniform or curvature-adaptive (depending on the settings) and

regular. In the user interface specific parameters should be able to be ad-

justed. Results should be able to be exported for further processing in other

applications.

The process for remeshing includes the calculation of an approximated curva-

ture of the surface to allow adaptive remeshing. Features have to be detected

to preserve sharp corners and edges in the surface. Using local operations

on the surface mesh such as edge-split, edge-collapse and edge-flip a more

regular mesh is created. Further, relaxation optimizes the result and a back-

projection decreases the error-difference to the original surface. This general

process is outlined in Dunyach et al. (2013).

2

1. Introduction

1.3. Structure

The remaining work is structured as follows:

Chapter 2 – Related Work: This chapter gives an overview of different tech-

niques used for remeshing.

Chapter 3 – Technical Background: Important terms used in mesh process-

ing are explained and necessary techniques required for the implementa-

tion are introduced. This includes general topological and geometrical

mesh operations like edge-split, edge-collapse, edge-flip and a relaxation

technique but also feature handling and the calculation of the surface

curvature.

Chapter 4 – Implementation: Details of the implementation are given in re-

gard to structuring the implementation, the used data structure to rep-

resent the mesh and details about the created application.

Chapter 5 – Remeshing Results: Results obtained by the implemented remesh-

ing process are provided and discussed.

Chapter 6 – Conclusion: The work is summarised and an overview of fur-

ther enhancements of the application and of the remeshing approach in

general are given.

3

2. Related Work

In the following sections there will be an overview of research in the area of

remeshing. Many publications exist in this area; only a small selection of

them is mentioned below. A more detailed survey and descriptions of some

techniques can be found in Alliez et al. (2008) and in the book Botsch et al.

(2010).

Botsch et al. (2010) covers all important areas of mesh processing: Among

other areas different data structures, remeshing, mesh simplification, mesh

repair and mesh deformation are covered.

Many algorithms exist in the area of remeshing. Most of them are limited

to specific mesh types. Commonly used polygon meshes are triangle meshes

and quad meshes. This project is only dealing with triangle meshes. For quad

meshing the survey Bommes et al. (2012) should be mentioned. An advantage

of triangle meshes is that it is possible to triangulate all polygons while it is

more difficult to create quads from triangles.

Another property of a mesh is whether it is manifold or non-manifold. Most

algorithms have problems handling non-manifold meshes. Remeshing algo-

rithms exist that explicitly handle non-manifold meshes (e.g. Vivodtzev et al.

(2005) and Zilske et al. (2007)) or are limited to closed manifolds (e.g. Fu

and Zhou (2009)). The approach in this project is dealing with manifold

meshes (optionally with boundary); this type of mesh can be handled by most

remeshing algorithms.

4

2. Related Work

When creating a new mesh for a given reference mesh the new mesh can be

created from scratch or by changing the existing mesh. Here, a number of

approaches are to be distinguished:

Global parameterisation methods generate a parameterisation of the whole

mesh, resample the mesh and then project the new mesh connectivity back

into three-dimensional space. This technique is used for instance by Alliez

et al. (2002), Alliez et al. (2003) and Kobbelt and Botsch (2003).

Other methods use no parameterisation, work directly on the mesh in 3D

and use local mesh modifications (adding, removing and relocating vertices)

to improve the vertex distribution in order to obtain a more regular mesh.

Hoppe et al. (1993), Kobbelt et al. (2000), Vorsatz et al. (2001) and Botsch

and Kobbelt (2004) are examples that use such methods.

Additionally, there is local parameterisation that generates a parameterisation

for small patches of the mesh and performs local modifications. It is used for

example by Vorsatz et al. (2003), Surazhsky and Gotsman (2003), Surazhsky

et al. (2003) and Fuhrmann et al. (2010).

One of the first remeshing techniques for surfaces is described in Turk (1992).

Here, local mesh modifications were used.

The density distribution for meshes obtained by a remeshing approach can

be equal for the whole mesh or related to some properties of the mesh. Usu-

ally uniform and curvature-adaptive remeshing is to be distinguished. The

first one creates an equal distribution of vertices for the whole mesh while

adaptive approaches use a density field in order to adjust the sampling of

vertices or edge lengths. For the density field usually an approximation of the

curvature of the underlying surface is calculated. Publications dealing with

uniform remeshing are Vorsatz et al. (2003) and Botsch and Kobbelt (2004).

Curvature-adaptive remeshing is described for example in Frey (2000), Alliez

et al. (2002), Surazhsky and Gotsman (2003), Alliez et al. (2003), Fuhrmann

et al. (2010) and Dunyach et al. (2013).

5

2. Related Work

In order to handle geometry with sharp edges and corners feature detection

and preservation is required (such as in Alliez et al. (2003) and Vorsatz et al.

(2003)). A simple method to detect features is using dihedral angles as by

Fuhrmann et al. (2010). Other methods exist for extracting features that are

less sensitive to noise. Such an approach is mentioned by Lévy et al. (2002).

Most remeshing methods use feature preservation or it could be added in a

simple way. Specific remeshing algorithms exist for dealing with features. For

example Vorsatz et al. (2001) and Kobbelt and Botsch (2003) use attraction

forces to shift vertices into the direction of feature edges. Attene et al. (2003)

even try to enhance features.

For interactive applications real-time response and hence a fast remeshing

algorithm is required. Most of such algorithms only perform uniform remesh-

ing or create results of a lower quality. Not many fast curvature-adaptive

algorithms as described by Dunyach et al. (2013) exist.

The technique explored and implemented in this project relies on the method

described in Dunyach et al. (2013). This approach works with triangle meshes

and mesh modifications directly on the mesh in three dimensions are used to

obtain a more regular mesh of high quality in real-time. It is extended from

Botsch and Kobbelt (2004) and Botsch et al. (2010), which are creating a

uniform isotropic mesh, to an approach for curvature-adaptive remeshing. The

curvature of the mesh is calculated in order to adjust the vertex density and

features to be preserved are detected. In Dunyach et al. (2013) the algorithm

is used for an interactive mesh modelling application for mesh deformation and

mesh sculpting. Each step of mesh deformation is followed by one iteration of

adaptive remeshing.

6

3. Technical Background

In this chapter the technical background for curvature-adaptive isotropic remesh-

ing will be covered. This includes background information on meshes in gen-

eral and the goals to be achieved by remeshing. The remeshing process will be

described and operations used on surface meshes necessary for the implemen-

tation will be explained. Some images and pseudocode will exemplify these

techniques and operations.

3.1. Mesh

A mesh can be seen as a piecewise approximation of a smooth surface. Com-

mon ways to represent meshes are by using quads or triangles. This project

focuses on triangles only.

A mesh is usually defined by a list of vertices, edges and triangles and rules

for their connectivity.

A vertex represents a position in three-dimensional space and an edge is a

connection between two vertices. A face is a surface, it is defined by an

ordered list of vertices (or edges) and a triangle is a specific type of face with

exactly three vertices (or edges).

Additionally it is possible to add further properties to the mesh. The following

we assume that a set of edges and/or vertices are defined as feature elements.

More formally, a triangle mesh with NV vertices, NE edges and NT triangles

can be defined as a 3-tupleM = (V, E , T) of vertices V, edges E and triangles

T .

Vertices: V = {v0,v1, . . . ,vNV −1} with vi ∈ R3.

Edges: E = {e0, e1, . . . , eNE−1} with ei = {vj ,vk} and j, k ∈ [0, NV − 1].

7

3. Technical Background

(a) (b) (c) (d)

Figure 3.1.: Different types of a mesh (with red edges of interest): (a) man-
ifold mesh, (b) manifold mesh with boundary, (c) and (d) non-
manifold mesh.

Triangles: T = {t0, t1, . . . , tNT−1} with ti = (vj ,vk,vl) with j, k, l ∈ [0, NV − 1].

Feature edges: EF ⊆ E .

Each vertex has a valence, also known as degree of a vertex. It is the number

of adjacent vertices (or outgoing edges) to a vertex.

The one-ring neighbourhood of a vertex are all vertices that are adjacent to it

as well as all incident faces and edges.

Some meshes allow boundaries in their structure. Boundaries are special edges

that are incident to only one triangle.

Manifold – Non-Manifold

The use of different data structures and algorithms involves limitations for the

representable meshes. Generally it is to be distinguished between manifold

and non-manifold meshes.

A mesh is manifold if each edge is connected to exactly two faces for inner

edges (figure 3.1a) or one face for boundary faces (figure 3.1b). For each vertex

the incident triangles have to build a closed fan or a fan with one opening if

a boundary is allowed.

A mesh is non-manifold if an edge is connected to more than two faces (fig-

ure 3.1c) or triangles connected to a vertex do not build a closed fan (fig-

ure 3.1d) as previously mentioned. These meshes are suboptimal for most

algorithms.

8

3. Technical Background

(a) (b)

Figure 3.2.: Objects with different genus: (a) sphere with genus 0 and
(b) torus with genus 1.

Genus

The genus specifies the number of holes in a closed orientable mesh. A sphere

has genus 0 as there are no holes as visible in figure 3.2a, genus 1 meshes have

one hole (figure 3.2b), an example is a torus. Meshes with genus larger than

0 cause problems for some mesh algorithms.

Euler Characteristic

The Euler characteristic shows a relation between the number of vertices NV ,

the number of edges NE , the number of faces NF and the genus g in a closed

mesh. It is given as:

NV −NE +NF = 2− 2g

According to this formula some properties for meshes can be derived:

• The number of triangles in a mesh is roughly twice the number of ver-

tices: NF ≈ 2NV .

• The number of edges in a mesh is roughly three times the number of

vertices: NE ≈ 3NV .

• The average vertex valence is 6.

9

3. Technical Background

3.2. Remeshing

In Alliez et al. (2008) remeshing is defined in the following way:

“Given a 3D mesh, compute another mesh, whose elements satisfy some qual-

ity requirements, while approximating well the input”.

Quality can be related to different criteria such as sampling, grading, regu-

larity, size and shape of elements (Alliez et al. 2008). Usually the goal is to

satisfy a combination of these criteria. Some remeshing approaches create a

mesh for the surface from scratch while others change vertex positions and

the connectivity in order to achieve a better mesh.

3.3. Mesh Properties

The following aspects have to be considered when choosing a remeshing ap-

proach.

Most common element types are triangles and quadrangles (figure 3.3a); dif-

ferent algorithms are limited to specific element types.

For the shape of elements usually a distinction is made between isotropic and

anisotropic elements (figure 3.3b). A triangle for instance has a higher isotropy

the closer it is to equilateral. If triangles are close to equilateral edge lengths

are almost equal. Isotropic elements are preferred for example for numerical

simulations.

The density of elements should represent a surface in a satisfying way. Uniform

and non-uniform/adaptive element distributions are possible. For uniform

remeshing elements are evenly spread across the mesh. For adaptive remesh-

ing the number of elements varies. Supposed, curvature-adaptive sampling is

desired areas with low curvature have fewer and larger elements while areas

with high curvature are represented by more and smaller elements. Usually

fewer elements are required for adaptive remeshing than for uniform remesh-

ing to achieve a comparable approximation. Using uniform sampling many

elements would be needed to represent small details.

10

3. Technical Background

(a)

isotropy

(b)

(c)

Figure 3.3.: Some properties of a mesh: (a) different element types, (b) ele-
ment shape and (c) a regular mesh.

According to the Euler characteristic the average valence of a vertex is 6.

In order to obtain similar valences for all vertices it is desired to have a

valence close to 6 for all vertices in order to obtain a more regular mesh

(see figure 3.3c).

Sharp edges and corners – known as features – usually should be preserved as

they are essential for the general shape of a surface.

3.4. General Remeshing Process

The general remeshing process roughly follows the steps as outlined in Dun-

yach et al. (2013), Botsch et al. (2010), Botsch and Kobbelt (2004) and oth-

ers.

First, a short description of the algorithm used for the uniform approach

will be given; then, more details about the curvature-adaptive one will be

provided. The remainder of this work will focus on techniques used for the

implementation of the curvature-adaptive approach (Dunyach et al. 2013).

11

3. Technical Background

In the algorithm for uniform remeshing a target edge length L is defined, then

repeatedly local mesh operations are performed. Edges are split into two edges

if they are too long; too short edges are collapsed. In order to change vertex

valences edge-flip is used. Vertices are shifted using tangential relaxation for a

more regular mesh and they are projected back onto the original surface. This

procedure is iterated about 5 to 10 times until edges approximately reach the

desired edge length and the vertex valences are more equal.

This is the general algorithm:

remesh ():

remeshing

for (int i = 0; i < numberOfIterations; ++i):

control edge lengths

for each edge in edges:

if (edgeLength(edge) > 4/3 * L):

split(edge)

if (edgeLength(edge) < 4/5 * L):

collapse(edge)

control vertex valences

for each edge in edges:

flip(edge)

optimise vertex positions

for each vertex in vertices:

tangentialRelaxation(vertex)

project vertices back onto surface

for each vertex in vertices:

backProjection(vertex)

The values 4/5 and 4/3 are chosen in Botsch and Kobbelt (2004) to have edges

converging to uniform edge lengths.

In the main reference of this project, Dunyach et al. (2013), the values 4/5

and 4/3 were interchanged. As on the one hand it is not that useful to split

edges that are already smaller than their target length and collapse edges that

are too long and on the other hand other literature (e.g. Botsch and Kobbelt

(2004), Botsch et al. (2010)) use these values differently the version stated

above was used.

12

3. Technical Background

With having the goal to get a mesh with curvature-adaptive sampling and

feature preservation as in Dunyach et al. (2013), the general process to opti-

mise the mesh is extended: First, the curvature of the mesh is calculated and

features are determined. Next, the edge lengths of the mesh are adapted using

local operations as described in the next section. The desired edge length is

obtained from the curvature: Instead of a fixed target edge length L a local

edge length L(e) is used. The relocation of vertices is also done related to

this local target edge length. For feature preservation some restrictions on

the general mesh operations are added.

The next sections offer more detail on these operations, important conditions

for them and the handling of curvature and features.

3.5. Local Mesh Operations

With local mesh operations a mesh can be optimised to become a more regular

mesh. Operations such as edge-split, edge-collapse and edge-flip create a mesh

with edge lengths and valences that are more equal; tangential relaxation and

back-projection relocate vertices. These local mesh modification operations

can be seen in figure 3.4. Boundary edges and feature edges need a special

handling as for the first ones less information is available and for the latter

ones the shape should be preserved. Additionally, it has to be considered that

the topology of the mesh in general should not be destroyed. Hence some

special cases have to be added. For specific information on each operation see

the following sections. The exact modifications performed in the edge-split,

edge-flip and edge-collapse operations highly depend on the data structure

(see chapter 4.3 for more details for changes required for the half-edge data

structure).

3.5.1. Edge-Split

With edge-split (figure 3.4a) large edges can be split into two smaller ones at

their midpoints. An edge is split supposed it is larger than a specific length.

The new vertex position is calculated by:

newPoint = edge.leftPos + (edge.leftPos + edge.rightPos) / 2

13

3. Technical Background

split

(a)

collapse

(b)

flip

(c)

move

(d)

Figure 3.4.: Local operations for a triangle mesh: (a) edge-split, (b) edge-
collapse, (c) edge-flip and (d) vertex move.

14

3. Technical Background

The result is that one new vertex is added to the mesh as well as three new

edges and two triangles.

3.5.2. Edge-Collapse

Edges can be removed from the mesh by using edge-collapse (figure 3.4b). In

the remeshing process this is done to remove too small edges.

This step can be imagined as removing an edge with two vertices and replacing

it by a new vertex between the two previous vertices. The position is calcu-

lated in the same way as for edge-split. All edges connected to the previous

vertices are connected to the new vertex.

3.5.3. Edge-Flip

Edge-flipping (figure 3.4c) is used to equalise the vertex valences. Usually va-

lences of 6 and 4 are intended for interior and boundary vertices, respectively.

The algorithm flips each edge and controls whether the deviation to the target

valences decreases – i.e. whether the operation might bring an improvement

to vertex valences. Supposed there will be no improvement the edge will not

be flipped. An edge is flipped by changing the vertices of the edge to the

neighbouring vertices in the adjacent triangles. If edge-flip would be used

twice for an edge the previous topology could be restored.

3.5.4. Conditions

These previously described mesh operations do not always preserve the topol-

ogy and could create non-manifold or unpleasant results. While edge-split can

always be performed, edge-collapse and edge-flip need some tests before per-

forming them to preserve the topological type and create satisfying results.

The following conditions have to be verified before using a mesh operation for

an edge e = {vo,v1}; these conditions can be found in Hoppe et al. (1993),

Dey et al. (1999) and Botsch et al. (2010).

15

3. Technical Background

First, according to Botsch et al. (2010) too large edges might be created by

collapsing along chains of short edges, which would undo the work done by

the split operation. Therefore, before collapsing it has to be checked that the

newly-created edges will not be larger than the value used as threshold for

splitting.

Next, for collapse, it should be prevented that the mesh intersects with itself

(see figure 3.5b). To check this for the whole mesh would be too expensive.

Hoppe et al. (1993) suggest to compare the maximum dihedral angle of edges

incident to the new vertex after the operation. If this angle would be larger

than a threshold angle the operation is rejected.

And finally, for preventing non-manifold results, the often so-called link con-

dition has to be satisfied:

• If vertices v0 and v1 are boundary vertices the edge e = {v0,v1} has to

be a boundary edge, too (figure 3.6 shows the non-manifold result that

would be obtained otherwise).

• For each vertex v incident to both vertices v0 and v1 there has to be

a triangle t = {v0,v1,v} (figure 3.5a shows the result that would be

created otherwise).

The last condition can be expressed in another way:

The number of vertices that are adjacent to both v0 and v1 has to be exactly

two: |N (v0) ∩ N (v1)| = 2. If the edge is a boundary edge it has to be one.

Here, N (vi) is the set of vertices adjacent to vertex vi.

For the flip operation the mesh has to be checked for self-intersection similar

to the collapse operation. Figure 3.7 shows two examples for such invalid

operations: in the first example a triangle would be created that has no surface

area and hence no valid normal and in the second one the flipped edge creates

two triangles with their normals roughly pointing into opposite directions. To

prevent such an operation the dihedral angle of the edge after the operation

is computed. If this angle is larger than a threshold value this might indicate

that a new triangle has the wrong orientation.

16

3. Technical Background

collapse

(a)

collapse

(b)

Figure 3.5.: Meshes before (left) and after (right) edge-collapse for invalid
scenarios: In (a) the result is non-manifold, in (b) a triangle
changes its orientation.

collapse

Figure 3.6.: Meshes before (top) and after (bottom) edge-collapse for an in-
valid scenario: an edge with two adjacent boundary vertices that
are not connected by a boundary edge create a non-manifold
mesh.

17

3. Technical Background

flip

(a)

flip

(b)

Figure 3.7.: Meshes before (left) and after (right) edge-flip for invalid sce-
narios: (a) triangle with zero area would be created and (b) the
new edge is outside the surface.

3.5.5. Tangential Relaxation

For relaxation vertices are moved (figure 3.4d) in order to improve the vertex

distribution. It can be used as an iterative smoothing filter on the meshes. Due

to the back-projection to the surface afterwards, the movement is constrained

to the vertex’s tangent plane for stabilisation purposes.

For uniform remeshing each vertex vi is moved to the average ci of its one-ring

neighbourhood N (vi) (Botsch and Kobbelt 2004):

ci =

∑
v∈N (vi)

v

|N (vi)|

This is adapted for the curvature-adaptive approach (Dunyach et al. 2013) as

the target edge lengths are not uniform and the local target edge sizes have to

be preserved. Average triangle barycentres are used to compute an Optimal

Delaunay Triangulation (Chen and Holst 2011). ci is computed as average

of the barycentres bj of the triangles tj ∈ Ti incident to the vertex, weighted

by the surface area of the triangles and the sizing field at bj (the sizing field

18

3. Technical Background

vi

ni

ci

tangent
plane

Figure 3.8.: Projection to tangent plane.

defines the local target edge length; see chapter 3.7):

ci =

∑
j∈Ti |tj |L(bj)bj∑
j∈Ti |tj |L(bj)

This method was chosen for reasons of robustness and simplicity. Another

approach could use circumcentres instead of barycentres.

Finally, the position is updated by projecting it into the tangent plane (vi,ni)

as visualised in figure 3.8:

vi = ci + nini
T(vi − ci)

According to Botsch et al. (2010) this can be implemented as:

vi = ci + (ni × (vi − ci))ni.

3.5.6. Projection to Surface

The vertices can be projected to the nearest point of the reference mesh. This

step is mentioned as optionally in Dunyach et al. (2013).

19

3. Technical Background

(a)

Figure 3.9.: Back-projection of new vertex positions onto the reference
mesh – the original mesh is visualised in black, the new vertex
positions in red, the green arrows show where they are moved
to.

For each vertex the nearest position on the original surface has to be found.

A naive way to do this is by iterating over each triangle of the reference mesh

for each vertex in order to find this position. For each vertex and triangle the

minimum distance and the corresponding position is calculated. The position

of the triangle with minimum distance is used. Unfortunately, this is quite

expensive as many triangles are considered even if they are far away from the

position.

A better solution would be the precalculation of a kD-tree for the triangles

of the initial mesh during the initialisation. Then, the nearest triangles to

a position can be found efficiently and the closest point can be detected by

calculating the distance to these triangles only.

For the calculation of the position closest to a triangle Eberly (1999) describes

an effective algorithm for a calculation in three-dimensional space.

Finally, the position of the vertices can be moved to the detected position on

the reference mesh (see figure 3.9).

As this step was considered as optional only the naive implementation was

realised in this project to compare the resulting meshes to the results without

back-projection.

3.6. Boundary Handling

The implemented data structure supports meshes with a boundary. In or-

der to handle these boundaries correctly and to preserve the topology of the

mesh adaptations to the basic mesh operations (edge-split, collapse, flip and

tangential relaxation) have to be taken into account.

20

3. Technical Background

Edge-split is performed for one triangle only as no second triangle is available.

Instead of replacing two triangles by four triangles, one triangle is replaced by

two.

Edge-collapse works in the same way for one triangle and the vertices adjacent

to the edge. Some conditions related to boundaries that are necessary for

preserving the topological type were already stated in section 3.5.4.

Edge-flip is not possible to be performed on boundaries as it needs exactly

two triangles to flip an edge.

For tangential relaxation the boundary should not be destroyed. Vertices can

be moved along boundary edges only.

3.7. Target Edge Length

Curvature Calculation

The curvature of the surface is used for calculating a sizing field to determine

edge lengths. Based on this the curvature-adaptive remeshing can be carried

out.

Actually, triangle meshes have no curvature as all faces are flat. It is possible

to think of a mesh as a piecewise linear approximation of an unknown sur-

face. The challenge is to estimate the curvature of this unknown surface. A

survey of curvature calculation techniques can be found in Petitjean (2002).

The current standard is the calculation of a mean curvature H and Gaussian

curvature K; from these curvatures a maximum absolute curvature κ can be

calculated. Such methods are described for instance in Dyn et al. (2001) or

Meyer et al. (2003). The implemented curvature calculation is based on Dyn

et al. (2001).

21

3. Technical Background

Below, formulas are given to calculate a curvature value for a vertex v. n is

the number of vertices in the one-ring neighbourhood of the vertex v; A is

an area attributed to v; αi are the incident triangle angles around v; βi are

the dihedral angles between triangle ti−1 and ti that are incident to the edge

ei = {v,vi} and θi−1 and θi+1 are the two angles opposite to the edge ei in

the triangles incident to this edge. The relationship between these variables

can be seen in figure 3.10.

The curvature of the mesh is calculated for each vertex v in the following

way:

The mean curvature is calculated by:

H =
1

4A

n∑
i=0

||ei|| |βi|

and the Gaussian curvature by:

K =
1

A
· (2π −

n∑
i=0

αi)

The maximum absolute curvature is:

κ =

|H| K ≤ 0,√
|H|2 −K otherwise.

For the surface area the Voronoi area is often used:

A =
1

8

n∑
i=0

(cot θi−1 + cot θi+1||v − vi||2)

A simpler way is to use the barycentric area, the most commonly used area in

literature according to Dyn et al. (2001):

A =
1

3

∑
j∈Ti

|tj |

This is one third of the area of all triangles tj adjacent to v.

22

3. Technical Background

v

vi

titi-1 ei

ni-1

ni
βi

vi-1

vi+1

αi ei+1

θi-1

θi+1

(a)

titi-1

ei

ni-1

ni

βi
r

(b)

Figure 3.10.: Relationship between variables required for curvature calcula-
tion: (a) top view and (b) side view

For the calculation of the curvature in this project a further parameter γ is

added to perform a scaling of the values calculated for κ.

κ̄ = (
κi
κmax

)γ · κmax

Here, the curvature value is scaled to values from 0 to 1 by dividing by the

maximum curvature value κmax of all vertices. Then, the value is raised to

the power of γ. Finally, the value is scaled back to the previous codomain.

If γ is smaller than 0 more vertices have a higher curvature value, i.e. there

will be more small triangles. If γ is larger than 0 there will be more larger

triangles as the curvature value gets smaller.

The curvature values for each vertex can be visualised using a colour value

for the minimum and maximum curvature values; the values in between are

interpolated. Within triangles the colour values are interpolated using the

incident vertices. Figure 3.11 shows the calculated curvature values for an

example mesh: White is used for the minimum curvature and red for maximum

curvature as seen in the corresponding legend.

In Vorsatz et al. (2001) the curvature is smoothed in order to remove noise.

The disadvantage is that smaller features might be missed and a higher com-

putation time is required.

23

3. Technical Background

(a) (b)

max

min

(c)

Figure 3.11.: Curvature calculation for an example mesh: (a) Reference
mesh, (b) mesh colour coded by curvature (high curvature: red;
low curvature: white) and (c) corresponding legend.

Sizing Field

The main difference between the curvature-adaptive approach Dunyach et al.

(2013) and the uniform approach Botsch and Kobbelt (2004) is that the con-

stant target edge length L is replaced by an adaptive sizing field L(v).

This sizing field is related to the curvature of the mesh and an additional

parameter, the approximation tolerance ε. This tolerance is a threshold for

the allowed geometric deviation of the triangle mesh from the underlying

smooth surface.

The sizing value for each vertex can be computed from the curvature value κ̄i

and the approximation tolerance ε:

L(vi) =

√
6ε

κ̄i
− 3ε2

The relationship between this formula for the target edge lengths and the

curvature of the mesh is explained in detail in Dunyach et al. (2013).

The values for the sizing field can be clamped to user defined bounds: [Lmin, Lmax].

The sizing value L(e) for an edge e = {v0,v1} is determined as the minimum of

the sizing values for both endpoints v0 and v1: L(e) = min{L(v0), L(v1)}.

The sizing field for a barycentre of a triangle is calculated as the average of

the sizing field of the triangle vertices.

24

3. Technical Background

3.8. Feature Detection and Preservation

Many surfaces contain sharp corners, edges or material boundaries which

should be preserved when creating a new mesh as they are significant for

the general shape – these elements are generally called features.

An example could be a general cube. If the edges were not handled as features

the general shape would be smoothed and might result in a sphere. With

feature preservation specific edges are changed in a limited way only. Features

have to be defined on the original mesh before remeshing takes place. This

can be done algorithmically or by interactive specification. The approach used

here uses an algorithmic detection and furthermore some rules are added to

the previously described topological and geometrical mesh operations similar

to Vorsatz et al. (2003).

Feature Detection

To detect features for each edge the angle α between incident faces is checked

(see figure 3.12). Usually the dihedral angle β is calculated for this purpose.

β is the angle between the two normal vectors n0 and n1 of the triangles t0

and t1 incident to an edge. The relation between α and β can be seen in

figure 3.12b: β = 180◦ − α. If the dihedral angle β is larger than a specified

threshold angle βt the edge is defined as a feature edge and can be preserved

in the further remeshing process.

The dihedral angle can be calculated by using the normal unit vectors n0 and

n1 of the triangles t0 and t1 adjacent to the edge e1 using the dot product as

follows:

cos(β) = |n0 · n1|

Figure 3.13 shows some results for feature detection using different threshold

angles βt; βt is increased from left to right.

This approach to detect features was used by Dunyach et al. (2013), Fu and

Zhou (2009) and Alliez et al. (2002), just to mention a few. In Lévy et al.

(2002) this method was slightly extended to filter noise. Different and more

complex approaches exist for this task.

25

3. Technical Background

v1

v0

t1t0

e1

n0

n1
β

(a)

t0

t1

n1 n0

β

α
e1

(b)

Figure 3.12.: Calculation of dihedral angle β between triangle t0 and t1. (a)
Top view of the relation between the angle β and the triangles
incident to edge e1 and (b) side view for the relation between
angle α and β.

(a) (b) (c) (d)

Figure 3.13.: Feature extraction with different threshold angles for an ex-
ample mesh: (a) βt = 0, (b) βt = 10, (c) βt = 50 and
(d) βt = 100.

26

3. Technical Background

(a) (b) (c)

Figure 3.14.: Examples for feature edges and vertices (highlighted in blue):
(a) one feature edge, (b) two feature edges (feature line) and
(c) more than two feature edges (corner vertex).

Feature Preservation

Features need special consideration during the used meshing operations in

order to be preserved.

Generally, edge-splits, edge-collapses and edge-flips that would destroy feature

edges are not allowed (Botsch et al. (2010), Vorsatz et al. (2003)); this leads

to:

• Corner vertices are vertices with more than two incident feature edges

or exactly one (figure 3.14a and 3.14c). They can not be moved and

have to be preserved; they are not used for geometric and topological

operations.

• Feature vertices are vertices with two incident feature edges (figure 3.14b).

They move along feature lines only.

Especially for the preservation of features for adaptive remeshing:

• The sizing values for feature vertices are computed in a different way

to avoid high sampling densities near feature edges. The values are

computed as the average of their non-feature neighbours.

• Tangential relaxation is performed along the feature lines only.

In practice, this means the following for the mesh operations:

Edge-split can be performed in the usual way, while it needs to be considered

that the new vertex and the new edges that replace the feature edge are

marked as feature elements.

27

3. Technical Background

For edge-collapse corner vertices can not be moved; the operation is only

allowed for feature edges if both incident vertices are feature vertices but not

corner vertices.

Feature edges can not be flipped as they would be destroyed throughout this

operation.

During tangential relaxation vertices can be moved along boundary edges

only. For the calculation the incident triangles are replaced by the two incident

feature edges, triangle areas by edge lengths and barycentres by midpoints.

3.9. Triangle Calculations

Vector operations are used to modify the mesh. These include common op-

erations such as the calculation of the cross product, scalar product or the

length of a vector. Some operations necessary for the remeshing algorithm

are described below.

Surface Area

For some mesh operation it is required to know the surface area of the trian-

gles. There are multiple ways to calculate the area of triangles. Depending

on the available information it can be calculated using different methods.

The best-known formula is A = 1
2bh with b being the length of a side – usually

known as the base – and h the length of the line perpendicular to the base

from the vertex opposite the base to the base (usually known as the height).

As in our case all positions of the vertices are known the calculation is based

on the calculation of the area of the parallelogram defined by the vectors for

the edges ē0 = v0 − v1 and ē1 = v2 − v1 as visible in figure 3.15.

The area of the parallelogram is calculated using the cross product:

A = |ē0 × ē1|.

28

3. Technical Background

v1 v2

v0

h

e1

e0

Figure 3.15.: Surface area of an arbitrary triangle.

v1 v2

v0

b

Figure 3.16.: Barycentre of an arbitrary triangle.

Hence, the area of the triangle is:

A =
1

2
|ē0 × ē1|

Barycentre

For the calculation of the tangential relaxation (see chapter 3.5.5) the barycen-

tres of triangles are required. In mathematics and physics usually the term

centroid or geometric centre is used.

The barycentre of a triangle is the position of intersection of its medians

(figure 3.16). A median is the line from the midpoint of a line to the opposite

vertex. Each of the medians is divided in the ratio 1:2 by the barycentre. The

coordinate of the barycentre is the mean of the three vertices’ positions:

b =
v0 + v1 + v2

3

29

3. Technical Background

v1

v2

v0
n

(a)

Figure 3.17.: Triangle and its normal; vertices are oriented anticlockwise in
the triangle.

Angle Between Vectors

Especially for feature detection and curvature calculation the angle between

two vectors v1 and v2 has to be calculated. This can be done using the scalar

product:

α = acos(
v0 · v1

|v0||v1|
)

Here the smaller angle between these vectors is determined.

Triangle and Vertex Normals

Normals of triangles and vertices are important for triangle meshes.

For a triangle the vertices v0,v1 and v2 need to be ordered in anticlockwise

direction to obtain the correct result (figure 3.17). Using the cross product

for the edges ē0 = v0 − v1 and ē1 = v2 − v1 the normal can be calculated:

nt = ē0 × ē1

For each vertex the normal is calculated as weighted average of the normals

of the triangles adjacent to it. The weights are proportional to the angles of

the corresponding triangles at the vertex. Finally the normal is normalised.

This is similar as in Surazhsky and Gotsman (2003).

A simpler version would be the calculation by averaging the normals of all

adjacent triangles.

30

4. Implementation

In this chapter the focus is on implementation details concerning the appli-

cation in general, the internal data structure, supported mesh formats and

preprocessing steps for a given input mesh. The general remeshing process

used for the implementation has similar steps as described in the publication

Dunyach et al. (2013) and was outlined in the previous chapter.

4.1. Workflow

The general workflow when using the application as visualised in figure 4.1 is

as follows:

First, a mesh can be loaded. Oriented manifold meshes, optionally with

boundary, of arbitrary genus and with triangles and quadrangles can be im-

ported. The mesh needs to be prepared to be used by the application: It is

processed to consist of triangles only, duplicated vertices are eliminated, trian-

gles containing a vertex more than once or with no surface area are removed.

Then, the mesh is converted to the half-edge data structure. This structure

allows access to neighbouring elements of vertices, edges and triangles in order

to perform local modifications on the mesh. Normals of triangles and faces

are calculated. Settings for the calculation of the sizing field (approximation

tolerance or target edge length) and for feature detection (dihedral angle) can

be adjusted in the user interface.

Next, the curvature of the mesh is calculated to determine the sizing field

and feature edges are extracted. Mesh operations (edge-split, edge-collapse,

edge-flip as well as tangential relaxation and optionally back-projection) are

performed in order to create a better mesh (curvature-adaptive or uniform)

for the surface while preserving features and hence the general shape. These

mesh operations are iterated several times.

31

4. Implementation

Finally, the mesh is visualised. The result can be exported as an image or in

a mesh format. Additionally it is possible to export current settings from the

user interface.

This is the workflow in graphical form:

load file
clean and

prepare data
build data
structure

change
parameters detect features

calculate
curvature

topological
operations

geometrical
operationsdraw resultexport

Figure 4.1.: Workflow of application usage.

The next sections focus on details for the realisation of this process. The

data structure used will be described; supported data formats and the mesh

preparation steps, how the software system is designed and some features of

the user interface follow.

4.2. Mesh Import and Export

Files with mesh information can be imported to visualise and remesh the con-

tained mesh. Results obtained by remeshing can also be saved and imported

in other software packages.

The application is able to handle OFF, OBJ and PLY files for importing and

exporting meshes (only ASCII files are supported). Depending on the file

extension a specific mesh loader or exporter is started. For importing, data

for vertex positions and faces is extracted; for exporting data is written to a

file. The importers use the Boost library (Spirit.Qi) for parsing the files.

Each of the file formats specifies a mesh by vertices and faces using indices to

shared vertices. Both quadrangles and triangles are allowed for faces (quad-

rangles are triangulated for further processing, see section 4.4). Additional

information (as for instance vertex normals) can be present in the files but

the information is not used. The structure of the code is designed to easily

add further parsers and exporters. Next, there will be more detail for the

supported files. Example files for a cube can be found in appendices A-C.

32

4. Implementation

4.2.1. Object File Format

The Object File Format (OFF) is a simple geometry format defining a mesh

by a list of vertices and faces.

This is the structure of a supported OFF file:

OFF

This is a comment

Number of vertices , faces and edges

NV NF NE

Vertices: x, y and z coordinates

x[0] y[0] z[0]

...

x[NV - 1] y[NV - 1] z[NV - 1]

Faces: Number of vertices of face , indices to vertices

Nv[0] v[0,0] v[0,1] · · · v[0, Nv[0] - 1]

...

Nv[NF - 1] v[NF - 1, 0] v[NF - 1, 1] · · · v[NF - 1, Nv[NF - 1] - 1]

Further elements might follow · · ·

The file usually starts with the file signature OFF. However, this is only op-

tional. Next there has to be a line consisting of three integers: the number

of vertices NV , the number of faces NF and the number of edges NE . As the

number of edges usually is not used – this is the case in this implementation,

too – the value may be 0 but has to be available. In the next lines the vertex

coordinates are specified. The number of lines for vertices are specified in the

header. Each line contains information for one vertex. This implementation

uses the first three float values for the x, y and z values. Further values for

normals can be included but are ignored. Finally the faces are defined. The

first value indicates the number of edges of the face – this implementation

supports three and four vertices. Next, indices to the previously defined ver-

tices define the face. Note that the vertices are indexed starting with index

0. All empty lines and additional white space are ignored. All lines starting

with a hash sign (#) or parts of a line after a hash sign are ignored. The hash

sign can thus be used for comments.

Special types of the OFF format exist (COFF, NOFF, · · ·) – this might result

in some files not being parsable. All common OFF files are supported.

33

4. Implementation

4.2.2. PLY Format

The PLY format (Polygon File Format) was initially used for three-dimensional

data from 3D scanners.

The typical structure of a PLY file is: Header → Vertices → Faces (→
Lists of other elements).

The header specifies the format of the file (binary or ASCII) and provides

information about the data listed later. The supported file format is ASCII.

As it is only of interest to extract vertex and face data further specifications

are ignored. The structure of a header looks like this:

ply

format ascii 1.0

comment This is a comment

element vertex NV

property float x

property float y

property float z

element face NF

property list uchar int vertex_indices

end_header

Here, NV and NF specify the number of vertices and faces that follow in the

file, respectively.

The first line has to contain the keyword ply that identifies the file as a PLY

file. The next line specifies whether the file contains ASCII or binary data.

Comments follow the keyword comment at the beginning of a line and are

ignored.

The keyword element is used to specify for vertices, faces and optionally other

elements how they are stored and how many of these elements will be listed.

Specific data for these elements is indicated by the keyword property. For

vertices this includes x, y and z coordinates; additionally normal or colour

information could be added. Vertices and faces have to be the first two element

types. It is possible to add further element types but they are ignored.

The body of the file is simply a list of vertices and faces with references to the

vertices. Vertices are specified by x, y and z coordinates. Indices start at 0.

For each face the number of vertices is specified first followed by indices.

34

4. Implementation

This is the structure of the data containing vertices and faces:

x[0] y[0] z[0]

...

x[NV - 1] y[NV - 1] z[NV - 1]

Nv[0] v[0,0] v[0,1] · · · v[0, Nv[0]- 1]

...

Nv[NF - 1] v[NF - 1, 0] v[NF - 1, 1] · · · v[NF - 1, Nv[NF - 1] - 1]

4.2.3. OBJ Format

OBJ is a common format used for computer animation and in modelling soft-

ware. Only a subset of the data available in an OBJ file is used. The vertex

and face data is important.

Below, there is the layout for supported OBJ files:

This is a comment

Vertices: v followed by x, y and z coordinates

v x[1] y[1] z[1]

v x[2] y[2] z[2]

...

Normals: vn followed by nx , ny and nz

vn nx[1] ny[1] nz[1]

vn nx[2] ny[2] nz[2]

...

Texture coordinates: vt followed by u, v (and w)

vt u[1] v[1] w[1]

vt u[2] v[2] w[2]

...

Faces: f followed by indices to vertices

(and normals and triangles)

f v[1 ,1]/vn[1,1]/vt[1,1] v[1,2]/vn[1,2]/vt[1,2] · · ·
f v[2 ,1]/vn[2,1]/vt[2,1] v[2,2]/vn[2,2]/vt[2,2] · · ·
...

35

4. Implementation

Vertices are given by the letter v followed by their x, y and z coordinates. Op-

tionally, data for normals and texture coordinates can follow. Next, faces are

defined: each face starts with the letter f followed by a list of vertex indices and

optionally by normal and texture coordinate indices (f v1/vn1/vt1 v2/vn2/vt2 . . .);

listing the vertex indices (f v1 v2 · · ·) is enough for this application. Indices

start at 1. Only the vertex index is used by the application. Each vertex and

face is specified on a separate line.

Comments start with a hash sign and blank lines are ignored; lines that can not

be used by the application (e.g. normal data or lines starting with unknown

keywords) are ignored, too.

4.3. Mesh Data Structure

The selection of an appropriate data structure for the representation of the

mesh is crucial for most geometric algorithms. An overview of some of the

most common data structures can be found for example in Botsch et al. (2010)

which helped with the decision for the data structure used in this project.

Both topological and algorithmical demands have to be considered when

choosing a specific data structure. Some structures are suited for 2-manifold

meshes only; others are limited to triangle meshes or have other limitations

or improvements. For algorithmical purposes it is often necessary to have

efficient access to the local neighbourhood of vertices, edges and faces and

to perform modifications to the mesh. Sometimes it is sufficient if the data

structure is efficient for simply rendering the mesh.

36

4. Implementation

A simple structure for meshes is a list of polygonal faces with their three-

dimensional vertex positions. This structure has no information about the

mesh connectivity and vertices are replicated for each face they are a part

of. By using indices to shared vertices (i.e. to a list of vertex positions that

can be referenced by faces with the index in the list) the redundancy can

be avoided. This structure is often used for mesh file formats such as OFF,

PLY or OBJ (see chapter 4.2 for more details about these formats). It is

also efficient for rendering using for example OpenGL Vertex Array Objects.

Nevertheless, the main disadvantage of such a data structure is that access

to the local neighbourhood of elements of the mesh (vertices and triangles) is

expensive as the whole mesh has to be searched – the lookups take a lot of

time. This is not convenient for most geometric algorithms as it is the case

for this project, too.

4.3.1. Desired Properties

The algorithms for the remeshing approach require/are limited to the following

data characteristics and access patterns:

• All faces are triangles

• Traversal over each vertex, edge and triangle

• Access to all vertices of a triangle in anticlockwise direction

• Access to incident triangles of an edge

• Access to both endpoints of an edge

• Access to all neighbouring vertices/triangles/edges of a vertex in (anti)clockwise

order, i.e. all elements in the one-ring neighbourhood of a vertex

In general, it is required to have the possibility to traverse the whole mesh

and to have access to the local neighbourhood of elements in order to perform

mesh modifications.

Local operations based on edges (edge-split, edge-collapse and edge-flip) and

the curvature calculation need a way to get access to the local neighbour-

hood to delete, add or change vertices and, hence, edges and triangles. The

calculation of features needs information of triangles adjacent to edges.

37

4. Implementation

Figure 4.2.: Half-edge data structure: Each edge is replaced by two half-edges
pointing in opposite directions.

For this project the so-called half-edge data structure was chosen as it seems to

be appropriate for such needs. More memory is required but the performance

is better. The data structure is convenient for both traversing the mesh as

well as modifying it.

In the following the description is limited to triangles only as triangle meshes

are used, although the general data structure can be used for other polygons,

too.

4.3.2. Half-Edge Data Structure

The half-edge data structure is a common way of representing meshes when

local modifications are required. The implemented structure is based on the

description in Botsch et al. (2010). The structure is also known as doubly con-

nected edge list. It is available in common mesh libraries such as OpenMesh1

or CGAL2.

This structure is edge-based and allows for each element of the mesh to access

its neighbouring elements. It is suitable for orientable manifold meshes with

boundary. The data structure consists of lists of vertices, triangles and half-

edges. The main characteristic is that each edge is split into two oriented

half-edges pointing in opposite directions as visible in figure 4.2 for a triangle.

Half-edges are oriented in anticlockwise direction in triangles. Boundaries

have no adjacent triangular face.

1www.openmesh.org
2www.cgal.org

38

4. Implementation

The following references have to be stored for each element:

For each vertex (see figure 4.3a):

• Three-dimensional position: p ∈ R3

• Reference to an outgoing half-edge

Only the reference to one half-edge is needed; it does not matter which one.

For each triangle (see figure 4.3b):

• Reference to one of its half-edges (does not matter which one)

For each half-edge (see figure 4.3c):

• The vertex it points to

• Its incident triangle

• The next half-edge of the face in anticlockwise direction

A reference to the previous half-edge in the face could be stored, too. As only

triangles are used storing the previous half-edge directly can be omitted and

it can be accessed by using:

prevHalfEdge = nextHalfEdge(nextHalfEdge(halfEdgeIndex))

Two opposite half-edges are stored in the list subsequently and build pairs for

each edge. The opposite half-edge can be accessed implicitly by:

oppositeHalfEdgeIndex = halfEdgeIndex -

2 * (halfEdgeIndex % 2) + 1

As two half-edges are grouped to pairs access to full edges is possible (e.g. if

all edges shall be traversed instead of all half-edges).

The references are implemented using indices. Instead of indices pointers

could be used. Indices are more flexible though and allow efficient memory

relocation.

39

4. Implementation

outgoingHalfEdge

(a)

adjacentHalfEdge

(b)

incidentTriangle

nextHalfEdge
(oppositeHalfEdge)

toVertex

(prevHalfEdge)

(c)

Figure 4.3.: Referenced data in the half-edge data structure for (a) a vertex,
(b) a triangle and (c) a half-edge.

Boundaries

The basic data structure can handle manifold meshes. With small extensions

it can also handle manifold meshes with a boundary.

Boundary edges have only one incident triangle. This means that one of

the half-edges representing this edge contains information about the existing

triangle; the opposite half-edge has no incident triangle and hence no next

half-edge. The indices to these non-existent elements is set to −1 to detect

the boundary. The opposite vertex can be accessed as usual as half-edges are

grouped and the index of the vertices the half-edges are pointing to have to

be valid, too. This extension has influence especially when elements of the

one-ring-neighbourhood of a vertex are requested.

Indices to next half-edges along a boundary could be stored. Building the

initial mesh would be too expensive though as for each boundary edge the

next half-edge needs to be found to set the reference to the correct next half-

edge.

Mesh Navigation

Below, there will be some examples showing how to access neighbouring ele-

ments for vertices, edges and triangles.

40

4. Implementation

Elements in the one-ring neighbourhood of a vertex

Most important is the access to the one-ring neighbourhood of a vertex: ver-

tices/triangles/outgoing half-edges. Supposed there are no boundaries this

code could be used:

accessNeighbouringElements(int centredVertexIndex):

int halfEdgeIndex = outgoingHalfEdge(centredVertexIndex)

int halfEdgeStop = halfEdgeIndex

do:

for vertices

int vertexIndex = toVertex(halfEdgeIndex)

or for triangles

int triangleIndex = incidentTriangle(halfEdgeIndex)

do something with vertexIndex/triangleIndex/halfEdgeIndex

halfEdgeIndex = nextHalfEdge(oppositeHalfEdge(halfEdgeIndex))

while (halfEdgeIndex != halfEdgeStop)

This function starts with an outgoing half-edge of the vertex. The remain-

ing outgoing half-edges can be accessed in clockwise order by navigating to

the next half-edge of the opposite half-edge. This is repeated until the first

half-edge is reached again. Depending on the required data in the neighbour-

hood of a vertex the lines for vertexIndex and triangleIndex can be removed.

Figure 4.4a shows this procedure for accessing vertices.

For meshes with boundaries this procedure has to be extended. As previously

mentioned half-edges that represent a boundary have index −1 to their re-

spective next half-edge. Instead of traversing this neighbourhood clockwise

until the first half-edge is reached again elements are traversed clockwise until

such an invalid element is reached and afterwards in the other direction to

collect the remaining elements. See figure 4.4b for an illustration. In order to

receive a list of elements in clockwise direction the first elements are appended

while the latter elements are prepended to the list.

41

4. Implementation

(a) (b)

Figure 4.4.: Traversing the one-ring neighbourhood of a vertex to access all
adjacent vertices (a) without boundary and (b) with boundary.

This is the extended version of the code for accessing adjacent vertices:

accessIncidentHalfEdges(int centredVertexIndex):

int halfEdgeIndex = outgoingHalfEdge(centredVertexIndex)

int halfEdgeStop = halfEdgeIndex

traverse clockwise

if (halfEdgeIndex != -1):

do:

for vertices

int vertexIndex = toVertex(halfEdgeIndex)

do something with vertexIndex

halfEdgeIndex = nextHalfEdge(oppositeHalfEdge(halfEdgeIndex))

while (halfEdgeIndex != halfEdgeStop && halfEdgeIndex != -1)

traverse anticlockwise

if (halfEdgeIndex == -1):

int prevHalfEdgeIndex = prevHalfEdge(

outgoingHalfEdge(centredVertexIndex))

while (prevHalfEdgeIndex != -1):

halfEdgeIndex = oppositeHalfEdge(prevHalfEdgeIndex)

for vertices

int vertexIndex = toVertex(halfEdgeIndex)

do something with vertexIndex

prevHalfEdgeIndex = prevHalfEdge(halfEdgeIndex);

Vertices of an edge

Incident vertices of an edge can be accessed as shown in figure 4.5a:

42

4. Implementation

(a)

(b)

Figure 4.5.: Access to neighbouring elements of a half-edge: (a) incident ver-
tices and (b) incident triangles.

accessVertices(int halfEdgeIndex):

v_1 = toVertex(halfEdgeIndex)

v_2 = toVertex(oppositeHalfEdge(halfEdgeIndex))

Triangles incident to an edge

Incident triangles can be accessed in a similar way as for vertices; visible in

figure 4.5b:

accessIncidentTriangles(int halfEdgeIndex):

t_1 = adjacentTriangle(halfEdgeIndex)

t_2 = adjacentTriangle(oppositeHalfEdge(halfEdgeIndex))

Vertices of a triangle

In order to have access to all vertices of a triangle in anticlockwise direction

each half-edge uses the reference to the next half-edge and then the reference

pointing to the vertex (visible in figure 4.6):

accessVerticesOfTriangle(int triangleIndex):

int halfEdgeIndex = outgoingHalfEdge(triangleIndex)

for (int i = 0; i < 3; ++i): # a triangle has three half -edges

int vertexIndex = toVertex(halfEdgeIndex)

do something with vertexIndex

halfEdgeIndex = nextHalfEdge(halfEdgeIndex)

43

4. Implementation

(a)

Figure 4.6.: Access to vertices of a triangle in anticlockwise direction.

Local Mesh Modification

Next, there will be a rough outline of the modifications that need to be per-

formed on the half-edge data structure when using topological operations.

Edge-split: This operation adds elements (one vertex, six half-edges and two

triangles), nothing is removed and references are changed.

• Create new vertex at the midpoint of the edge

• Change the connectivity from the half-edges of the edge to connect the

left and new vertex

• Create two half-edges between the new vertex and the right vertex

• Create four half-edges pointing to/from the vertex on top and bottom

(two if it is a boundary edge)

• Create two new triangles (one if it is a boundary edge)

• Update references of the new half-edges to the correct triangles and vice

versa

• Possibly update references of old triangles to correct half-edges

• Update references to the next half-edges for most of the half-edges

Edge collapse: This operation removes elements (one vertex, six half-edges

and two triangles), nothing is added and references and one vertex position

are changed.

• Set the position of the left vertex to the position of the new vertex

(midpoint of the edge)

44

4. Implementation

• Change the vertex of the half-edges referencing the right vertex to the

new vertex

• Update half-edges connected from the top/bottom vertex to the left/right

vertex

• Delete unnecessary elements: vertex, two triangles and six half-edges

Edge-flip: This operation does not remove or add elements; only references

are changed.

The following elements have to be updated:

• For (right and left) vertices possibly outgoing half-edges

• For half-edges of the edge the vertex it points to and the reference to

the next half-edge

• For triangles possibly the incident half-edge

• For outer adjacent half-edges the half-edge they point to and the ref-

erence to the incident triangle (just for top right and bottom left half-

edges)

Move Vertex: For vertices a new position is assigned.

4.4. Data Preparation

The following preparation steps have to be used in order to create a valid tri-

angle mesh and represent it in a way that it can be used by the application.

Triangulation

A common way to represent surfaces are triangle meshes. The meshes available

to be imported into this application are not always triangulated as the sup-

ported file formats allow arbitrary polygons. Quite often quads are contained

in meshes, too. To allow other polygons than just triangles in imported files,

quadrangles are triangulated first. To keep this step simple files with other

faces than triangles and quadrangles (i.e. polygons with more than 4 vertices)

can not be processed.

45

4. Implementation

v0

v1

v2

v3

(a)

v1

v3

v2

v0

(b)

Figure 4.7.: Triangulation of a quadrangle with n = 4 vertices. (a) Before
triangulation and (b) after triangulation.

The triangulation process can be seen in figure 4.7 for a quadrangle with n = 4

vertices. This quadrangle is divided into 2 triangles: t(v0,vi,vi+1), i = 1, 2.

Clean Data

The mesh data has to be cleaned in order to prevent unexpected behaviour

by the application.

A first step is to delete duplicated vertices as otherwise some connectivity

would not be recognisable. All vertices with the same position should exist

only once and all faces referencing such a position reference the same vertex.

Next, triangles that have no surface area have to be removed from the mesh.

Such triangles have for example the same vertex positions at least twice or all

vertex position lie on the same line. Such faces have no specific direction in

order to calculate the normals and no influence on the surface as their area is

zero.

And finally, unused vertices – vertices that are never referenced – can be

deleted. This is not necessary as they would be ignored for mesh operations

as they have no neighbouring elements. In order to save memory and omit

iterations over irrelevant elements they are removed.

46

4. Implementation

Scaling and Shifting

Most meshes have different dimensions and their centre might be at different

positions in the coordinate system. For visualisation and calculations the ver-

tices of the meshes are moved to be centred around the origin of the coordinate

system (0, 0) and the mesh is scaled to fit into a cube around the origin with

side lengths of two: x, y, z ∈ [−1, 1].

These coordinate changes to the vertices ensure that each mesh is visible in

the viewing area of the application. Additionally, the usage of the target

edge lengths and approximation tolerance can be in relation to the cube with

x, y, z ∈ [−1, 1] and hence create similar results for meshes even if the scaling

is different.

Create Data Structure

The half-edge data structure is created from a list of vertex positions and a

list of triangles with indices to vertices. These lists are already prepared and

valid for further processing.

First a list of Vertex elements is created containing the position but no half-

edge reference.

Then, for each triangle the following steps are performed: For each edge of

the triangle two HalfEdge elements are created for the list of half-edges if they

do not exist yet. For each edge an entry in a map with vertex positions of

the edge and the index is stored for testing whether a specific edge already

exists and for accessing it. Depending on whether the half-edges for an edge

already exist references for the half-edges to the incident vertices have to be

set and also references to the half-edges for the vertices. Next, a Triangle

with reference to one of these three half-edges is created. For all half-edges of

the triangle the reference to the next half-edge has to be set in anticlockwise

direction in the triangle as well as a reference to the newly-created triangle.

Calculate Normals

Each triangle and vertex of the mesh needs a normal vector. The calculation

is performed according to chapter 3.9 for each triangle and vertex.

47

4. Implementation

Create The Reference Mesh

Additionally, a reference mesh of the input mesh has to be stored. This

structure is used later for back-projection of new vertex positions onto the

original mesh. Simple lists of vertex positions and vertex indices for triangles

are used.

4.5. Implementation Details

The tool is implemented in C++ using OpenGL and the NGL library for the

visualisation of the surface mesh, Qt for the user interface and Boost Spirit.Qi

for parsing. Doxygen is used for documentation.

The next section contains details about the implementation including classes

used, their responsibilities and a class diagram.

Design of the Application

The structure of the implementation can be divided into several parts: One

part is responsible for the visualisation, another for importing and exporting

data, the next one for the user interface and the most important one for the

representation of the mesh and remeshing.

The struct Settings contains all settings for the remeshing and the visualisa-

tion that can be defined in the user interface. MainWindow is responsible

for the management of the application. The remeshing process is triggered

here. It manages the communication between the user interface and other

classes. In UserInterface the user interface with dock widgets and a menu

for the application is being created and values are initialised from the struct

Settings.

48

4. Implementation

GLWidget is responsible for all functionalities concerning the visualisation.

MeshVisualization creates and handles the vertex array objects for the mesh.

It takes the mesh to traverse all its triangles and feature edges. Different

layers are drawn for the final visualisation: the triangles are drawn both filled

and with lines; feature edges are drawn separately. An offset is used for lines

and triangles to improve their visibility when they have the same coordi-

nates. Colour for curvature is defined for vertices rather than triangles and

interpolated within the triangle areas. CoordinateAxes is used to show basic

coordinate axes for orientation.

The class Mesh contains lists of vertices, half-edges and triangles; each of

these elements contain indices of the other elements according to the half-

edge data structure as described in section 4.3. These elements are of type

Vertex, HalfEdge and TriangleFace. Additionally, functions are provided for

accessing these elements and other elements in their neighbourhood in the

mesh in order to modify them.

Remesher handles the complete remeshing process from curvature calcula-

tion over feature detection to modifying the mesh. Local mesh operations

are performed using the functions available in the classes MeshOperations

and TangentialRelaxation which are responsible for the operations edge-split,

edge-collapse and edge-flip as well as the tangential relaxation. The back-

projection onto the surface is performed using the class BackProjection. The

classes CurvatureCalculator and FeatureCalculator calculate the curvature

and detect feature edges for the mesh respectively; this information is used

for remeshing.

The name space HelperFunctions contains additional functions for vector cal-

culation (calculate surface area, angle, barycentre or normalised normal for a

triangle) used by the classes dealing with the meshes.

The classes JSONImporter and JSONExporter are responsible for importing

and exporting settings that can be defined in the user interface of the applica-

tion. It includes the specification of a file path in order to automatically load

a mesh when reading such a settings file.

PNGExporter handles exporting of the image of the mesh visible in the viewing

area as PNG file.

49

4. Implementation

Mesh importer classes (OFFImporter, OBJImporter and PLYImporter) are

responsible for loading a mesh from a file using the boost Spirit.Qi library for

parsing. It is verified that the available data is valid for a mesh and faces are

processed in order to obtain a triangle mesh without duplicated or irrelevant

data. As these classes have the same purpose they inherit from the abstract

class MeshImporter. This class provides general functionality to prepare the

data from the files and transforms vertex and face data to a triangle mesh

represented by the half-edge data structure.

The exporter classes (OFFExporter, OBJExporter and PLYExporter) export

the (remeshed) mesh to a file by traversing all vertices and triangles in the

data structure of the mesh. These classes inherit from MeshExporter.

In figure 4.8 a simplified class diagram of the implemented application is

shown to see the basic structure. It contains the previously described classes

and their connections.

50

4
.
Im

p
lem

en
tation

Mesh

Vertex

MainWindow

TriangleFace

HalfEdge

GLWidget

m_mesh

1

m_glWidget

1

UserInterface

JSONExporter JSONImporter

PNGExporter

CoordinateAxes

m_coordinateAxes 1

m_ui

1

m_window

1

OFFExporter OFFImporter

PLYExporter PLYImporter

OBJExporter OBJImporter

MeshVisualizationRemesher

MeshOperations

FeatureCalculator

CurvatureCalculator

m_meshVisualization 1

m_mesh

1m_vertices

*

m_halfEdges
*

m_triangles

*

m_mesh

1

MeshImporterMeshExporter

BackProjection

TangentialRelaxation

m_mesh

1

m_mesh

1

Figure 4.8.: Class diagram for the remeshing application.

51

4. Implementation

4.6. User Interface

The user interface for the implemented application showing an example mesh

can be seen in figure 4.9.

Interaction Techniques

In the application a manifold mesh with boundary can be loaded and remeshed.

In addition, it is possible to specify values for the remeshing process. The

remeshing type can be selected: uniform or curvature-adaptive. According to

the chosen method a target edge length or an approximation tolerance can be

set as well as the number of iterations, the minimum angle for feature detec-

tion, a gamma value for curvature calculation and others. The reference mesh

can be reloaded to restart the remeshing process with different values.

Furthermore, it is possible to navigate in the viewing area by zooming, panning

and rotating. Elements as contours can be hidden and colours for different

areas/elements can be changed and curvature and feature edges can be visu-

alised. In the viewing area the current number of vertices, edges and triangles

is displayed.

Export and Import

Supported file formats for importing and exporting are OFF, PLY and OBJ

(details about these formats in section 4.2). The application also provides the

possibility to export the currently visible scene as a PNG image with metadata

containing the current settings. JSON import and export is available for all

settings in the user interface to restore a previous session. An example of such

a file can be seen in appendix D.

52

4
.
Im

p
lem

en
tation

Figure 4.9.: User interface with a processed example mesh.

53

5. Remeshing Results

This chapter presents results obtained with the remeshing application for some

simple geometry and a selection of common models used in computer graph-

ics.

All images presented below were created with the application developed in

this project. For the meshes images are presented of the original (triangu-

lated) models, some remeshed versions of the models with different settings

and visualisations created using values from feature detection and curvature

approximation.

Usually fewer than five iterations for remeshing were used. Quite often, af-

ter one or two iterations a satisfactory result was achieved. Usually, back-

projection was not used as the results for the models used in this project were

satisfactory. However, using back-projection as a final step after many itera-

tions might create a better result for some meshes as all vertices are moved

back onto the original surface. Otherwise, smoothing created by the relax-

ation step might then not affect the general shape of the mesh that much

anymore. Curvature is calculated only once before remeshing; curvature val-

ues for new created vertices are interpolated from their neighbouring vertices.

Feature detection is not used except when mentioned. Sometimes it is dif-

ficult to choose appropriate values for parameters of adaptive remeshing to

achieve an expected result. The quality of the created meshes depend on these

settings.

The time required for the creation of the final meshes varies as the size of

the original meshes is quite different. Small meshes (the meshes in the first

section) need several milliseconds for their creation while larger meshes (for

instance the Stanford Dragon) require several seconds. The number of ele-

ments (vertices, edges and triangles) can be seen for meshes in the available

images.

54

5. Remeshing Results

(a) (b)

(c)

Figure 5.1.: Sphere: (a) Original mesh, (b) and (c) uniform remeshing with
different target edge lengths (0.2 and 0.1).

Simple Geometry

This section presents some results for simple geometry to understand the

behaviour of the process and to show results that can be expected.

Uniform Remeshing

As a sphere has no difference in curvature it is appropriate to perform uni-

form remeshing. Additionally, a sphere has neither features nor boundaries.

Figure 5.1 shows a simple sphere before and after uniform remeshing for dif-

ferent target edge lengths. The result of remeshing is that the shape and size

of the triangles are more regular. The valences of vertices are more regular

(especially for the vertices a the very top and bottom of the original mesh).

55

5. Remeshing Results

Feature Preservation

A cube is an appropriate example to show feature detection and preservation.

In figure 5.2 a cube is visible and detected feature lines are visualised in blue.

Uniform remeshing with different target edge lengths is performed on this

cube. The features are not destroyed and the general shape of the cube is

preserved.

Adaptive Remeshing

For curvature-adaptive remeshing the curvature of meshes is to be estimated

for the final edge lengths. Below, examples for a stretched sphere (figure 5.3)

and a torus (figure 5.4) show results for both uniform and adaptive remeshing.

Low curvature is visualised white, high curvature red. It is visible that red

areas have a higher vertex sampling than brighter areas when using adaptive

remeshing.

Boundary Handling

Boundaries can be handled in two different ways: the general shape can be

preserved or tangential relaxation can lead to a smooth mesh. Figure 5.5

shows a sphere with a hole. Different images show that boundaries can be

detected as features and that boundaries have no valid curvature (visualised

in turquoise instead of red). When performing resmeshing the boundary can

be preserved as visible in figure 5.5d or tangential relaxation can be used as

for figure 5.5e.

Stanford Bunny

The Stanford Bunny is a model often used in computer graphics. Figure 5.6a

shows the original mesh used for remeshing. It consists of 34835 vertices,

104499 edges and 69666 triangles. The remaining images in figure 5.6 show

the bunny with curvature calculation and uniform or adaptive remeshing.

56

5. Remeshing Results

(a) (b)

(c) (d)

(e)

Figure 5.2.: Cube: (a) Original mesh, (b) with feature detection, (c) - (e)
uniform remeshing with different target edge lengths (0.2, 0.5
and 1.0).

57

5. Remeshing Results

(a) (b)

(c) (d)

(e) (f)

Figure 5.3.: Stretched sphere: (a) Original mesh, (b) with curvature calcula-
tion, (c) and (d) uniform remeshing with target edge lengths
0.2 and 0.1, (e) and (f) curvature-adaptive remeshing with
ε = 0.002, γ = 2 and ε = 0.002, γ = 1.

58

5. Remeshing Results

(a) (b)

(c) (d)

(e)

Figure 5.4.: Torus: (a) Original mesh, (b) with curvature detection, (c) after
uniform remeshing with target edge length 0.1, (d) and (e) after
adaptive remeshing with ε = 0.008, γ = 3 and ε = 0.002, γ = 3.

59

5. Remeshing Results

(a) (b)

(c) (d)

(e)

Figure 5.5.: Sphere with hole: (a) Original mesh, (b) with feature detection,
(c) with curvature calculation, (d) uniform remeshing with fea-
ture/boundary preservation and (e) with smoothing.

60

5. Remeshing Results

All remeshing results offer a quite good approximation of the surface while

using fewer elements than the original mesh has. Results for uniform and

adaptive remeshing with similar amount of elements differ as more elements

are used in areas of high curvature and fewer in areas of low curvature for

adaptive remeshing. Thus, with adaptive remeshing a better approximation

for a surface is created.

Stanford Dragon

The original mesh used for the Stanford Dragon consists of 50000 vertices,

150000 edges and 100000 triangles. Figure 5.7 shows remeshing results for

uniform and adaptive remeshing.

For this model it was noticed that areas with very small elements exist. These

need many iterations to be removed from the mesh. In figure 5.7e the result

for uniform remeshing with 100 iterations is visible. Even here, there are areas

on the mesh with small triangles. Another observation was that the adaptive

remeshing was quite sensitive to noise. Especially figure 5.7g shows accu-

mulation of triangles in an area where a high curvature value was detected.

Smoothing of curvature values of vertices with considering their neighbour-

hood might avoid such effects.

Fandisk Model

The fandisk model is a good model to demonstrate feature detection and

preservation as sharp edges are present. Figure 5.8 shows the results obtained

for this model. The original model has 6475 vertices, 19419 edges and 12946

triangles. For curvature calculation two different results are visible using

different parameter values. The results obtained by uniform remeshing is

a mesh with a strongly decimated number of elements; it is visible that it is

important to consider the features as otherwise sharp edges and corners would

be destroyed. The result for adaptive remeshing shows that more triangles

are used in areas of higher curvature. Remeshing for this model took less than

one second on a several-year-old consumer-grade laptop.

61

5. Remeshing Results

(a) (b)

(c) (d)

(e) (f)

Figure 5.6.: Stanford Bunny: (a) Original mesh, (b) with curvature calcula-
tion, (c) uniform remeshing with target edge length 0.04 and (d)
- (f) adaptive remeshing for different parameters: (d) ε = 0.01,
γ = 1; (e) ε = 0.002, γ = 1; (f) ε = 0.0005, γ = 1.

62

5. Remeshing Results

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7.: Stanford Dragon: (a) Original mesh, (b) with curvature calcu-
lation, (c) and (d) uniform remeshing with target edge length
0.03 and 0.05, (e) uniform remeshing for 100 iterations and (f)
- (h) adaptive remeshing for different parameters: (f) ε = 0.002,
γ = 1; (g) ε = 0.01, γ = 1; (h) ε = 0.008, γ = 1 and minimum
edge length 0.02.

63

5. Remeshing Results

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.8.: Fandisk Model: (a) Original mesh, (b) feature extraction,
(c) and (d) with curvature calculation (ε = 0.002, γ = 1 and
ε = 0.01, γ = 0.2), (e) and (f) uniform remeshing with target
edge length 0.1 with and without feature preservation and (g)
adaptive remeshing with ε = 0.01, γ = 0.2.

64

5. Remeshing Results

(a) (b)

(c) (d)

Figure 5.9.: Horse: (a) Original mesh, (b) with curvature calculation,
(c) uniform remeshing with target edge length 0.02, (d) adaptive
remeshing with ε = 0.002, γ = 1.

Horse

The horse model is oversampled and consists of 48485 vertices, 145449 edges

and 96966 triangles. Figure 5.9 shows the results for this mesh using about

a fifth of the elements for the resulting meshes. For uniform and adaptive

remeshing about the same number of elements is used. Especially small details

(ears and legs) have a finer approximation with adaptive remeshing.

Hammerhead

The original model for the hammerhead contained 2560 vertices, 7674 edges

and 5116 triangles. For this model feature preservation helped to retain the

general shape. An improvement is achieved by the tangential relaxation equal-

ising the vertex distribution and creating more equal triangle shapes. As visi-

ble in figure 5.10 uniform remeshing is not able to preserve small details. The

result obtained by adaptive remeshing, especially when more elements are used

as for the original mesh, creates an additional smoothing of the surface.

65

5. Remeshing Results

(a) (b)

(c) (d)

(e)

Figure 5.10.: Hammerhead: (a) Original mesh, (b) with feature detection
and curvature calculation, (c) uniform remeshing with target
edge length 0.05, (d) and (e) adaptive remeshing with ε = 0.01,
γ = 1 and ε = 0.002, γ = 1.

66

6. Conclusion

6.1. Summary

The goal of this project was the creation of an interactive application for

curvature-adaptive isotropic remeshing of given (triangulated) surface meshes.

This report provided an overview of some research in the area of remeshing.

Based on the approach described in Dunyach et al. (2013) important back-

ground information was provided that is relevant for the general remeshing

process and the implementation. The application was presented and details

about the data structure used and important preprocessing steps were given.

Finally, results obtained with the application were presented and analysed for

both curvature-adaptive and uniform remeshing.

The implemented approach is based on local mesh modifications (edge-split,

edge-collapse, edge-flip and vertex move) to generate a better mesh for a given

input mesh. Both feature preservation and an approximated curvature for

the underlying surface are considered for the final output. Meshes that can be

handled by the application are not limited to closed 2-manifold triangle meshes

that have genus zero; meshes of arbitrary genus with boundary containing

triangles and quads can be imported. Different file formats (OFF, PLY and

OBJ) can be used for import and export. Internally, meshes are represented

by the half-edge data structure. The results that can be generated by this

approach are of good quality, regular and curvature-adaptive.

67

6. Conclusion

6.2. Future Work

While the implemented remeshing application offers good results for remeshing

of irregular meshes further improvements for both the remeshing process and

the application are still possible. The main interests for improvements of the

application would be related to the speed of the remeshing process and the

interaction possibilities for users. There is also still potential to enhance the

quality of the remeshing result.

The results obtained during this project can not be achieved in the same time

as mentioned in the approach described in Dunyach et al. (2013).

To improve the speed of the algorithm it would be advisable to use an external

library (such as OpenMesh or CGAL) for the half-edge data structure and

the local mesh operations. The application would be computationally more

effective and the memory consumption better as these libraries are specialised

to these operations and use special techniques like generative programming

concepts (Botsch et al. 2002).

The back-projection of vertices onto the original mesh is quite expensive in

this implementation. In Botsch et al. (2010) it is stated that techniques using

parameterisation, especially global parameterisation, compared to naive direct

projection are expensive. However, in Surazhsky and Gotsman (2003) it is

mentioned that the projection of vertices onto the original surface is quite

expensive. This can be seen in the results for the implementation of this

project. A faster method should be chosen.

Moreover, parallelisation could be used as it is done in the approach by

Fuhrmann et al. (2010). With multi threading the performance could be

increased.

Considering interaction possibilities the application is quite limited. A great

enhancement would be if the application would allow interactive modification

(deformation, modelling, sculpting) of the mesh and immediate remeshing.

Right now the whole mesh is getting remeshed. If selected regions only were

able to be remeshed it would be possible to handle larger meshes, e.g. for

deformation of the mesh in a specific part only local remeshing would be

sufficient.

68

6. Conclusion

Features are extracted algorithmically; by user selection of edges and vertices

specific areas could be preserved and prevent a destruction of features not

recognised.

While the target edge length/approximation tolerance can be specified it

might be more user friendly to specify the number of elements for the final

mesh as in Fuhrmann et al. (2010) to receive a mesh with a specific resolution.

As edge lengths and the approximation tolerance are relative to the mesh size

it is difficult to choose an appropriate value. In the implementation this was

handled by scaling all models to fit into a box of the same size.

According to Dunyach et al. (2013) the approximation tolerance is not satisfied

exactly due to the sizing field calculation. A higher quality mesh could be

achieved with a more advanced vertex shift.

For both curvature calculation and feature detection quite simple methods

were chosen. Using a more complex curvature approximation with smoothing

and a different feature extraction approach which are both less sensitive to

noise a better adaptive sampling might be created as well as a better shape

preservation. This would have influence on the performance, though.

Many available meshes are supported by the application. An extension would

be the support for import of meshes with arbitrary faces (as arbitrary poly-

gons can be defined in the input files) and support for non-manifold meshes.

Arbitrary faces could be handled simply by using an extended triangulation

approach; the support for non-manifold meshes would require a different data

structure. This however, might have an influence on the performance of the

algorithms.

At the moment vertex and face normals are calculated by the application.

A better way to deal with these normals would be if they were taken from

the input file and interpolated while modifying the mesh. Especially corner

normals would be handled in a better way.

69

Bibliography

Alliez P., de Verdire E., Devillers O. and Isenburg M., May 2003. Isotropic

Surface Remeshing. In Shape Modeling International, 2003, 49–58.

Alliez P., Meyer M. and Desbrun M., 2002. Interactive Geometry Remeshing.

In Proceedings of the 29th Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’02, New York, NY, USA. ACM, 347–

354.

Alliez P., Ucelli G., Gotsman C. and Attene M. 2008. 53–82. Recent Advances

in Remeshing of Surfaces. In Shape analysis and structuring, Springer.

Attene M., Falcidieno B., Rossignac J. R. and Spagnuolo M., 2003. Edge-

Sharpener: Recovering Sharp Features in Triangulations of Non-Adaptively

Re-Meshed Surfaces.

Bommes D., Bruno L. and others , 2012. State of the Art in Quad Meshing.

Botsch M. and Kobbelt L., 2004. A Remeshing Approach to Multiresolu-

tion Modeling. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH

Symposium on Geometry Processing, SGP ’04, New York, NY, USA. ACM,

185–192.

Botsch M., Kobbelt L., Pauly M., Alliez P. and Lévy B., 2010. Polygon Mesh

Processing. CRC press.

Botsch M., Steinberg S., Bischoff S. and Kobbelt L., 2002. Openmesh - a

Generic and Efficient Polygon Mesh Data Structure.

Chen L. and Holst M., 2011. Efficient Mesh Optimization Schemes Based on

Optimal Delaunay Triangulations. Computer Methods in Applied Mechanics

and Engineering, 200(9), 967–984.

70

Bibliography

Dey T. K., Edelsbrunner H., Guha S. and Nekhayev D. V., 1999. Topology

Preserving Edge Contraction. Publ. Inst. Math.(Beograd)(NS), 66(80),

23–45.

Dunyach M., Vanderhaeghe D., Barthe L. and Botsch M., 2013. Adaptive

Remeshing for Real-Time Mesh Deformation. Eurographics Short Papers,

29–32.

Dyn N., Hormann K., Kim S.-J. and Levin D. 2001. Optimizing 3D Triangula-

tions Using Discrete Curvature Analysis, 135–146. Mathematical Methods

for Curves and Surfaces. Vanderbilt University.

Eberly D., 1999. Distance Between Point and Triangle in 3D.

http://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf.

Frey P. J., 2000. About Surface Remeshing.

Fu Y. and Zhou B., August 2009. Direct Sampling on Surfaces for High

Quality Remeshing. Comput. Aided Geom. Des., 26(6), 711–723.

Fuhrmann S., Ackermann J., Kalbe T. and Goesele M., 2010. Direct Resam-

pling for Isotropic Surface Remeshing. In VMV. Citeseer, 9–16.

Hoppe H., DeRose T., Duchamp T., McDonald J. and Stuetzle W., 1993. Mesh

Optimization. In Proceedings of the 20th annual conference on Computer

graphics and interactive techniques. ACM, 19–26.

Kobbelt L. and Botsch M., 2003. Feature Sensitive Mesh Processing. In

Proceedings of the 19th Spring Conference on Computer Graphics, SCCG

’03, New York, NY, USA. ACM, 17–22.

Kobbelt L. P., Bareuther T. and Seidel H.-P., 2000. Multiresolution Shape

Deformations for Meshes with Dynamic Vertex Connectivity. In Computer

Graphics Forum, volume 19. Wiley Online Library, 249–260.

Lévy B., Petitjean S., Ray N. and Maillot J., 2002. Least Squares Conformal

Maps for Automatic Texture Atlas Generation. In ACM Transactions on

Graphics (TOG), volume 21. ACM, 362–371.

Meyer M., Desbrun M., Schröder P. and Barr A. H. 2003. 35–57. Discrete

Differential-Geometry Operators for Triangulated 2-Manifolds. In Visual-

ization and mathematics III, Springer.

71

Bibliography

Petitjean S., 2002. A Survey of Methods for Recovering Quadrics in Triangle

Meshes. ACM Computing Surveys (CSUR), 34(2), 211–262.

Surazhsky V., Alliez P. and Gotsman C., 2003. Isotropic Remeshing of Sur-

faces: a Local Parameterization Approach.

Surazhsky V. and Gotsman C., 2003. Explicit Surface Remeshing. In Proceed-

ings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry

Processing, SGP ’03, Aire-la-Ville, Switzerland, Switzerland. Eurographics

Association, 20–30.

Turk G., 1992. Re-Tiling Polygonal Surfaces. ACM SIGGRAPH Computer

Graphics, 26(2), 55–64.

Vivodtzev F., Bonneau G.-P. and Le Texier P., 2005. Topology-Preserving

Simplification of 2D Nonmanifold Meshes with Embedded Structures. The

Visual Computer, 21(8-10), 679–688.

Vorsatz J., Rössl C. and Seidel H.-P., 2003. Dynamic Remeshing and Appli-

cations. In Proceedings of the Eighth ACM Symposium on Solid Modeling

and Applications, SM ’03, New York, NY, USA. ACM, 167–175.

Vorsatz J., Rössl C., Kobbelt L. P. and Seidel H.-P., 2001. Feature Sensi-

tive Remeshing. In Computer Graphics Forum, volume 20. Wiley Online

Library, 393–401.

Zilske M., Lamecker H. and Zachow S., 2007. Adaptive Remeshing of Non-

Manifold Surfaces. Konrad-Zuse-Zentrum für Informationstechnik.

72

A. OFF Example File

OFF

This is a triangulated cube with vertex and face data

number of vertices , faces and edges

(value for edges is not used)

8 12 0

vertices

0.0 1.0 0.0

0.0 0.0 0.0

1.0 0.0 0.0

1.0 1.0 0.0

0.0 1.0 1.0

0.0 0.0 1.0

1.0 0.0 1.0

1.0 1.0 1.0

faces

3 0 3 2

3 0 2 1

3 4 5 6

3 4 6 7

3 0 1 5

3 0 5 4

3 7 6 2

3 7 2 3

3 0 4 7

3 0 7 3

3 5 1 2

3 5 2 6

73

B. PLY Example File

ply

format ascii 1.0

comment This is a triangulated cube with vertex and face data

element vertex 8

property float x

property float y

property float z

element face 12

property list uchar int vertex_index

end_header

0.0 1.0 0.0

0.0 0.0 0.0

1.0 0.0 0.0

1.0 1.0 0.0

0.0 1.0 1.0

0.0 0.0 1.0

1.0 0.0 1.0

1.0 1.0 1.0

3 0 3 2

3 0 2 1

3 4 5 6

3 4 6 7

3 0 1 5

3 0 5 4

3 7 6 2

3 7 2 3

3 0 4 7

3 0 7 3

3 5 1 2

3 5 2 6

74

C. OBJ Example File

This is a triangulated cube with vertex and face data

vertices

v 0.0 1.0 0.0

v 0.0 0.0 0.0

v 1.0 0.0 0.0

v 1.0 1.0 0.0

v 0.0 1.0 1.0

v 0.0 0.0 1.0

v 1.0 0.0 1.0

v 1.0 1.0 1.0

faces

f 1 4 3

f 1 3 2

f 5 6 7

f 5 7 8

f 1 2 6

f 1 6 5

f 8 7 3

f 8 3 4

f 1 5 8

f 1 8 4

f 6 2 3

f 6 3 7

75

D. JSON File with Example Settings

{

"Approximation Tolerance ": 0.0020000000949949026 ,

"Back Projection ": false ,

"Background Color": [

1,

1,

1,

1

],

"Boundaries as Features ": true ,

"Curvature Color": [

1,

0,

0,

1

],

"Draw Filled Triangles ": true ,

"Draw Triangle Contours ": true ,

"Feature Angle": 50,

"Feature Color": [

0,

0,

1,

1

],

"Gamma": 1,

"Intermediate Meshes ": true ,

"Loaded File": "bunny.obj",

"Max Length ": 1,

"Min Length ": 0.0099999997764825821 ,

"Normal Length ": 0.05000000074505806 ,

"Number of Iterations ": 1,

"Random Order": false ,

76

D. JSON File with Example Settings

"Recalculate Curvature ": false ,

"Show CoordinateAxes ": false ,

"Show Curvature ": false ,

"Show Features ": true ,

"Show Reference Mesh": false ,

"Show Remeshed Mesh": true ,

"Show Triangle Normals ": false ,

"Show Vertex Normals ": false ,

"Surface Back Color": [

1,

0.80000001192092896 ,

0.5,

1

],

"Surface Front Color": [

1,

1,

1,

1

],

"Tang. Relax. for Boundaries ": false ,

"Tang. Relax. for Features ": false ,

"Target Edge Length ": 0.10000000149011612 ,

"Triangle Contour Color ": [

0.60000002384185791 ,

0.60000002384185791 ,

0.60000002384185791 ,

1

],

"Triangle Normal Color": [

0,

0.80000001192092896 ,

0.80000001192092896 ,

1

],

"Use Adaptive Remeshing ": true ,

"Use Matte Shading ": true ,

"Vertex Normal Color ": [

0.80000001192092896 ,

0,

0.80000001192092896 ,

1

]

}

77

	Abstract
	Contents
	Introduction
	Motivation
	Objectives
	Structure

	Related Work
	Technical Background
	Mesh
	Remeshing
	Mesh Properties
	General Remeshing Process
	Local Mesh Operations
	Edge-Split
	Edge-Collapse
	Edge-Flip
	Conditions
	Tangential Relaxation
	Projection to Surface

	Boundary Handling
	Target Edge Length
	Feature Detection and Preservation
	Triangle Calculations

	Implementation
	Workflow
	Mesh Import and Export
	Object File Format
	PLY Format
	OBJ Format

	Mesh Data Structure
	Desired Properties
	Half-Edge Data Structure

	Data Preparation
	Implementation Details
	User Interface

	Remeshing Results
	Conclusion
	Summary
	Future Work

	References
	OFF Example File
	PLY Example File
	OBJ Example File
	JSON File with Example Settings

