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Abstract

Every day, we interact with deformable objects such as cloth, hair, paper, and
more. Within computer graphics these deformable bodies need to be simu-
lated, whether it is skin for a medical simulation, an application to test stress
levels on a bridge for an engineer, or just simply to look believable within a
virtual landscape. Methods such as the mass spring model have allowed video
games to efficiently recreate the movement of 2D soft bodies such as cloth and
hair, however the simulation of more solid objects using this method has issues.

In this project, a modified Finite Element Method has been used in order
to simulate soft body deformations of thicker objects in a real-time environ-
ment, intended for use either as a tool to export these elements or to show
the potential applications of the finite element method within video games.
The application was created in C++, and uses OpenGL, NGL and Eigen li-
braries. A visually believable deformation is created within the application,
which could be used as a tool for artists as well as a showcase of the methods in
real time. Finally, the application has been running with an average framerate
of 82 frames per second (fps), exceeding the aim of 60 fps.

Keywords: finite element method, matrix inversion, real-time deformation,
video games
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1 Introduction

Deformation and destruction are visible in many aspects of everyday life, as
technically all objects in the real world are soft body objects. For many years
now, soft body deformation has been a prime area of research within not only
computer games, but the entire computer graphics community. Games, film,
engineering, and medical industries all benefit from softbody simulations, and
have invested many hours collectively into this area of research. With the ever
increasing realism within video games and interactive graphical applications,
these deformations are an important aspect to be recreated.

Simulation of all objects as deformable bodies is unrealistic within a real-
time virtual environment. Instead, the main objects of focus are often thinner
sheets such as plastic, metal, cork and wood. While the mass spring model is
great for cloth, it lacks the ability to be used for more solid objects. The finite
element method allows the recreation of solid objects through remeshing the
model into smaller elements.

The aim of this project was to find a method of object deformation which
is visually believable, while the application still runs at a minimum framerate
of 60 frames per seconds (FPS). These two factors are arguably the most im-
portant within a video game environment, as a players immersion can easily be
broken if the frame rate drops or a simulation does not behave expectedly. For
instance, if a rigid body is thrown at a soft body, the user will expect the soft
body to deform at the point of impact. Methods of deformation and fracture
simulation, such as prerendered or prescored objects (Fedkiw et al., 2009),
will mean that the object already has a set area where it will deform, and the
deformation will be repeated every time the user interacts with that object.
For this reason, a physically based dynamic animation should be created in
order to create a believable simulation. For implementation more specifically,
this application was to be created using C++ and OpenGL, and demonstrate
a deforming object in a real-time environment. The application would be able
to save and load inverted stiffness matrices which could be used in further
calculations in a video game setting, and also save out node positions to be
loaded into software packages such as Houdini for rendering.

Within this paper, other viable methods of deformation are investigated and
compared in order to accurately convey why the finite element method was
specifically chosen for this project. Then, previous research into the finite ele-
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ment method is presented. The implementation within this project is outlined,
and the results of the application are compared with the initial aims of the
project. Finally, additions and further areas of research which could expand
the project in the future are suggested.
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2 Previous Work

2.1 Soft Body Simulation

2.1.1 Commonly Used Deformation Methods

Every object and material within the real world will deform under a certain
amount of pressue, however as Millington (2010) discusses, all objects have
a different resistance to being deformed. This means that, technically, every
object is a soft body. While it is implausable to calculate every object within
a virtual environment as a deformable object, there have been many investi-
gations into deformation techniques and techniques for soft body simulation.

The mass-spring model is commonly used within many real-time computer
graphics applications to create soft body simulations, especially for represen-
tation of cloth and hair. Feng et al. (2006) discuss the usage of the mass-spring
system for garments, describing implementation as a grid of nodes or parti-
cles interlinked with a system of springs. While this method is efficient, using
simple stress calculations, it has its disadvantages also. One of the main is-
sues with the mass-spring model is the ”super-elastic” effect (Provot, 1995), in
which the method starts to overstretch around boundary nodes. This creates
unrealistic deformations, and means creating any kind soft body with a solid
object with this method is far more difficult. Not only this, but the way in
which the mass-spring model is constructed means that it struggles with par-
ticularly stiff springs (Nissen, 2014). This makes the use of the mass-spring
model unsuitable for rigid or stiff simulations, as springs are notoriously un-
stable.

Another method of deformation commonly used is Free-Form Deformation.
A lattice is created around an object made up of B-Splines. Each area within
the lattice controls an area of the objects mesh and, when the control points
of the spline are moved, the mesh is deformed by this area (Sederberg et al.,
1986). This method is great for choreographed deformations, such as a tool
for artist, where the user knows exactly how they want the object to deform.
Within an interactive environment however, choreographed deformations are
not as believable, as points of impact or fracture cannot be accurately pre-
dicted.
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2.1.2 Finite Element Method

The Finite Element Method (FEM) is a way of predicting some unknown
quantity such as partial differential equations (Henwood et al, 1996). FEM is
industry standard for scientific research. Ross (2012) discusses the importance
of the finite element method in engineering being used to determine weaknesses
in structures such as bridges. Within these applications, mathematical accu-
racy is key, however in video games and visual effects we can afford to cut
corners as long as the final output is visually believable. Though the use of
FEM is less popular within interactive applications, a modified method can
be implemented in real-time.

The main idea behind FEM is to replace a complicated shape with a mesh
of smaller shapes called elements. These elements are unique to each new
problem, and therefore must be designed with that in mind. A higher number
of elements means more accurate results, however the drawback to this is that
more calculations are needed, causing a higher computational expense. Com-
promises must be made in order to create an aesthetically pleasing simulation
as well as an efficient one.

An important feature of the finite element method, is that it can be expanded
to include fracture simulation as well as deformation. OBrien has written two
papers on both ductile and brittle fractures. The initial paper on brittle frac-
ture (1999) outlines the finite element method base to be used, with elements
taken from elastic theory. Once the deformations of the objects have been
applied, the internal stress forces at each node are calculated. After exceeding
a certain threshold, these nodes are split in two, and a fracture plane is cre-
ated to determine the direction of the fracture propagation. Extending from
this, OBrien (2002) discusses that to create ductile versions of these fractures,
plasticity must be added into the original base method from 1999 by redefining
the strain method to elastic strain.

Focusing specifically on games, OBrien and Parker (2009) presented a pa-
per discussing the use of the Finite Element Method in real-time. In order to
efficiently compute certain algorithms, OBrien proposes using parallelism on
certain parts of the algorithm. As this paper points out, an important feature
of the finite element method and the use in video games is the ability of the
soft body to interact with a rigid body. Most objects within games are rigid
bodies, so the ability of one to interact with the other in the form of collisions
is crucial to the believability of the simulation within a game environment.
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Another area that O’Brien and Parker point out as important is the visual
quality of the final piece, referring to the frame rate and the believability of
the simulation. If there is any drop in frame rate at any point in the game,
the immersive experience will be lost.

Rebours (2001) discusses his implementation in real-time of the finite element
method. Although not used specifically within video games, this method in-
volves the inversion of a matrix instead of full computation. This means that
instead of using complex equations to derive the solution for F = KU where
F is the force vector applied, U is the displacement of the nodes and K is the
stiffness matrix of the nodes, one matrix inversion can be calculated, stored,
and loaded during the loading of a game level. Due to the assumed efficiency
and simplicity of this method, it was chosen to be implemented.
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3 Implementation

The finite element method can be constructed with many different shapes,
which allows a great deal of flexibility when creating a mesh of elements. This
also means that appropriate element shapes should be chosen depending on
the application. Extremely thin sheets such as cloth, paper, or hair, have no
need for a solid interior structure as it would barely be seen. In these situa-
tions, a 2D element such as a triangle or square are perfect, and additionally
a triangle means an easy to render mesh. Less nodes also mean less com-
plex matrix calculations further down the line. 2D elements are not suitable
for every implementation however, as even when still focussing on thin sheets,
those with more structure, such as cork or metal, need 3D elements in order to
accurately display the inside structure of the material as well as the outer shell.

Creating cuboid elements allows the addition of this substance. As it is a
convex shape, it also allows fast and accurate collision detection to easily be
included within the application.
There are a few main steps within this modified finite element method, which
can be split into:

Initial Set Up
Material and geometry properties
Remeshing/subdividing

Pre-processing
Computation of each stiffness matrix
Boundary conditions

Solutions
Application of the boundary conditions
Resolution of F = KU

Post-processing
Rendering

3.1 Initial Set Up

A fundamental aspect behind the finite element method is taking a compli-
cated shape and breaking it down into a network of simple elements that are
approximately equivalent to the original shape. To do this, an object must
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be remeshed. This new mesh is unique to each case, and therefore it can be
often seen as more appropriate for a element mesh to be created in an external
package such as Maya. In this implementation, a cuboid shape will be bro-
ken down into a series of smaller cuboids. Simplicity is an important element
within video games. The simpler we can make the problem, the quicker the
solution can be processed. By creating cuboid elements, we can do simple
remeshing calculations for objects which are most likely to be deformed or
destroyed within video games such as walls, planks and beams. Cubes are also
simple convex shapes, meaning collision detection is far easier than with an
element of a complex shape.

Figure 1: Remeshed cuboid with high detail in the z-axis

A function takes the current dimensions of the object and the mesh detail
that the user inputs into the program, and divides the length by the level of
detail intended. From there, the function loops through, adding a new ele-
ment at each iteration. Each element within the new mesh will share nodes
with other elements, so when an element is created it checks the position for
a node to be added against a vector of nodes already created within the mesh
titled m globalNodes. If there is already a node in that position, that node is
pushed back into an array specifically to be used in that element. Along with
this, a material is created and assigned to each element. This material takes
the elastic modulus and Poisson’s ratio values input into the application and
assigns them to be used within the next step of matrix computation.
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3.2 Pre-processing

3.2.1 Matrix Computation

In order to determine how the network of nodes interact with each other,
a stiffness matrix must be created. Each element within the finite element
method has a stiffness matrix, and these matrices must be combined to form
one global stiffness matrix. The construction of the global stiffness matrix is
fairly simple to comprehend as each element will share some nodes with an-
other element. Cube elements are constructed out of 8 nodes, and in a 3D
scenario each node has 3 degrees of freedom, meaning that the stiffness matrix
for each element in this application is a 24x24 matrix.

Within the program, it was decided that an external library and reference
would be used for the construction of the stiffness matrix. The algorithms ex-
ecuted within the CalculateStiffnessMatrix functions of each element are based
off of those presented by Rebours (2001), which were originally generated by
Maple. The elastic modulus, Poisson’s ratio, and dimensions of each element
are combined in order to form connections between each of the nodes which
dictate how they are to move in relation to each other.

Another aspect of matrix computation within this program is the inversion
of the stiffness matrix. With 24x24 elements, the inversion of this matrix is
arguably one of the most computationally expensive procedures within the
application, and it is therefore handled by the Eigen linear algebra library.
Within the library, there are functions within the MatrixXd class which invert
a matrix greater than 4x4, which are used to invert the stiffness matrix of each
element. This matrix is then saved out to a comma separating value file, so
that it can be used again rather than recomputed. Not only does saving and
loading of matrices make the current application faster, but as a game envi-
ronment is often designed, the entirity of the pre-processing and initial set up
steps could be done within an external application and loaded directly into the
game. Here, the only steps needed would be U = K−1F and the application
of boundary nodes.
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3.2.2 Boundary Nodes

To complete the set-up of the finite element mesh, boundary conditions must
be set to determine which areas of the simulation are immovably fixed. These
constrained points could be areas such as the floor or ceiling, as if to simulate
something pinned to a wall or extremely heavy so as not to be moved from the
ground. Implementing the boundary nodes within an application is simple, as
we zero out the values and remove them completely from the stiffness matrix.
This, however, means that once the matrix is inverted, the boundary nodes
cannot be changed.

Instead, the implemented method zeros out the forces to be applied to those
nodes rather than the stiffness matrix. This means that even after the matrix
has been inverted, the boundary nodes can be changed by simply changing
which nodes have a zero force applied to them.

Figure 2: On the left, forces applied without boundary nodes (to all nodes).
On the right, forces applied to specific nodes, while the rest are immovably
fixed.

3.3 Solutions

3.3.1 Node Displacement

As described before, the main equation aiming to be solved through this set
up is F = KU where F is the force vector applied, U is the displacement of
the nodes and K is the stiffness matrix of the nodes. In order to calculate
the displacement of the node, many implementations of FEM use Gaussian
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elimination. Rao (2005) explains that the Gaussian Elimination method is a
rather simple concept, in which you have multiple unknowns in multiple equa-
tions, and can combine these equations in any way in order to eliminate some
of the unknowns until your answer has been found. This is a very iterative
process however, and can take quite some time. In order to get as efficient an
implementation as possible, we instead use a matrix inversion.
Using the inverse functions from the Eigen library, the stiffness matrix inverse
is calculated, and the equation U = K−1F can be used instead. The displace-
ment of the nodes can now be calculated simply by multiplying the inverse
stiffness matrix and the force vector, making for a much simpler calculation.
This application will show the resolution of U = K−1F , however it can also
save the inverse matrices out to comma separated value files, meaning a sepa-
rate game engine could be used to handle the U = K−1F function. After the
solutions have been derived, the last important step of the implementation is
the rendering.

Figure 3: Low level of detail to show node, neighbour, and element deformation
within a cube

3.4 Post-processing

3.4.1 Rendering

To visualise the elements within the mesh, OpenGL and NGL were used. Each
element handled their own draw functions, which involved simply passing in
the vector of node positions into 3D position vectors. As each element was
constructed in the same way, the node order was also the same. The main

10



improvement which could have been made in this area is the rendering of
inside faces. Elements check to ensure they do not create additional nodes
when being constructed, however there is no method to check the redrawing
of faces. Not only this, but the inside faces are rarely seen until a fracture
has occured, so the program could run far more efficiently if faces that were
not currently visible to the user were not rendered. Much like the stiffness
matrices, the point positions can be exported by checking the ”Save Frames”
box within the application. This will save out the current positions frame by
frame until the box is once again unchecked. This can allow for higher quality
renders of the simulation.
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4 Results and Discussion

Many implementations of the finite element method, such as those for medical
and engineering simulation, require a high degree of mathematical accuracy in
order to accurately predict stresses and deformations. In video games however,
there are three main points to focus on: efficiency, frame rate, and believability.

As well as the code being efficient, one of the main aims for implementa-
tion within video games is a constant frame-rate. While closely related to
efficiency, the purpose of frame rate focus is to ensure that the user is con-
stantly engaged within the experience. Any drop in frame rate will quickly
take away from the immersion of the player. One of the aims of this project
was to ensure the completed application ran at a minimum of 60fps. The
average frame rate recorded from this application on one machine was around
82fps, which successfully exceeds the outlined goal. The only areas in which
a dip in frame rate were recorded were those including timer events (such as
updating the camera) and those which involved matrix recalculations. Many
video games aim for a frame rate of around 30fps, but with virtual reality
becoming every popular, the need for high frame rates increases.

Figure 4: Visually believable deformations of an object

The most important factor in video games, however, is the believability. Sci-
entifically, the simulation could be relatively inaccurate, but if the simulation
is visually accurate enough for the player to believe that the deformation see
before them is what could happen, then the simulation has succeeded. It
is, obviously, unfavourable for the simulation to be incorrect, and the more
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powerful games consoles and PCs become, the closer we can get to real-time
mathematical accuracy.

The simulation created for this application is, on the whole, believable. Fig-
ure 3 shows the application with a low number of element. Here, there are
clearly issues where polygons can be seen in the deformation. This issues can
be resolved by increasing the number of elements within the mesh, seen in
Figure 1, offering a higher detail mesh. Though this is slightly more expensive
when running in real-time, the method implemented within the application
means that most of the expensive calculations are done at load time, or when
recalculating the mesh.
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5 Future Work

There are additions that, were this project taken further in the future, could
improve the application. The matrix inversion was added to simplify the cal-
culations involved in updating the position of the nodes, and avoid iterative
solutions and Gaussian Elimination techniques. The addition of multithread-
ing would be a great addition to speed up the application. The most expensive
calculation within the application created in this project is the inversion of a
matrix. Multithreading this process would hugely benefit the computational
speed of the program, as would transferring some calculations to the GPU.
In contrast to this, a multithreaded application could also handle the com-
plex calculations used to solve F=KU. Although this process would be slightly
slower than a matrix inversion, it would give more accurate results, possibly
still in real-time and hitting the 60FPS framerate aim set out in this project.
Not only this, but it would avoid situations where matrices are unable to be
inverted. This would allow all sorts of element shapes and material combina-
tions.

The current application could also be extended to include fracture simula-
tion. As discussed previously, OBriens method of creating fractures (2002) by
measuring the internal stress is a great way of creating these splits. For use
within this application, a new node could be created when the stress reaches
above a certain threshold, and a fracture plane could be created. This fracture
plane dictates the direction of the fracture propogation, and which nodes are
now weaker and more likely to break. Combining this with more efficient ren-
dering in the form of only rendering when faces are visible to the user (which
are often attached to nodes with less than 3 neighbours) would make an in-
teresting addition to the project.

Adaptive remeshing of an object could also be a great addition to this project.
Within many fracture simulations, the main flaw is visible polygons. Figure 5
shows the cloth tearing simulation within NVIDIAs FleX, their particle based
dynamics application (Macklin et al., 2014). While this program is one of the
most efficient within current applications of real-time soft body tearing, there
are still visible artefacts and polygons within the simulation. To get to a closer
level of visual realism, adaptive remeshing must be investigated. Pfaff et al.
(2014) discuss the use of the adaptive remeshing library ARCSim along with
their algorithms for cracking and tearing of this sheets. The visual results
of this paper are very aesthetically pleasing, and aiming for this in real-time
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should be a future goal. However, the paper discussed is still currently running
rendered simulations, and it may be some time before we see similar visual
results in video games. Interactive applications are, however, getting closer
to this level. Adaptive meshing and tessellation in real-time is a large area
of focus right now, with Call Of Duty: Ghosts (2013) using adaptive mesh
tesselation for sniper rifles when they are brought closer to the player camera.

Figure 5: NVIDIAs FleX Cloth Tearing Simulation, where there are still visible
polygons
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6 Conclusions

While the techniques implemented within the final application have their is-
sues, overall the project was successful. A believable soft body deformation is
created and runs above the target speed of 60 FPS. Although this application
was created to show that a finite element based solution could be used in a
real-time environment such as a video game, if it were to be expanded slightly
its best implementation/usage would be as a tool for artist to use. An artist
could create the material with the characteristics they wanted, remesh the
desired object, test force applications on certain areas, and export the matrix
inverse for calculations within the final game environment.

One of the main flaws of the technique implemented within this project is the
limitability. As discussed, updating the elements shape and material proper-
ties interactively means that matrices can become singular, and in turn unable
to be inverted. This issue can be avoided as it is unlikely that a matrix will
need to be updated within a game-environment, however it still should not
be ignored. Within a tool based environment, the prompt discussing that the
matrix has become singular is a temporary solution, while a multithreaded ap-
plication that could handle the complex gaussian equations needed to properly
calculate the final results could avoid matrix inversions entirely. Video games
are getting closer and closer to becoming interactive films with high levels of
detail and believability. Dynamically simulated materials are an important
part of creating this immersive digital environment, and are quickly becoming
a necessary part of gaming.
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Appendix A

Figure 6: Original UML diagram
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