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Abstract

The Material Point Method is a technique presented by Stomakhin et. al (2013) for use in

simulating deformable bodies. It was originially used to model snow for Walt Disney Animation

Studio’s Frozen and has since been shown to produce good results for a large range of materials

behaviours including melting and solidification. The aim of this project was to implement the

melting simulation as outlined by Stomakhin et. al (2014) using C++ with import and export

from Houdini. The time span of the project allowed for an initial implementation of each part

of the technique, including interpolation between particles and grid, deviatoric and projected

velocity calculations and temperature updates resulting in a phase change. The results give the

effect of a deformable solid and a viscous fluid, however, future work is required to improve the

stability and accuracy of the solver.
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Chapter 1

Introduction

Deformable objects have been of interest to the graphics community for more than two decades,

as shown by the paper on elasticity in computer graphics by Terzopoulos et. al[1]. Since then

a large number of methods have been developed such as the mass-spring model for cloth, the

Smooth Particle Hydrodynamics (SPH) model and the physically-based Finite Element Method

(FEM), each with their own advantages and disadvantages. Whilst particle-based methods have

the advantage of a simple representation of an object, they run into issues due to the need to

calculate differentials and integrals without an underlying grid, leading to the use of simplified

solutions which are not necessarily physically based. The grid-based FEM method on the other

hand suffers from the underlying mesh getting tangled as the object deforms. Similar methods

have been explored in fluid simulation and similar issues have been encountered, leading to

the development of the Fluid Implicit Particle (FLIP) method. In recent years this has been

extended to solids by the introduction of the Material Point Method (MPM).

MPM was first presented in 1995 by Sulsky et. al[2] where it was used for engineering purposes,

but it was not until 2013 that the method made its way into graphics through its use in Walt

Disney Animation Studio’s Frozen. As mentioned, MPM is like a FLIP method for solid objects

as it is also a hybrid model using particles to represent the object and its deformation whilst

taking advantage of a stationary Eulerian grid to solve the equations determining the deforma-

tions. As such, it combines the advantages of both the particle and grid-based methods and has

been shown to give good results for a large number of uses, including the simulation of melting

which this thesis will focus on.
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Chapter 2

Related Work

Physically-based simulations of deformable bodies have become a large field of research as com-

puter graphics has moved from rigid bodies to more realistic materials. As mentioned, the topic

was first introduced by Terzopoulos et. al[1] who simulated deformations by applying elastic

theory to curves, surfaces and volumes. Since then, the aim has been to model an ever larger

range of behaviours, from stiff solids to viscous fluids. Attempts have also been made to make

the models more physically correct by applying theories developed in engineering. A large num-

ber of different methods have originated from these endeavours which are commonly divided into

four main categories; Eulerian grid-based methods, Lagrangian mesh-based methods, mesh-free

particle-based methods and particle/grid hybrids.

Simulating melting and solidification is an area within the deformable objects field which has

been widely researched. It is a complicated topic as it requires a continuum between solid

and fluid behaviours which are usually simulated using two different methods. The topic was

first explored by Terzopoulos et. al[3] in which the material was modelled as particles with force

interactions laid out in a grid-like structure, similarly to the mass-spring model. As temperature

increase, the forces between the particles would relax to give a plastic or flow-like behaviour.

Since then, attempts have been made using methods from each of the four categories, often

starting in either the solid or liquid end of the spectra.

Goktekin et. al[4] were one of the first to use a Eulerian grid to create viscoelastic fluids which

could model materials such as pudding, clay and toothpaste, that is, materials with both solid
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and fluid characteristics. Although Eulerian grids have been used extensively in fluid simulations,

the main difficulty with using Eulerian grids for solids lies in the computation of the equation

describing deformation. Hence, more recent efforts using this method have involved simulating

the solid as a high viscosity fluid.[5, 6]

The mesh-based FEM method has become a popular method for simulating deformable solids in

the graphics community.[7, 8] It is extensively used in engineering due to its ability to accurately

solve the continuum equations which describe how a material deforms, however, the methods has

limitations in graphics where it is often desired to simulate materials with large deformations.

These limitations arise due to the fact that the mesh is used to represent the shape of the object,

hence it often becomes entangled when the material has to undergo extensive shape changes. A

great deal of work has been done to efficiently remesh objects to improve computations[8, 9, 10,

11], and Clausen et. al[12] were able to adapt these methods to simulate melting using a local,

dynamical remeshing FEM. However, mesh entanglement still remains a major issue for FEM

simulations.

Mesh-free particle-based methods, such as SPH[13] or Point-Based Dynamics (PBD)[14], have

given very good results when applied to fluids and solids. These methods are especially good

at simulating interactions between different materials due to the particles storing the material

properties such as stiffness, hence, they have also provided very good simulations of melting.[15,

16, 17] The main disadvantage of these methods is that calculation of the derivatives required

to solve the physically-based continuum equations is complicated, and approximated versions

have to be applied instead. This can lead to accumulation of errors in the elastic and plastic

response of the materials.[9]

Another approach to melting was made by Losasso et. al[18] which couples Lagrangian mesh-

based methods for solids with Eulerian grid-based methods for fluids.

MPM, the particle/grid hybrid which is the focus of this project, was first presented by Sulsky

et. al[2], and recently introduced into the field of computer graphics by Stomakhin et. al.[19]

In the years following its introduction, a large number of papers have been published providing

further improvements to the method and displaying a growing number of material properties.

The most noteworthy improvements are the development of the Affine Particle-In-Cell (APIC)

interpolation method[20], which greatly increases the stability of the MPM, and the work by
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Klàr et. al[21], which includes a more physically-based interpretation of plasticity and yield.
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Chapter 3

The Material Point Method

The MPM method is a grid/particle hybrid similar to FLIP fluids, where the material is made

up of particles which store the calculation variables, like position, velocity and temperature.

The governing equations are solved on a stationary Eulerian grid, and steps at the beginning

and end of a calculation are taken to interpolate the particle data to the grid and to update

the particle data from the grid. In this way, MPM is able to combine the advantages of the

mesh-based, grid-based and particle-based methods that were outlined in the previous chapter.

First of all, MPM is able to solve the same governing equations as FEM, leading to physically

accurate simulations. The background Eulerian grid enables easy implementation of boundary

conditions, as well as eliminating the need for inter-particle collision detection and response.

This is due to particle-particle collisions not occurring when their velocities are obtained from

the velocity field of the grid. Finally, the particle-based material representation provides a way

to simply deform the material without the issue of mesh entanglement. Furthermore, particle

representation also facilitates splitting, merging and coupling between materials with different

behaviours, thus it is a good method for simulating melting.

The MPM algorithm has the following steps:

• Transfer data from particles to grid.

• Detect collisions with external objects and classify cells as interior, colliding or empty.

– The classification is done to avoid unnecessary calculations on empty cells and to ease
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the inclusion of boundary conditions at colliding cells.

• Compute material forces.

• Update grid velocities including boundary conditions.

– In the case of a melting simulation, this step also includes a pressure calculation to

ensure the incompressibility of fluid.

• Update temperature.

– This step is only necessary in simulations involving temperature dependent material

properties.

• Update particle data from grid.

• Advect particles by calculating their new positions based on the updated particle data.

The following sections will describe the details involved in each of these steps. First, a brief

introduction to continuum mechanics will be given, including the main concepts used in the

implementation. Second, the interpolation steps will be described, before the governing equa-

tions which are solved by the grid are presented. The explicit and implicit integration schemes

applied to the velocity update are then outlined. Finally, a brief account will be given of the

calculations performed in the final step of the algorithm which not only includes advection, but

also deformation update and phase transitions. The information in the following sections is

primarily based on the articles by Stomakhin et. al[19, 22] and the SIGGRAPH course notes

by Jiang et. al[23].

3.1 Continuum Mechanics and Material Deformations

In order to model deformable bodies, a link must be made between the forces applied to an

object and its resulting change in shape. This is called a constitutive model, and the choice of

model depends on the material behaviour desired. The constitutive model used in this project

is based on a few key concepts from continuum mechanics, such as the deformation gradient,

stress, elasticity and plasticity, which will be introduced in this section.
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3.1.1 Deformation Gradient

Continuum mechanics is the study of deformations in large scale objects. In this field, an

object is represented as continuous pieces of matter and its physical quantities, such as density,

velocity and forces, are calculated by functions which are continuous with position. Deformation

is defined as a change from the rest or undeformed position, X, and current or deformed position,

x. The function describing the change from the former to the latter is given by φ:

x(X, t) = φ(X, t) (3.1)

That is, φ describes the change in the positions of the points on an object, leading to the

deformed shape. The differentials of this function with respect to time will give velocity and

acceleration:

V(X, t) =
∂φ

∂t
(X, t) (3.2a)

A(X, t) =
∂2φ

∂t2
(X, t) (3.2b)

Here, it is important to make a distinction between Lagrangian and Eulerian viewpoints as

eq. 3.1-3.2 are defined in the Lagrangian view. In this viewpoint, a quantity is measured with

regards to a specific particle or material point, as opposed to the Eulerian viewpoint, where a

quantity is defined relative to a fixed point of reference. For example, in the case of a fluid, the

Lagrangian view would mean that the velocity of a specific water particle is measured, whilst

the Eulerian view would mean measuring the velocity relative to a set position on a grid. This

distinction is important to keep in mind since MPM used both as it moves from the particles to

the grid and vice versa.

As mentioned, φ gives the change in position of the material points. However, this function will

also include rigid body rotations and translations which will not lead to shape changes. The

deformation gradient, F, is used to distinguish the deformations that do lead to shape changes

and is very useful when simulating deformable bodies. It is a 3x3 matrix in 3D space given by

the Jacobian of φ:
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F(X, t) =
∂φ

∂X
(X, t) (3.3)

Its determinant, J, describes volume change. The deformation gradient will become important

when relating forces to shape changes in the constitutive model.

3.1.2 Elastic and Plastic Deformations

Deformations can be either elastic or plastic. In the elastic regime, deformations are not perma-

nent and the material will snap back to its original shape as soon as the force has been removed.

In the plastic regime, the deformations are permanent and can lead to a change in the material

properties, such as making it more or less susceptible to future deformations.

In the work presented by Stomakhin et. al[19, 22], an inexact but practical plasticity model is

used. In this model, the deformation gradient is separated into an elastic part, FE , and plastic

part, FP :

F = FEFP (3.4)

The grid then uses an equation which describes the deformation response of a perfectly elastic

material to update the elastic part of the deformation gradient. To incorporate plasticity, a check

is done to determine whether FE is too large to be purely elastic. This is done by performing a

Singular Value Decompositon (SVD) on FE :

FE = UΣ̂VT (3.5)

where U and V are rotation matrices and Σ̂ is a diagonal matrix with components which work

like the eigenvalues of FE , that is, by setting the scale of the deformation. The components of Σ̂

are then clamped to stretch and compression limits as a way of imposing a yield criterion, which

is used to determine whether the force applied to a material will result in plastic deformations.

Once this has been done, the new FP has to be determined so as to place the excess elastic

deformation in the plastic deformation gradient. Since the overall deformation gradient, F, does
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not change in this calculation, the new FP can be determined as follows:

FP = VΣ−1UTF (3.6)

where Σ is the clamped version of Σ̂.

As mentioned, this is a very simplistic model of plasticity and yield. In reality, yield criteria

tend to take the direction of the force into account since some materials are much stronger under

compression than extension or are much weaker along certain axes. Some improvements on the

plasticity model for the MPM have been made, such as the work presented by Klàr et. al[21]

which implements a more realistic yield criterion for sand.

3.1.3 Constitutive Models

A constitutive model is the relation between an applied force and the resulting shape change,

or, more correctly, the relation between stress and strain. Stress is given by force over area and

describes a field set up inside the object as a result of the forces applied to the object. It appears

as a result of the atoms moving out of their ideal positions and hence setting up attractive or

repelling forces in an attempt to return to their original positions. Strain is a measure of the

deformation of a material and can be exchanged for the deformation gradient.

There are a large number of constitutive models available as different material groups, such as

metals, plastics and glass, tend to respond very differently to applied loads. The constitutive

model used in this project is defined for hyperelastic materials, that is, materials which are

perfectly elastic. This model was chosen since the MPM assumes a perfectly elastic material

for the grid calculations and applies the plastic deformation later. By choosing the hyperelastic

material model, the constitutive relation can be expressed through a potential strain energy

density function, Ψ(F), which increases with non-rigid deformations. This function can be

related to Cauchy stress, σ, as follows:

σ =
1

J

∂Ψ

∂F
FT (3.7)
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where Cauchy stress is just one of many possible stress definition, and J is the determinant of

F.

The next step is to choose a model for Ψ(F) within the hyperelastic regime. In the work by

Stomakhin et. al[19, 22], a Fixed Co-rotated Energy Density function is chosen which is a simple

but widely used model that combines the linear elastic model with some non-linearity to avoid

rigid body rotations affecting the energy density:

Ψ(FE) = Ψµ(FE) + Ψλ(JE) (3.8a)

Ψµ(FE) = µ‖FE −RE‖2E (3.8b)

Ψλ(JE) =
λ

2
(JE − 1)2 (3.8c)

where RE is the rotation matrix from the polar decomposition of FE which can be defined as

follows:

FE = RESE (3.9a)

RE = UVT (3.9b)

SE = VΣVT (3.9c)

where SE is a symmetric matrix, RE is a rotation matrix, and U, V and Σ come from the SVD

decomposition as shown in eq. 3.5. A more detailed description of the model can be found in

the SIGGRAPH course notes by Jiang et. al[23].

µ and λ in eq. 3.8 are the Lame constants which can be determined from elastic modulus, E,

and Poisson ratio, ν as follows:

µ =
E

2(1 + ν)
(3.10a)

λ =
νE

(1 + ν)(1− 2ν)
(3.10b)
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The elastic modulus, E, is a measure of how stiff a material is or how much elastic deformation

will result from a given force in the direction of the force. The Poisson ratio, ν, then relates how

much the material will compress along the other directions when a force is applied to extend the

material in the direction of the force. Stomakhin et. al[19] used the Lame constants to include

the effect of material hardening. By setting the constants above to µ0 and λ0, they redefined

the constants as given below:

µ = µ0exp(ξ(1− JP )) (3.11a)

λ = λ0exp(ξ(1− JP )) (3.11b)

where ξ is the hardening coefficient and JP is the determinant of the plastic deformation gradient.

These definitions would allow a material to reduce stiffness when it is undergoing plastic stretch

and increase stiffness when it is undergoing plastic compression.

As seen in eq. 3.7, stress is related to the partial differential of the energy density function.

It will therefore be useful to derive the differential of Ψ since this will be used in the force

calculation later.

∂Ψ

∂F
(FE) = 2µ(FE −RE) + λ(JE − 1)JEF

T
E (3.12)

With all these definitions at hand, it is now possible to derive the governing equation for the

change in velocity as will be done in section 3.3.

3.2 Data Interpolations

At the beginning and end of the simulation, particle data has to be transferred to and from the

grid. This requires the use of interpolation weights, ωip, and an interpolation function, N(x).

This section will look at how to calculate the interpolation weights for the grid based on the

interpolation function, which interpolation functions should be chosen, and finally, how data

is transferred to and from the grid using the interpolation weights. First, however, a naming
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convention will be set to enable the distinction between particle and grid variables, and the time

frame of the variables.

3.2.1 Naming Convention

In this implementation, a staggered MAC grid is used with velocity and heat conductivity

defined at the cell faces and all other quantities defined at the cell centres. For this reason it is

important to distinguish between tensor, ie. matrices and vectors, quantities and scalars as a

grid cell velocity can be defined as an overall vector and as a scalar at each face. This distinction

is made by using bold letters for tensors. Furthermore, cell face variables are marked by α to

say that the quantity is defined in x, y and z direction, whilst cell centre variables are marked

by c. All variables that belong to a particle is given a subscript p and those belonging to cells

are given subscript i. The i stands for the index of the cell in the grid; i=[i,j,k]. Finally, some

quantities are given a superscript to determine the time frame of the value; n means it is the

value from the previous time step, n+1 is the final value for the current time step and * is given

to intermediate values.

3.2.2 Interpolation Weights

In MPM, the interpolation weight between a cell and a particle is given by:

ωip = Nh
iα(xp) = N(

1

h
(xp − xiα)) ·N(

1

h
(yp − yjα)) ·N(

1

h
(zp − zkα)) (3.13)

where h is the length of the side of a cell, xp = [xp, yp, zp] is the position of the particle, and

xiα = [xiα, yjα, zkα] is the position of the grid cell with index i,j,k. The weight gradient is also

required and is defined as:

∇ωip =


1
h
dN
dx ( 1

h(xp − xiα)) ·N( 1
h(yp − yjα)) ·N( 1

h(zp − zkα))

N( 1
h(xp − xiα)) · 1

h
dN
dy ( 1

h(yp − yjα)) ·N( 1
h(zp − zkα))

N( 1
h(xp − xiα)) ·N( 1

h(yp − yjα)) · 1
h
dN
dz ( 1

h(zp − zkα))

 (3.14)

On the staggered MAC grid, the cell positions, xiα, are given by:
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Cell centre or face Position vector

c [i*h, j*h, k*h]

x [(i - 1/2)*, j*h, k*h]

y [i*h, (j - 1/2)*h, k*h]

z [i*h, j*h, (k -1/2)*h]

3.2.3 Interpolation Functions

The interpolation function, N(x), is chosen based on smoothness, efficiency and width, along

with two requirements set by the MPM method. Firstly, dN(x)
dx must be continuous as it will

be used in the force calculations, otherwise the grid forces will not be continuous. Secondly,

dN(x)
dx must go to zero as N(x) goes to zero to ensure that cells with few particles affecting it

will also contribute small forces to the grid. For these reasons, a cubic B-Spline has been used

by Stomakhin et. al[19, 22]:

N(x) =

1
2 |x|

3 − x2 + 2
3 for 0 ≤ |x| < 1

−1
6 |x|

3 + x2 − 2|x|+ 4
3 for 1 ≤ |x| < 2

0 otherwise

(3.15)

The effect of the cubic B Spline can be seen in figure 3.1 where it is clear that a particle will

affect the cell its in, the layer of nearest neighbour cells around it, and the corner of the second

nearest neighbour layer that is closest to the particle.
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Figure 3.1: The cells affected by the cubic B-Spline are marked in orange and the empty cells
are marked by brown. The figure also displays the cell classification scheme. Reproduced from
Stomakhin et. al[22]

As will be seen later in this chapter, a pressure calculation will be performed to update the

face velocities of the grid, however, this calculation will only be performed at cells which are

not empty. Figure 3.2 shows how this causes certain cell faces that are reached by the cubic

B-Spline to be uncorrected by the pressure calculation. To prevent these faces from contributing

to the particle updates, a different interpolation function is used when transfering data back to

the particles, namely a tighter Quadratic stencil:

N(x) =

−x2 + 2
3 for 0 ≤ |x| < 1

2

1
2x

2 − 3
2 |x|+

9
8 for 1

2 ≤ |x| <
3
2

0 otherwise

(3.16)

19



Figure 3.2: The cells affected by the tighter Quadratic Stencil are shown in orange, green and
blue are the ones affected by the cubic B-Spline but not the tight Quadratic Stencil, and brown
are the ones affected by neither. Reproduced from Stomakhin et. al[22]

3.2.4 Moving data between grid and particles

In the first implementation of the MPM method[19, 22], particle data was transferred to the

grid accoring to the following equations:

mn
α =

∑
p

mpω
n
αp (3.17a)

mn
c =

∑
p

mpω
n
cp (3.17b)

Anα = 1
mnα

∑
pA

n
pmpω

n
αp for A ∈ {v, κ} (3.17c)

Bn
c = 1

mnc

∑
pB

n
pmpω

n
cp for B ∈ {J, JE , c, T, λ−1} (3.17d)

However, it has been shown by Jiang et. al[20] that this method for transfering particle data,

especially the particle velocities, will lead to instabilities in the simulation. Instead, the APIC

method should be used. This method will not be described here as it was not implemented in

the project, but a full outline can be found in their paper.

As outlined in the same paper, the main ways to update the particles from the grid include PIC,
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FLIP, PIC/FLIP mixes and APIC. Again, the APIC method has been shown to give the most

stable results, as well as providing the best means of maintaining angular velocity. However,

in this project, the PIC/FLIP mix method outlined in the paper by Stomakhin et. al[22] was

used. In this implementation, the variables are updated according to the following equations:

An+1
p = βAFLIPp + (1− β)APICp for A ∈ {v, T} (3.18a)

AFLIPp = Anp +
∑
i

(An+1
i −Ani )ωip (3.18b)

APICp = Anp +
∑
i

An+1
i ωip (3.18c)

where β is a constant giving the degree of FLIP in the mix. Stomakhin et. al[22] uses a value

of 0.95.

The velocity gradient is also required and is updated by:

∇vn+1
p =

∑
i

vn+1
α eα[∇ωαp]T (3.19)

where eα is the unit vector in the direction of the face normal.

With the presentation of APIC, it was also found that when FLIP or FLIP/PIC mixes are

used, the particle positions should be updated directly; xn+1
p =

∑
i x

n+1
i ωip. Here, xn+1

i is the

fictional new position of a grid cell since the grid does not move but its updated position is used

to update the particles.

3.3 The Governing Equations

The three governing equations for the MPM melting simulation are the conservation of mass

where ρ is density;

Dρ

Dt
= 0 (3.20)
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the conservation of monentum, where v is velocity, σ is the Cauchy stress and g is the sum of

the external forces;

ρ
Dv

Dt
= ∇ · σ + ρg (3.21)

and the conservation of energy:

ρ
Du

Dt
= −∇ · q (3.22)

where u is the internal energy of the object and q is the heat transfered to or from the object.

The details of each of these functions will be given in separate sections along with descriptions

of how they are solved by the MPM.

3.3.1 Conservation of Mass

Conservation of mass is fairly simple to enforce in MPM due to the use of particles. Each particle

is initially given a mass which is unaltered throughout the simulation. However, since eq. 3.20

is based on the density, it is also necessary to calculate the constant particle density. This is

done in the first step of the simulation by weighting the cell density back to each particle:

ρ0
p =

∑
c

m0
cω

0
cp

h3
(3.23)

As long as mp and ρp stay constant throughout the simulation, the conservation of mass is

obtained.

3.3.2 Conservation of Momentum

The conservation of momentum, eq. 3.21, is used to update the velocities and the deformation

gradient, and hence needs to be discretised in order to be solved on the grid. The derivation

of the discretised equation uses a weak form of the force balance, similarly to how the FEM

equations are determined, and the full derivation can be found in literature[2, 23]. The result

is the following equation which relates the internal force in the material to the deformation
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gradient:

fiα(x̂) = −
∑
p

V 0
p e

T
α

∂Ψ

∂FE
(F̂Ep(x̂))[FnEp]

T∇ωniαp (3.24)

where V 0
p is the constant particle volume, eα is a unit vector in the direction of the face normal,

ie [1, 0, 0] for the x face, and x̂ is the deformed grid position which is a fictional variable.

∂Ψ
∂FE

(F̂Ep(x̂)) is as given in eq. 3.12. The force calculated is for an individual face. How this

force is used to update the grid velocity depends on the integration method as will be outlined

in section 3.4.

Pressure Splitting

In the snow simulation presented by Stomakhin et. al[19] the above equation is the only one

required to update the velocity. However, it will not enfore incompressibility as is required in

fluids. Thus, in the paper on melting simulations[19], the velocity update is split in two. This

is done by noticing that stress can be separated into deviatoric stress which is related to shape

change and hydrostatic stress which is related to changes in volume.

σ = σdev + σhyd (3.25)

In fact, hydrostatic stress can be directly related to pressure; σhyd = −pI.

In a similar way, it is possible to split the consitutive model in two as seen in eq. 3.8a where Ψλ

is only dependent on volume change and Ψµ is related to deviatoric deformations. The idea is

to first calculate an intermediate velocity, v∗, using deviatoric stress, or Ψµ, and then calculate

the final velocity by including a pressure calculation based on Ψλ.

The main issue is that Ψµ is not completely orthogonal to Ψλ, meaning that Ψµ also affects the

volume change and hence will not become equal to zero when calculated based on a deformation

gradient for volume change. To remedy this, two steps are taken. The first is to remove any

deviatoric elastic deformations in fluid, as fluids are almost perfectly plastic with regards to

deviatoric deformations. Since the parts of FE that relate volume change are given by (JE)1/3I,
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the deviatoric components of FE are simply removed by setting FEp = (JEp)
1/3I in the fluid

particles. Secondly, to avoid calculating Ψµ for fluid particles, only the deviatoric components

of FE are calculated for by redefining Ψµ(FE) to Ψµ(J
−1/3
E FE) where J

−1/3
E FE is the deviatoric

component of FE . In addition, µ is set to zero for fluid particles.

The force equation from eq. 3.24 now becomes:

fiα = −
∑
p

V 0
p e

T
α [

∂Ψµ

∂(J
−1/3
E FE)

(J
−1/3
Ep FEp) :

∂(J
−1/3
E FE)

∂FE
][FnEp]

T∇ωniαp (3.26)

More details on how to solve this equation will be given in section 3.4.

Pressure Calculation

As described, Ψλ can be related to hydrostatic stress which again can be related to pressure.

From this, a pressure equation can be derived following the steps outlined by Stomkahin et.

al[19] which is fairly similar to the pressure equation which is used in most grid-based fluid

simulations[24, 25]:

JnPc
λnc J

n
Ec∆t

pn+1
c −∆t

∑
α

∑
c′

1

ρnαc
GαcGαc′p

n+1
c′ = −

JnEc − 1

∆tJnEc
−
∑
α

Gαcv
∗
α (3.27)

where v∗α is the intermediate velocity which is calculated based on the deviatoric Ψµ. As λc

increases when the object is compressed, it will eventually make the first term on the left hand

side negligible. JEc will also become 1 for fluids, and hence the equation becomes the pressure

equation for fluids.

Gαc is the central gradient difference and GαcGαc′ is the second order central gradient as follows:

∑
α

Gαcv
∗
α =

v∗i+1/2,j,k − v
∗
i−1/2,j,k

∆x
+
v∗i,j+1/2,k − v

∗
i,j−1/2,k

∆y
+
v∗i,j,k+1/2 − v

∗
i,j,k−1/2

∆z
(3.28a)
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∑
α

1

ρnαc
GαcGαc′pc′ = (

pi,j,k − pi+1,j,k

ρi+1/2,j,k∆x
2 ) + (

pi,j,k − pi−1,j,k

ρi−1/2,j,k∆x
2 )

+(
pi,j,k − pi,j+1,k

ρi,j+1/2,k∆y
2 ) + (

pi,j,k − pi,j−1,k

ρi,j−1/2,k∆y
2 )

+(
pi,j,k − pi,j,k+1

ρi,j,k+1/2∆z2 ) + (
pi,j,k − pi,j,k−1

ρi,j,k−1/2∆z2 )

(3.28b)

where the velocities and densities are defined at the cell faces, and ∆x, ∆y and ∆z are the

lenght of the sides of a cell.

The pressure equation makes up a linear system where the matrix is symmetric positive-definite.

Dirichlet boundaries are enforced at empty cells and Neumann boundaries are used at faces

adjacent to colliding cells.

Once this has been solved to determine the pressures, the projected velocities can be calulated

according to:

vn+1
iα = v∗iα −∆t

∑
c

1

ρnαc
Gαcpc (3.29)

Control volume

The density in the pressure calculation requires a control volume to be determined instead of the

normal cell volume, h3, because the volume associated with a face adjacent to a colliding celll

should be smaller than the volume of an interior cell face. The control volume is determined by

V n
α =

∑
c

χc

∫
Ωc

Nh
cα(x)dx (3.30)

where χc is set to zero for all colliding cells and
∫

Ωc
Nh
cα(x)dx is tabulated as follows:

∫
Ωc

Nh
cα(x)dx =

∫
Ωc

Nh
cα(x)dx ·

∫
Ωc

Nh
cα(y)dy ·

∫
Ωc

Nh
cα(z)dz (3.31a)
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∫
Ωc

Nh
cα(x)dx =

h
∫ 1

0 N(u)du for i = 0

h
∫ 2

1 N(u)du for i = 1

0 for i = 2

h
∫ 1

0 N(u)du for i = −1

h
∫ 2

1 N(u)du for i = −2

(3.31b)

∫
Ωc

Nh
cα(x)dx =

2h
∫ 0.5

0 N(u)du for i = 0

h(
∫ 1

0.5N(u)du+
∫ 1.5

1 N(u)du) for i = 1

h
∫ 2

1.5N(u)du for i = 2

h(
∫ 1

0.5N(u)du+
∫ 1.5

1 N(u)du) for i = −1

h
∫ 2

1.5N(u)du for i = −2

(3.31c)

Depending on which face is being calculated for, eq. 3.31b is used for the integration over the

direction of the face and eq. 3.31c is used for the other two directions. That is, for cell face

in x direction, eq. 3.31b would be used for
∫

Ωc
Nh
cα(x)dx and eq. 3.31c would be used for∫

Ωc
Nh
cα(y)dy and

∫
Ωc
Nh
cα(z)dz. i is an increment which is different for x, y and z. For example,

if the control volume of cell i,j,k is being determined and
∫

Ωc
Nh
cα(x)dx is being calculated for

the neighbour cell in the x direction, that is, for cell i+1,j,k, then i=1 for the x direction and

i=0 for the y and z direction.

Once the control volume has been determined for all the cell faces of all the interior cells, the

pressure calculation can be performed to project the velocities.

3.3.3 Conservation of Energy

The final governing equation is the conservation of energy, given by eq. 3.22. By including the

definitions of heat transfer and heat capacity, an equation involving temperature can be derived

as shown by Stomakhin et. al[22]:

Tn+1
c + ∆th3

∑
α

∑
c′

κnα
mn
c c
n
c

GαcGαc′T
n+1
c = Tnc (3.32)

where κnα is the heat conductivity of face α and cnc is the heat capacity at the cell centre. This

equation, like the pressure equation makes up a linear system with a symmetric positive-definite
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matrix. A Dirichlet boundary is enforces at the colliding cells which have fixed temperatures

and Neumann boundaries are enforced at empty cells.

3.4 Explicit and Implicit Integration

The time integration step is done to calculate the intermediate velocities from the deviatoric

forces as outlined in section 3.3.2. This can be done explicitly, which provides the same accuracy,

or implicitily, which allows larger time steps and hence gives a reduction in calculation time.

3.4.1 Explicit Time Integration

In the case of an explicit update, the new velocity is calculated according to:

v∗iα = vniα +
∆t

miα
fiα + ∆tgiαΣpω

n
iαp (3.33)

where fiα is given by eq. 3.26 and giα is the sum of the external forces applied to the face α of

cell i. Several different boundary conditions can be used at the colliding cell faces such as sticky,

separating and slipping as described by Klàr et. al[21]. In the case of explicit time integration,

these are applied by setting the velocities at the colliding faces to specific values.

3.4.2 Implicit Time Integration

The implicit update is fairly complicated to implement as the equation for the force derivative

is quite complex and the final system produces a symmetric semi-definite matrix, meaning that

the common Conjugate Gradient solver might not give the correct solutions.

In the case of the melting simulation described by Stomakhin et. al[22], the force derivative is

given by the following equations:

Aij = δij +
∆t2

2mi
ΣpV

0
p e

T
αAp[FEp]

T∇ωniαp (3.34a)
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Ap =
∂2Ψ̂µ

∂F2
E

(FE(x̂)) : (eα[∇ωnjαp]TFnEp) (3.34b)

where Aij is the matrix element in row i and column j, Ψ̂µ(FE) = Ψµ(J
−1/3
E FE), and x̂ is the

deformed grid position. Ap can be further derived based on the technical report accompanying

the melting simulation paper[22]:

Ap = (C : (B : Z)) : B + a(H : Z)A : B + aJa(A : Z)H − aJa(A : F )HZTH (3.35)

where a = -1/3, A is
∂Ψµ
∂FE

as given in eq. 3.12, B is the differential of J
−1/3
E FE which will be

given below, F is FE , H is F−T
E , J is JE and Z is the term on the right hand side of : in eq. 3.34b.

The B component arises due to the fact that, with pressure splitting, Ψ(FE) is now redefined

to Ψ(J
−1/3
E FE), thus ∂Ψ

∂FE
(FE) becomes ∂Ψ

∂FE
(J

−1/3
E FE) = ∂Ψ

∂J
−1/3
E FE

(J
−1/3
E FE) :

∂J
−1/3
E FE
∂FE

.

In the same way, C:(B:Z), where C is ∂2Ψ
∂F2

E
(FE), can be given by

C : (B : Z) =
∂2Ψ

∂(J
−1/3
E FE)2

(J
−1/3
E FE) : δ(J

−1/3
E FE)

= 2µδ(J
−1/3
E FE)− 2µδR

(3.36a)

δ(J
−1/3
E FE) = B : δFE (3.36b)

δFE = eα[∇ωnjαp]TFnEp (3.36c)

Here, δRE is the rotational part of the polar decomposition of Ψ(J
−1/3
E FE). Due to the fact

that RT
EδRE is skew-symmetric, ie. [RT

EδRE ]T = −RT
EδRE , it can be written as:

RT
EδRE =


0 x y

−x 0 z

−y −z 0

 (3.37)

and determined using the following definition:
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RT
EδFE − δFTERE = (RT

EδRE)SE + STEδR
T
ERE (3.38)

where SE is the the symmetric matrix from the polar decomposition of J
−1/3
E FE . This results in

6 linear equations for 3 unknowns and is an overdetermined system. Taking 3 of them, a linear

system, Ax=B, is set up and solved to determine RT
EδRE :

A =


(S11 + S22) S23 −S13

S23 (S11 + S33) S12

−S13 S12 (S22 + S33)

 (3.39a)

x =


x

y

z

 (3.39b)

B =


[RT

EδFE − δFTERE ]12

[RT
EδFE − δFTERE ]13

[RT
EδFE − δFTERE ]23

 (3.39c)

δRE can then be found from δRE = RE(RT
EδRE).

In order to solve eq. 3.35, two final equations must be given, namely the solutions to Z:B and

B:Z where B =
∂J
−1/3
E FE
∂FE

is a 9x9 matrix and Z is an arbitrary 3x3 matrix:

B : Z = Ja(Z + a(H : Z)F)) (3.40a)

Z : B = Ja(Z + a(F : Z)H)) (3.40b)

With the above definitions, it is possible to determine the Aij components of the A matrix for

the implicit integration. The B components are given by the right hand-side of eq. 3.33 and

the boundary conditions are enforced by altering the values of the B components similar to a

Dirichlet condition. Finally, the intermediate velocities can be found by solving the system using
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a linear solver for a symmetric semi-definite system like the Conjugate Residual or MINRES

methods.

3.5 Update Particles

In this final step of the MPM algorithm, the particles are advected by updating their positions

based on the velocity field on the grid. In addition, the deformation gradient and temperature

must be updated. The steps taken to update these variables from the grid were outlined in section

4.3.2, however, there are some important details to the calculation of the particle deformation

gradient and temperature which will be described here.

3.5.1 Updating the Deformation Gradient

The elastic deformation gradient is updated according to the following equation:

Fn+1
Ep = (I + ∆t∇vn+1

p )FnEp (3.41)

where ∇vn+1
p is updated from the grid according to eq. 3.19. However, in certain cases, this

will lead to Jn+1
Ep ≤ 0 due to numerical errors. As the determinant describes the deformed

volume, values of zero and below are unphysical, and will also give division by zero in some

of the governing equations. To avoid this, an exponential computation of Fn+1
Ep should be

used instead. This computation is expensive, so Stomakhin et. al[22] implemented a method

which updates the deformation gradient using the geometric series of the exponential function;

exp(x) = 1 + x+ x2

2! + x3

3! + ..., including just enough terms to ensure that Jn+1
Ep is positive.

3.5.2 Temperature Update and Phase Transition

When simulating phase changes, it is important to determine the point when the material

changes phase. A simple method would be to set all particles with temperatures above a certain

transition temperature to fluid and those below to solid, however, real phase transitions are not

immediate. To model a more physically correct phase transition, an energy buffer is used. When
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a particle is in the solid phase, its buffer will be empty and when it is in the fluid phase, the

buffer is full. In the example of melting, the temperature of a solid particle increases until the

transition temperature, Ttrans, is reached. Any temperature increases that take place after this

will be removed from the temperature of the particle, and instead converted to heat according

to q = cpmp(T
n+1
p − Ttrans), where cp is the heat capacity of the particle and q is the heat

added by the temperature increase. The heat will be added to the energy buffer and the particle

temperature will be clamped to the transition temperature. This process is repeated for each

time step until the energy of the buffer reaches a value specificed as the latent heat of the

material. At this point, the phase of the particle will be changed to fluid and the temperature

will again be allowed to increase. The same process take place in solidification, only the buffer

is then originally full and each time step reduces the amount of energy in it until it is empty.
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Chapter 4

Implementation of Program

The implementation followed the algorithm described by Stomakhin et. al[22] as outlined in

the previous chapter. The program was written in C++11 with an import and export to

Houdini providing a simplified interface for the user. OpenGL was also used to visualise the

result during implementation. The majority of the code was written specifically for the project

except for the MINRES solver which was written by U. Villa[26] and the Alembic Exporter

which was originally written for a previous project.[27] A few libraries were also used including

OpenMP for simple parallelisation, and Eigen for vector and matrix calculations as well as the

Conjugate Gradient and Singular Value Decomposition solvers. The following sections outline

the design of the program and the Houdini interface, as well as giving a detailed description of

the implementation of the most important simulation steps.

4.1 Design

The implementation of the Material Point Method involved a large number of steps as described

in the previous chapter; hence a great deal of thought was necessary when designing the program.

The main consideration in the implementation was to produce a correct simulation and create

a program which would be fairly easy to understand, thus allowing for future improvements.

Optimisation of speed and memory usage was a secondary consideration; although the initial

design gave some thought to this, a great deal has been left for future work. Another goal was

to make the code extendable so other functions could be added later, for example the collision
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detection section which was written to allow for level sets to be easily included in the future.

The implementation was originally separated into 11 classes, see fig. 4.1, of which, ReadGeo

and AlembicExport were used for the framework around the simulation to import and export

simulation data to Houdini, OpenGLWindow was used to visualise the simulation using OpenGL,

and MathFunctions was used to contain extendable mathematical calculations or solvers such as

the cubic B-Spline calculations and the Conjugate Gradient solver. The remaining classes were

directly involved in the actual simulation.

Figure 4.1: Original class diagram

4.1.1 Simulation Controller

This class controls the simulation by communicating with the emitter and grid in turn to preset

the particles, perform calculations on the grid and update the particles. It also controls the read

in of the simulation parameters from file and allows the results to either be rendered out using

the OpenGLWindow or by exporting using Alembic.
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4.1.2 Particle

The particle class, fig. 4.2, stores the history dependent simulation data, such as positon, velocity

and deformation gradients. This way they represent the deformed material for rendering.

Figure 4.2: Variables and functions in the particle class

4.1.3 Emitter

This class, fig. 4.3, was included to simplify the extension of the program to simulate more than

one material in a scene. Hence, it contains the material parameters such as the Lamé constants

and the heat constants, as well as a list of all the particles making up the material.
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Figure 4.3: Variables and functions in the emitter class

4.1.4 Grid

The grid class, fig. 4.4, makes up the Eulerian grid, in this case a staggered MAC grid. Since

this is a background grid used to perform the calculations, it only contains a small number of

variables, mainly, lists of cell centres and cell faces. Instead, it has a large number of functions

which perform the calculations assigned to the grid.
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Figure 4.4: Variables and functions in the grid class

4.1.5 Cell Centre and Cell Face

The cell centre and cell faces, fig. 4.5, store some data to facilitate the calculations, however,

all values are reinitialised at the beginning of a time step such that the grid is only used for

calculations. In the implementation, it was chosen to reinitialise the values of the cell variables

instead of deleting and regenerating each cell as this would require memory reallocation which

might slow down the simulation.
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Figure 4.5: Variables stored in the cell classes

4.1.6 Interpolation Data

This class, fig. 4.5, was created in an attempt to increase the efficiency of interpolating data to

and from the grid. Through the use of this class, a grid cell knows which particles are affecting

it and the respective interpolation weights.

Later in the project it was realised that it would be much faster to calculate the interpolation

weights on the go and to do all interpolations of data between the particles and the grid by

looping over the particles. This new setup was implemented in the last couple of weeks of

the project and lead to the introduction of several grid functions with a name ending in New,

however, the overall class diagram, fig. 4.1, did not change.

4.2 Houdini Interface

The Houdini interface was intended to provide a simple user interface for setting the various

parameters necessary for the simulation and to set up the particles which make up the material.

It should also read in the Alembic file containing the final simulation.

The user interface was set up through the use of a Digital Asset (HDA) which contained a

selection of nodes which would add detail and point attributes to a set of particles. The particles
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were initially set up by using a GrainSourceSOP , however, at a later stage in the project it was

realised that for a more accurate performance the material should be sampled with at least 8

particles at random positions within each non-empty grid cell. This was done by creating a box

representing the bounding box for the simulation which the user can move and scale. The box

is then split into cells based on the number of grid cells provided by the user and particles are

generated at the centre of each cell using VEX code. It is important to note that the number

of cells given in the HDA is the number of cells along one edge and that two cells will be added

to this to produce a single layer of cells outside the bounding box for collisions. Hence the total

number of cells in the grid will be as follows

Ntot = (Nuser + 2)3 (4.1)

where Ntot is the total number of cells in the grid and Nuser is the number of cells given by the

user in the HDA. Once the grid particles have been generated and an object to be turned into

particles is provided, the HDA performs a level set calculation giving each grid particle a signed

value depending on whether it is inside or outside the bounds of the object. For each cell centre

particle that is found to be inside the object, a set number of particles are generated at random

position within the bounds of that grid cell. The number of particles inside each cell can also

be set by the user to give denser objects.

Another important user parameter is the V oxelSize which tells the level set node how finely it

should sample the geometry. This parameter and the number of grid cells will have to be altered

to give the resolution required by the user; a larger number of grid cells and smaller V oxelSize

will give higher resolution.

Once the particles are satisfactory and the simulation parameters have been set, the file must

be saved out and the name of the simulation file in the C++ program has to be modified

before the simulation can run. As a future improvement a function should be scripted which

will automatically save to file and run the program by the push of a button in Houdini, or,

ultimately, the entire C++ program should be turned into a plug-in solver.

Once the simulation is running and the export is turned on, the AlembicExport class stores the

particle position to file. At this point, it has not been possible to store user-defined parameters
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such as particle phase or temperature so these can be used in Houdini.

4.3 Implementation of the Main Algorithm Steps

4.3.1 Preset Particles

There are several steps taken to preset the particles at the beginning of a time step.

The velocity is set to previous velocity and the new velocity is set to αvp, where α = 0.95, so

that the velocity can be updated from the grid as a mixture of PIC and FLIP contributions,

see section 4.3.8. The velocity interpolated to the grid is then technically the previous velocity.

The same is done for temperature.

In case the particle is fluid, the deviatoric component of the elastic deformation gradient is

removed by setting FEp = J
−1/3
E I as outlined in section 3.3.2.

The plasticity contribution is calculated following the steps given in section 3.1.3.

The Lamé coefficients are updated according to eq. 3.11 where the hardening constant ξ is a

user-defined parameter. To avoid these values getting too big or too small, they are clamped to

threshold values of 0.1 and 10. These thresholds are arbitrary and might need to be changed to

improve the simulation. In case the particle is fluid, µ is also set to zero.

The splitting correction is then applied to FE = J
1/3
P FE and FP = J

−1/3
P FP such that FP is

purely deviatoric.

Finally, the values of J
−1/d
E FE , RE , SE , and

dΨ̂µ
dFE

are calculated to be used in the calculation of

the deviatoric forces.

4.3.2 Interpolation from Particle to Grid

In the old setup, this step was done in two sections. First findParticleContributionToCell

loops over all the particles, determines which cell the particle is in and then loops over the

nearest and second nearest neighbour cells. That is, it loops over i,j and k increments of -2 to

+2. For each of these cells, the cubic B-Spline is calculated, and if unlike zero, calculates ωip

39



for the tight Quadratic Spline and ∇ωip for both interpolation functions. These values, along

with a pointer to the particle, is then stored in the cell centre and faces. Once all particles have

been checked, the transferParticleData function loops over all cells in the grid and, for each

cell, loops through the InterpolationData and adds the contribution of that particle to the cell

according to eq. 3.17.

In the new setup, this is performed by one function; interpolateParticleToGrid which loops over

the particles 3 times; first, it calculates the mass of the cell centre and faces, second, it transfers

the cell density back to the particles, and third, it interpolates the particle data following eq.

3.17. The second step is only done for the first time step of the simulation as the particle density

remains constant. In the current setup, the third loop also calculates the deviatoric forces and

the components of the A and B tensors for the intermediate velocity calculation. Although this

reduces the total number of loops and the number of times the weights have to be calculated,

this setup is fairly convoluted and should possibly be separated out as its own function.

4.3.3 Classification of Cells

In this step, the state of the cell centres and faces is set to be either Colliding, Empty or Interior.

It is done by classifyCells or classifyCells New and separated into two parts; first determining

which cell faces are colliding and then setting the state of the cell centres and remaining cell

faces.

In the current implementation, only the cells making up the bounding box are set as colliding

by checking the indices of the cell faces, however, in future, this section of the code could easily

be exchanged for a function which performs level set collisions.

To determine the state of the cell centres, the function loops over all cells and checks whether

the surrounding 6 faces of a cell are colliding. If one of the faces is not colliding, then the cell

centre is set to interior if it and all its surrounding faces have mass, and empty if not. The

remaining faces are also checked and if they are not colliding, they are set to interior or empty

depending on whether they have mass. The function then skips to the next cell in the loop.

As seen in the previous chapter, the velocity, pressure and temperature calculations involve

division by either density or mass. It was found that this could lead to inaccuracies when
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the cells were affected by a small number of particles. Hence, in an effort to prevent this, a

noParticlesThreshold variable was introduced such that a cell centre will be set to interior if and

only if it and all its surrounding faces are affected by a total number of particles greater than a

threshold number.

The temperature of the empty and colliding cells is also set in this step. In the program, there

is a heating element at the bottom of the bounding box. Hence, the temperature of these cells

is set to the heatSourceTemperature, whilst all other colliding and empty cells are set to the

ambientTemperature. As a future improvement, the velocity at the colliding cell faces should

probably also be set in this step to reduce the number of loops done in the simulation.

4.3.4 Deviatoric Force Calculation

This step involves calculating the deviatoric force based on eq. 3.26. To prevent the need

to calculate
dΨ̂µ
dFE

several times for the same particle, the calculation of
dΨ̂µ
dFE

is included in the

presetParticleForT imeStep function. That way, the grid cell only has to retrieve this value

and multiply it with the remaining components, such as eα and ∇ωiαp, to calculate fiα which

is done by calcDeviatoricForce.

The deviatoric force is then used to calculate the components of the B vector for the explicit

or implicit integration. This is done by calcBComponent DeviatoricV elocity which solves eq.

3.33. In the new setup, the A and B tensors for the deviatoric velocity calculation are stored

on the grid, one for each of the face directions and the B components are calculated directly in

the interpolation step.

4.3.5 Explicit and Implicit Time Integration

The time integration is performed by either explicitUpdateV elocity or implicitUpdateV elocity

depending on which integration method is chosen. For both methods, a stick collision is enforced

by setting the updated velocity to zero at colliding cell faces.
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Explicit Integration

The explicit time integration loops over all cells, and for each non-empty cell face, sets the face

velocity equal to the B component for that cell.

Implicit Integration

The implicit integration has been implemented for both setups but have not been tested enough

to be used at the moment. This is because the calculation of the A matrices in the old setup

was too slow, hence the new system first had to be implemented to achieve a speed-up which

would allow testing.

In the old setup, two nested loops over the cells in the grid are used to go over the i and j indices

of A. The interpolation data of cell i and j are then compared to see if they have any particles

in common. This was first done by comparing every particle pointer in the first cell with every

particle pointer in the second cell, however, as this would be slow for cells containing a large

number of particles, a search function; searchCellsForCommonParticle, was implemented to

speed this up. Ultimately, this setup was scrapped as the calculation times were too long.

In the new setup, the calculation of the A matrix components is included in the loop over

particles in the interpolation step. For each particle, the nearest and second nearest neighbours

to the cell containing the particle are looped over. For each of these cells, j, Ap is calculated

according to eq. 3.34b and a nested loop over the same cells is set up to give cells i. For each

of these cells,i, that are non-empty, the variables belonging to this cell is used to calculate Aijp

according to eq. 3.34a. This is then added to A(i,j). This way, Ap only has to be calculated

once for each column. The calculations are done for each of the face directions to create A X,

A Y and A Z.

As the A matrices stored on the grid are set up to contain the total number of cells, there will

be rows of all zeros as empty cells are not calculated for. This means that the matrix is singular

and the solutions can be inaccurate. To prevent this, the matrices are looped over before they

are solved and for each diagonal that is zero, a value of 1 is inserted. However, this might

still give inaccurate solutions, and in future, these matrices should be reduced to only contain

non-empty cells.
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The linear solver used for the implicit integration is a MINRES solver written by U. Villa[26]

which can solve symmetric semi-definite systems and has proven to give accurate results against

test systems. A slow but general linear solver from the Eigen library is also used to solve

the linear system in eq. 3.39 to determine δRE . This linear solver was chosen because the

characteristics of the linear system was not known, however, since it is small, a slow but general

solver seemed to be a good choice.

4.3.6 Pressure Calculation

The steps of the pressure solver were implemented in projectV elocity.

First, the face control volumes of the interior cells is calculated to determine the cell face

densities. In case the cells adjacent to the upper faces of the cell are empty or colliding, the

densities of these faces are also calculated to be used by the interior cell.

The A matrix and B vector are then set up. In the current implementation, these are set to

contain the total number of cells, but should in future be reduced to only contain the interior

cells.

The function then loops over the interior cells to calculate the B components, using the cell

faces on either side of the cell in question, and the A components of the row belonging to that

cell. The A components are calculated by finding the indices of the cells adjacent to the 6 faces

of the cell. Then, depending on the state of these cells, their A components are set to − ∆t
h2ρiα

if

interior, and zero otherwise. Unless the neighbour cell is colliding, ∆t
h2ρiα

should also be added to

the diagonal component for this row. This way the Dirichlet and Neumann boundary conditions

are enforced.

As for the implicit integration, ones have to be inserted at the zero diagonals such that the A

matrices are not singular. The linear system is then solved using the Conjugate Gradient solver

from the Eigen library.

Finally, the projected velocities are calculated according to eq. 3.29 where the pressures of

interior cells are taken from the solution of the pressure solve, the pressure for empty cells are

set to zero and the pressure of colliding cells is set to be the same as the interior cell so the
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central gradient of pressure is zero at that face.

4.3.7 Temperature Calculation

The temperature calculation is implemented almost the same way as the pressure calculation.

The only differences are that the face densities are not required and that the Dirichlet condition

is used for colliding cells and the Neumann condition for empty cells. That is, the diagonal A

component is reduced for each neighbour cell that is empty, not colliding. The system is again

solved using the Conjugate Gradient solver, but the solutions can be directly inserted as the

whole calculation is done for cell centres only and does not involve cell faces apart from the heat

conductivity constant which, in the current implementation, is the same in all face directions.

4.3.8 Interpolate from Grid to Particle

The interpolation from grid to particle follows the PIC/FLIP mix in eq. 3.18-3.19. In the old

setup, the cells are looped over, and for each cell the particles contained within it are updated

using their corresponding tight Quadratic stencil values. In the new setup on the other hand,

the particles are looped over, and for each particle, the nearest and second nearest neighbour

cells are looped over. For each cell and particle, the interpolation weights are calculated and

the particle values updated. Due to the tighter stencil, it should not be necessary to loop over

more than the nearest neighbours as seen in fig. 3.2, however, time did not allow for this to be

verified so at the moment it loops over the same number as the cubic B-Spline.

4.3.9 Update Particles

The final step is called by the emitter and lets all particles update independently. In this step,

the elastic deformation gradient is updated from the velocity gradient following the geometric

series of the exponential as described in section 3.5.1.

Phase transformations are also included by checking whether the current and previous temper-

ature lie either side of the transition temperature. If so, the current temperature is set to the

transition temperature. Otherwise, if the previous temperature is equal to the transition tem-
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perature, then the difference between the previous and current temperatures is used to calculate

the heat which is added to the buffer (or subtracted if temperature is decreasing). Once this

is done, the value of the buffer is checked. If equal to the latent heat, the particle is set to

fluid and the current temperature is left as is. If the buffer is empty, the particle is set to solid

and the current temperature is again left as is. Finally, if the buffer is inbetween, the current

temperature is set to the transition temperature.

The new position of the particle is then calculated and checked against the bounding box. If

inside, the new position is stored, if outside, the position is clamped to the closest point on the

bounding box. The particles are now ready for the next time step.
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Chapter 5

Results and Discussion

Due to the large scope of the project and the fact that it was difficult to limit the project and

still get good visual results, the final results are not as was hoped at the beginning of the project.

In hindsight, the initial expectations might have been too great and the project too big for the

time given. However, the final results show some of the wanted effects even if stability was not

acheived by the deadline.

5.1 Final Results

The final render, vid. finalRender, gives the impression of a piece of melting chocolate as the

object slowly collapses and spreads to the sides of the bounding box. The user-variables were

set as displayed in fig. ??. The corresponding temperature update, vid. tempUpdate, made

it seem that this was taking place due to melting, however, on closer inspection it turned out

that a similar effect takes place even when the object is completely solid. Still, there is some

difference in the viscosity as seen in vid. solidVsFluid. To prevent the solid from collapsing,

the Lame coefficients were increased to µ = 1 · 106 and λ = 1 · 109 to make the object stiffer.

This altered the behaviour as expected, see vid. stiffSolid, but the simulation became more

unstable with certain particles ”flying off”. With larger increases, the simulation broke down

completely. However, the results show that the force calculations are somewhat correct as the

overall behaviour is as expected.
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(a) Grid and object.

(b) Deformation settings

(c) Temperature settings

(d) Time settings

Figure 5.1: Simulation paramterers for final render.

Another part that seemed to give correct results was the temperature calculation and phase

change. As seen in vid. tempUpdate and phaseUpdate, the heated ground slowly increases the

temperature of the object and causes the phase to change.

Some of the main issues that were not resolved within the time span of the project includes the

pressure calculation update, the errors that occur in the new setup and the overall stability of
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the final simulation. These problems will be discussed in the following sections.

5.2 Old and New Interpolation Setup

As mentioned in the previous chapter, a new setup for the interpolation steps was implemented

in the last two weeks of the project. It was initially done to allow the implicit integration step

to be included without too much increase in computation time. Due to the large number of

changes in the overall code, a great deal of time was spent trying to gain the same results as

with the old setup. This lead to the discovery of errors in the calculation of the interpolation

weights, especially ∇ωiαp which did not approach zero for the same values as ωiαp. However,

time did not allow for the pressure step to be properly reviewed and hence there are still errors

leading to an overall increase in grid velocities with time, and ultimately causing the simulation

to break down.

The old setup was the one used to produce the results seen in the accompanying videos. However,

a couple of tricks were used to achieve these results. First, the pressure values are clamped to

zero to avoid the inclusion of negative pressures. Secondly, a lower threshold value was set for

interior cells such that only cells affected by a number of particles greater than the threshold

would be set as interior. Thirdly, ones were not included at the zero diagonals of the A matrices

for the pressure and temperature calculations. These tricks were removed in the new setup in

an effort to produce a more accurate code.

5.3 Instabilities

The main problem encountered in this project was instability. Often a change in the simulation

variables would result in the simulation crashing or displaying unexpected results. In fact, the

new setup did not even reach a level where a given set of simulation conditions worked. There

may have been various reasons for this, ranging from small coding errors to problems with the

stability of the implemented equations.

As mentioned, the pressure step seems to be one of the main points of instability. This could be

due to time constraints not allowing for this section to be thoroughly debugged. However, some
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of the errors occurring seemed to be based on the mass, and hence density values, ranging from

very large (103) to very small (10−10). Initially, this was thought to be due to the particle set up

in Houdini, which is why the new HDA was developed. However, when tried with the new HDA,

it was found that whilst the HDA can ensure that there is at least 8 particles in each cell, it

does not ensure a minimum number of particles affecting each cell. Hence, for the current HDA,

a number of 2-3 particles per cell gave better stability than 8. In future, this should probably

be improved upon by including a larger number of particles at the surface than in the centre of

the object.

Another attempt included altering the pressure and temperature equations, eq. 3.27 and 3.32, to

be multiplied by density or mass, as opposed to divided by. This gave a reasonable improvement

to the temperature calculation by reducing the number of iterations made by the Conjugate

Gradient solver and making the temperature increase more uniform. However, no noticable

effect was seen on the pressure calculation. In fact, it might be that the multiplication was

not mathematically correct due to the densities being sampled at each face and not having an

overall value. Hence, the original equation was used in the new setup. In addition, A. Stomakhin

suggested that the central gradients used would not be correct for the MPM setup and that a

variational projection[28] should be used instead. Some investigation was done into this but in

the end it was decided that there would not be enough time to implement this correctly.

The overall stability might also be improved by reducing the time step or completing the imple-

mentation of the semi-implicit time integration. In fact, Klar et. al[21] used time steps as low

as 10−4 for explicit integration schemes and 10−3 for semi-implicit.

Finally, a possible cause of instability could be the interpolation steps as the APIC method was

not included. In the article by Klar et. al[21] the difference between APIC and FLIP is shown,

as reproduced in fig. 5.2. From this it is clear that the FLIP interpolation is fairly unstable

for the MPM technique and it could be that this is causing some of the instabilities in this

project as well. Additionally, it was suggested by A. Stomakhin that in the case of the current

interpolation setup, the particle positions should be updated directly from the grid velocities.

Again, time did unfortunately not allow for this to be attempted.
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Figure 5.2: Sand simulations with APIC on the left and FLIP on the right. The figure clearly
shows that APIC provides much higher stability than FLIP. Reproduced from Klar et. al[21]

5.4 Problems and Questions

Throughout the project, a large number of problems were encountered due to the lack of litera-

ture on this subject. The fact that the MPM method was first used in computer graphics in 2013

meant that only a few papers excist. Hence, in cases where the article on melting simulation[22]

failed to fully explain an equation or implementation step there were few other resources avail-

able. Some of the information detailed here was in fact not presented until SIGGRAPH 2016,

implying that it was not available until half way through the project. This especially concerns

the importance of the APIC method, the requirements for the interpolation weights and the

issues in the pressure calculation. A large amount of help was obtained from the MPM course

at SIGGRAPH[23] and an email from A. Stomakhin. Had the help from A. Stomakhin been

available at the beginning of the project, it might be that the final result would have been better.

However, the project did provide an insight into a new and exciting field within physically-based

simulation and could possibly produce a stable and accurate simulation with time.
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Chapter 6

Conclusion and Further Work

The Material Point Method has been introduced to the field of computer graphics over the

recent years and could become a very important method for simulating deformable bodies. Due

to the physical accuracy of the model, it is extensive and not the simplest to implement, hence

the project did not succeed in aquiring a stable melting simulation. However, certain steps were

completed and showed promise, such as the temperature update and the deformation taking

place as the object meets the ground. In future, I would probably start the project from scratch

as the project has allowed me to deepen my understanding of the field and the method, hence

some of the code now seems convoluted and possibly inaccurate. Still, with further debugging of

the current implementation, a modification of the particle setup in Houdini and by using APIC

for the data transfer, I believe the melting simulation would be achievable.
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