
Art-directing procedural vegetation in Houdini
using a space colonization algorithm

Marta Feriani
s4900092

19th August 2017

MSc Computer Animation and Visual Effects

1

Acknowledgements
I would like to thank my supervisors Jon Macey and Phil Spicer for sharing
their knowledge and offering guidance during the development of this project.

Another special thank comes to Yannis Ioannidis and Michail Agoulas for
being extremely patient and supportive during hours of troubleshooting and
brainstorming.

I would be eternally grateful to all my fellow students at MSc CAVE for the
good advice, the honest feedback, the good food and the good time that made
this year unforgettable.

Last but not least I would like to thank my family: my mother for always
being supportive and pushing me every day to become the better version of my-
self and my brother who has always offered his time, knowledge and experience
to help me succeed since we were children. I hope that one day I will be able
to reciprocate what you did for me through all these years.

2

Contents

Acknowledgments 2

1 Introduction 8

2 Related Works 9

3 Technical background 10
3.1 Overview . 10
3.2 Space Colonization Algorithm . 11

3.2.1 Definitions and axioms . 11
3.2.2 Steps . 12

4 Implementation 12
4.1 Wrangle Node . 13
4.2 Data structure . 14
4.3 Parameter initialization . 16

4.3.1 Tree crown . 16
4.3.2 Attraction Points . 17
4.3.3 Roots . 18

4.4 Space colonization . 19
4.4.1 Finding influencing attraction points 20
4.4.2 Set fertility for the tree nodes 22
4.4.3 Calculate new born direction 23
4.4.4 Creation of the new node 23
4.4.5 Remove attraction points 25
4.4.6 Preparation to next iteration 25
4.4.7 Extra controls . 26

4.5 Linking the points . 26
4.6 Cross section evaluation . 26

4.6.1 Ramp scale . 27
4.6.2 Leonardo’s Rule . 27
4.6.3 Special case: trunk . 28

4.7 Trunk Skinning . 31
4.8 Leaves . 32

5 Problems and attempted solutions 32
5.1 Determine S(v) set . 32
5.2 Branching collisions . 33

5.2.1 IsoOffset: from polygons to volumes 33
5.2.2 Scaling . 33

6 Performances 34

3

7 Conclusions 35
7.1 Future work . 37

Appendix 38

L-System 38

Fractals 39

Angle correction 39

Flowers 40
Stem . 40
Stamen Base . 40
Stamen Filaments . 41
Petals . 41

References 42

Code 45

List of Figures
1 Dendro . 8
2 Branching pattern by Wang et al (2008) 9
3 Space Colonization Algorithm by Runions et al (2007) 13
4 Wrangle node interface . 14
5 Data Structure (Geometry Spreadsheet) 15
6 Collision Object . 17
7 Attraction Points density distribution 18
8 Roots initialization . 19
9 Influencing nodes network . 20
10 Visualization of the influencing nodes 21
11 Newborn network . 25
12 Colonization status after 0, 5, 10, 15, 20, 30 iterations 26
13 Skeleton creation . 27
14 Width setup network . 28
15 Ramp scale . 29
16 Leonardo’s scale . 30
17 Ramp scale and Leonardo’s scale for custom trunk structure . . . 31
18 Leaves scattering . 33
19 Artefacts caused by the IsoOffset node 34
20 Scaling chopped branches . 34

4

21 Tree object avoidance . 35
22 Tree with conical crown shape . 36
23 Vine-like growth . 37

List of Algorithms
1 fast_search pseudo-code . 22
2 Newborn direction . 23
3 Initialization of newborn tree node 24
4 Set newborn id . 24
5 Leonardo’s Scale for loose roots 28
6 Trunk @width initialization . 29
7 Trunk @width non-recursive initialization 30
8 Leonardo’s Scale for roots based on trunk structure 31
9 distance_from_bounding_object 45
10 radial_distribution . 45
11 AP_height . 45
12 vertical_distribution . 46
13 trunk_kids . 46
14 trunk_parent . 47
15 trunk_type . 47
16 trunk_generation . 47
17 trunk_id . 47
18 create_AP_len_nodes . 48
19 find_potential_influencing . 48
20 fast_search . 49
21 find_neighbour . 50
22 set_n_dead_probability . 50
23 set_fertility . 51
24 set_n_dead_distance . 51
25 newborn_dir . 52
26 fix_newborn_dir functions . 53
27 fix_newborn_dir main . 54
28 create_new_node functions . 55
29 create_new_node main . 56
30 set_id . 57
31 update_parent . 58
32 set_attr_dead . 59
33 reset_AP_dir_fertile . 59
34 connect_points . 60
35 trunk_width . 60
36 transfer_width . 61
37 ramp_scale . 61
38 ramp_for_trunk functions . 62
39 ramp_for_trunk main . 63

5

40 roots_leonardo . 64
41 from_trunk_leonardo functions 65
42 from_trunk_leonardo main . 66

6

Abstract

Vegetation modelling plays a key role in shots composition. Achieving
a believable and nature-like result has proven to be a tedious and time
consuming task for artists. To overcome this issue we present a Houdini
tool for trees modelling. Through specifying different parameters’ values
the tool will generate a variety of tree shapes. Tree structures are achieved
using the space colonization algorithm by Runions et al (2007). Model
parameters are directly mapped onto visual characteristics and offer an
appropriate control over the silhouette and branching structure. This
project shows that the toolset can produce a reasonable variety of trees.

7

1 Introduction
Vegetation plays a key role in the composition of a shot. The arrangement of
trees and the choice of specific species can help conveying a particular mood
and help defining the staging of a particular scene. The aim set for vegetation
can vary greatly between different movies. For The Jungle Book, for example,
MPC (2016) built a sophisticated pipeline to build visually rich and realistic
environments relying on both photogrammetry and 3D software as SpeedTree
and Maya. Even though the aim was high quality realistic look, the pipeline
also integrates tools (Melson et al (2016), Cieri et al (2016)) that allow for art-
directing such vegetation. The final look achieves both goals of realism and
artistic staging of vegetation.

Sometimes, for animated movies, realism is not such as a primary target
as the art-directability is. For the Last Bastion, animated short by Blizzard
Animation (2017), the studio designed a complete toolset to handle vegetation
scattering and simulations using plant models created in Maya.

In many animated movies from Disney, as well, vegetation plays a key role
throughout the story. Zootopia’s mesmerizing landscapes were built with Disney
in-house procedural vegetation modelling tool Bonsai (Keim, 2016). Their tool
managed to produce variety not just across species but within the same tree
or bush specie as well. All vegetation models are also able to interact with the
main characters or with external forces such as wind.

Being the aim of this project the sole modelling of procedural vegetation, in
particular trees and with a specific preference for art-directability over realism,
the main inspiration was found in Tangled (Shek, 2010). For the production of
this animated movie, Disney developed a whole new engine (Dendro Engine)
that uses an artist sketched branches hierarchy and a rough shape for the crown
to produce procedural tree modules. Unfortunately, no further details are given
about how Dendro’s inner algorithm calculates new branches. This project aims
to reproduce a tool that offers similar features to Disney Dendro Engine.

Figure 1: Dendro Engine by Disney

8

2 Related Works
Modelling natural shapes such as trees is difficult because of the richness of
small details. The history of 3D tree modelling starts with a recursive al-
gorithm proposed by Honda (1971). The recursive structure relies on a few
geometrical attributes such as branching angles and length ratio between con-
secutive segments. Honda also studies the nature of tree branching addressing
the monopodial branching pattern shown in figure 2 as a special case for the
dichotomous branching for structures that are parallel to the gravity. Honda’s
recursive approach has been at the core of many later modelling algorithms.

Figure 2: Branching pattern by Wang et al (2008)
(a) sympodial branching (binary tree), (b) sympodial branching (trinary tree),

(c) monopodial branching

Lindenmayer (1996) introduced a string rewriting system know as L-System
to describe cellular interactions. An L-System (section §7.1) is a formal gram-
mar that consists of an alphabet, production rules and an axiom. The alphabet
is a collection of symbols that can be used to produce strings. Production rules
expand each symbol or string into some larger string. The axiom is used as
starting point for the production. The string produced by iterating over the
axiom can be later interpreted as geometric commands. Prusinkiewicz (1996)
applies Lindenmayer rewriting system to plants structures adding few extensions
such as context sensitivity and random variations. L-Systems produce good res-
ults but the self similarity and the production patterns remain clearly visible in
the final model. To overcome the pattern visibility, literature (Prusinkiewicz,
Lindenmayer 1996) has introduced stochastic L-System which involves the se-
lection of a production rule from the set based on a probability value. Other
improvements on L-Systems involve the definition of a container volume for
the L-System to grow into (Ijiri et al, 2006). Given the volume and an initial
segment, the system will automatically set the depth for the recursion.

Oppenheimer (1986) also relies on Honda recursive approach by developing
natural patterns using fractals section §7.1. The fractal specification is based
on parameters such as branching angles, branch-to-parent size-ratio and branch-

9

per-stem number. The fractal method by Oppenheimer was found to be affected
by severe self similarity pattern visibility which gave the final shape a machine-
made look. To overcome this problem Weber and Penn (1995) improved the
recursive model by adding randomness and organized functions to affect the
tree development.

The interpretation of a tree as a recursive structure is justified by the pro-
cess of tree development but plays a smaller role for fully grown trees. Buds
may have different fate such as growing to major limbs, being shed or remaining
small twigs. In the architecture of a mature tree, therefore, the regularity of
the recursive branching is mainly lost, overridden by subsequent development
(Weber and Penn 1995). Furthermore, finding rules and fitting parameters for
recursive structures is a non trivial task. A small variation on the initial condi-
tions will propagate exponentially through the generations becoming more and
more evident, to the point that trying to tweak the existing rules to produce
small variations on the produced model will often lead to a drastically different
whole new structure. Given the recursive nature of both L-System and fractals,
even the use of random variables cannot completely overcome self-similarity is-
sue and the resulting architectures give the machine-made impression (Rodkaev
et al, 2003).

New techniques for 3D tree modelling find common ground in the Runions et
al (2005) approach developed for leaves venation. Rodkaev et al (2003) inherit
Runions approach and applies it to a new algorithm based on particles that
produces realistic leaves venation on a 2D space or a branching structure in a
3D space. Rodkaev populates a shape or a volume with particles. Each particle
will move towards a predefined goal position merging with neighbours particles
when the distance is smaller than a certain threshold. The trail for the particles
trajectories generates the tree graph.

3 Technical background
Similar to Rodkaev et al (2003), Runions et al (2007) suggest a space coloniza-
tion algorithm as an extension of the 3D leaves venation by Runions et al (2005).
Unlike Rodkaev’s, Runions’ branching structure is formed in a base-to-leaves or-
der. Each iteration of the algorithm produces new elements that expand the
tree structure formed in the previous steps. This approach results not only to
be adaptive to obstacles and neighbour plants, but also provides controls over
the growth process that results in a wide variety of tree structures.

3.1 Overview
The algorithm proceeds as follows. A 3D envelope for the tree crown is specified
as input. Its volume is seeded with a set of attraction points. The attraction
points influence the growth of the tree structure by signalling the availability
of empty space within the tree crown envelope. A single point is specified as
input and acts as the base of the tree. Having the attracting points and the first

10

tree point, the tree structure is generated as an iterative process. Each iteration
produces new tree points in the direction of the neighbouring attraction points
to extend the existing tree structure. The algorithm may stop after a user-
defined number of iterations. If let running, the algorithm will either stop when
there are no attraction points close enough to the tree to influence its growth
(i.e. no tree points are within a threshold distance, called radius of influence,
from the attraction points) or when all attraction points have been reached by
tree points.

Further manipulation involves subdivision and smoothing of the internodes
(branch that connects two consecutive nodes of the tree), skinning and scattering
of organs such as leaves, flowers or fruits.

3.2 Space Colonization Algorithm
Competition for space plays a fundamental role in the colonization algorithm
and determines the branching pattern for the tree structure. Before delving into
the details of the algorithm some definitions and axioms are needed.

3.2.1 Definitions and axioms

1. Every point the algorithm uses is either a tree node or an attraction point.
From now on we will refer to tree nodes with v and attraction point with
s.

2. N is the set of all the attraction points.

∀s, s ∈ N (1)

3. T is the set for the tree nodes

∀v, v ∈ T (2)

4. If we refer to p as a generic point in the algorithm

∄p | p ∈ N ∧ p ∈ T (3)

5. S(v) is the set of attraction points s that influence the growth of the tree
point v for the current iteration.

6. d(a, b) is the Euler distance between point a and point b

d(a, b) =
√
(a.x− b.x)2 + (a.y − b.y)2 + (a.z − b.z)2 (4)

7. di is the radius of influence which represents the maximum distance between
s and v so that s ∈ S(v)

8. dk is the kill distance. If ∃v ∈ T | d(s, v) < dk, then s is removed.

9. D is the distance between consecutive nodes of the tree

11

3.2.2 Steps

1. Define a 3D shape for the tree crown. Initialize the parameters N , di, dk,
D.

2. Populate the 3D envelope with attraction points using a certain random
distribution.

3. Define at least one tree node to act as the base of the tree structure.

4. Each attraction point s ∈ N may influence the tree node v that is closest
to it. The influence occurs if d(s, v) < di. For each s ∈ N , check if there is
any v ∈ T that meets the condition. More than one attraction point may
influence the same v tree point: all the attraction points that influence v
are gathered in the S(v) set.

5. For each tree node v ∈ T , if S(v) is not empty, a new tree node v′ is
created. The new tree node lies at a distance D from v in the direction
of the average of the normalized vectors towards the attraction points
s ∈ S(v)

v′ ∈ T (5)

d(v, v′) = D (6)

n⃗ =
∑

s∈S(v)

s− v

q s− v q
(7)

n̂ =
n⃗

q n q
(8)

v′ = v +Dn̂ (9)

6. Perform a check to test if any attraction points s ∈ N should be removed.
This happens if the following condition is true for at least one v ∈ T :

d(s, v) < dk (10)

7. repeat from steps 4 to 6 until the stopping conditions mentioned in sec-
tion 3.1 are met.

4 Implementation
The network for the implementation of the growth algorithm relies on the lay-
ering of simple rules that eventually lead to the creation of the complexity that
characterizes trees in nature. Houdini supports multiple scripting languages
such as HScript, Python and VEX. Being Python widely used as scripting lan-
guage and being a reality shared between many DCC software, it might seem the

12

Figure 3: Space Colonization Algorithm by Runions et al (2007)

most sensible choice. On the other hand, VEX scripting language is the Houdini
native language. VEX gives direct access to geometry data and provides a wide
variety of built-in functions optimized for best performances on the Houdini
geometry internal representation. In terms of performances, VEX has proven
to be faster than Python because it implements automatic multithreading while
Python does not have the same feature. Given the marked difference in per-
formance, VEX was used throughout this project.

4.1 Wrangle Node
The Wrangle node (SideFX, 2017) is the most present node type in the network
therefore it seemed only natural to give a brief explanation of how it works.

The Attribute Wrangle is a low level node that allows for the tweaking of the
geometry attributes using VEX code. Its capabilities correspond to the Attribute
VOP SOP. The main difference between the two of them is that Wrangle uses
a textual editor whilst the Attribute VOP SOP uses a visual network.

The node can edit the input geometry by changing or adding attributes. It
can also remove or create new geometry for example by adding points, linking
points together to create polygons and so on. The snippet runs on details or on
every point/primitive/vertex of the first input geometry. Using multiple sources
to the node it is also possible to access data from different geometry at the same
time. When having multiple sources, only the first input geometry will be passed
down to the next node of the network whilst the other input geometries will be

13

lost.
When the snippet affects the attributes of the geometry, these attribute will

not be available until the node is cooked. This often makes is difficult to pop-
ulate geometry attributes such as arrays within the same Wrangle node. For
this reason the implementation of particular parts of the colonization algorithm
might not seem the most straightforward or obvious way to approach the prob-
lem, but have been deliberately designed to overcome this particular issue.

Figure 4: Wrangle node interface

4.2 Data structure
The colonization algorithm, as presented in section 3.2, mostly relies on points
position. Each point has certain attributes to make it possible to create the tree
structure. The attribute @type divides the point set in two main categories,
respectively the tree nodes and the attraction points. Given the nature of the
algorithm, the total number of attraction points will decrease each iteration
whilst every new node that will be created will increase the count for the tree
nodes. To give a better visualization for this partition, the colour attribute @Cd
is initialized to 1, 0.5, 0 for the tree node and to 0, 0.5, 1 for the attraction points.

The aim of the algorithm is to create a believable branching structure to
reproduce natural trees. Stems might either grow in a single direction or fork
producing new stems. Older stems also grow thicker to balance the weight of
the younger stems. This branching pattern can be represented by an acyclic
graph data structure.

A graph is a finite collection of vertices and edges. Graphs are used to
model pairwise relations between object. The vertices, or nodes, represent the
objects while the edges are the relations. The different nature of the relations
leads to different kinds of graphs. In the case of a directed graph, each edge

14

has an orientation, from one vertex to another vertex. A path is a sequence
of edges. A node A is reachable by another node B if there exists a path that
leads from A to B. If for each node in the graph there is no path that connects
the node to itself, the graph is said to be acyclic. Being a graph a hierarchical
structure, it is appropriate to address relations between nodes as parent/child
relations. Each node is therefore aware either of its parent, its children or both.
In computer science relations between nodes are implemented by storing in each
node a pointer to its connected ones.

Figure 5: Data Structure (Geometry Spreadsheet)

The network developed for this project provides each tree node with two
attributes, an integer and an array, to store references to the parent and the
children respectively. Unfortunately, Houdini does not have pointers-like struc-
tures. The points of a geometry are stored in an array-like structure. The
@ptnum attribute refers to the index of the point in that array. When refer-
ring to a point using the @ptnum attribute, one can gain direct access to other
attributes, either built-in or custom, of that point. Unfortunately, being the
@ptnum ultimately just an index in an array, its value is not consistent through
the network: operations such as adding or removing points or merging together
two geometries may shift or offset the @ptnum value. Given the unstable nature
of @ptnum, building parent/child relation upon it did not seem to be a suit-
able choice. As a workaround, each tree node also stores a unique identifier
@id. Smaller @id values belong to older tree nodes while greater values identify
younger ones. When populating the @parent and @kids attributes, the refer-
ence to the other points will not be represented by @ptnum but by @id instead.
Having to rely on a custom attribute such as @id automatically implies los-
ing the direct access to the points granted by @ptnum. This greatly affects the
performances of the whole algorithm because, in order to find a node with a
specific @id, one has to cycle over each point of the geometry and check for a
match. In order not to loose this convenient feature of direct access, every time
the algorithm works on the tree nodes the Sort node is used to remap @ptnum
based on the @id value. This solution allows for a reliable hierarchy structure

15

while maintaining speed of access.
Another important information about the tree nodes is the growth direc-

tion and the length of the internode (the distance between consecutive tree
nodes). Storing this values makes it possible for a more detailed manipulation
of branching angles at a later time. Each point therefore stores a @growdir
attribute that holds the normalized growth vector that links the parent to the
node point position.

As a final step, each node also has two flags respectively for death and
fertility. The fertility flag signals if the node can produce a child in the current
iteration, and can therefore assume “non fertile” and “fertile” values in two
consecutive iteration. On the other hand, when the death flag is set to true
it determines an irreversible condition for the node: a node dies whenever it
reaches the maximum amount of children or in degenerate cases such as the
position of the child node being coincident with its own position.

As the information needed on a per-node basis are quite important in terms
of quantities, whenever an attribute is not needed any longer it is removed from
the geometry.

4.3 Parameter initialization
In order for the colonization algorithm to start, some parameters have to be set
such as the tree crown envelope, the attraction points position and the roots
points.

4.3.1 Tree crown

The network provides up to three different ways to specify the crown volume for
the tree. All of them take as an input polygonal shapes that are later converted
to a volume. In its very basic implementation, the user-specified tree crown is
converted to a volume using the IsoOffset node. The conversion is necessary
in order to populate the tree crown volume with the attraction points. Moving
from the base implementation, the user can specify a collision object for the
tree crown to interact with. This options makes it possible to simulate a tree
growth process where the final shape is affected by surrounding obstacles. The
collision object is first converted to a volume. To identify the viable area for the
tree to grow, the volume mix node performs a subtraction operation between
the two input volumes. The resulting volume is then used for the tree to grow.
Another option allows the user not to specify tree crown volume directly, but
it instead calculates the viable space for growth from a given object. The input
geometry is converted to volume twice: the first conversion replicates the input
geometry closely whilst the second one will inflate the volume with a user-defined
offset. The difference between the volumes will create a layer wrapped around
the initial object. This option can convey the illusion of a plant clinging and
growing finding support on an object, like vines do.

Unfortunately the conversion from polygon to volume can produce artefacts
due to the conversion method used by the IsoOffset node. Different workarounds

16

to this problem have been tried but none of them proved to be successful for all
kinds of input geometry.

Figure 6: Collision Object
Left side geometry objects, right side resulting volume.

4.3.2 Attraction Points

At early stages of the production, the volume obtained from the tree crown shape
was seeded with uniformly distributed attraction points. The resulting trees,
as described by Runions, show a uniform density in the branches distribution.
In many real trees and shrubs, however, the density increases near the crown
surface due to better light exposure. To achieve the same result, following
Runions suggestion, the attraction points in the network are seeded using a
user-defined density profile, function of the distance from the outer surface of
the tree crown. The steps to achieve such behaviour are explained below.

As a first step, the tree crown is seeded with attraction points using a uniform
distribution. A Wrangle node “distance_from_bounding_object” evaluates,
for each attraction point, the distance from the bounding object provided as a
second input to the node. The resulting value is stored to an attribute named
@dist. The Promote Houdini node is used twice to find respectively the max-
imum @max_dist and the minimum @min_dist value for the @dist attribute.
This information feeds a second Wrangle node “radial_distribution”: each
node’s @dist value is taken from its original range (@min_dist, @max_dist) and
re-scaled to its corresponding value in the new range (0, 1). The resulting vari-
able is linked to a user-customizable ramp. The y−value of the ramp represents
the probability for the attraction point to survive. A random number based on
the @ptnum of the current attraction point is calculated and compared to the
probability value. If it results to be less, the attraction point gets removed. The
ramp extends the potential of Runions idea by giving the users not only control
over the density near the crown surface but providing them with a greater art-
directability over the density of branches from the centroid of the tree crown
shape to its boundaries.

The same principles are used to define a second custom distribution that uses
the Y coordinate of the point position instead of the distance from the object (in
this case the nodes involved are called “AP_height” and “vertical_distribution”).

17

The newly generated attraction points are then initialized.

Figure 7: Attraction Points density distribution

4.3.3 Roots

The network provides three different ways to specify the roots for the coloniz-
ation algorithm. A user can either create single root points by specifying the
coordinates, input a pre-made set of points, or a trunk-and-branches curves
structure.

For the first two options the initialization of the nodes attributes follows
the same process. All the root points’ @parent is set to −1 to signal that they
do not have any parent. As said before, the colour @Cd is initialized to yellow
1, 0.5, 0, @kids is declared as an empty array, and @type is initialized to “node”.
The parameters @growdir, @n_dead, and @attr_dead are initialized to their
default values, respectively 0, 0, 0, 0 (meaning that the node is alive) and −1.

The initialization of some attributes such as @parent, @kids and @type dif-
fers in the case where a custom trunk structure is fed in the system. This kind of
structure already contains primitive information that links together points in a
precise hierarchy. The most likely scenario is that each branch is represented as
a curve primitive. The fork points of the structure will then belong to two dif-
ferent primitives at once, for example to both the trunk and a branch. The first
attribute to be initialized is the @kids array using the “trunk_kids” snippet.
This Wrangle node is encapsulated in a for loop nodes block that will iterate
on each primitive of the input geometry. The Wrangle will therefore process the
points of one primitive at a time. In the Wrangle interface, the snippet is set
to “run over details” so that the iteration process over the points is explicitly
declared in the code. The snippet starts by retrieving an ordered array of the
current primitive points. A for loop then iterates over this array reading the
point’s @ptnum value and assigning the next point in the array to itself as @kids
element. By using this approach, the snippet successfully handles specific cases
in which the children to the point belong to different primitives.

After having initialized the @kids attribute, the @parent is straightforward:
the “trunk_parent” Wrangle iterates over each point of the input geometry
regardless of the primitive they belong to. Each point will read its own @kids
list and proceeds to set itself as @parent attribute to these points. One can
refer to this process as “parent injection”. It is important to highlight that at
this stage the @id attribute described in section 4.2 has still not been initialized,
and the parent-children relation is still built on the @ptnum. It is also important

18

to understand that in this particular part of the network all the geometry being
processed belongs to the tree structure. The @id can be therefore initialized as
a plain copy of the @ptnum. Being @ptnum and @id coincident at this stage, the
initialization process described results to be correct. As a next step, the @type
has to be set. The implementation process makes sure that the user is given a
certain extent of controls over the choice of root points for the growth algorithm.
The network highlights as candidate roots all the points contained within the
volume of the tree crown shape. The user can then decide which of them to keep.
For the selected points, the @type is set to “node” while the remaining ones are
set to “trunk”. During the growth algorithm, only the nodes will interact while
the others will be lifeless. A final attribute @generation is initialized for all
root points regardless of whether they are single points or points selected from a
custom structure. This attribute plays a key role in a later part of the network
to set and scale the cross section of the branches according to their age.

Figure 8: Roots initialization
From left to right: custom trunk structure, root selection, conversion to points.

4.4 Space colonization
The space colonization main algorithm lies inside a dedicated subnetwork “growing_alg”.
This subnetwork mainly consists of a for loop that determines the number of
time the geometry is processed. Contrary to the stop conditions presented in
section 3.1, the loop will only terminate after a user-defined number of itera-
tions. It can happen that the user requires the algorithm to run more times
than the ones required to meet the stop condition. In this case, even though
the network will continue iterating, no new geometry is created. When running
the algorithm, the user has also control over the values for D, dk and di.

Before delving in the colonization loop, the Wrangle “AD_treepts” sets a
detail attribute over the geometry that specifies the total number of tree nodes
based on the @type attribute of the points. This is later used to produce the
@id for the newborn nodes.

At this stage as well, points with type “trunk” are filtered out of the growth
process and rejoined with the rest of the geometry when the process ends.

19

Shortly, at each iteration the colonization algorithm needs to first find the
set of attraction points (if any) that influence each fertile tree node, create
new nodes in the direction determined by the influencing attraction points, and
decide which attraction points will survive to the next iteration.

4.4.1 Finding influencing attraction points

The tree nodes and the attraction points are divided based on their @type
value. In order to keep the calculation as light as possible, a preparation step
is undertaken using the “find_influencing_attr” before finding the closest
tree node of each attraction point. The Wrangle receives as first input geometry
the set N of the attraction points and as second input the set T of tree nodes.
The node purpose is to isolate the attraction points that will influence the tree
growth for the current iteration from the inert ones. The snippet is set to “run
over details”. Iterating over each tree node, a function _setInfluencing()
is invoked. The function takes as an input a the position of the tree node.
Based on that position, the function retrieves all the attraction points that are
closer than the user-defined di distance. Every attraction point that satisfies
this condition is flagged as an influencing node. The set of influencing nodes is
therefore a subset of the set N of all the attraction points. Using the Blast node,
the influencing nodes are separated from the other inactive attraction points.

Figure 9: Influencing nodes network

The tree nodes and the influencing nodes are wired into the “find_neighbour”
subnetwork. Each attraction point only influences the tree node closest to it.
The search for the closest tree node is implemented in “fast_search”: the
Wrangle takes as a first input geometry the tree nodes and as a second input
geometry the influencing points. At this stage not only each influencing point
will look for its closest tree point but the sets S(v) are populated as well. In this
implementation the set is stored as a tree node array attribute @nbrs and will
contain the @ptnum for all the influencing points for which the node is the closest

20

Figure 10: Visualization of the influencing nodes

of the tree nodes. This operation can be computationally heavy, therefore the
following algorithm has been developed aiming to optimize such operations.

The algorithm is divided in three parts:

• an array closest[] is declared to have the same size as the total count
of influencing points. Starting from the index 0, the influencing point
with @ptnum 0 is processed. The point will search for the closest tree
node and will store its @ptnum value in the array. The process moves
to index 1 and processes the influencing point with @ptnum 1 and so on
until the closest[] array is completely populated. Given how the array
was populated, the indices of the closest[] array univocally identify the
influencing points.

• two new arrays, ordered_attr[] and ordered_closest[], are created:

– the argsort function applied to the closest[] array will return a
list of indices that, if applied to the closest[] will give a sorted
sequence in an increasing order. In this particular case, the indices
represent the influencing points. The newly created ordered_attr[]
array holds therefore a sorted sequence for the influencing points.

– the sort function applied to the closest[] will return a sorted array
in increasing order. This new array is ordered_closest[].

• ordered_attr[] now stores the influencing points, sorted by increasing
@id of the tree node they influence (stored in ordered_closest[]). The
algorithm now proceeds to locate the sets S(v) and store them in the

21

proper tree nodes. The sets are consecutive chunks of the ordered_attr[]
array. To tokenize it properly, the ordered_closest[] is used. A for loop
iterates over the length of the array. The value of ordered_attr[i] is
stored in a new temporary array nbrs[]. A check is performed to compare
the current element for ordered_closest[] and its consecutive one. If the
two do not match, it means that the end of the current set S(v) has been
reached. The temporary array is assigned as @nbrs attribute to the tree
node specified in ordered_closest[i]. The temporary array is cleared
for the next set.

Algorithm 1 fast_search pseudo-code

1 foreach influencing point
2 find closest tree node
3 append the value in an array
4
5 // each tree node can appear more than once.
6 sorted [] = sorted array , contains the closest tree nodes
7 sorted_attr [] = get indices sorted sequence
8
9 for(int i = 0; i < len(sorted); i++)

10 read i_th value of sorted_attr []
11 append to a support array
12
13 if(sorted [i] != sorted [i+1])
14 /the support array contains the full list
15 // of influencing point for the sorted [i] tree node
16 set support array as @nbrs list for sorted [i] tree node
17 empty support array for next tree node

The algorithm proved to be dramatically faster compared to its basic imple-
mentation. The reader can compare the performances by switching the input for
the switch node in the “grow_alg/find_neighbour” subnetwork. The approach
undertaken here also improved Runions algorithm by reducing the number of
computation required to achieve the result.

4.4.2 Set fertility for the tree nodes

Extending Runions’ algorithm further, the user can specify the maximum count
of branches that a node can generate, and from which generation to start the
branching process. This node gives a better control over the final tree struc-
ture as it allows to achieve a sparser result when reducing the count of chil-
dren per node. By choosing the generation from which to start branching, the
user can enhance the visual impact of the main trunk structure. The Wrangle
“set_fertility” operates over this constraints: the eligible nodes for the pro-
duction of a new tree node are flagged as fertile. Another check is here per-
formed: in the case the node has already reached the maximum count of children

22

allowed, the node is flagged as dead and becomes inactive for all the remaining
iterations of the colonization algorithm.

4.4.3 Calculate new born direction

The “newborn_dir” Wrangle runs over each tree point that is fed as a first
input geometry. If the node results to be fertile, the snippet proceeds to retrieve
the identifiers of the influencing points to that tree node stored in the @nbrs
array attribute. The set of all the influencing points is fed to the Wrangle as
a second input geometry. Having the identifiers for the influencing points and
the influencing points geometry as input, the algorithm can use the identifiers
as lookup keys to retrieve the position of the influencing points. The growth
direction for the future newborn is then calculated using equation (7). The
normalized equation (8) result is stored in the vector attribute @dir of the
tree node. This way, the parent node is in charge of holding all the information
needed to later create and initialize correctly the newborn nodes. Before moving
on to the next step of the network, the snippet checks for degenerate cases for
which the magnitude of the @dir vector is 0, which happens whenever the
@nbrs list of influencing points is empty. These nodes are declared dead and
their fertility flag reset to 0.

Algorithm 2 Newborn direction

1 foreach tree node
2 if node is fertile
3 fetch list of influencing points
4 foreach influencing point
5 direction += normalize (inf_point_pos - tree_node_pos)
6 new_direction = normalize (direction)

4.4.4 Creation of the new node

At this stage, the network has gathered all the information needed to create
the new generation of tree nodes. The Wrangle “create_new_node” runs over
each fertile node of the tree structure. The position of the new tree node is
determined and the point created using the addpoint() Houdini VEX func-
tion. The _initializeAttribute() function is then invoked to take care of
all the parameters of the newborn that will make it a viable new tree node.
The function takes as parameters the @ptnum of the newborn and the @ptnum,
@dir and @gen of the parent node. With these information it populates the
attributes for the newborn as described in 3. The colour is initialized as green
because the new node does not have any children yet. This information is later
used in the network to find the points on which to scatter leaves. The @id is
temporarily set to a default value and set to its proper value later on in the
network. Compared to Runions’ algorithm, the project offers a new approach.

23

Algorithm 3 Initialization of newborn tree node

1 attr_dead = -1;
2 Cd = {0, 1, 0};
3 fertile = 0;
4 generation = parent_generation + 1;
5 growdir = parent_dir ;
6 n_dead = 0;
7 parent = parent_id ;
8 type = "node";
9 id = -1;

The original algorithm kept the distance D between consecutive tree nodes as
a constant, but in nature younger shrubs grow shorter than the previous ones.
In an attempt to reproduce this natural phenomena, this projects implements a
scaling algorithm that progressively reduces the D length value across genera-
tions. The scaling factor is represented as a ramp that the user can manipulate
to achieve the desired look.

To set the newborns’ @id correctly, these points are separated from the other
tree nodes. To set the @id, the network relies on the total count of tree points
as showed in 4.

Algorithm 4 Set newborn id

1 foreach newborn
2 id = treepointcount + current iteration value
3 update treepoint count as treepointcount + 1

The reason behind this particular implementation can be found in the pecu-
liar nature of the Houdini wrangle nodes. The geometry the snippet can access
is only the one that is wired in as input to the node. As explained in section 4.1,
any changes the snippet produces to the geometry will not be reflected on the
geometry until the node is cooked and fed as input to the next node in the
network. Following this logic, the update of the tree point count, even if it gets
changed every iteration, will only be written on the geometry when the snippet
has iterated over all the points. The tree point count value used to assign the
new @id is therefore the same for each newborn.

As a final step, the parents’ @kids list attribute has to be updated with
the newborns’ @id. The separated tree nodes are fed as first input geometry to
the “update_parent” Wrangle. The Wrangle will also take as a second input
geometry the newborn points. For each of the newborns, the snippet will retrieve
the @parent (which is the @id of that point) value. Given the parent’s @id, the
_findPt() function returns a handle to the parent node for which the currently
processed newborn is appended to the list of children. Since the parent now
has at least one child, its colour is set to yellow. To speed up the performances

24

further, the old tree points are divided further so that only the fertile ones,
therefore the parents, are fed in the “update_parent” Wrangle.

Once this setup is completed, the tree nodes are joined back together.

Figure 11: Newborn network

4.4.5 Remove attraction points

As a final step of the growth algorithm, as described in section 3.2.2, the network
has to remove the attraction points that are closer to the tree points than the
kill distance dk. Runions explains that greater values for this parameter yield to
increasingly sparse crowns. In his algorithm, the dk is a constant of the whole
growth process. The tree branching structure presented in his research resulted
to be too sparse when it comes to small twigs close to the tree crown shape.
In an attempt to improve the appearance of such small twigs, the algorithm
presented in this project scales the value for dk based on a ramp. The user
can therefore manipulate its value and decrease it for younger twigs to achieve
better density and more details near the crown surface.

4.4.6 Preparation to next iteration

Some attributes of the tree nodes have to be reset to default values in order for
the next iteration to start in a clean state.

• @dir is set back to 0, 0, 0

• @nbrs is emptied

• @fertile flag is set to 0

25

4.4.7 Extra controls

Even though the overall algorithm can produce a wide range of different branch-
ing structures, the project provides some additional controls:

• pruning probability: starting from a user-defined generation and killing
probability threshold value, a random number is calculated for each tree
node and compared to the killing probability. If the random number is
smaller than the threshold, the node is set to non fertile. This small check
gives more controls over the density of the branches.

• pruning by distance: the user can define a minimum distance from the
tree crown geometry. Whenever the distance of a tree node from the crown
shape is less than that value, the node is set to dead.

• fix growing angles: it may happen that siblings branches grow too
close one to each other. A new control checks the angle between siblings
branches and modifies the younger sibling’s position if the angle is less
than the specified threshold.

Figure 12: Colonization status after 0, 5, 10, 15, 20, 30 iterations

4.5 Linking the points
The relation between parent and children created during the creation of new
points makes it trivial to link the point together to create the tree skeleton. The
Wrangle “connect_points” fetches each point’s parent. Using the addprim()
VEX function a new empty primitive is created. The two points are added to
that primitive and the link between them is created.

4.6 Cross section evaluation
In order to create a polygonal mesh around the tree skeleton, the cross section
has to be evaluated on a per point basis. The network implements two different
algorithms to fulfil this purpose.

26

Figure 13: Skeleton creation

4.6.1 Ramp scale

The user is provided with a ramp and a multiplier slider. The multiplier scales
the amplitude for the whole ramp while the curve on the ramp controls the
scaling factor for each generation of tree nodes. The “ramp_scale” relies on the
fit() function to rescale the generation value for the current point to a value
in the range (0, 1). The new width is then computed as the product between
the ramp value and the multiplier.

4.6.2 Leonardo’s Rule

In his research, Runions relies on Shinozaki et al (1964) to determine the cross-
section of the limbs. In this model, known as Leonardo’s Rule, the diameter of
a limb below a branching point is determined by the combined cross-section of
the limbs above. The process assumes that all tip points share the same radius
r0 and proceeds assigning the radii for the other points from the branches’ tip
towards the tree base. When two branches with different radius r1, r2 join at a
branching point, the radius r of the supporting limb is given by rn = rn1 + rn2
where n varies between 2 and 3. This work implements the same main formula
twice to distinguish the scenario where the roots are loose points and where the
roots are points of the user defined trunk structure.

For the loose roots, the tree points are sorted based on the @generation
value and processed from the highest generation to the smallest one and assigns
the @width value. This way, the algorithm manages to traverse the tree from
the tip branches to the root.

The implementation of the Leonardo’s scale for the second scenario is ad-

27

Figure 14: Width setup network

Algorithm 5 Leonardo’s Scale for loose roots

1 sort tree points based on @generation in an array
2 reverse array to have highest gen values for smaller indices
3 foreach point in array
4 if point has no children
5 @width = user defined value for tip branches
6 else
7 @width = sqrt(sum pow(@width) of all children in @kids)

dressed in the following section 4.6.3

4.6.3 Special case: trunk

For a custom trunk input the original ramp algorithm cannot be used as the
scaling factor is calculated based on the generation number populated during
the growth algorithm. Unfortunately, the trunk points do not have a generation
number to rely onto. Furthermore, the user might want to have a better control
over the main branches structure as they play a key role in the final appearance
of the tree. As a consequence, the network first sets the width for the trunk
and on a later stage takes care of the smaller branches generated by the growth
algorithm. The trunk structure is fetched again from its original source.

As for initializing the @kids attribute as discussed in section 4.3.3 the
Wrangle node works on the points of each primitive at the time. The Houdini
loop blocks are in charge of iterating over the primitives of the trunk structure.
The Wrangle creates a ramp and a multiplier for the user to manipulate the
width at will. Before assigning the @width value, a check is performed on the
@width value for the first point of the primitive. If the @width value is −1 (the
default one), the primitive being processed is the main trunk. The algorithm
can assign the @width for the next points of the primitive simply by multiplying
the ramp value and the multiplier factor. If the @width is different than −1, the
primitive represents a secondary branch and its first point is the branching joint

28

Figure 15: Ramp scale

between the current branch and its supporting limb. Its width is therefore been
already set as part of the other branch. To blend one branch into its secondary
one, the next nodes in the primitive are set similarly to the main trunk except
that the user-defined multiplier is substituted by the first node’s width.

Algorithm 6 Trunk @width initialization

1 foreach primitive of the user input trunk structure
2 fetch all the points of the primitive
3 if the primitive is the main trunk
4 foreach point in the primitive
5 assign @width value based on user defined ramp
6 else (is a branch)
7 foreach point in the primitive
8 // joint = point between curr branch and parent limb
9 @width = ramp * @width_jointof the joint

As next step the width for the branches generated by the growth algorithm
has to be set.

For the ramp scale, the main idea of the artistic-directable ramp is main-
tained although blending the branches with the trunk structure requires some
further manipulation. If for the previous case all the root points shared the
same user-defined @width, in this case the width of each node acting as a root
has already been set. The initial condition for this algorithm is represented by
a set of tree structures with trunk points as roots. Each tree has to scale the
@width of the branches according to the ramp but each of them should use the

29

Figure 16: Leonardo’s scale

@width of its own root point as a multiplier to achieve the desired blending ef-
fect. This would be trivial with a recursive algorithm: ideally one should iterate
on each child of the root and set the @width. Each child then acts as root of
its own sub-tree and the operation is repeated. Unfortunately Houdini VEX
does not support recursive function calls at the current time. The algorithm
has therefore been converted from recursive to iterative by using a stack data
structure as a support. The root node stores its children in the stack. A while
loop iterates over the stack. For each iteration, the last added node is removed
from the stack and is processed. After setting its own @width value, the node
pushes its children in the stack and a new iteration begins. The while loop only
stops when the stack is empty. Using the stack as support data structure, the
described process successfully simulates a depth-first recursive algorithm and
overcomes the updating geometry problem explained in section 4.1.

Algorithm 7 Trunk @width non-recursive initialization

1 foreach root point
2 set @width of root point based on user ramp
3 find children of root point
4 push children on the stack
5
6 while (stack not empty)
7 pop last element from the stack
8 set its @width based on user defined ramp
9 find its children

10 push children on the stack

30

For the Leonardo’s scale, traversing the tree from the tip branches to the
roots is not a viable option since trunk points already have a @width set. This
work tries instead to implement the same main formula presented in section 4.6.2
by processing the tree limbs from the roots to the tip branches. The initial value
of @width for the roots points is initialized alongside all the other points of the
trunk structure. Having the first nodes’ width set, the algorithm iterates over
every point, in order, finding the children of the node and setting their width
based on its own width and the total count of children. This approach works in
this specific implementation because the tree nodes have been created in order
with increasing @id numbers. Therefore, when iterating on them, each node’s
width has always already been set by a previous node. Once again, the nature
of the Wrangle node does not allow to easily propagate the width from parents
to children due to the cooking and updating issue explained in section 4.1.
To overcome this problem, the Wrangle node only processes one point at the
time while the iteration is implemented with the loop blocks native in Houdini.
Since the blocks are in charge of the iteration, the Wrangle gets cooked and the
geometry updated.

Algorithm 8 Leonardo’s Scale for roots based on trunk structure

1 foreach tree point
2 // non root points
3 if @width has not been set already
4 find parent @width
5 find total number of siblings
6 calculate @width with Leonardo formula
7 set tree node @width

Figure 17: Ramp scale and Leonardo’s scale for custom trunk structure

4.7 Trunk Skinning
After building the tree structure, each branch is re-sampled to gain more control
over the final look. The PointJitter SOP helps moving from straight branches

31

curves to a more gnarled and varied silhouette. Its effect gets easily out of
control causing the geometry to change too drastically. To counterbalance the
sharp angles generated by the Jitter, the Smooth SOP interpolates these angles
and achieves a more natural look. The PolyWire SOP creates the polygonal
mesh around the tree skeleton using the @width attribute set in section 4.6 as
cross-section value. A second Smooth SOP interpolates the thickness values at
the branching nodes. As a final step, the user can decide whether to color the
trunk with a Color SOP or input a custom shader.

4.8 Leaves
In nature, trees produce leaves only at the very tip of the branching structure.
To replicate this phenomenon the network isolates all those nodes of the tree
who do not have any children. The leaves are then copied on those points by
using the Copy_Stamp node. For Copy_Stamp to work properly, the normal
direction has to be set for the tree nodes. The Point SOP activates an edge
force on these point. The edge force is directed along the edge direction which
is stored in the edge_dir built-in variable for points in Houdini. With a VOP
Subnetwork the edge_dir is copied as value for the normal direction of the
points.

The user can decide to either use the default geometry or to input a custom
model for the leaves. For the default ones, some Copy_Stamping expressions
randomize the roll and pitch within a set range of values on a per instance
basis. For the custom geometry instead, a control is given to specify the number
of leaves per tree node. The Copy_and_Transform evenly spreads the leaves
radially by dividing 360 degrees by the number of leaf instances specified by the
user.

The user can choose whether to use a plain color or apply a custom shader.
While the default geometry is ready to shade, the user has to make sure to
prepare the custom geometry for the shading process using the UV_Project
Houdini node before feeding the leaf object as input to the network.

5 Problems and attempted solutions
5.1 Determine S(v) set
At very early stages of production, the S(v) set has been implemented as a
Houdini group. Groups in Houdini are similar to a boolean variable associated
to each point of the geometry that specifies the membership of the point to the
group. Having n tree nodes, the system would have to store n groups. After
a few couple of iteration however, the number of different groups resulted to
be inefficient to use. At this stage the sets were also processed in a ForEach
subnetwork that unfortunately caused issues of duplicated geometry which lead
to frequent crashes of the scene. As a solution, the current data system relying
on the attribute @nbrs instead of the groups was adopted.

32

Figure 18: Leaves scattering

5.2 Branching collisions
For some cases, especially for the very first generations, it may happen that
branches tend to grow too clustered together. The fix_newborn_dir, as ex-
plained in section 4.4.7, takes care of these particular scenario moving the new-
borns to a minimum distance angle from their closest sibling. To achieve this
result, the algorithm presented in section §7.1 was used.

5.2.1 IsoOffset: from polygons to volumes

The IsoOffset node converts the user-input crown shape to a volume that can
be seeded with attraction points. Unfortunately the conversion leads to some
artefacts such as horizontal lines exceeding or carving the original geometry. Dif-
ferent solution have been tried such as changing the volume conversion method
but none of them proved to be universally successful.

5.2.2 Scaling

The approach to Leonardo’s scaling system adopted in this work for the user
defined trunk scenario can lead to chopped branches. With the scaling algorithm
starting from the roots and proceeding to the top from a user-defined initial
width value, branches can looked truncated when they die due to lack of space
or because of the pruning system. Unfortunately replicating Runions approach
and traverse the tree from the tip branches to the roots would not work properly
because the trunk already has a custom thickness set. The blending between
automatically generated branches and user-input ones would probably have to
be achieved manually.

33

Figure 19: Artefacts caused by the IsoOffset node

A similar issue arises for the ramp scaling system: as each branch within a
generation will have the same cross-section, the terminal segment of branches
dying in early generations will be of the same width as non-terminal segments
of more long-lived branches. As far as the ramp scale is concerned, a solution
could not be found during this project and the problem remains open for future
work.

Figure 20: Scaling chopped branches

6 Performances
An iterative system that handles a huge amount of geometries can result to be
extremely slow. Even though the performances were not the primary focus of
this project, a considerable effort has been made to make the network as fast as
possible. The reason for investing in the performances relies in the nature of the

34

tool: the project presented aims to be an easy and quick-to-setup tool to create
procedural and art-directable trees. If the tool were to require several minutes
to produce a result, the user would find it hard to compare two successive
attempts at tuning the parameters to get the desired look. At very early stages
of development, cooking a 30-iterations tree took up to 40 minutes. Grouping
the geometry points involved in the space colonization algorithm into nodes and
attraction points helped speeding up the execution time.

Even though this change improved the performances, the network still spent
an excessive amount of time processing the find_neighbours section 4.4.1 and
the setting_id section 4.4.4 algorithms. Dividing the tree nodes respectively
into newborns, parents and old tree nodes improved the performances dramat-
ically since the search loop was only to iterate over a few hundred points instead
of a few thousand.

The biggest speedup was however achieved by optimizing the algorithm for
the research of neighbours. In its first version, each iteration of the growth
algorithm required the same node to be cooked over 20000 times in order to
update the geometry points. The new approach presented in section 4.4.1 made
the real difference in terms of the final execution time.

Even though the execution time still heavily depends on parameters such as
the total number of attraction points, iterations, D, di, dk, the average cooking
time stabilized around 15 seconds for 40-iterations trees.

Figure 21: Tree object avoidance

7 Conclusions
The described implementation successfully reproduces the approach presented
by Runions. The volume of the tree crown is represented as a set of attraction
points which get removed as the branches approach them. Parameters specify
the granularity of the empty space, the search distance from which the branches
can sense it and how deep the empty space sensed can be penetrated by the
branches. Further controls manipulate the distribution of the attraction points
allowing for a greater density of branches near the surface of the tree crown.

35

Information of the hierarchy of branches offers control over their different sizes.
The final result produced a realistic branching structure even without any post-
processing of the skeleton. In some cases, post-processing operations such as
resampling the branches or applying random noise to the tree points can lead to a
more natural look of the final artefact. The project builds on Runion’s research
to add more controls over the branching structure by varying the parameter
values on-the-fly and introducing small corrections such as the pruning system
and the angle correction. A fully art-directable scaling system for the branch
size has been developed alongside the one proposed in the original paper.

The tool successfully integrates a user-defined main skeleton with the geo-
metry produced by the space colonization algorithm fulfilling the purpose of
having a tool for art-directable procedural vegetation. The implementation also
proved to be able to handle a wide range of scenarios: it can grow trees from one
or multiple sources at once, a custom trunk can be used as starting point for the
space colonization algorithm, the generated geometry reacts to the surrounding
obstacles by either avoiding them or using them as objects to crawl onto in a
vine-like behaviour. When tested for rendering, the produced mesh unwraps
correctly.

Figure 22: Tree with conical crown shape

36

7.1 Future work
The system successfully simulates the competition for space that characterizes
tree structures. As a future enhancement, competition for light could be intro-
duced as well. The light influence could probably solve the issue of having a too
sparse foliage. To address the same problem, the system could use a proxy or
billboards instead of actual geometry that expands only at render time. That
would maintain the viewport responsive while improving the final look.

Other problems remain open for future research. The method proposed in
this project creates a believable mature tree. The project could be significantly
improved by being able to simulate the growth process that leads from young
shrubs to the mature trees.

A simulation of breeze through the leaves or wind interacting with the tree
would improve the overall result and could be accomplished using the Houdini
Wire solver.

For scenes populated by a large number of plants, the current geometry
might be too heavy. Implementing a procedural LOD for the polygonal mesh
and an automatic pruning of the small twigs based on the distance from the
camera could make the viewport more responsive and the rendering quicker.

Figure 23: Vine-like growth

37

Appendix
L-Systems
L-Systems (Lindenmayer Systems) were conceived as a theory for plant devel-
opment. The key idea of L-System is rewriting. An L-System is a rewriting
system and a formal grammar. A formal grammar is a set of rules for rewriting
strings in a formal language. A rewriting system defines, in this case, methods
for replacing substrings with other symbols. An L-System consists of:

• Alphabet: set of symbols used to create strings. These symbols can either
be replaceable or constant.

• Axiom: string or symbol to start the production, made of elements of the
alphabet.

• Production rules: rules to replace and expand symbols or substrings with
other sequences of symbols.

In L-Systems, production rules are applied in parallel and simultaneously in
each generation. In this sense, L-System differ from formal languages in which
only one rule is applied per iteration.

L-Systems can be classified as:

• Context-free: if every production rule only refer to an individual symbol.

• Context sensitive: production rules refer not only on individual symbols
but also to groups of symbols.

• Deterministic: the production set provides one and one only production
rule for each symbol. An L-System that is deterministic and context-free
is usually referred as D0L System.

• Stochastic: several production rules are given for each symbol, each iter-
ation one of them is chosen based on a certain probability value.

A visual representation of the produced string can be achieved by employing the
“turtle” interpretation, that translates strings into graphical commands. The
turtle interpretation is based on the following commands:

• F: move forward a step of length d. Draw a line between current and
previous positions.

• f: move forward a step of length d without drawing a line.

• +: turn left by an angle of δ.

• -: turn right by an angle of δ.

Given their recursive nature, L-Systems can be used to generate self-similar
fractals.

38

Fractals
The term “fractal” derives from the latin fractus, which means “broken”. The
word was firstly introduced by Mandelbrot (1982). In Mandelbrot’s words, a
fractal is

“a rough or fragmented geometric shape that can be split into parts,
each of which is (at least approximately) a reduced-size copy of the
whole.”

The main features of a fractal are then, as per definition:

• Self-similarity: each part is a scaled size copy of the whole.

• Fine structure at small scale.

• Recursive definition.

Angle correction
Whenever two sibling branches grow too close together, the network provides a
way of moving the youngest one from the older sibling so that the angle between
them is bigger or equal than a certain user defined value. We call â the “moving”
vector and b̂ the “still” vector. â, b̂ are defined as follows.

â = (ax, ay, az) (11)

b̂ = (bx, by, bz) (12)

| â |=| b̂ |= 1 (13)

It is known that cosϑ = â·b̂
|â||b̂|

= â · b̂ from which follows that

ϑ = cos−1(â · b̂) (14)

One can now decompose â as

−→a ∥ = cosϑb̂ (15)

−→a ⊥ = â−−→a ∥ (16)

It is also known that

tanϑ =
a⊥
a∥

(17)

The user defines the new angle between the two vector as ϑ0. One can
therefore calculate a new a′⊥ that satisfies the following equation

39

a′⊥ = a∥ tanϑ0 (18)

By combining equation (17) and equation (18)

−→a ′
⊥ =

a∥ tanϑ0

a⊥
−→a ⊥ =

tanϑ0

tanϑ
a⃗⊥ (19)

One can therefore define the new position a⃗′ as

−→a ′ = −→a ∥ +
−→a ′

⊥ (20)

and its unit vector as

â′ =
−→a ′

a′
(21)

Flowers
To enrich this project another small and simple tool has been developed to create
procedural flowers., taking inspiration by Perez (2017) work on fern plants and
Dalvi (2015) work on vines. The network for this tool is divided in three big
areas, respectively for the stem, the petals and the stamen.

Stem
The network provides a full customization on the stem geometry. The user can
either modify the default line geometry that acts as a skeleton for the stem
or input his own line. The Jitter node is used to manipulate the stem points
by adding custom noise on their position so that the final artefacts looks more
natural. Since the Jitter displacement is based on a random seed, that seed can
be used to create different models for the same flower specie when populating a
scene. A control is given so that the stem can be bent at will. In a process similar
to the one described in section 4.6.3 the cross-section of the stem is function
of the @ptnum, a ramp then determines the value for the cross-section of the
specific point. The PolyReduce node can change the total count of polygon for
the stem geometry. In a future, that node could be used to generate procedural
LOD based on the distance from the camera looking at the scene. As a final
refinement, the user can benefit from a Sculpt tool to add more refinement to
the stem polygonal mesh.

Stamen Base
The stamen base has been modelled as a general shape that can produce visu-
ally appealing results for a wide variety of flower species. If in need of more
refinement, the user can either sculpt more subtitle details with the Sculpt tool
or use a custom geometry. As for the stem, a PolyReduce node is provided to
allow for a future procedural LOD.

40

Stamen Filaments
The anatomy of flowers can vary greatly if we compare, for example, a sunflower
with a lily. Whereas a sunflower model can be easily achieved using the mod-
elling of the stamen base discussed in the previous paragraph, a lily-like flower
has very long stamens at the centre of the petal crown. To reproduce such fea-
ture the stamen filaments have been modelled alongside the stamen base. The
geometry, as for the stem, starts from a simple curve. Custom bending is also
available to the user to change the stamen appearance at will. A Copy_Stamping
expression manages to create slightly different instances of such filament for a
total amount defined by the user.

Petals
As for every part of the network, the user can decide to either use the default
geometry or select a custom model. Petals are scattered on top of the stamen
base. The user, based on the stamen base geometry, can decide a minimum
level and a maximum level for the petals to be scattered on based on the angles
as follows. A value ϑ on a per point basis is calculated as

ϑ = tan−1 py√
p2x + p2z

(22)

The angle is compared to a minimum and maximum value defined by the user.
The points with ϑ falling in the specified range are used as sources for the petals.

41

References
Cieri, S., Muraca, A., Schwank, A., Preti, F., Micilotta, T., 2016. The Jungle

Book: Art-Directing Procedural Scatters in Rich Environments. DigiPro ’16,
23 - 23 July Anaheim, CA. New York: ACM, 57-59.

Dalvi, R., 2015. Creating animated ivy in Houdini - Tutorial 001. Video.
youtube.
Available from: https://www.youtube.com/watch?v=Uhr3HjHW_oU
[Accessed 21 May 2017].

Feriani, M., 2017, Background Research for Ice Growth Simulation CGI Tech-
nologies, MSc CGITools Report.

Filmmakerperez, 2017. Houdini Tutorial - Procedurally Modeling 3D Plants.
Video. youtube.
Available from: https://www.youtube.com/watch?v=K0qKWRBgwCY&t=1198s
[Accessed 16 May 2017].

Honda, H., 1971. Description of the form of trees by the parameters of the
tree-like body : effects of the branching angle and the branch length on the
shape of the tree-like body. J. Theoret. Biol, 31, 331-338.

Power Up Your Houdini Skills with SideFX, 2017. Making the Last Bastion.
3D World Magazine, 20 June 2017,
Available from: https://issuu.com/futurepublishing/docs/houdini_issuu
[Accessed 24 July 2017].

Ijiri, T., Owada, S., Igarashi, T., 2006. The Sketch L-System: Global Control
of Tree Modeling Using Free-form Strokes. 6th International Symposium Smart
Graphics, 23-25 July, Vancouver, Canada. 138-146.

Keim, H., Simmons, M., Teece, D., Reisweber, J., Drakeley, S., 2016. Art-
Directable Procedural Vegetation in Disney’s Zootopia. SIGGRAPH ’16, 24-28
July 2016. Anaheim, CA: ACM

Mandelbrot, B. B., 1982. The fractal geometry of nature. W. H. Freeman and
Company.

Melson, T., 2016. Can’t See The Jungle For The Trees. SIGGRAPH ’16
Talks, 24 - 28 July Anaheim, CA. New York: ACM

42

Oppenheimer, P., 1986. Real Time Design and Animation of Fractal Plants
and Trees. Computer Graphics Proceedings, Annual Conference Series, 18-22
August, Dallas. Dallas, Texas: ACM SIGGRAPH, 55-64.

Prusinkiewicz, P., Lindenmayer, A., 1990. The Algorithmic Beauty of Plants.
New York: Springer-Verlag.

Rodkaew, Y., Chongstitvatana, P., Siripani, S., Lursinsap, S., 2003. Particle
Systems for Plant Modeling.

Runions A., Fuhrer M., Lane B., Federl P., Rolland-Lagan A.-G., Prusinkiewicz
P., 2005. Modeling and visualization of leaf venation patterns. ACM Transac-
tions on Graphics, 24(3), 705-711.

Runions, A., Lane, B., Prusinkiewicz, P., 2007. Modeling Trees with a Space
Colonization Algorithm. In: Ebert, D., Mérillou, S., NPH’07 Proceedings of
the Third Eurographics conference on Natural Phenomena, 4 September 2007,
Prague. Aire-la-Ville: Eurographics Association, 63-70.

Schwank, A., James, C. J., Milciotta, T., 2016. The Trees of The Jungle
Book. SIGGRAPH ’16 Talks, 24-28 July 2016. Anaheim, CA: ACM

Shek, A., Lacewell, D., Selle, A., Teece, D., Thompson, T., 2010. Art-
directing Disney’s Tangled procedural trees. SIGGRAPH 2010 Talks, 26 - 30
July Los Angeles. New York: ACM, 53.

Shinozaki, K., Yoda, K., Hozumi, K., Kira, T., 1964. A quantitative analysis
of plant form — the pipe model theory. Japanese Journal of Ecology, 14 (3),
97–104.

Soares, O., Moser, M., Aalbers, F., 2016. Vegetation Choreography in The
Good Dinosaur. SIGGRAPH ’16 Talks, 24 - 28 July Anaheim, CA. New York:
ACM

SideFX, 2017. Attribute Wrangle. sidefx.com,
Available from: http://www.sidefx.com/docs/houdini/nodes/sop/attribwrangle
[Accessed 14 August 2017].

Wang, C., Yang, K., Han, D., 2008. New Modeling Method for Trees. 2008
International Conference on Advanced Computer Theory and Engineering, 20-
22 December 2008 Phuket. Los Vaqueros Circle: Institute of Electrical and
Electronics Engineers (IEEE), 633-637.

43

Weber, J., Penn, J., 1995. Creation and Rendering of Realistic Trees. 22nd
International ACM Conference on Computer Graphics and Interactive Tech-
niques, 6 - 11 August 1995 Los Angeles. New York: ACM, 119 - 128.

Wikipedia, 2017. Graph theory. wikipedia.org,
Available from: https://en.wikipedia.org/wiki/Graph_theory
[Accessed 14 August 2017].

Wikipedia, 2017. Formal grammar. wikipedia.org,
Available from: https://en.wikipedia.org/wiki/Formal_grammar
[Accessed 14 August 2017].

44

Code
Algorithm 9 distance_from_bounding_object

// calculate distance from input1 (bounding object)
// assign to attribute @dist
f@dist = xyzdist (1, @P);

Algorithm 10 radial_distribution

// density as function of the radial distance
// of bounding object
int min_dist = detail (0, " min_dist ");
int max_dist = detail (0, " max_dist ");

float fit = fit(f@dist , min_dist , max_dist , 0, 1);
float probability = chramp (" probability ", fit);

i@dead = 0;

// if the rand number less than the user defined probability
// node is set to dead and removed the next node
if(rand(@ptnum) < probability)
{

i@dead = 1;
}

Algorithm 11 AP_height

// save y coordinate for the point to the @height attribute
f@height = @P.y;

45

Algorithm 12 vertical_distribution

// density as function of the Y coordinate
int min_Y = detail (0, " min_Y ");
int max_Y = detail (0, " max_Y ");

float fit = fit(@P.y, min_Y , max_Y , 0, 1);
float probability = chramp (" probability ", fit);
i@dead = 0;

// if the rand number less than the user defined probability
// node is set to dead and removed the next node
if(rand(@ptnum) < probability)
{

i@dead = 1;
}

Algorithm 13 trunk_kids

// fetching info about what primitive are we working on
int prim = detail (1, " iteration ");
int points [];
int kids [];
int pt;
int child ;

points = primpoints (0, prim);
// the last node will not have any children to set
for(int i = 0; i < len(points) - 1; i++)
{

// set as child for current node
// the next one in the list of points
pt = points [i];
child = points [i+1];
kids = point (0, "kids", pt);
append (kids , child);
setpointattrib (0, "kids", pt , kids , "set");

}

46

Algorithm 14 trunk_parent

// find who the kids are for the current node
// and set for them the current node as parent
// PARENT INJECTION
int kids [] = point (0, "kids", @ptnum);
int child ;

for(int i = 0; i < len(kids); i++)
{

child = kids[i];
setpointattrib (0, " parent ", child , @ptnum , "set");

}

Algorithm 15 trunk_type

// only choose some of the points in the "node" groups
// to be marked as starting nodes for space colonization alg
// the remaining ones are marked as " trunk ": they will not
// play any part in the space colonization algorithm
if ((inpointgroup (0, " nodes ", @ptnum)) &&

!(@ptnum % int(ch(" discretization "))))
{

s@type = "node";
}
else
{

s@type = "trunk ";
}

Algorithm 16 trunk_generation

if(s@type == "node")
{

i@generation = 0;
}
else
{

i@generation = -1;
}

Algorithm 17 trunk_id

i@id = @ptnum ;

47

Algorithm 18 create_AP_len_nodes

f@len = ch("D");

Algorithm 19 find_potential_influencing

// Set influencing inf attribute to attractors =============
void _setInfluencing (vector p)
{

int influencing [];
int attr;

influencing = nearpoints (0, p, ch("di"));

for(int i = 0; i < len(influencing); i++)
{

attr = influencing [i];
setpointattrib (0, "inf", attr , 1, "set");
setpointattrib (0, "Cd", attr , {1, 0, 0}, "set");

}
}

// MAIN CODE ===
int nodes_count = npoints (1);
int influencing [];
vector p;

for(int i = 0; i < nodes_count ; i++)
{

p = point (1, "P", i);
_setInfluencing (p);

}

48

Algorithm 20 fast_search

// find closest tree node to given attr point and return it=
int _findClosestNode (int attr)
{

vector p = point (1, "P", attr);
return nearpoint (0, p);

}

// MAIN CODE ===
int influencing_count = npoints (1);
int node_pt ;
int closest [];
int ordered_attr [];
int ordered_closest [];
int nbrs [];

for(int attr = 0; attr < influencing_count ; attr ++)
{

node_pt = _findClosestNode (attr);
append (closest , node_pt);

}

ordered_attr = argsort (closest);
ordered_closest = sort(closest);

for(int i = 0; i < len(ordered_attr); i++)
{

append (nbrs , ordered_attr [i]);

// we have to update the whole list of nbrs at once or
// or the geometry will only see the last added point
// (cooking problem)
if ((i == len(ordered_attr) - 1) ||

(ordered_closest [i] != ordered_closest [i + 1]))
{

setpointattrib (0, "nbrs", ordered_closest [i],
nbrs , "set");

nbrs = {};
}

}

49

Algorithm 21 find_neighbour

// find closest tree node to given attr point and return it=
int _findClosestNode (int attr)
{

vector p = point (1, "P", attr);
return nearpoint (0, p);

}

// append attractor to nbrs list for the given tree node ===
void _addNearAttractor (int node; int attr)
{

int nbrs [] = point (0, "nbrs", node);
append (nbrs , attr);
setpointattrib (0, "nbrs", node , nbrs , "set");

}

// MAIN CODE ===
int node;
int attr = detail (2, " iteration ");

node = _findClosestNode (attr);
_addNearAttractor (node , attr);

Algorithm 22 set_n_dead_probability

if ((i@n_dead == 0))
{

if(i@generation > ch(" kill_gen "))
{

if(rand(@ptnum) < ch(" probability "))
{

i@n_dead = 1;
}

}
}

50

Algorithm 23 set_fertility

if(i@n_dead == 0)
{

int kids [] = point (0, "kids", @ptnum);
if(int(point (0, " generation ", @ptnum)) <

ch(" branching_start "))
{

if(len(kids) == 0)
{

i@fertile = 1;
}
else
{

i@fertile = 0;
}

}
else if(len(kids) < ch("kids"))
{

i@fertile = 1;
}
else
{

i@fertile = 0;
i@n_dead = 1;

}
}

Algorithm 24 set_n_dead_distance

if(i@n_dead == 0)
{

float distance = xyzdist (1, @P);
if(distance < ch(" min_dist ") &&

i@generation > ch(" generation "))
{

i@n_dead = 1;
i@fertile = 0;

}
}

51

Algorithm 25 newborn_dir

if(i@fertile == 1)
{

int nbrs [] = point (0, "nbrs", @ptnum);
foreach (int pt; nbrs)
{

v@dir += normalize (point (1, "P", pt) - @P);
}
v@dir = normalize (v@dir);

// if dir == 0 the point will not reproduce anymore
// it means that its @nbrs list was empty
if(length (v@dir) == 0)
{

i@fertile = 0;
i@n_dead = 0;

}
}

52

Algorithm 26 fix_newborn_dir functions

// Find ptnum from id ======================================
int _findPt (int id; int numpt)
{

for(int pt = 0; pt < numpt ; pt ++)
{

if(point (0, "id", pt) == id)
{

return pt;
}

}
return -1;

}

// Find sibling growdirection ==============================
vector _getSibling (int pt; int numpt)
{

int kids [] = point (0, "kids", pt);
int eldest_id = kids [0];
int eldest_pt = _findPt (eldest_id , numpt);
return vector (point (0, " growdir ", eldest_pt));

}

// Correct the angle between two siblings ==================
vector _correctAngle (vector a; vector b;

float theta , n_theta)
{

// assumes dir and sib to be both normalized vector s
vector a_para = cos(theta) * b;
vector a_perp = a - a_para ;
vector new_aperp = a_perp *

((length (a_para) * tan(n_theta)) / length (a_perp));
vector new_dir = a_para + new_aperp ;
return normalize (new_dir);

}

53

Algorithm 27 fix_newborn_dir main

// MAIN CODE ===
int kids [];
vector sibling ;
vector dir;
float deg_angle ;
float rad_angle ;
if(i@fertile == 1)
{

if(int(point (0, " generation ", @ptnum)) <
ch(" gen_correction "))

{
kids = point (0, "kids", @ptnum);
if(len(kids) != 0)
{

sibling = vector (_getSibling (@ptnum , @numpt));
dir = vector (point (0, "dir", @ptnum));
rad_angle = acos(dot(dir , sibling));
deg_angle = degree s(rad_angle);
if(deg_angle < ch("angle "))
{

vector new_dir ;
new_dir = _correctAngle (dir , sibling , rad_angle ,

radians (ch(" angle")));
setpointattrib (0, "dir", @ptnum , new_dir , "set");

}
}

}
}

54

Algorithm 28 create_new_node functions

// Find parent id ==
int _findId (int point)
{

return point (0, "id", point);
}

// Initialize new point attributes =========================
void _initializeAttributes (int son , father ; vector dir;

float len; int gen)
{

setpointattrib (0, " attr_dead ", son ,-1, "set");
setpointattrib (0, "Cd", son ,{0, 1, 0}, "set");
setpointattrib (0, " fertile ", son ,0, "set");
setpointattrib (0, " generation ",son ,gen , "set");
setpointattrib (0, " growdir ", son ,dir , "set");
setpointattrib (0, "id", son ,-1, "set");
setpointattrib (0, "len", son ,len , "set");
setpointattrib (0, " n_dead ", son ,0, "set");
setpointattrib (0, " parent ", son , _findId (father),"set");
setpointattrib (0, "type", son ,"node", "set");

}

55

Algorithm 29 create_new_node main

// Main Code ===
if(i@fertile == 1)
{

int newpoint ;
float len = point (0, "len", @ptnum);
int gen = point (0, " generation ", @ptnum);
int max_gen = detail (1, " numiteration ");
float new_len ;

// switch between user defined ramp for internodes length
// and constant length through all internodes
// create and place the new node , initialize its attribs
if(int(ch(" enable_ramp_scaling ")))
{

float fit = fit(i@generation , 0, max_gen , 0, 1);
new_len = chramp ("D", fit) * ch("mult");
newpoint = addpoint (0, @P + vector (new_len * v@dir));
_initializeAttributes (newpoint , @ptnum , v@dir ,

new_len , ++ gen);
}
else
{

if(gen == 0)
{

newpoint = addpoint (0, @P + vector (len * v@dir));
_initializeAttributes (newpoint , @ptnum , v@dir ,

len , ++ gen);
}
else
{

newpoint = addpoint (0, @P + vector (len *
ch(" scaling ") * v@dir));

_initializeAttributes (newpoint , @ptnum , v@dir ,
len * ch(" scaling "), ++ gen);

}
}

}

56

Algorithm 30 set_id

// MAIN CODE ===
int treecount = detail (0, " treepts ");
int newid = 0;

// cycles over all the newborns , set the @id
// using the previously created @treepts
// then updates the @treepts value for next
// iteration of the space colonization algorithm
for(int i = 0; i < @numpt ; i++)
{

newid = treecount + i;
setpointattrib (0, "id", i, newid , "set");
set detail attrib (0, " treepts ", 1, "add");

}

57

Algorithm 31 update_parent

// Find parent ptnum from id ===============================
int _findPt (int id; int numpt)
{

for(int i = 0; i < numpt ; i++)
{

if(point (0, "id", i) == id)
{

return i;
}

}
return -1;

}

// Update father children ==================================
void _updateKids (int parent ; int child_id)
{

int kids [] = point (0, "kids", parent);
append (kids , child_id);
setpointattrib (0, "kids", parent , kids , "set");

}

// Update Parent ===
void _updateParent (int child_pt ; int child_id ; int numpt)
{

int parent_id = point (1, " parent ", child_pt);
int parent_pt = _findPt (parent_id , numpt);
_updateKids (parent_pt , child_id);

// color to yellowish : node has now at least one child
setpointattrib (0, "Cd", parent_pt , {1, 0.5, 0});

}

// MAIN CODE ===
int newborns = detail (1, " newborns ");
int child_id ;
i@treepts = detail (1, " treepts ");

for(int i = 0; i < newborns ; i++)
{

child_id = point (1, "id", i);
_updateParent (i, child_id , @numpt);

}

58

Algorithm 32 set_attr_dead

// Set attr_dead based on fixed dk value ===================
void _setDead (vector p)
{

int dead [] = nearpoints (0, p, ch("dk"));
foreach (int attr; dead)
{

setpointattrib (0, " attr_dead ", attr , 1, "set");
}

}

// Set attr_dead to attractor based on ramp ================
void _rampSetDead (vector p; int max_iteration , generation)
{

int dead [];
float fit = fit(generation , 0, max_iteration , 0, 1);
float dk = chramp (" dk_ramp ", fit) * ch("mult");
dead = nearpoints (0, p, dk);
foreach (int attr; dead)
{

setpointattrib (0, " attr_dead ", attr , 1, "set");
}

}

// MAIN CODE ===
int nodes_count = npoints (1);
vector p;
int max_iteration = detail (2, " numiteration ");
int curr_iteration = detail (2, " iteration ");

for(int i = 0; i < nodes_count ; i++)
{

p = point (1, "P", i);
if(int(ch(" enable_scaling ")))
{

_rampSetDead (p, max_iteration , i@generation);
}
else
{

_setDead (p);
}

}

Algorithm 33 reset_AP_dir_fertile

v@dir = {0, 0, 0};
i@fertile = 0;

59

Algorithm 34 connect_points

// Create a line between the 2 points ======================
void _createLine (int father ; int son)
{

int line = addprim (geoself (), " polyline ");
addvertex (geoself (), line , father);
addvertex (geoself (), line , son);

}

// MAIN CODE ===
int parent_pt = point (0, " parent ", @ptnum);
_createLine (parent_pt , @ptnum);

Algorithm 35 trunk_width

// fetching info about primitives
int prim = detail (1, " iteration ");
int points [];
int pt;
float width ;
float fit;

points = primpoints (0, prim);
if(point (0, " width ", points [0]) == -1)
{

// main trunk case
for(int i = 0; i < len(points); i++)
{

pt = points [i];
fit = fit(i, 0, len(points), 0, 1);
width = chramp (" scale ", fit)* ch(" multip ");
setpointattrib (0, " width ", pt , width , "set");

}
}
else
{

// other branches case
float mult = point (0, "width ", points [0]);
for(int i = 1; i < len(points); i++)
{

pt = points [i];
fit = fit(i, 0, len(points), 0, 1);
width = chramp (" scale ", fit) * mult;
setpointattrib (0, " width ", pt , width , "set");

}
}

60

Algorithm 36 transfer_width

int numpt = npoints (1);
float width ;

for(int i = 0; i < numpt ; i++)
{

width = point (1, " width ", i);
setpointattrib (0, " width ", i, width , "set");

}

Algorithm 37 ramp_scale

// @width as function of the @generation value of the node
int gen_max ;
getattribute (" opinput :0", gen_max ,

" detail ", " gen_max ", 0, 0);

float fit = fit(i@generation , 0, gen_max , 0, 1);
f@width = chramp ("scale ", fit) * ch("mult");

61

Algorithm 38 ramp_for_trunk functions

// Find parent id ==
// Populate the @width using a stack =======================
void _setWidth (int pt; float mult; int gen_max)
{

int stack [], int kids [];
int curr_pt , generation ;
float fit , width ;

// find my children
kids = point (0, "kids", pt);

// push them in the stack
for(int i = 0; i < len(kids); i++)
{

// check if the kid already has a width set
if(point (0, " width ", kids[i]) == -1.0)
{

push(stack , kids[i]);
}

}

while (len(stack) > 0)
{

// pop child
curr_pt = pop(stack);

// set its width
generation = point (0, " generation ", curr_pt);
fit = fit(generation , 0, gen_max , 0, 1);
width = chramp (" scale ", fit) * mult;
setpointattrib (0, " width ", curr_pt , width , "set");

// find its children
kids = point (0, "kids", curr_pt);

// push the children
for(int i = 0; i < len(kids); i++)
{

// check if the kid already has a width set
if(point (0, "width ", kids[i]) == -1.0)
{

push(stack , kids[i]);
}

}
}
return ;

}

62

Algorithm 39 ramp_for_trunk main

// MAIN CODE ===
int gen_max ;
getattribute (" opinput :0", gen_max ,

" detail ", " gen_max ", 0, 0);
int root_count = npoints (1);
int pt;
float mult;

for(int i = 0; i < root_count ; i++)
{

// find id from input1 , use it as ptnum for points
// in input0 (where id and ptnum match)
pt = point (1, "id", i);
mult = point (1, " width ", i);
_setWidth (pt , mult , gen_max);

}

63

Algorithm 40 roots_leonardo

// index is the @ptnum for the tree points ,
// content is the width of that point . Init to all 0.
float widths [];
for(int i = 0; i < @numpt ; i++)
{

append (widths , 0);
}

// array where the intex is the @ptnum for the tree points
// and the content is the generation value for that point .
int generations [];
int gen;
for(int i = 0; i < @numpt ; i++)
{

gen = point (0, " generation ", i);
append (generations , gen);

}

// array for reordered @ptnum for the tree points by gen ,
// reverse order (from pts with greater gen back to root)
int sorted_by_gen [] = reverse (argsort (generations));

// populate widths [] from the tips to root. Iterate over
// sorted_by_gen [] to pick points from newest to oldest
int kids [];
for(int i = 0; i < len(widths); i++)
{

// retrieve children list for current point
kids = point (0, "kids", sorted_by_gen [i]);

if(len(kids))
{

float accum = 0;
foreach (int kid; kids)
{

accum += pow(widths [kid], 2);
}
float new_width = sqrt(accum);
widths [sorted_by_gen [i]] = new_width ;

}
else

widths [sorted_by_gen [i]] = ch(" tips_width ");
}

// finally update the geometry with the new values
for(int pt = 0; pt < len(widths); pt ++)
{

setpointattrib (0, " width ", pt , widths [pt]);
}

64

Algorithm 41 from_trunk_leonardo functions

// Find parent for a given node ============================
int _findParent (int pt)
{

return point (0, " parent ", pt);
}

// Find kids count for a given node ========================
int _kidsCount (int pt)
{

int kids [] = point (0, "kids", pt);
return len(kids);

}

// Find width for a given point ============================
float _findWidth (int pt)
{

return point (0, "width ", pt);
}

// Calculate new width attribute value =====================
float _calculateWidth (int pt)
{

int parent = _findParent (pt);
int kids_count = _kidsCount (parent);
float parent_width = _findWidth (parent);

if(kids_count == 0)
{

return 0;
}
float pow _width_parent = pow(parent_width , 2);
float mywidth = sqrt(pow _width_parent / kids_count);
return mywidth ;

}

65

Algorithm 42 from_trunk_leonardo main

// MAIN CODE ===
// trunk already has a @width set , this Leonardo proceeds
// from roots (the ones belonging to the trunk)
// to the tip branches

int pt = detail (1, " iteration ");
float width ;
if(point (0, " generation ", pt) >= 0)
{

if (point (0, " generation ", pt) == 0 &&
point (0, " width ", pt) == -1.0)

{
width = ch(" width ");
setpointattrib (0, " width ", pt , width , "set");

}
else
{

setpointattrib (0, " width ",
pt , _calculateWidth (pt), "set");

}
}

66

	Acknowledgments
	Introduction
	Related Works
	Technical background
	Overview
	Space Colonization Algorithm
	Definitions and axioms
	Steps

	Implementation
	Wrangle Node
	Data structure
	Parameter initialization
	Tree crown
	Attraction Points
	Roots

	Space colonization
	Finding influencing attraction points
	Set fertility for the tree nodes
	Calculate new born direction
	Creation of the new node
	Remove attraction points
	Preparation to next iteration
	Extra controls

	Linking the points
	Cross section evaluation
	Ramp scale
	Leonardo's Rule
	Special case: trunk

	Trunk Skinning
	Leaves

	Problems and attempted solutions
	Determine S(v) set
	Branching collisions
	IsoOffset: from polygons to volumes
	Scaling

	Performances
	Conclusions
	Future work

	Appendix
	L-System
	Fractals
	Angle correction
	Flowers
	Stem
	Stamen Base
	Stamen Filaments
	Petals

	References
	Code

