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Abstract 
Fluid simulation is one of the most researched subjects in Computer Graphics. This 

paper describes the theory and background research of fluids simulations related to this 

project. A basic fluid solver is implemented in SideFX's Houdini from the ground up, 

using its microsolvers and dynamic network structure. Different tests were made using 

both the PIC and FLIP methods as well as simulations with different collision objects. 

 

Keywords:  Fluid, FLIP Fluid Solver, Houdini 

Introduction 
Modeling and animating natural phenomena is an area of big interest for the Visual 

Effects community since they cover a wide variety of forms and effects. Phenomena 

containing fluids have always been a challenge since they move and interact in wide 

range of ways making it difficult to control and art direct.  Usually the fluids are 

controlled by certain rules and not directly from the artists, which can be quite 

challenging to produce a certain result especially in scenes where the fluid is exhibiting 

physically impossible behavior. 

Natural looking fluid simulations are highly desirable but difficult to produce because 

they exhibit various behaviors. This popularity has attracted a vast amount of research 

over the years making physical simulations of fluids for photorealistic scenes, animation 

and games, one of the most researched topics in computer graphics. 

There is a high demand of control and realism in 3D shots which is challenging, 

especially by artists that not only need to control the movement but also the overall look 

of the fluid and its behavior through different parameters.  

The complexity of dynamic flows is examined by the field of Computational Fluid 

Dynamics (CFD). It studies a wide variety of fluids and effects like fire, smoke, gas and 

water as well as high viscosity fluids and melting. Fluid simulations tools are widely 

used today in films, games and the entertainment industry in general, which increases 

the demand of realism, control and speed.  This increasingly high demand pushes for 

more research and continues progress in an already widely covered area.  

Although, there is a lot of CFD research available, the solutions and tools that physics 

and engineering have developed are focused on physically accurate results. In the visual 

effects industry, the goal is to create a specific look, managing a balance between time 

and quality.  

The aim of this project is to build a Fluid Solver using the Houdini software package 

implementing a selection of techniques and methods to create realistic liquid 

simulations.  
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Houdini Software 

SideFX's Houdini Software was chosen for this project due to its procedural tools and 

because it's widely used in the visual effects film industry. It offers a node based 

dynamics system which has an open architecture.  

It includes fluid solvers and fluid simulation shelf tools. The latest 16th version of 

Houdini, offers a big variety of pre-built in tools to simulate fire, water and smoke. 

Artists can use these tools straight from the shelf, control the result by adjusting the 

parameters provided from the tool's user interface, and all that in a very fast and 

efficient way. 

For cases that the tools do not offer the desired speed, resolution or control, they can be 

easily improved. Every pre-existing digital asset can be unlocked, studied and modified 

to support extra functionality in accordance to the needs of the current simulation 

offering a wide range of control and flexibility over the production pipeline. 

Houdini also allows using scripting to implement nodes. The integrated Vector 

Expressions (VEX) programming language has been proven a very powerful and useful 

tool for handling particles. It performs like a complied C++ program and it can run even 

faster. [Agrotis, 2016] 

Thesis organization 

This Master thesis is organized as follows:  

The first chapter begins discussing previous research related to the project. It also 

provides the reader with the scientific and technical background of fluid simulations and 

introduces the mathematical equations that govern the behavior of liquids required to 

understand and implement a basic fluid solver. That is followed by an analysis and 

comparison of the most common used methods for fluid simulation 

The second chapter contains the Design part of the project where the requirements and 

goals are set. Also, there is a short description of the main Houdini tools  

That is followed by the analysis of the solver's network and how it is implemented. 

The forth chapter, includes the Simulation examples that use the solver to showcase 

how it works.  

In the last one, an analysis of the results is included with a review on the known issues 

of the solver. Finally, ideas for further study and improvement are presented. 
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1. Previous Research 

Related Work 
Fluids have been the subject of many research papers, publications and lectures both 

from the scientific and visual effects community. This chapter includes a summary of the 

previous work that studied for the purposes of this project. 

There is a range of methods and approaches that were developed from the early stages 

of simulating fluids: from the first fluid simulation methods described by Harlow [1962] 

where they used the Particle-In-Cell (PIC) method, to Gingold and Monaghan, and Lucy 

[1977] inventing the smoothed particle hydrodynamics (SPH) in order to simulate 

astrophysical phenomena. 

After that computer graphics started using particle systems to simulate physical based 

elements, with Reeves, [1983] introducing a particle system as "a technique for 

modeling a class of fussy objects". According to Reeves, "particle systems model an 

object as a cloud of primitive particles that define its volume. Over a period of time, 

particles are generated into the system; move and change form within the system, and 

die from the system."  

Foster and Metaxas, in 1997 in their paper 'Controlling fluid animation, solved the 3D 

Navier-Stokes equations to simulate liquids on a regular grid. The Navier-Stokes 

equations were also used by Mullet et al. [2003] to created water simulations with free 

surfaces calculating the interaction forces between the particles from SPH. 

Zhu and Bridson [2005], in their Siggraph Paper "Animating Sand as Fluid", they 

describe a method of modifying the fluid solver to simulate granular materials like sand. 

They developed an algorithm that uses the advantages of both the grid and particle 

method getting more flexibility and efficiency.  (Image 1.1) 

 

 

Image 1.1: The Stanford bunny as water and as sand (Zhu and Bridson, 2005) 

 

Horvath and Illes [2007] used the particle-based approach with the aim of creating a 

physically correct fluid simulation system. In order to render it, they created a Houdini 

plug in to integrate their simulation engine with the Houdini software. 
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One of the most important sources of this paper was Bridson's book "Fluid Simulation 

for Computer Graphics", 2008, because it offers an extensive analysis and comparison of 

the basic methods used in fluid simulations, which are discussed in a later chapter. 

Zhang et al [2015] developed a method for fluid simulations where the fluid is driven to 

follow or match a moving or deforming target. An example, where the user specifies a 

path and the fluid flows through it, can be seen in Image 1.2 below. 

 

 

Image 1.2: Path control example by Zhang et al. [2015] 

 

Regarding the Houdini tools and solvers, several studies have been completed with 

focus on creating new solvers or improving the existing ones aiming for higher 

efficiency, speed or artistic control. In a previous Master's project, Ghourab [2011] 

implemented an alternative solver for the Houdini Pyro tool aiming for better 

performance and speed. Furthermore, Claes [2009] worked on existing Houdini solvers 

and modified aiming for more artistic control over fluid simulations. 

Finally, Agrotis [2016] implemented a FLIP solver in Houdini using the basic nodes to 

solve the Navier-Stokes equation and produce realistic looking water waves that collide 

with different objects or fall from a certain height. The solver described in this paper 

follows a similar "minimalistic" approach of a FLIP fluid solver that Agrotis [2016] has 

implemented, and expands it trying to address and solve some of the problems 

occurring, such as control of the viscosity and incompressibility of the fluid. 

Priscott [2010], Perseedos [2011] and Moorhead [2016] (Image 1.3), used the SPH 

method to implement a fluid system using C++ and OpenGL. Their simulations were then 

exported from the C++ and OpenGL application to Houdini for more realistic 

visualization and rendering.  
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Image 1.3: Water in a Glass Tank. (Moorhead, 2009) 

 

Scientific Framework  
This section provides the Computational Fluid Dynamics (CFD) background which 

includes the Navier-Stokes equations. They describe the motion of liquids, and the 

physical meaning of their different terms. Fluids include two types of materials which 

are liquids and gases: like water, smoke and fire. 

Fluid Dynamics and specifically its sub-discipline the Hydrodynamics is a complex and 

wide researched area in Fluid Mechanics that study the movement of fluids and covers 

many phenomena, parameters and mathematical models. Hydrodynamics deals with 

conservation laws in fluids, Newtonian and non-Newtonian fluids, compressible and 

incompressible flow, viscous and inviscid fluids, just to name a few.  

This paper focuses on implementing a fluid solver in Houdini in a specific time 

framework. That required an extensive study of the scientific aspect of fluids. Below 

there is a presentation of the most important and relevant to the project. 

 

Navier-Stokes equations 
The fundamental theory of the fluid motion is based on the Navier-Stokes equations. 

Navier-Stokes equations are the physical equations that describe the motion of fluids.  

That is why they tend to be used as a foundation for a lot of solvers in the existing 

software packages, like Houdini 

The Incompressible Navier-Stokes equations are a group of partial differential equations 

that are being used as the primary model to simulate fluids (liquids and gases) serving 

as the base of many of the existing solvers.  

There are several different methods that solve these equations to create fluid 

simulations. Some of them are: Eulerian or Lagrangian methods, the Smooth Particle 
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Hydrodynamics (SPH), Lattice Boltzmann methods and more. The different methods are 

selected depending on the unique needs. 

Mathematically, the state of a liquid at a given instant of time is modeled by means of 

velocity vector field and a pressure field. The Navier-Stokes equations describe how 

these two fields are coupled and how they change over time. The equations provide a 

mathematical model that describes the complex mathematics of fluid motion following 

the laws of physics. By solving them we get values of the unknown of the fluid, 

specifically the new acceleration which allows for its new position to be calculated.  

The Incompressible Navier-Stokes equations are: 

The momentum equation describes how the fluid accelerated due to the forces acting on 

it: 

  

  
            

 

 
                                   

And the incompressibility condition that ensures that the velocity field has zero 

divergence, therefore conserving mass: 

                                

Where: 

u - is a vector that presents the velocity of the fluid. 

  - stands for density of the fluid. 

p - stands for pressure, which is the force per unit area that the fluid exerts on anything. 

v - is the kinematic viscosity (measures how viscous the fluid is) (μ/ ). 

F - any external forces that are applied to the fluid.  

(*The vector fields are presented in bold letters.) 

 

The momentum equation 

 

Both equations are mathematical statements of basic conservations laws of physics: the 

first equation (1.1) derives from Newton's second law and the second (1.2) is an 

expression of the conservation of mass.  

 

According to Newton's second law: 

                        

where the acceleration of each particle is given by: 

  
  

  
                       

(*Vectors are represented in bold letters) 

F - represents the external forces. 

m - the mass of the object 

α - is the acceleration 

u - the speed and 

t - is the time 
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The first equation (1.1) states that every change in the velocity of the liquid at a certain 

position is a result of the four processes described by the four terms on the left side of 

the equation: 

 

-  ( ∙ )  : is the (self-)advection term, which represents the transport of matter by the 

fluid's flow, showing how the divergence affects the velocity. Physically it 

represents the phenomena where the fluid motion causes motion to the 

entities it includes.  

- (1/ )    : the pressure term (pressure is defined as the force per unit area), which 

models how the particles move away from high pressure areas. The gradient 

of a scalar field equals to a vector field pointing in the direction of the greatest 

'ascent' of the scalar field. The minus sign in front of the gradient of pressure, 

points away from the high pressure and towards the low pressure. If the 

pressure is equal in every direction there is going to be zero acceleration due 

to pressure. The force due to pressure derives from the imbalance between 

high pressure areas and low pressure areas (Bridson, 2008). 

v ∙    :  the diffusion term, which captures the relationship between the velocity and 

viscosity variable v. In other words, the diffusion allows the velocity to 

propagate outwards, and the viscosity controls the speed of the propagation 

(Claes 2009). 

F  :           the sum of all the external forces that are applied to the fluid (like wind). In 

the simplified version, where gravity is the only external force F can be 

represented by g. (g - is the acceleration due to gravity) 

 

The incompressibility condition 

 

The incompressibility condition (1.2) preserves the mass of the fluid throughout the 

simulation as the divergence of the velocity field equals to zero. The conservation of 

mass in other words says that the amount of fluid flowing into the predefined volume 

must be equal to the amount that's flowing out.  

The incompressible case is simpler than the compressible one, as the fluid is assumed to 

be isotropic. For the special case of an incompressible flow, the pressure constrains the 

flow so that the volume of the fluid elements is constant. Isochoric flow resulting in a 

solenoid velocity field with    · u = 0 

Within Houdini, as it described in the Implementation chapter, the divergent is removed 
from the velocity field using the Gas Project Non-Divergent microsolver. That is the part 
of the velocity field that represents expansion or contraction. The "removal" is achieved 
by computing a pressure field that counteracts any compression and applying that 
pressure field instantaneously keeping the density constant (SideFX, Help Card). 
 
The Navier-Stokes equations are very hard to solve due to non-linearity the (self-) 

advection term presents. In fact, an analytical solution which provides the velocity and 

pressure of the fluid at all points in space and time has not been found yet. (Ausseloos, 

2006) 
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There are two main approaches that provide solutions of the Navier-Stokes equations: 

the Eulerian and the Lagrangian method. Their main difference lies with the way they 

store and calculate the attributes. They are both described below. 

Eulerian and Lagrangian methods 
The Eulerian and Laplacian methods, both solve the Navier-Stokes equations to obtain 

the velocity of the liquid at different points in space. The different methods are chosen 

and used depending on the characteristics and requirements of the simulation.  

The grid-based method: 

In the Eulerian viewpoint, the simulation takes place in a specific finite volume of space, 

which is represented by a 3D or 2D grid or field. The grid space is divided into a number 

of rectangular cells and the fluid flows through it. The quantities of the fluid are defined 

at every point of the grid. Instead of keeping record of every single particle and its 

attributes, we keep record of the cells of a grid where we can measure how their values 

change over time. (Bridson, 2008)  

The particle based method: 

According to the Lagrangian viewpoint, we define the fluid flow with particles where 

each particle carries its own properties, like mass, velocity, density etc. Conservation of 

mass and Newton's laws apply directly to each fluid particle. The Lagrangian method is 

easy to implement as all the calculations are performed on the particles, but that makes 

them to rely heavily on the density which means in areas with low density, they could 

develop high percentage of inaccuracy (Strantzi, 2016). 

Comparison 

Both methods provide the fluid quantities and their change over time, forming a graph 

of the fluid quantities evolution but their graphs would look different due to the 

difference in the way they measure the rate of change. Both methods are used for 

simulations taking advantage of their strong points and handling their limitations, 

according to requirements of the desired results. 

The Eulerian method's biggest weakness is that with the currently available computer 

processing power, it is limited in size and resolution to the grid's size and resolution 

respectively. This means that in large simulations that require high resolution, they 

suffer from "numerical dissipation" which results in mass loss. 

In comparison, the Lagrangian viewpoint doesn't have these grid related limitations but 

its main disadvantage appears to be in the difficulty to form a smooth liquid surface. 

Hybrid Viewpoint 

In order to overcome the disadvantages, hybrid methods have been developed that use 

components of both the Eulerian and Lagrangian methods. Usually, fluid quantities are 

carried by the particles that flow through an Eulerian grid. The advection term is 

calculated on the particles, and the other quantities are integrated on the grid (Ghourab, 

2011).  
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 Lagrangian Eulerian 
Advantages  Unlimited simulation size 

 Can be used for different 
types of fluid 

 Independent performance from 
the number of particles 

 Fast 
 Easier to mathematical 

analytical work with spatial 
derivatives (like the pressure 
derivative) 

Disadvantages   Large number of particles 
usually required for realistic 
simulations causing memory 
problems 

 Errors due to inaccuracy in 
areas with low density  

 Simulation detail limited to the 
grid resolution 

 Restrictions in scalability as 
simulation size limited to grid 
size, since the fluid only exists 
within the confides of the grid 

 Limited control 
Table 1.1: Collection of the comparisons between the two methods: Lagrangian and Eulerian. 

PIC or FLIP method  
PIC (Particle In Cell) was pioneered by the Los Alamos National Laboratory and later 

described by Harlow's paper Computer Physics Communications in 1962 (Strantzi, 

2016). PIC was one of the early 'Hybrid' methods created to solve compressible flow 

problems and combined the Eulerian and Lagrangian viewpoint, where all the fluid 

quantities where stored on the moving particles while a grid evaluated them (Ghourab, 

2011). Initially, the fluid quantities are stored on the particles and in each time step; 

they are transferred on the grid where they are integrated, according to the Eulerian 

viewpoint. Finally we interpolate the values from the grid points to the particles. The 

interpolation and smoothing during the particle-to-grid transfer suffered from errors 

and in bigger simulations from severe numerical dissipation (Bridson, 2008). 

The FLIP (Fluid Implicit Particle Method) method is a simple modification of the PIC 

method. It was an attempt to solve the limitations of the PIC method, by Brackbill and 

Ruppel in 1986 (Brackbill and Ruppel, 1986). To avoid the interpolation during the 

particle-to-grid transfer, the FLIP method interpolates the change in the quantity (e.g. 

velocity) and uses it to increment the particle value, instead of replacing it. Every 

increment undergoes one smoothing and the result is no numerical dissipation (Bridson, 

2008). 

 

Image 1.4: A comparison of the FLIP and PIC methods: FLIP vs. PIC velocity update for the same 

simulation. (Image taken from Zhu and Bridson, 2005) 
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Hybrid Particle-Grid Methods 
While the FLIP method solved the numerical dissipation problem, it may develop noise 

something that we don't see with the PIC method. That's why in many 'Hybrid' methods 

both FLIP and PIC updates are used in different blends to try and minimize the noise 

without introducing too much dissipation. 'Hybrid' methods were also developed to face 

the FLIP's limitation to first-order accuracy while nice smooth surfaces usually require 

higher order accuracy. 

Smooth Particle Hydrodynamics - SPH 
SPH is a particle-based method which implements the Lagrangian viewpoint. According 

to the Lagrangian method, the particles carry the fluid quantities, like velocity and 

acceleration but also additional attributes like density, pressure and the external forces. 

Initially, it was introduced by Gingold and Monaghan, and Lucy in 1977, in order to 

simulate astrophysical phenomena. SPH is an interpolation method which allows the 

replacement of the fluid with a set of disordered particles to express the equations and 

obtain numerical solutions (Burak, 2015). SPH's biggest disadvantage is that it can be 

quite unstable where the simulation does not have enough particles for neighbor 

calculations which results in incorrect density and negative pressure (Kuo, 2016). 

2. Design  

Aims and Requirements 
Designing and implementing a fluid solver is a challenging process. This project focus on 

using the background theory and research to implement a solver in a basic simplified 

version with a minimum number of nodes, compared to the FLIP Fluid solver available 

from the shelf tools of Houdini (Image 2.1).  

 

Image 2.1:  FLIP Fluid Solver, built in Houdini shelf tool. 

 

The goals were to understand the pipeline and structure of such an implementation and 

while making a basic solver in a very fundamental level, still achieve a visually pleasing 

result. 
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The main requirements of the framework were: 

1. Create a fluid solver in Houdini from the ground up. 

2. Simulating the flow of liquids like water. (Real-time visualization of fluids using 

particles) 

3. Allowing simple interaction and static collisions with boundary containers, like 

boxes and rigid bodies. 

4. Easily extendable and flexible to add and take away certain features in order to 

simulate a wide range of fluid effects. 

5. Comparison between PIC and FLIP methods 

6. Use solver in a number of simulations to test with different collision objects.   

In order to design how to proceed with the implementation of the solver, the selected 

tool, Houdini had to be studied, explore its features and of course study thoroughly the 

already pre-built fluid shelf tools. 

Houdini Software 
This chapter will review the basic features and tools that the software provides with. 

Every pre-existing digital asset can be unlocked, artists can dive into the network and 

modify its structure to support extra functionality and then save it as a new custom 

solver. That feature allows for more control over fluid simulations.  

 Since Houdini 8, node based dynamic operators (DOPS) are included and later Houdini 

9 introduced fluid and gas microsolvers. A solver is actually a model that solves a set of 

mathematical equations that describe a phenomena in this case fluid behavior. The 

microsolvers will be the building blocks of the fluid solver. Below a short summary of 

some of the most important tools Houdini offers, is provided: 

- HDA (Houdini Digital Asset) is a node that includes a series of operations that can be 

transferred between files and networks. The asset includes a network with an interface 

for the artist to control and manipulate a specific effect without worrying about the 

complexity of the process that generates it, inside the node. By wrapping up the nodes 

and networks of a certain effect or process into a HDA, we create a reusable tool, 

portable between files and networks that can be adjusted or manipulated according to 

the current or future needs. Digital Assets allow the generation of bigger and more 

complex networks by the combination of different existing HDAs making the production 

pipeline much faster and flexible. 

- SOP (Geometry Surface Operators) are responsible for creating and modifying 

geometry.  

- POP (Particle Operators) are used to generate the particles which can be used to model 

realistic natural phenomena including smoke, water and fire. (Fan, 2009) 

- DOP (Dynamic Operators) are used to connect the geometry with forces and "configure 

solvers for simulating their interactions" (SideFX, Help Card). 

- Microsolvers are nodes inside of DOPS that perform specific tasks related to the fluid 

solving process (Claes, 2009). Using those powerful mathematical building blocks, long 



14 
 

and complicated equations can be calculated and represented as a network of nodes. By 

wiring different micorsolvers or smaller networks of them, more complex ones can be 

created. The order of calculation in a microsolvers' network is left to right and top to 

bottom. 

3. Implementation 

Houdini microsolvers  
After studying the Navier- Stokes equations and understanding the concepts that govern 

fluid motion, it is relatively easy to implement them in Houdini, since most of the 

mathematical equations are already implemented in the form of microsolvers. The 

challenge is to study the large number of microsolvers and decide which ones to use and 

modify them accordingly to the requirements of the desired solver.  

We can solve complex mathematical equations using a combination of different 

microsolvers. By wiring microsolvers we can achieve bigger and more complicated 

networks required by the complex fluid dynamics equations, like the Navier-Stokes 

equations. The different microsolvers are wired together in the right order using a 

Merge node. The order of operations works from left to right and from top to bottom. 

In the next pages, the implementation of the solver is described step by step. The 

process is divided in the main sections that hopefully will make it easier to understand.  

Object and Forces 
The first step is to create the particle system that will represent our fluid. The particles 

will carry the fluid quantities according to the Lagrangian viewpoint. 

To achieve this we use a Points from Volume node that generates points from the 

volume of a given object for example a sphere. Those points will represent the particles 

in the fluid particle system. This provides the solver with an initial number of particles 

that form a specific geometry.  We position the Points from Volume node in a SOP 

Geometry which will include all the parameters of our geometry, the particles. Its input 

can be any shape object; for our default solver a sphere is chosen. The Points from 

Volume node provides several controls with most important the Point Separation 

parameter which defines the minimum distance between the points. For a certain 

volume, the smallest the Point Separation the more particles are generated inside it. To 

finish up the particle system, VEX code is used to assign basic attributes to them like 

color, velocity, acceleration and pscale. The code is included in the Appendix (Image A.1) 

To allow flexibility in the solver, after collapsing it into a sub-network, the Input 1 is 

added with a Switch. The user can use a Flip Object as an Input and select any object as 

the source of the fluid, as it is demonstrated later in the simulation examples.  

Next, we add a Vector Field that will represent the 3D vector of the particles' velocity 

and a Vector Field Visualization Field node in order to visualize the field during the 

simulation. The visualization does not affect the simulation but we use it in key parts of 

the node structure to visualize different fields and test how they work. 
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The different branches of the network are connected as inputs, in the right order, to the 

Multiple Solver node which is responsible for integrating all the branches in order from 

left to right for each step of the simulation. The first input of the Multiple Solver is 

defining the geometry the second type of input includes all the microsolvers that 

operate on the geometry. 

Next, we need to apply some forces to our particle system in order to animate it. A Gas 

Linear Combination node is used to clear the acceleration every frame and then a SOP 

solver is used to access the DOP geometry. With the DOP geometry as an input, a second 

VEX script assigns acceleration to the particles, which points in the direction of -y axis. 

The forces are translated into acceleration which needs to be integrated into velocity 

and then velocity into position. The two integrations are calculated with the two Gas 

Linear Combination nodes using the ADD operator. 

 We multiply the acceleration by timestep so it scales dynamically in time, and we 

complete the integration according to the motion equation  v = v+a(t), where v stands 

for the particles' velocity and a for their acceleration. Similarly, for the position p, we 

follow the equation   p=p+v(t).  

From this point, we start building the solver according to the FLIP requirements. We 

have a particle system with certain attributes: position, scale, color and velocity. The 

next step is to pass the particle attributes to a grid (or field), solve the necessary 

equations on the grid updating the attributes and pass them back to the particles. 

In order to create the grids, we use the Houdini microsolvers that create and handle 

fields. The creation of the fields happens after we have integrated the acceleration to 

velocity but before the integration from velocity to position.  

 

Fields 
Velocity 

Houdini has two kinds of fields: scalar and vector fields. Previously, in order to create a 

field to store the velocity of the particles we created a vector field named 'vel'. A Gas 

Resize Field microsolver changes the size of the 'vel' field to match the bounding box of 

the geometry, in this case the particles. This way, we make sure it always contains the 

particle system and tracks its motion. 

Once the velocity field 'vel' is set, we create an identical copy of it using the Gas Match 

Field microsolver, named 'oldvel'. We are going to use that later to complete the FLIP 

algorithm calculations. 

Surface 

Gas Match Field is also used to create the surface of the fluid, which is represented by a 

scalar field and it uses the 'vel' field as a reference.  
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Collision 

In the Creating Fields section of the network, we set up another scalar field to represent 

the collision field adding another Gas Match Field and this time referencing the surface 

field. 

Updating the Fields 

Once the surface field is created, we can convert into a Signed Distance Field (SDF) with 

the help of another microsolver: the Gas Particle to SDF, which is added in the Updating 

Fields section of the network.  This "free" surface works as the boundary condition for 

the particle system and we are going to reference it in a later microsolver responsible 

for solving the pressure equation in order to enforce the incompressibility condition of 

the Navier-Stokes equations. 

Gas Particle to Field is copying the values of the particles' velocity into the 'vel' field and 

the Gas Linear Combination node copies the 'vel' field to 'oldvel', making an identical 

copy of the initial value of the velocity. 

In the Collision Detection section of the network, during the initial stages of the solver 
we used 
- a Gas Field VOP that uses VEX to manipulate the collision field's shape referencing the 
density and 
- the Gas Enforcement Boundary node to make the velocity equal to zero when a 
collision field is present.  
Those nodes were deactivated in later stages, when static objects were added as 
collision objects.  
 
Incompressibility condition 

Using the surface field created earlier, the pressure equation is solved by the Gas 
Projection Non Divergent microsolver, which removes the divergent components of the 
velocity field which are causing the expansion or contraction. (SideFX, help card)  "The 
way this is handled is by calculating the pressure field that negates compression and 
apply that field on the simulation at the very moment." (Agrotis, 2016) 
 
Unfortunately, after completing all the above steps the incompressibility condition was 
not satisfied. While testing the liquid in various conditions, it became apparent that 
when the liquid was concentrated in a tank or a pool, it would shrink down to a fraction 
of its initial volume. An example of this phenomenon is given in Image 3.1 below. 
Following the theory, the problem was attempted to be solved using constant density 
which would create a pressure force between the particles. The pressure force would be 
calculated, every frame, so that the particles stay in an average distance from each other, 
keeping this way the density constant throughout the simulation. The attempts to 
calculate both the density and the pressure produced insignificant results. Due to the 
limited time to continue researching the problem, the focus was redirected on the 
strengths of the solver. 
 
After much simulation testing, this does not seem to be an issue for running water. For 
that reason, the simulation examples, in the following chapter, will focus on running 
water phenomena. 
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Image 3.1: Water in a glass container test. 

PIC vs. FLIP 

For updating the velocities back to the particles there are two available ways: the one 

based on the PIC method and the other on the FLIP update. Both methods were 

implemented and tested in the creation process of this solver before choosing the FLIP 

update as the default one. The reason for the FLIP selection is that allows the particles to 

keep the individual behavior as it is explained below. 

The PIC update requires only a Gas Field to Particle microsolver to copy the 'vel' field 

values to the particles' velocities. Since the particles take their velocities directly from 

the field where they were averaged and interpolated, their individual characteristics, 

like initial velocity and direction, are lost.  

The FLIP update requires calculating the change in the velocity field and assigning it to 

the particles which keep their individual behavior. This is achieved by calculating the 

difference between the 'vel' field and 'oldvel', using the subtract operation in the Gas 

Linear Combination microsolver, and storing it in the 'oldvel' field. In order to put that 

back to the particles, a Gas Field to Particle microsolver is used to add to the particles' 

velocity attribute the values of the 'oldvel' field, which now stores the difference of the 

two velocity fields.  

 

 Image 3.2: FLIP updates on the top and PIC on the bottom for the same particle system. Images 

taken every 25 frames. 
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External Forces 

On the default solver, the only external force that is applied to particles is gravity, which 

is applied directly to each particle. In later stage of the solver development, after it was 

collapsed into a sub-network, the Input 4 of the sub-network was used to add any 

additional forces to the particle. This feature was used in the third Simulation example 

of the spherical object were the default Houdini gravity is de-activated and a radial 

gravity force is added to the solver using the Input 4. The selection of that Input was 

made in order to match that of the FLIP Fluid Solver (shelf tool) and save Input 2 and 3 

available for further development of the solver. 

Collision Forces 

The Collision forces are very simple and use the Static Object tool for the Collision 

objects in every simulation. After detecting a collision between a particle and the Static 

Object, the particle's velocity is reflected perpendicular to the object's surface. 

 

 

 

Image 3.3: The Basic FLIP Fluid Solver that was implemented in the process of the project 

described in this paper. 

 

 

4. Simulation   

Simulations examples 
Using the Flip Object node as Input 1 of the solver, any shape of object can be used as 

source of the liquid in various scene settings.  
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Image 4.1 : A collection of shapes that the fluid source object can take. 

 

Floating island: Collision with columns 

A scene was set up to test how the fluid partickes interacts with an uneven ground, 

collides with objects on its path (in this case ancient temple pillars) and its the free fall 

due to gravity. 

 

Simulation Parameters: 
Point separation: 0.05 
Particle radius scale: 1.5 
Point/particle number:  
320.455 
Sphere uniform scale: 
2.2 
 

 
Image 4.2: Frame from the fluid simulation scene with a floating island geometry and columns as 

collision objects. 

Floating island: Collision with wider diameter columns 

The second scene is similar to the first, with a difference in the size of the pillars. 

Keeping all the simulation parameters the same except one, we are testing how the fluid 

interacts with bigger collision objects. 
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Simulation Parameters: 
Point separation: 0.05 
Particle radius scale: 1.5 
Point/particle number:  
320.455 
Sphere uniform scale: 2.2 
 

 
Image 4.3: Frame from the fluid simulation using wider diameter columns. 

Spherical collision object with radial gravity 

Finally, in order to test the fluid in different conditions, a scene was created were the 

default gravity in Houdini is de-activated and a radial gravity force is added on the 

solver. 

Simulation Parameters: 
Point separation: 0.05 
Particle radius scale: 1.5 
Point/particle number:  
106.469 
Sphere uniform scale: 
1.5 

 

 
Image 4.4: Water on spherical object with radial gravity 

Rendering parameters 
While most of the work was dedicated on creating and implementing the fluid solver, 

some time had to be given to the Rendering of the simulations in order to create realistic 

results. The necessary lights and a camera were added in the scene and a Basic Liquid 

material was assigned to the surface of the liquid.  

 

5. Evaluation 
Since there was no previous knowledge of fluid simulations, a good background in 

knowledge and understanding had to be gained before any work began. In addition to 

the scientific and technical previous research review, the existing Houdini solvers and 

fluid tools were examined to get an understanding of how they work and how to modify 

them.  
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Results  
Going back to the design stage and the goals that were set in the beginning: 

1.  A Basic Fluid solver was implemented in Houdini using the FLIP methodology. 

2. Liquid was simulated using the solver. 

3. Collision with various objects was achieved, in a good extent. 

4. Added flexibility in the selection of source object and addition of external forces. Also, 

there is control on the number of particles generated from a specific volume (source 

object). 

5. Comparison between PIC and FLIP methods demonstrated. 

6. The solver was applied in a number of simulations testing different collision objects.   

Overall, the fluid simulation is working and giving satisfying results, despite the issues 

that were not resolved by the time this paper was completed. By addressing those issues 

and with further improvements, we could get more realistic and efficient results.  

The biggest issue that this project faced was that the Incompressible aspect of the fluid 

is not working as expected.  While the incompressibility requirement was not resolved, 

the rest of the fluid characteristics appear to work well. The simulations with running 

water look very realistic. Incompressibility algorithms could be implemented in the 

future. Also, during the simulations, the collision was observed to show some errors on 

the edges. It appears to ignore objects with thin dimensions which can be seen at the 

edges of the floating island geometry. 

 

Known Problems and Future Work 
While most of the goals where reached, the implementation could have benefited by 

some more time. It covers the essential features of a fluid solver creating a satisfying 

simulation but they are by no means production ready. There are many more advanced 

aspects of this subject. 

There are several improvements that could be made and problems that could be tackled 

in the future. The first priority would be to tackle the Incompressibility issue mentioned 

before as well as the collision errors at the edges of the geometry. 

For future development, once the two key issues are resolved, the sub-network of the 

solver could be wrapped up into a Digital Asset (HDA) with a User Interface available for 

the artist to tweak the parameters interactively. 
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Conclusion  
In conclusion, a design for a fluid solver was made and followed with the 

implementation, resulting satisfying results. Most importantly, a broad understanding of 

fluid simulations and solvers was acquired as well as experience using Houdini for these 

simulations. Because of the popularity of fluid simulations as a research topic and the 

fact that new developments are happening all the time, as well as the complexity of the 

available tools and microsolvers available in Houdini, a significant amount of time for 

this project went into studying and comparing methods. It was a challenging and time-

demanding project that required a lot of problem solving and mathematical 

understanding, especially because of no previous knowledge on fluid simulations. 

Overall, the solvers work efficiently and the final renders are quite realistic.  
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Appendix  
 

 

Figure A.1: Geometry VEX code inside the SOP Geometry node. 
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Figure A.2: Acceleration VEX code inside the SOP solver. 


