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1 Abstract

A project to visualize astronomical data such as star clusters, galaxies and
dark matter maps using 3D data cubes, AMR files and VDBs. A pipeline
tool has been developed to analyze and plot data points collected from various
astronomical agencies.

2 Introduction

Astronomical data from satellites and ground telescopes are publicly available
on a number of online portals and are free to use. Many interesting data, rang-
ing from relatively small star clusters, to dark matter maps, to maps of entire
sections of galaxies containing billions of stars are available. Their usage is
somewhat limited, and the software to parse the data are developed specifi-
cally to serve the astronomy community. The data formats are not made for
portability or speed, but for longevity and ease-of-use. Hence, the files can be
a few megabytes to several gigabytes in size. Many astronomy software pro-
vides parsing and viewing of such files, but most do not cater to more than
one format. The approach is more scientific, with the focus being on extrac-
tion of data points, potting graphs and in some cases, a bare-minimum 2D or
3D visualization. For this project, similar concepts have been applied, as well
as general astronomical data analysis theory, to bring similar capabilities into
Houdini, and build assets for use in visual effects. Three of the most widely used
formats in astronomy have been chosen - FITS, CSV and AMR. The motivation
for doing this project is an interest in astronomy and desire to learn Python.

3 Technical Background

The knowlede of a few basic astronomy concepts is necessary to understand this
project. Astronomical data is collected using many different instruments. The
most common of which are optical telescopes (reflector/reflector), which capture
relatively high precision 2D images in the visible light spectrum, and radio
telescopes. A radio telescope is much larger than optical telescopes because radio
wavelengths are much longer than optical wavelengths. The longer wavelengths
means that the radio waves have lower energy than optical light waves. Radio
telescopes detect emission from cold clouds of hydrogen in the space between
the stellar objects. Stars and planetary systems form in these molecular clouds
(Strobel, N.; 2017). The files used in this project have been obtained from
similar radio telescopes.

The units of the celestial coordinate system, which is primarily used for
the this type of data are Right Ascension (RA) and Declination (Dec). They
are spherical coordinate systems, and can be thought of as the lines of the
Earth’s latitude and longitude projected outward and printed on the inside of
the sky sphere. Directly out from the Earth’s equator, 0° latitude, is the celestial



equator, 0° declination. Lines of both right ascension and declination stay fixed
with respect to the stars. They are measured in degrees, minutes and seconds.

3.1 Development

The two primary objectives during the research phase of this project was to
attain a clear understanding of astronomical data formats, and learning Python
scripting for Houdini.

3.1.1 FITS

FITS stands for Flexible Image Transport System. It was developed in the
late 1970s to interchange astronomical image data and is the most widely used
data format in astronomy. Most of the technical details of the first basic FITS
agreement were developed by Don Wells and Eric Greisen (NRAO) in March
1979. It is endorsed by NASA and the International Astronomical Union and is
used for the transport, analysis, and archival storage of scientific data sets such
as multi-dimensional arrays - 1D spectra, 2D images, 3D+ data cubes and 2D
database-style tables (McGlynn, T. A., 2016). It is a data format built on the
assumption that neither the software not the hardware that wrote the data will
be available when the data are read. (National Research Council, 1995).
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Figure 1: The FITS data structure (HST Data Handbook for WFPC2)

The precise format of 3D FITS files varies, but all of them contain the same
basic structure : a 3D array of flux values where the axes are x, y (typically
position on the sky, usually RA and Dec) and z (usually velocity, wavelength
or frequency, which are all directly equivalent), with the value in each array
cell being the measured flux value at that position and velocity. The THINGS



format is a little different because it is technically 4D - it uses the 4th axis to
hold polarization information (the ’Stokes’ axis parameters). This is standard
practise when processing data from the VLA, as some other types of observations
also give other information on the degree of polarization. However for neutral
hydrogen this is not the case - only the intensity is recorded. This means we
can ignore the 4th axis.

The number of tables refer to the velocity/frequency 'channels’ of the data.
For the THINGS data, the telescope simultaneously images the sky at 46 differ-
ent frequencies, each one of which is recorded as a 2D table (technically 3D, but
each will have the polarization axis, which we can safely ignore). It is the chan-
nel number which gives us the precise velocity of the emission. The wavelength,
frequency and velocity are directly equivalent to each other. What the instru-
ment directly records is frequency or wavelength; how these are transformed
into velocity is somewhat arbitrary. Because of the differences in receiver tech-
nology, different conventions defining velocity based on frequency or wavelength
have arisen in radio and optical astronomy, however, as computing power has
increased almost everyone use the ’optical’ formula, even for radio observations
like THINGS. Since the z axis is velocity, not distance, the separation of the
image planes/voxels/vertices along that direction can be completely arbitrary.

A typical FITS file contains a one or more ’header-data units’, hereafter
referred to as the '"HDU’. There can be one primary HDU and optional multiple
extension HDU’s. These HDU’s can contain varying data structures such as the
primary data array, random groups structures, image extensions, ASCII table
extensions, or binary table extensions (Pence, W. D., et. al., 2008). The data
is divided into "FITS blocks’, which is a sequence of 2880 bytes aligned on 2880
byte boundaries, mostly a header or a data block. Each HDU contains a header
and a data block. The header consists of multiple ’cards’ which describe the file,
as well as the format of the data in the HDU, if there are data. The following
example will help to understand the structure of a FITS file better.



\ELT:) Type Cards Dimensions Format
PRIMARY PrimaryHDU 459 (1024, 1024, 46, 1) float32
AIPS CC BinTableHDU 19  4285R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19 4935R kle [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4899R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19 4581R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19 4773R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4932R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4665R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19 5538R kle [1E, 1E, 1E]
AIPS CC BinTableHDU 19 4741R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4549R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4692R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4712R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4538R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19 4971R kle [1E, 1E,
AIPS CC BinTableHDU 19 5027R x 3C [1E, 1E,
AIPS CC BinTableHDU 19  4979R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19 5193R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4938R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4918R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 4924R kle [1E, 1E,
AIPS CC BinTableHDU 19 5023R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19 5412R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  5346R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4986R x 3C [1E, 1E, 1E]
AIPS CC BinTableHDU 19  4995R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5281R kle [1E, 1E,
AIPS CC BinTableHDU 19 5159R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5056R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5238R x 3C [1E, 1E,
AIPS CC BinTableHDU 19  4937R x 3C [1E, 1E,
AIPS CC BinTableHDU 19  4676R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 4749R kle [1E, 1E,
AIPS CC BinTableHDU 19 5581R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5147R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5058R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5467R x 3C [1E, 1E,
AIPS CC BinTableHDU 19  5249R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5118R kle [1E, 1E,
AIPS CC BinTableHDU 19 5339R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5292R x 3C [1E, 1E,
AIPS CC BinTableHDU 19  4932R x 3C [1E, 1E,
AIPS CC BinTableHDU 19  4963R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5314R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 5228R kle [1E, 1E,
AIPS CC BinTableHDU 19  4980R x 3C [1E, 1E,
AIPS CC BinTableHDU 19 3989R x 3C [1E, 1E,

KX X X XX XXX XXXXXXXXXXXXXXXNXXXX)XXXXXNXX)XXX)XNXNXXXNXXN)XXNXNXNXX

Figure 2: Sample FITS file header-data units list

Figure 2 shows the content of the FITS file with data about a dwarf galaxy
called M81 Dwarf A, in the Messier 81 galaxy group. From left to right, the
columns describes the HDU number, the name of the HDU, the type, dimensions
and format of the data contained in the HDU. This file has one primary HDU and
46 extension HDUs, which are binary tables. The primary HDU contains 459
‘cards’ which are basically 80-character keyword-value pair records contained in
the HDU. The dimensions column mentions the number of dimensions of the
data contained in the HDU has, which in this case is 4. This means that the
data in the primary HDU is a single ’data-cube’ which is 1024 X 1024 X 46 in
size. The format column specifies that the values in the data array are 32-bit
floating point numbers. Multidimensional data such as these are image planes
stacked up against each other, forming a cube of data points. The extension
HDUs are AIPS (Astronomical Image Processing System) tabular data (Bridle,
A. et al., 1991). The table in the first extension HDU contains 4285 rows and 3



columns in the Fortran le format. To know more about the data in the HDU,
the headers have to be read.

SIMPLE
BITPIX
NAXIS
NAXIS1
NAXIS2
NAXIS3
NAXIS4
EXTEND
BLOCKED
0BJECT
TELESCOP=
INSTRUME=
OBSERVER=
DATE-0BS=
DATE-MAP=
BSCALE =
BZERO
BUNIT
EPOCH
VELREF
ALTRVAL
ALTRPIX
0BSRA
0BSDEC
RESTFREQ:
DATAMAX
DATAMIN
CTYPE1
CRVAL1
CDELT1
CRPIX1
CROTA1

CRVAL2
CDELT2
CRPIX2
CROTA2
CTYPE3
CRVAL3
CDELT3
CRPIX3
CROTA3
CTYPE4
CRVAL4
CDELT4
CRPIX4
CROTA4

'M81DWA '
'VLA !
'VLA '
'AH752 '
'2001-12-10"'
'2005-05-20"
1.00000000000E+00
0.00000000000E+00
'JY/BEAM '
2.000000000E+03
2

1.41953068958E+09
-3.800000000E+01
1.25983333333E+02
7.10291666667E+01
1.42040575200E+09
1.197801530E-02
-4.549541511E-03
'RA-—-SIN'
1.25983333333E+02
-4.166666768E-04
5.120000000E+02
0.000000000E+00
'DEC--SIN'
7.10291666667E+01
4.166666768E-04
5.130000000E+02
0.000000000E+00

1.13000000000E+05
-1.289145752E+03
2.500000000E+01
0.000000000E+00
'STOKES '
1.00000000000E+00
1.000000000E+00
1.000000000E+00
0.000000000E+00

/
/
/
/
/
/

/

/Tables following main image
/Tape may be blocked

/Source name

/

/

/

/0bs start date YYYY-MM-DD
/Last processing date YYYY-MM-DD
/REAL = TAPE * BSCALE + BZERO
/

/Units of flux

/Epoch of RA DEC

/>256 RADIO, 1 LSR 2 HEL 3 0BS
/Altenate FREQ/VEL ref value
/Altenate FREQ/VEL ref pixel
/Antenna pointing RA

/Antenna pointing DEC

/Rest frequency

/Maximum pixel value

/Minimum pixel value

/

CTYPE2 =
A

/
/
/
/
/
/
/
/
/
'FELO-HEL' /
/
/
/
/
/
/
/
/
/

HISTORY AIPS HEADER2 CCFLUX 3.235976398E-02 /AIPS Catalog Header Keyword

Figure 3: Header Information of the primary HDU

The cards in the header describe the data contained in the HDU, as well as
information about he extension HDUs. Figure 3 shows the cards in the header
of the primary HDU. Most of these fields are not important for visualization
purposes. They describe the parameters of the data that are used for astronom-
ical data analysis. The following are the list of fields of interest for the scope of
this project:

1. BITPIX - Specifies the number of bits that represent a data value in the
associated data array. In this case, it is signed 32 bit floating point.

2. NAXIS - The number of axis of the data that is contained in this HDU.
Here, NAXIS = 4 means that the HDU contains a 4 dimensional array.



3. NAXIS(n) - The length of axis n. Eg.: NAXIS1 = 1024 means the length
of the first axis of the data array is 1024.

4. CTYPE(n) - The type for the intermediate coordinate axis n, specifying
the coordinate type and a code for computing the world coordinate value.
Here, CTYPE1 = RA—SIN means the first dimension of the data is the
right ascension and a sin function needs to be applied to this value to get
the world coordinate value.

Upon analyzing the header of the primary HDU, it can be understood that the
data is a collection of 46 image planes that are 1024 X 1024 in size. The values
in the array specify the intensity of each of the data points. This particular
FITS dataset also has data in the 46 extension HDUs each with its own tabular
data

XTENSION= ‘'BINTABLE' Extension type

Binary data

Table is a matrix

Width of table in bytes

Number of entries in table

Random parameter count

Group count

Number of fields in each row
'AIPS CC AIPS table file

Version number of table
'1E FORTRAN format of field
'FLUX Type (heading) of field
'Y Physical units of field
'1E FORTRAN format of field
'DELTAX Type (heading) of field
' DEGREES Physical units of field
'1E FORTRAN format of field
'DELTAY Type (heading) of field
' DEGREES Physical units of field

WWWNNNR R

Figure 4: Header Information of the extension HDU

The data contained in this HDU are 8 bit binary values in the form of a
matrix.

1. NAXIS = 2 since the table has 2 dimensions

2. NAXIS1 = 12 is the width of the table in bytes.

3. NAXIS2 = 4285 specifies the number of rows in the table.

4. TFIELDS = 3 specifies the number of columns in the table.

5. TFORM(n) specifies the format of the data contained in the column

6. TTYPE(n) is the type of the data. Eg.: TTYPE1 = FLUX means the
first column in the table is the flux value corresponding to the x and y
coordinate point in space specified by the TTYPE2 and TTYPE3 columns.



7. TUNIT(n) is the unit of the data. JY is short for Jansky, a unit of spectral
flux density.

Depending on the amount of data contained in a FITS file, the size may vary
between a few megabytes to several gigabytes. The FITS file for the M81 dwarf
galaxy is around 200 MB and contains image pixel data as well as coordinate
and intensity information of data points. This format was chosen for the project
because of it’s wide use and support from most astronomical agencies. The
THINGS, VGPS and Gaia data archives provide FITS data cubes of various
astronomical objects.

3.1.2 CSV

CSV stands for comma-separated values. It is a file format used to store tabular
data in plain text. Each line is considered as a row in the table, and the columns
are separated by a character called the ‘delimiter’. The delimiter is usually a
comma, but since the format is not standardized, a number of special charac-
ters are commonly used. Most spreadsheet programs can import CSV data into
other tabular formats using any user-inputted character as delimiters. CSV was
chosen as the second file format for this project because of its ease-of-use, speed
and readability. The files used for this project has been taken from the Eu-
ropean Space Agency (ESA) Gaia missoin (https://www.cosmos.esa.int/gaia),
processed by the Gaia Data Processing and Analysis Consortium (DPAC). The
table in each file contains 57 columns, inclusing data such as latitude, longitude,
flux, parallax, etc. of the data points, in around 135,000 rows per table.

3.1.3 AMR

AMR stands for Adaptive Mesh Refinement (Berger, M. J. et al., 1984). For
solving partial differential equations (PDE) numerically, a discrete domain is
selected in which algebraic analogues of the PDEs are solved. An effective
method to do this is by introducing a grid and estimating the unknown values
at the grid points using the solutions of these algebraic equations. The spacing
of the grid points determines the local error and hence the accuracy of the
solution. The spacing also determines the number of calculations to be made
to cover the domain of the problem and thus the cost of the computation.
For some problems, a grid of uniform mesh spacing in each of the coordinate
directions gives satisfactory results. However for other more complex problems,
the solution is difficult to estimate in some regions due to discontinuities, steep
gradients, shocks, etc. A uniform grid having a small enough spacing can be
used to minimize local errors estimated in these regions. But this approach is
computationally extremely costly (Mitra, S., et al, 2001).

In the adaptive mesh refinement technique, a base coarse grid is set first. As
the solution proceeds the regions requiring more resolution by some parameter
characterizing the solution are identified. Then, finer sub-grids are superim-
posed only on those regions. Finer sub-grids are added recursively until either
a given maximum level of refinement is reached or the local error has dropped
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below the desired level. Thus in an adaptive mesh refinement computation grid
spacing is fixed for the base grid only and is determined locally for the sub-grids
according to the requirements of the problem. AMR helps to track features
much smaller than overall scale of the problem providing adequate spatial res-
olution where needed. (Guarassi, M., 2015)

Figure 5: Adaptive Mesh Refinement (Topping, B. H. et al, 2004)

In addition to astrophysics, AMR is used in fields such as climate modeling
and biophysics. The same theory can be applied to 3 dimensions as well. This is
very similar to quad-trees and octrees, where a spacial area or volume is divided
a number of times till the required resolution is achieved. In flocking simulation
systems such as those that simulate the movement of birds in a flock, the number
of neighbouring birds whose movement affects a particular bird can be limited
to a within a small realistic volume using this method. Realistically, there is
no need to consider the movement of all the birds in the flock to determine the
movement of one. Using adaptive mesh refinement, the neighbouring birds that
come within a threshold distance can be identified and used to determine the
influence on flocking behaviours.

In the AMR data structure, the whole computational domain is covered by
a coarse grid, representing the root node of the hierarchical data structure. In
regions where higher resolution is required, finer sub-grids are created as child
nodes of the root grid. This defines a new level of the hierarchy increasing the
resolution of the parent grid by the ’refinement factor’. Fig. 6 shows a 2D
example of an AMR grid hierarchy with a refinement factor of 2. Root grid
A has one sub-grid B, which again has two children (C, D). The data values
are normally stored at the grids nodes (vertex-centered) or at the centers of
the cells (cell-centered). Sub-grids are completely contained within their parent
grids. Sub-grids begin and end on parent cell boundaries, which means that
parent grid cells are either completely subdivided or not subdivided at all. The
data structures for storing AMR data are hierarchical, dynamic, and very large.
For example, the simulation of some X-ray galaxy clusters use a grid hierarchy
seven levels deep containing over 300 grid patches. (Norman, M. L. et al, 1999)

The AMR files tested in this project are made using Enzo, a grid-based
finite-volume hydrodynamics code. That is, the domain is divided into cells,
each is assigned various fluid properties (density, velocity, etc.), and at each
time step fluxes of those quantities across the interfaces between cells are used
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to update the quantities in the cells. Enzo uses block-structured adaptive mesh
refinement to provide high spatial and temporal resolution for modeling astro-
physical fluid flows. The code is Cartesian, can be run in 1, 2, and 3 dimensions,
and supports a wide variety of physics including hydrodynamics, and N-body
dynamics (Bryan G. L., 2013)

Figure 6: Types of Refinement - Mesh Distortion, Point-wise Structured and
Block Structured (Almgren, A. S., 2011)

For cosmological simulations, each grid stores arrays of data describing the
physical state of the cosmic fluid (density, temperature, and so on), the gravita-
tional potential, and a list of particle positions and velocities for stars and dark
matter. The cell size Ax of the grid decreases with depth in the hierarchy as
1/R level, where R is an integer refinement factor and level is the level of grid
in the hierarchy. Any given grid in the hierarchy further resolves a region in its
parent grid, and can also be the parent grid for a more refined child grid. Every
grid contains the solution for the region it covers. That is, there are no holes
in the parent grid where the child grids exist. Consequently, we can obtain an
approximate representation of the global solution at any level of the hierarchy
by compositing the solutions at or above that level (Norman, M. L., et al, 1999).
The resolution levels of adjacent cells may differ by more than 1. This had to
be taken into account for using the data for visualization using VDB volumes.
The method used is discussed later.

AMR data can be extremely large and complex. Therefore, an suitable data
format must be used to efficiently store and transport data. Hierarchical Data
Format (HDF) is a set of file formats (HDF4, HDF5) designed to store and
organize large amounts of data. Large AMR files used in astronomy are stored
in HDF5 files. HDF5 includes only two major types of objects - 'Datasets’,
which are multidimensional arrays of a homogeneous type, and ’Groups’, which
are container structures which can hold datasets and other groups. This results
in a truly hierarchical, filesystem-like data format.(Fox, G., 2015)

3.2 Data Sources

To test the capability of the digital asset to read and plot data from different
sources, five sources were selected with different data formats.
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3.2.1 THINGS

The HI Nearby Galaxy Survey is one of the largest programs undertaken at
The National Radio Astronomy Observatory (NRAQ) Very Large Array (VLA),
U.S.A. to perform 21-cm HI observations of nearby galaxies. The HI stands
for neutral hydrogen line emissions and refers to the electromagnetic radiation
spectral line that is created by a change in the energy state of neutral hydro-
gen atoms. The project is designed to determine whether extra-galactic neutral
hydrogen (HI) line emissions from nearby galaxies can be detected. A sample
of 34 objects at distances between 3 to 15 Mega Parsecs have been targeted in
THINGS, covering a wide range of star formation rates, total masses, absolute
luminosities, evolutionary stages, metallicities, small-scale and 3D structure of
ISM, dark matter distribution and the processes leading to star formation (Wal-
ter, F., 2007).

3.2.2 Gaia

Gaia is a mission to chart a 3D map of the Milky Way, to reveal the com-
position, formation and evolution of the galaxy. Gaia provides unprecedented
positional and radial velocity measurements with the accuracies needed to pro-
duce a stereoscopic and kinematic census of about one billion stars in our Galaxy
and throughout the Local Group. This amounts to about 1% of the Galactic
stellar population, collected over a period of 5 years. (Europian Space Agency,
2016). The data are provided in both FITS as well as CSV formats, and a
reduced dataset containing verified star positions (omitting other luminous ob-
jects) called the TGAS (Tycho-Gaia Astrometric Solution) is also provided.
This is the data set that has been used in this project.

3.2.3 HYG

The HYG 3.0 database is a compilation of stellar data from a variety of catalogs.
It is useful for background information on star names, positions, brightnesses,
distances, and spectrum information. The database is a subset of the data in
three major catalogs: the Hipparcos Catalog, the Yale Bright Star Catalog,
and the Gliese Catalog of Nearby Stars. The Hipparcos catalog is the largest
collection of high-accuracy stellar positional data, particularly parallaxes. The
Yale Bright Star Catalog contains basic data on essentially all naked-eye stars.
The Gliese catalog is the most comprehensive catalog of nearby stars (those
within 75 light years of the Sun) including fainter stars not found in Hipparcos.
(Nash, D., 2006)

3.2.4 GRS

The Galactic Ring Survey is a joint project of Boston University and Five Col-
lege Radio Astronomy Observatory to observe the Milky Way’s dominant star-
forming structure, the Galactic Ring. Using the SEQUOIA multi-pixel array
receiver on the FCRAO 14 m telescope, a new molecular line survey of the
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inner Galaxy was conducted. The project intended to catalog the molecular
clouds and cloud cores, establish kinematic distances to many clouds and their
associated Young Stellar Objects and determine their sizes, luminosities, and
distributions, and to determine the structure of the inner Milky Way (Jackson
et al., 2006).

3.2.5 VGPS

The VLA Galactic Plane Survey is a project to catalogue 21-cm line emission
from neutral atomic hydrogen (HI) in the Milky Way disk. The VLA survey
provides a link between the northern and southern hemisphere surveys and cover
the first quadrant of the Galaxy, where the effects of star formation and the
interaction between the disk and halo are expected to be dominant shapers of
the inter-stelar medium (ISM) (e.g. Heiles 1984). The VGPS will also provide,
together with high resolution infrared images, complete imaging of the major
components of the interstellar medium in this region down to scales of a few
parsecs. The data is provided in the FITS format as multiple moment maps. A
moment map can be considered as a single layer of a 3D data cube along the
velocity axis. (McClure-Griffiths, N. M. et al. 2001).

3.3 External Libraries
3.3.1 YT

Yt is an open-source, permissively-licensed python package for analyzing and
visualizing volumetric data. Yt supports structured, variable-resolution meshes,
unstructured meshes, and discrete or sampled data such as particles. Focused
on driving physically-meaningful inquiry, yt has been applied in domains such as
astrophysics, seismology, nuclear engineering, molecular dynamics, and oceanog-
raphy. Yt provides methods to parse AMR and FITS files. However, it has been
used in this project only to read AMR files.

3.3.2 PyFITS

PyFITS provides an interface to FITS formatted files in the Python scripting
language. It is useful both for interactive data analysis and for writing analysis
scripts in Python using FITS files as either input or output. PyFITS is a devel-
opment project of the Science Software Branch at the Space Telescope Science
Institute. PyFITS and all necessary modules are included with the stsci_python
distribution and associated updates to it. It may be used independently as long
as numpy is installed.

3.3.3 PyOpenVDB

OpenVDB is an Academy Award-winning open-source C++ library comprising a
novel hierarchical data structure and a suite of tools for the efficient storage and
manipulation of sparse volumetric data discretized on three-dimensional grids.
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It is developed and maintained by DreamWorks Animation for use in volumetric
applications typically encountered in feature film production. (Museth, K.,
2013). The Python module PyOpenVDB supports a fixed set of grid types -
FloatGrid, BoolGrid and Vec3SGrid.

4 Methodology

The principles of data visualization (Bernhard, J., 2012) suggests that a large
amount of quantitative information can be packed into a small region. Graphing
data should be an iterative, experimental process. The overall scale of the data
presented by astronomical data sets is somewhat irrelevant for our purpose.
However, the relative scales, coordinate systems and units have to be taken
into consideration while plotting the data, to maintain the integrity of the data.
Iterating through every data point in the data set is both time consuming and
computationally expensive. For non-scientific purposes, it was observed that
a subset of the data that was scaled down proportionally, was visually similar
to the result obtained by using the entire data set. Implementing a variable
resolution also helped in the testing phase, by ensuring the entire data set was
not being parsed after every iteration.

Figure 7: NGC628 FITS data cube at 10, 25 and 50 percent resolution

To plot the data points accurately, the user needs to have the flexibility to
choose from the data sets what values to set as positional data, and what to
set as point attributes like magnitude, flux etc. Some data sets such as those
from the Gaia observations have positional data based on multiple coordinate
systems and also data related to star intensity, flux density, error, etc. Therefore,
it was decided to split the whole process into two parts - data analysis and data
visualization. The visualization does not commence until the user selects the
parameters to use for the visualization.

This method completely depends on the type of data. HI emission maps
carry a large number of data points based on the flux densities of observed points
in space. Star maps such as the data collected in the Gaia project represent
positions of individual stars (Europian Space Agency, 2016). For visualizing
AMR files, VDB volumes were used. For each refinement level of the AMR, a
VDB grid is generated because the voxel size of a single volume has to be the
same, unlike 3D AMR, where each sub-grid is 1/8th of the size of their parent
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grid within the same volume.

5 Previous work

5.1 Papers

Scientific data visualization has been implemented using Blender, a free open
source software used for 3D content creation (Kent, B. R., 2013). The paper
describes the methods used to read FITS data cubes and AMR files to visualize
dark matter maps and star clusters. Blender has a python interface which
can be used to parse and visualize data as points and volumes. Commonly
used data formats used for large datasets and techniques to visualize them in
Houdini has been illustrated by Ben Simons (Simons, B., 2015). Various real-
time colouring and filtering algorithms that can be used for producing visually
appealing renders have been illustrated in the paper Real-time colouring and
filtering with graphics shaders (Vohl, D. et al, 2017). However, this approach is
for purely scientific purposes, and realtime rendering is not in the scope of this
project. Further research into visualization of large N-particle data and spectral
cubes has been done by Amr Hassan et. al. including using high performance
computing architectures (e.g: distributed processing and GPUs), collaborative
astronomy visualization, the use of workflow systems to store metadata about
visualization parameters, and the use of advanced interaction devices (Hassan,
A. et. al., 2011). Naiman (2017) developed tools to import and manipulate
astrophysical data into Houdini using the yt python library focusing primarily on
visualization of adaptive mesh refinement files. More strategies for visualization
of AMR files and improved scalability techniques were presented by Micheal L.
Norman (1999). Data from the Gaia mission was visualized using Houdini by
Niklas Rosenstein (2017).

5.2 Software
5.2.1 FRELLED

FRELLED stands for FITS Realtime Explorer of Low Latency in Every Dimen-
sion, an astronomical data viewer designed for 3D FITS files. It’s mainly aimed
at visualizing data cubes in realtime, interactive 3D, and is particularly geared
toward HI and simulation data. It is a set of python scripts for Blender, and
allows users to import 3D FITS files into Blender, where they can be viewed
from any angle in realtime. (Taylor, R., 2015)
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Figure 8: Visualization of NGC628 FITS data cubeusing FRELLED

5.2.2 DS9

SAOImage DS9 is an astronomical imaging and data visualization application.
It supports FITS images and binary tables, multiple frame buffers, region ma-
nipulation, and many scale algorithms and colormaps. DS9 is a stand-alone
application. It requires no installation or support files. DS9 supports advanced
features such as 2D, 3D and RGB frame buffers, mosaic images, tiling, blink-
ing, geometric markers, colormap manipulation, etc. The GUI for DS9 is user
configurable.

Figure 9: Visualization of FITS data cube in DS9
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5.2.3 FITS Liberator

FITS Liberator is a free software for processing and editing astronomical data
in the FITS format. Version 3 and later are standalone programs, while earlier
versions were plugins for Adobe Photoshop. It uses NASA’s CFITSIO library
to read and write FITS data. As with other software mentioned above, the
capabilities of this program is limited to scientific analysis and 2D viewing of
FITS data cubes. However, it is extremely fast and memory efficient, and is
supported by NASA and ESA.

e VGPS_cont MOS049 s - ESAJESO/NASA FITS Liberator 3

NX XX fe

202002

Qesa

e

Figure 10: Visualization of a VGPS Data cube image planes in FITS Liberator

6 Implementation

This project aims at using real world astronomical data for visualization in
motion graphics. Large datasets collected from ground and satellite telescopes
can be used to accurately construct objects in space such as star clusters, dark
matter clusters and entire galaxies. The algorithms presented here were used to
extract data from the various sources and unify the visualization process using
a custom digital asset in Houdini. Data from five different sources in three most
widely used formats have been considered. The primary objective of this project
is to efficiently parse data from astronomical data sources to and plot the data
points on a platform where it can be used to develop visually appealing renders
for visual effects.

The Python node in Houdini was used to read and plot the data. The process
is divided into two - data analysis and data visualization.

6.1 FITS

FITS files were read using the PyFITS Python library. If this library is not
installed and configured for use from within Houdini’s Python environment,
the asset will display a message asking the user to install it before continuing.
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Information about the data contained in the file is presented in human-readable
ASCII format in the header section of the header-data units, and both binary
and ASCII data can be held in the HDUs. Some sources provide data split into
‘'moment maps’, which are 2D image planes contained in separate FITS files, or
the entire 3D data split into multiple files for the sake of portability. Therefore,
the capability to read multiple files has been included in the digital asset. If
a folder is selected, all files in the folder are verified to contain identical HDU
counts and axis definitions, and the data is read and plotted in a loop.

The first Python node contains code to read the data, create attributes and
load the the user interface parameters. Since data variables cannot be passed
between Houdini nodes, the ideal way to do it was through the attributes. It
reads the number of HDU’s, the number of axes in each HDU and the name
of the axes. If the data is a matrix or table, the number and name of the
columns would also be extracted. The order and type of data stored in FITS
files vary from source to source, so it was not possible to plot the data based on
a predefined axes selection.

The ordered menu on the HDA interface are biult live using Python scripts
which extract these global attributes. Therefore the menus remain deactivated
until a file is chosen and analysed. Several of-the-shelf software that read FITS
files have predefined axis and coordinate systems, so the data cannot be plotted
accurately (For example, using the DS9 program to open FITS files from the
Gaia source). Therefore, the option to switch between spherical and cartesian
coordinate systems and between degrees and radians were added. Once the axes
are defined, the user can select what attributes to be added to the points/vol-
ume, depending on the available data in the file. For most infra red and x-ray
telescopes, the apparent magnitude or luminosity is recorded, which affects the
colour and visibility of the data point respectively. This has been defined as
the 'magnitude’ field in the point attributes. Once again, the type of data that
represents the magnitude may vary depending on the source.
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Figure 11: Flowchart - FITS file analysis
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The second Python node reads the entire dataset and loads it into a local
variable first. This data is then read out to assign point positions. This reduced
the number of times the dataset had to be parsed using the external libraries.
This improved the loading time considerably. However, for previewing purposes,
a resolution setting has been provided, which effectively reduces the number of
points by iterating through the data set at intervals higher than the default
1. This was added because it had very little effect the overall structure of
the visual output, and helped to decrease the reading time. Once the data
visualisation is complete, the geometry is cached out to disk using a file node,
and subsequent changes on the HDA interface affects the cached out geometry.
This also includes coordinate system and unit changes. It was observed that
only the nodes that have calls to the the changed parameter are cooked when
a particular parameter is changed. Hence, it was faster to perform some of the
calculations using VEX on the cached out geometry.
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6.1.1 Algorithm

Algorithm 1 Pseudocode - FITS Visualization as Points

create list data = []

foreach HDU in HDUlist
append to data(HDUdata)

if NAXIS = 2 //data is a matrix:

//buildFromMatrix ()
foreach column in data, iterate by resolution /100:
//columns for position data from HDA interface

x = data [HDU number | [row Number|[x Column Number |
y = data [HDU number | [row Number||[y Column Number]
if zAxis is arbitrary:

//small value for image plane separation

z = 0.001 % HDU number

else:

z = data [HDU number |[row Number|[z Column Number |

create point with position (x, y, z)

set attribute ’magnitude’ = \

data [HDU number |[row Number || magnitude Column Number |
//set layer count as attribute for better control
set attributer layer = HDU number

else if NAXIS > 2 //3D data cube
//Function buildFromDatacube ()
if NAXIS = 4:
//ignore polarization axis
set data = HDU data [0]
else:
set data = HDU data
set x, y, z axis lengths of HDUdata
for each x, y, z in HDUdata:
create point with position (x, y, 2z)
set attribute ’magnitude’ = \
data [HDU number |[row Number ][ magnitude Column Number ]
set attributer layer = HDUnumber

For volume visualisation however, the entire data set is used to input voxel
values. For all FITS data sets used for this project, 3D arrays as image plane
data is contained in the primary HDU, so volume visualisation has been disabled
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for extension HDUs. Both VDBs and Houdini volumes can be produced.

Algorithm 2 Pseudocode - FITS Visualization as Volume

//buildFromVolume ()

if data dimensions = 4:

set data = HDUdata[0] //ignore polarization axis
else:

set data = HDUdata

data = cast to float(data) //cast to float32
data = remove nan(data) //remove numpy not—a—number
//create bounding box with size = data cube.

//Houdini assumes NDC dimensions for volumes otherwise

create bounding box(xAxisLength ,yAxisLength ,zAxisLength)
create volume with (dataSize, bounding box)

for each voxel index (i, j, k) in data:

set voxel value = data[i][]][k]

The code for generating the VDB volume can be found in a PythonModule
subsection in the Scripts section of the HDA. This script is called using a callback
Script that is executed when the "Write’” button is clicked under the VDB section.

Algorithm 3 Pseudocode - FITS script for generating VDB volume

//writeFITSVDB () HDA PythonModule

create data list [

if data dimensions = 4:

set data = HDUdata[0O] //ignore polarization axis
else:

set data = HDUdata

set data = cast to float32(data) //cast to float32
set data = remove nan(data) //numpy not—a—number values

create vdb FloatGrid ’dataGrid’

dataGrid.copy from array(data)

#set volume name from HDA input

set dataGrid name = volumeName

set vdbFileName = VDBPath + volumeName + ’.vdb’
write volume grids = dataGrid
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6.2 CSV

CSV tables only contains two dimensional tabular data, so the columns to visu-
alise data from depends on the type of data. The column names are first loaded
as detail attributes and read from the HDA interface into ordered menus for the
user to select. As with FITS files, ordered menus are populated using python

scripts.
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names

open flle using cav -
module -

Y

Get column count and
names

Load column count
and names as
detall atiributes

Select columns to plot
data from, resolution,

unit and coordinate
conversions and
columns to add as
atinbutes

Figure 12: Flowchart - CSV file analysis

Houdini provides a 'Table Import’ node built using python code, but it
provides limited functionality. Multiple files cannot be read at the same time,
and reading columns and rows is a static, preset process. For this project, it was
decided to use Python’s CSV module to give these functionalities to the user.
The Gaia data is split between multiple files, and a number of attributes such as
intensity and flux can be added to the data points. This is only possible if the
user is able to pick the columns to be read. Attributes from specific columns
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can be added using the ’Add Point Attributes’, by separating the column names
by a comma. The user can limit the number of files and rows read for testing
purposes.

6.2.1 Algorithm

Algorithm 4 Pseudocode - CSV Visualization as Points

# read CSV file
//readFile ()

csviile csv.open(file name)
reader csv reader
header = first row or table

# build points from data

//buildGeometry ():

# make dictionary of columns in CSV table
header = name:index for header

for each row in table rows:
# set x, y, x as per GUI axis selection

x = convert to float (xAxisColumn)
y = convert to float (yAxisColumn)
z = convert to float (zAxisColumn)

create point

set point position(x, y, z)

set attribute value magnitude = convert to float (item \

at index of magnitude column)

# add filenumber and row number to control in wrangle node
set Attribute Value fileNumber

set Attribute Value rowNumber

# add attributes from ’add point attributes’ parameter \
on HDA

for attribute name in Attributes:

#double check if attribute exists

if attribute name in header:

attribute value = convert to float (item at index of \
attribute column)

set point attribute Value
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6.3 AMR

AMR files are read in the analysis node to get the refinement levels and fields
contained the grids. Fields such as creation time, particle position, particle
mass, density, temperature etc. are recorded in AMR files, and can be used to
build the volumes, depending upon the user input.

©

Y

Load AMA data using yt

Add number of avallable
fields and refinement levels
to detall attributes

.

Selact refinement lavels
and fekd

Y

Write Python script file
with user parameters

Figure 13: Flowchart - AMR file analysis

The AMR module works differently from the FITS and CSV modules, be-
cause the volumes are not built on the fly from within Houdini. Although
Houdini provides an python API to use VDB volumes, it was found to be very
limited in terms of accessing and manipulating the voxel values. Most functions
are provided to read VDB volumes and determine the voxel values in specific
indices, the resolution, bounding box and transforms.

The PyOpenVDB library provided fast and easy manipulation of voxel data
and the ability to copy data directly from 3 dimensional arrays into a volume.
Hence, in the AMR module, the user input is used to write a python script that
will build the VDB files outside of Houdini. Once the field and refinement levels
are selected, the script is prepared, and the user has to run the script from a
terminal in order to b build the volumes. There will be a VDB file for each

25



refinement level in the AMR file. After this, the files have to be imported into
Houdini using the file node and merged. A shader has been provided to test the
built VDB volumes (Naiman, J. P. et al, 2017).

While populating voxel values into a VDB volume from the AMR data, the
voxel size is always constant for a volume. After all refinement levels are parsed
and the subgrids built, the VDB volumes are transformed to accurately fit in
the masked regions of the grid built using the parent grid of the AMR. The
following figure illustrates this process.

Figure 14: AMR data in VDB volumes before scaling

Figure 15: AMR data in VDB volumes after scaling

Notice the voxel sizes are the same in the 3 refinement levels in figure 14.
These cannot be merged into a single volume to resemble an AMR cube unless
they are scaled. VDB volumes were the ideal choice for this because they are
sparse volumes. They are also multi-threaded, which means that AMR data
of higher refinement levels (>50) can be read and loaded into VDB volumes
relatively faster than with normal volumes. For multi-threaded insertion oper-
ations, separate grids are assigned to each thread and then merged as threads
terminate. This technique is extremely efficient, because OpenVDB is sparse
and hierarchical. (OpenVDB, 2017)

The yt Python library was chosen to read AMR files. Yt provided a robust
solution to read and analyze Enzo AMR files and worked well with Houdini.
PyOpenVDB provides functions to copy 3D array data into voxels of a VDB
volume. Since AMR data has varying grid sizes within the same volume, the
data can not be copied to a single grid of a VDB volume, since the voxel size is
constant throughout any given grid. To overcome this, Yt provides the capabil-
ity to build mask grids. A mask grid can be used to 'cut holes’ in a VDB volume
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so that the voxel positions where the AMR grid contains denser sub-grids can
be left with a background value. This space is then used to accurately place the
sub-grids from the second refinement level of the AMR, and so on.

Enzo uses a dynamic load-balancing scheme to distribute the workload within
each level of the AMR hierarchy evenly across all processors. Although each pro-
cessor stores the entire distributed AMR hierarchy, not all processors contain all
grid data. A grid is a real grid on a particular processor if its data is allocated to
that processor, and a ghost grid if its data is allocated on a different processor.
Each grid is a real grid on exactly one processor, and a ghost grid on all others.
Each data field on a real grid is an array of zones with dimensionality equal to
that of the simulation (typically 3D in cosmological structure formation). Zones
are partitioned into a core block of real zones and a surrounding layer of ghost
zones. Real zones are used to store the data field values, and ghost zones are
used to temporarily store values from surrounding areas, ie, neighboring grids,
parent grids or external boundary conditions, when required for updating real
zones (Enzo Developers, 2017).
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6.3.1 Algorithm

Algorithm 5 Copy AMR data into VDB volume

for level in refinement levels:
gridSet = dataSet.index.select grids(level)

create mask VDB Grid
create data VDB Grid

for each subgrids in gridSet:

#get field name from HDA input eg.’Density’

set subGrid = currrent sub Grids|[field]

set subGridGhostZone = subGrids.retrieve ghost zones \
for field

set mask = child mask(subGrids)
set voxelStartIndex = start voxel Index of sub grid

mask VDB Grid.copyFromArray (mask)
data VDB Grid.copyFromArray (subGridGhostZone)

set voxelNumbers = dataSet dimensions * dataSet \
refinement =~ level

#the simulation domain is the scale used for distance \
measurements in the AMR file.eg. kpc, au, mile etc.
set voxelSize = cast to float (data Set domain \
width / voxel count)

#scale down both grids to the same voxel size

set transform for mask VDB Grid = \
createLinearTransform (voxelSize)

set transform for data VDB Grid = \
createLinearTransform (voxelSize)

create VDB Grids list = []

set data VDB Grid name = field

set mask VDB Grid name = ’mask’

append mask to VDB Grids list

append data to VDB Grids list

set VDB File Name = VDBPath + field + ’level’ 4+ ’.vdb’
write VDB file (vdbFileName, grids = VDB Grids)
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7 Results

Figure 16: FITS data cube visualized as points at 50% resolution

Figure 17: FITS data cube volume and histogram view
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Figure 18: Gaia FITS file viewed using DS9 vs AstroVis

Figure 19: AMR and FITS VDB volumes

Problems

Performance - The data sets used for this project were extremely large due
to the amount of data points captured by the telescopes. Most of these
are extremely high resolution radio telescopes that observe and capture
data over many years. The FITS file for the galaxy NGC628 contains
over 60 million floating point numbers stored in a 3D array. A single CSV
file from the Gaia source contains over 130,000 rows and 57 columns with
floating point values. Testing the visualisation proved to be extremely
slow, so most of the testing was done using a reduced resolution. However,
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the final renders were done at full resolution. It was noticed that the
processor-heavy activities such as reading and plotting data points from
the FITS data cubes used only a single core. Python in Houdini is by
default single threaded, but the multiprocessing module allows processes
to be split between threads. This was initially considered to speed up
the visualisation process but, upon further research, it was found that the
Python interpreter in Houdini is not a separate process in Houdini. Since
it’s part of the same process as Houdini, the multiprocessing module can
only fork the Houdini process. The numpy package in itself improved the
performance to a great extent. In addition to this, the itertools module
improved the performance further, and also simplified the code. Nested
loops were removed and replaced by the product iterator (See Appendix
13.2.2).

. API compatibility - Four external Python libraries were used for this
project - Numpy, PyFITS, yt, and PyOpenVDB. Although yt provides
functions to open and read FITS files, it was observed that PyFITS was
faster, as well as easy to comprehend and integrate into Python. PyOpen-
VDB worked well in the native Python environment on a Macintosh, but
caused Houdini to crash upon import. This was observed on both Houdini
15 and 16.

. Houdini Inlinecpp module - To avoid running an external Python script
for the AMR to VDB conversion, an attempt was made to write c++
functions using the inlinecpp Python module in Houdini. Using the c¢++
library for OpenVDB, three functions were written to build the volumes,
insert values and write the VDB files to disk. Although it was relatively
simple to pass arguments and get return values from the functions, sending
data between the c++ functions proved to be nearly impossible, because
iterating through the AMR refinement levels had to be done using yt
in Python, and that meant moving the OpenVDB floatGrid datatype in
Python, which was not possible (See Appendix 13.2.7).

. Array Iterators: Using nested loops to iterate over 3D arrays proved to
be very slow. This was required to read the FITS data cubes and create
the VDB volumes. PyOpenVDB provides a function called copyfromarray
that can be used to directly copy 3D array data into a volume, as long
as the dimensions of the volume and the array match. However, this did
not work initially, because of data-type conflicts. Since the entire data
set is first loaded into a variable eliminating 'nan’ values, the data was
getting corrupted because of the conversion from 32 bit single precision
floats to numpy floats. Therefore, the data had to be cast to float32 using
Numpy’s astype function. The other way to load the voxel values was to
use a combination of the product iterator from itertools and input values
per-voxel using an voxel accessor and the setVoxel method. This was also
slower than using the copyfromarray function (See appendix 13.2.3)
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9 Conclusion

The objective of this project was to extract and visualise data from astronomical
data sources in a way that can be used for visual effects. Current software
solutions that read such data cannot be used for this purpose, and focus on the
technical aspects rather than the artistic. By using appropriate shaders and
lighting, the geometries and volumes produced using this tool can be used to
visualize astronomical data in an efficient, visually appealing way. Apart from
a few minor caveats, the project has been a success.

10 Future Work

10.1 Integration of PyOpenVDB in Houdini

Since VDB volumes are sparse, they are considerably faster and more memory
efficient than standard Houdini volumes. By removing the process of outputting
a script to generate the VDB’s this would be a complete self-contained tool to
visualize data cubes.

10.2 Spiral galaxy simulations

An example is shown with an axis force applied to the visualised points from
a FITS data cube. It would be beneficial to refine that further using better
algorithms and physically observed values for the galaxy’s movement. This can
be used for simulations.

10.3 Multi-threading

More research into multi-threading capabilities in the Houdini python environ-
ment needs to be done. The multiprocessing module of Python is very useful
when dealing with large arrays and can also help to stop Houdini from freezing
while the geometry is cooking.
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13 Appendix

13.1 Synonyms

FITS - Flexible Image Transport System
VLA - Very Large Array
VGPS - VLA Galactic plane Survey
HYG - Hipparcos, Yale Bright Star, and Gliese
AMR - Adaptive Mesh Refinement
CSV - Comma Separated Values
GRS - Galactic ring Suvey
FCRAO - Five College Radio Astronomy Observatory
NRAO - National Radio Astronomy Observatory
TGAS - Tycho-Gaia Astrometric Solution
THINGS - The HI Nearby Galaxy Survey
ISM - Inter-Stellar Medium
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13.2 Code

13.2.1 HDA ordered menu creation

attribList = []

if (node.evalParm (’FITS data_ source’)=="0"):
#0 is always primary
dataSource suffix="prim "

else:
dataSource suffix="ext "

if geo and geo.findGlobalAttrib(dataSource suffix+4+ NAXIS’):
#Metadata, no datatype suffix
if (geo.attribValue(dataSource suffix+’NAXIS’)==1):
iterateMax=1
return ("0",geo.attribValue(dataSource suffix+'NAXIS1’))
elif (geo.attribValue(dataSource suffix+’NAXIS')==2):
#2D matrix / table / CSV
dataType suffix = "T"
if geo.findGlobalAttrib(dataSource suffix+ TFIELDS’):
iterateMax=geo.attribValue (dataSource suffix+ \
"TFIELDS’)+1
else:
dataType suffix = "C"
iterateMax=geo.attribValue (dataSource suffix+'NAXIS’)

if iterateMax != 1:
attr _name = dataSource suffixt+dataType suffix+ TYPE’
for i in range(1l, iterateMax):
#l—indexed , add all possible coordinate formats
attribList .append (1)
attribList .append(geo.attribValue (attr _name+ \

str(i)).upper())
return attribList
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13.2.2 FITS Points Visualisation

# global lists
hduList = |[]
tFields = []
addedAttr =

[l

# add attributes to pass to next node
def addAttrs(hdu):

global tFields
global addedAttr

#layer number to control image plane spacing

if not geo.findPointAttrib ("layer"):
geo.addAttrib (hou. attribType.Point, "layer", 0)
#main attribute that controls point properties
if not geo.findPointAttrib ("magnitude"):
geo.addAttrib (hou. attribType.Point, "magnitude", 0.0)
#add column counts and names for matrix data

if geo.findGlobalAttrib(hdu + " TFIELDS"):

for i in range(l, geo.attribValue (hdu + \

" TFIELDS") + 1):

if geo.findGlobalAttrib (hdu + " TTYPE" + str(i)):

tFields .append(geo.attribValue (hdu + " TTYPE" + \

str(i)).split (" : ")[0])

# add attributes from ’add point attributes’
for attrName in extraAttr:

if attrName.replace(" ",

"").lower () in tFields:
geo.addAttrib (hou. attribType.Point, \

attrName.replace(" ", ""), 0.0)
addedAttr.append (attrName.replace ("

n n ll))
)

# build points or volume based on GUI settings
def buildGeometry (fileOrDir ):

global hduList
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FITS Points Visualisation cont.

#load fits data
try:
hduList = fits.open(fileOrDir)
except Exception, e:
hou. ui. displayMessage (Error Message)
return

#Primary HDU data, single run
if hduNum = 0:
addAttrs ("prim")
if geo.findGlobalAttrib (’prim NAXIS’):
# Matrix data. Ignore 1D metadata.
if geo.attribValue (’'prim NAXIS’) — 2:
# build from single primary hdu
build from matrix(hduList [0]. data)

elif geo.attribValue (’prim NAXIS’) > 2:
if geo.attribValue (’'prim NAXIS’) — 4:
# ignore polarization axis (eg: STOKES)
build from datacube(hduList [hduNum]. data[0])
else:
build from datacube(hduList [hduNum]. data)

# extension HDU data, possible multiple runs
else:

addAttrs ("ext")

if geo.findGlobalAttrib (’ext NAXIS’):

# Matrix data. Ignore 1D metadata.

if geo.attribValue ('ext NAXIS’) — 2:
# concat data from all extensions
data = []

for i in range(l, len(hduList)):
currentHduData = list (hduList[i]. data)
data.append (currentHduData)

# build from concatenated data
build from matrix(data)
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FITS Points Visualisation cont.

# 3D data cube
elif geo.attribValue ("ext NAXIS’) > 2 and \
geo.attribValue (7ext NAXIS3’) > 1:
if geo.attribValue (’ext NAXIS’) — 4:
#ignore polarization axis (eg: STOKES)
build from datacube(hduList[hduNum]|. data[0])
else:
build from datacube(hduList [hduNum]. data)

# build points from 3D array (FITS data cube)
def build from datacube(data):

# get np.shape of data cube

axisLengths = list (reversed (np.shape(data)))

# assign as per GUI axis selection

xAxisLen axisLengths [xAxis —1]
yAxisLen = axisLengths|[yAxis—1]
zAxisLen axisLengths [zAxis —1]

# iterate through data cube and set point positions

for x, y, z in product(range (0, xAxisLen, resolution),\
range (0, yAxisLen, resolution), range(0, zAxisLen)):

pt = geo.createPoint ()

# arbitrary image plane separation

pt.setPosition ((x, y, 2z))

# set layer and magnitude point attributes
pt.setAttribValue ("magnitude", float (data[z]|[y][x]))
pt.setAttribValue ("layer", z)

# build points from 2D matrix
def build from matrix(data):
global addedAttr

global tFields
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FITS Points Visualisation cont.

# set points from each HDU
for i in range(len(data)):
for j in range(0, len(data[i]), resolution):
# data [hdu][row ][ column]
x = float (data[i][]][xAxis—1])
y = float (data[i][j][yAxis—1])
# manual z
if zAxis = 0:
# arbitrary image plane separation
z = 0.001 * i
else:
z = float (data[i][]j][zAxis—1])
pt = geo.createPoint ()
pt.setPosition ((x, y, z))
# set layer and magnitude point attributes
pt.setAttribValue ("magnitude", \
float (data[i|[j]|[magnitude — 1]))
pt.setAttribValue ("layer", i)
# add point attributes from Matrix (HDA interface)
for attr in addedAttr:
pt.setAttribValue(attr, data|[i][]j][tFields.index(attr)])

def main():

# run if ’live build’ is enabled.

if node.evalParm ("../FITS live build points") and \
int (node.evalParm ("../FITS build as")) = 0:# and \

(xAxis != yAxis != int(zAxis)+1 != magnitude):

if xAxis = yAxis or xAxis =— zAxis or yAxis — zAxis:
return

else:

# multiple files in folder

if os.path.isdir (fileOrDir):

for file in os.listdir (fileOrDir ):
buildGeometry (fileOrDir + file)

else:

# single file

buildGeometry (fileOrDir)

else:
return

main ()
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13.2.3 FITS Volume Visualization

# create Houdini volume and populate voxel values
fileNum = 0
def buildVolume (fileOrDir ):

global fileNum

#read FITS file

try:

hdu list = fits.open(fileOrDir)

except Exception, e:

hou.ui.displayMessage (Error Message)

return

#ignore polarization axis (eg: STOKES)
if hdu_list [hduNum]|. data.ndim = 4:
# avoid numpy ’'not—a—number’ values and cast to float
data = nan_to_num(hdu_list [hduNum]. data [0]). astype(float)

elif hdu_ list [hduNum]. data.ndim = 3:
data = nan_to_num(hdu_list [hduNum]|. data ). astype(float)

bbox = hou.BoundingBox (fileNum x len(data),0,0,\
len (data),len (data[0]),len(data[0][0]))
#create volume using data axis lengths
vol = geo.createVolume (len (data), len(data[0]), \
len (data[0][0]), bbox)
#load voxel values using itertools
for i,j,k in product(range(len(data)
range (len (data[0])) ,range(len (data [0
vol.setVoxel ((i,j,k), data[i][]j][k])

)5\
[101))):

def main ():
global fileNum

fileNum = 0
if hou.evalParm ("../FITS live build volume"):

if os.path.isdir (fileOrDir):
for file in os.listdir (fileOrDir):
buildVolume (fileOrDir + file)
fileNum += 1

else:
buildVolume (fileOrDir)

main ()
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13.2.4 CSV Visualization

fileOrDir = ""

# build points from data

def buildGeometry(reader, header, fileNum ):

# make dictionary of {column index:column name}
header={name:index for (index, name) in enumerate(header)}

try:
for i, row in enumerate(reader):

if i < rowCount or rowCount — O0:

#set x, y, x as per GUI axis selection

x = float (row[header[geo.attribValue ("column" + \

str(xAxis))]])

y = float (row|[header[geo.attribValue ("column" + \
str(yAxis))]])
(
)

z = float (row|[header[geo.attribValue ("column" + \
str(zAxis))]])

pt = geo.createPoint ()

pt.setPosition ((x, y, z)

if geo.findGlobalAttrib ("column" + str(magnitude)):
pt.setAttribValue ("magnitude", \

float (row[header|[geo.attribValue ("column" + \

str (magnitude))]|]))

# add file and row number to control in wrangle node
pt.setAttribValue (" fileNum", fileNum)
pt.setAttribValue ("rowNum", i+1)

# add attributed from ’add point attributes’
for attrName in extraAttr:

#double check if attr exists

if attrName in header and geo.findPointAttrib (attrName):

attrValue = float (row[header[attrName]])

if geo.findPointAttrib (attrName):

pt.setAttribValue (attrName, attrValue)

except:
hou.ui.displayMessage ("Row " + str(i) + " in file no." +\
str (fileNum)+" contains a NULLL byte. Visualization Failed.")

parameter
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CSYV Visualisation cont.

#read CSV file
def readFile(filename ):

csvfile = open(filename)

#reader = csv.reader(csvfile)

reader = csv.reader(x.replace(’\0’, ’’) for x in csvfile)
header = next(reader)

return reader, header

def main():
if not node.evalParm ("../CSV _live build points") or \
xAxis = yAxis or xAxis = int (zAxis)+1 or \
yAxis = int (zAxis)+1:

return
else:

global fileOrDir

try:

fileOrDir = node.evalParm ("../CSV _file name")
except:

return

if not fileOrDir:

return

else:

filename , file extension = os.path.splitext (fileOrDir)
# single file

if file extension.lower() = ’.csv’':

# csv reader and list of column names
reader , header = readFile(fileOrDir)
buildGeometry (reader , header, 0)

# folder
elif os.path.isdir (fileOrDir):
header = readFile (fileOrDir + os.listdir (fileOrDir )[0])[1]
fileCount = node.evalParm (’../CSV _file count’)
for i, file in enumerate(os.listdir (fileOrDir)):
if i < fileCount or fileCount =— O0:
reader readFile (fileOrDir + file )[0]
buildGeometry (reader , header, i+1)

main ()
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13.2.5 AMR VDB Creation (Naiman, J. P. et al, 2017)

# write out the script to build VDB volumes from AMR files
# modified from http://www.ytini.com/tutorials/tutorial amr.html
def write  AMR _script ():

geo = node.geometry ()

fileName = node.evalParm ("AMR _file name")

VDBPath = node.evalParm ("AMR_VDB_output")

scriptPath = node.evalParm ("AMR _script _output")

# All refinement levels

if int(node.evalParm("AMR ref levels")) = 0:

levels = int(geo.attribValue ("levels"))

else:

# selected level = total levels — selected menu index
# (levels are loaded in reverse in menu script)
levels = int (geo.attribValue("levels")) — \

int (node.evalParm ("AMR _ref levels"))

field = geo.attribValue (" field" + \

str (node.evalParm (" build field"))).split (’:7)[1]
text — nmnn

import yt

import pyopenvdb as vdb
import numpy as np
import os

fileName = "%s’
levels = %d
field = "%s”’
VDBPath = "%s”’

dataSet = yt.load (fileName)

if not os.path.exists (VDBPath):
os.makedirs (VDBPath)
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AMR VDB Creation cont.

for level in range(0, levels):
gridSet = dataSet.index.select grids(level)

maskVdbGrid = vdb.FloatGrid ()
dataVdbGrid = vdb.FloatGrid ()

for i in range(len(gridSet)):

subGrids = gridSet[i]

subGrid = subGrids|[ field |

subGridGhostZone = subGrids.retrieve ghost zones(n_zones)\
=1, fields = field)[field]

mask = subGrids.child mask
voxelStartIndex = subGrids.get global startindex ()

maskVdbGrid . copyFromArray (mask, ijk =\

(voxelStartIndex [0], voxelStartIndex[1],voxelStartIndex|[2]))
dataVdbGrid. copyFromArray (subGridGhostZone, ijk = \
(voxelStartIndex [0], voxelStartIndex[1], voxelStartIndex[2]))

voxelNumbers = dataSet.domain dimensions * \
pow(dataSet.refine by, level)

voxelSize = float (float (dataSet.domain width[0]) \

/ float (voxelNumbers[0]))

maskVdbGrid. transform = vdb.createLinearTransform (voxelSize)
dataVdbGrid . transform = vdb.createLinearTransform (voxelSize)

vdbGrids = []

dataVdbGrid .name = field

maskVdbGrid . name = ’'mask’

vdbGrids . append (maskVdbGrid)

vdbGrids . append (dataVdbGrid)

vdbFileName = VDBPath+field+’ level’+str(level)+’.vdb’
vdb. write (vdbFileName, grids = vdbGrids) """

if not os.path.exists(scriptPath):
os . makedirs (scriptPath)

with open(scriptPath + "writeAMRVDB.py", "w") as text file:
text file.write(text%(fileName, levels, field , VDBPath))
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13.2.6 FITS VDB Creation

def write FITS script():
geo = node.geometry ()
# primary HDU
if int(node.evalParm ("FITS data source")) =— 0:
hdulndex = 0
axisLength = geo.attribValue ("prim NAXIS")
#Extension HDU
else:
hdulndex

=1
axisLength =

geo.attribValue ("ext NAXIS")

#verify content is datacube

if axisLength > 2:
fileName = node.evalParm ("FITS file name")
volumeName=node . evalParm ("FITS VDB _name").replace (" ","")
VDBPath = node.evalParm ("FITS VDB _output")
scriptPath = node.evalParm ("FITS script output")

# script text
teXt — nnn
import pyopenvdb as vdb
import pyfits as fits
import os
from numpy import float32, nan to num
from itertools import product

fileName = '%s’
hdulndex = %d
axisLength = %d
volumeName = '%s’
VDBPath = "%s’

hdulist = fits.open(fileName)

if axisLength =— 3:

data = nan to num(hdulist [hdulndex].data).astype(float32)
else:

#lgnore polarization data

data=nan to num(hdulist [hdulndex].data[0]).astype(float32)
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FITS VDB Creation cont.

dataGrid = vdb.FloatGrid ()

dataGrid . copyFromArray (data)

dataGrid .name = volumeName

vdbFileName = VDBPath + ’/’ + volumeName + ’.vdb’
vdb.write (vdbFileName, grids = dataGrid) """

if not os.path.exists(scriptPath):
os.makedirs(scriptPath)

with open(scriptPath + "/writeFITSVDB.py", "w") as \
text file:

text file.write(text % (fileName, hdulndex, axisLength ,\
volumeName, VDBPath))
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13.2.7 Trials using inlincpp module in Python

import inlinecpp
import yt

import numpy as np
import os

node = hou.pwd()
geo = node.geometry ()

# Add code to modify contents of geo.
# Use drop down menu to select examples.

#print node.evalParm ("../build field")

fileName = geo.attribValue (" filename")

VDBPath = node.evalParm ("../ AMR_output_folder")

levels = int (node.evalParm ("../ AMR ref levels"))

field = geo.attribValue (" field" + str(node.evalParm ("../
build field "))).split (’:7)[1]

something = 1

data = yt.load (fileName)

for level in range(0, levels + 1):

gridSet = data.index.select grids(level)

voxelCount = data.domain dimensions * pow(data.refine by
, level)

voxelSize = float (float (data.domain width[0])/ float
(voxelCount [0]))

maskCube = vdbCreate module.createVDB ()

for i in range(len(gridSet)):

grid = gridSet[i]

subGrid = grid|[field |

subGridGhost = grid.retrieve ghost zones(n zones = 1,
fields = field )| field |

maskGrid = grid.child mask

ijkout = grid.get global startindex ()

#vdbFill _module. fillVDB (maskCube, ijkout , maskGrid)
#vdbFill module. fillVDB (dataCube, ijkout, subGridGhost)
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Trials using Inlinecpp module in Python cont.

#vdbOutput _module.outputVDB (voxelSize , VDBPath, fieldName)

”

INPUTS: data(maskGrid and subGridGhost),

ijkout , cube(maskCube and dataCube) — 2 ruuns

”

vdbFill module = inlinecpp.createLibrary (
name = "cpp_ vdbFill library",
include dirs = ["/usr/local/Cellar/openvdb/4.0.1/include "],

link dirs = ["/usr/local/lib"],
link libs = ["openvdb.4.0.2"],
includes = """

#include <openvdb/openvdb.h>
#include <vector>
nnn

)
function sources = |
nnn

void fillVDB (openvdb:: FloatGrid :: Ptr cube, std::vector<int>
ijkout , std::vector< std::vector< std::vector<int> > >
amrGrid)
{
openvdb :: FloatGrid :: Accessor accessor = cube—>getAccessor ();
for (int i = ijkout[0]; i < amrGrid.size (); i++)
{
for (int j = ijkout[1]; j < amrGrid[0].size (); j++)
{
for (int k = ijkout[2]; k < amrGrid[0][0]. size (); k++)
{
openvdb :: Coord ijk (i, j, k);
accessor.setValue(ijk, amrGrid[i][j][k]);
}
}
}

}
nn H])
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Trials using Inlinecpp module in Python cont.

”

INPUTS: voxelSize , fieldName , VDBPath,

dataCube, maskCube

»

vdbOutput module = inlinecpp.createLibrary (

name = "cpp_ vdbOutput library",

include dirs = ["/usr/local/Cellar/openvdb/4.0.1/include "],
link dirs = ["/usr/local/lib"],

link libs = ["openvdb.4.0.2"],

includes = """

#include <openvdb/openvdb.h>

nnn
)

function sources = |
nnn
void outputVDB(int voxelSize, std::string fieldName, std
::string vdbPath, openvdb::FloatGrid:: Ptr dataCube,openvdb
:: Float Grid:: Ptr maskCube)
{
maskCube—>set Transform (openvdb : : math :: Transform :: create
LinearTransform (voxelSize));
dataCube—>setTransform (openvdb :: math:: Transform :: create
LinearTransform (voxelSize));
openvdb :: GridPtrVec cubes;
dataCube—>setName (fieldName );
maskCube—>setName ("mask ") ;
cubes.push back(dataCube);
cubes.push back (maskCube);
openvdb::io:: File file (vdbPath + "mygrids.vdb");
file . write (cubes);
file.close ();

}
Hll"]) }
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