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Abstract

The primary objective of this work is to explore the phenomenon of Diffusion Limited Ag-
gregation inside 3D models using Houdini. A brief discussion on DLA and the approach used
for the implementation of same in Houdini will be examined. Issues intrinsic to the process will
be addressed along with the solutions employed. As a final wrap up, few of the many possible
application of the designed system will be touched upon.
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1 Introduction
Randomness plays an important role in Computer Graphics especially when it comes to creating
natural artifacts. Adhering to the fact that nature is governed by random and bizarre order, for
creating anything natural in graphics means to be able to resemble that order. This could at its
closest be achieved using fractal patterns. Fractal patterns offer computer artists a way of producing
controlled randomness which can be used for a variety of special effects.

One of the popular methods of creating fractal patters is L-Systems. Their ordered yet apparent
randomness has been significant for modeling natural looking shapes like trees, plants, fracture and
crack propagation to name a few.

Though L- Systems are a powerful way of fractal generation, they encounter limitations when it
comes to growth in an environment that is liable to change. Under such conditions the best approach
is Diffusion Limited Aggregation, DLA. DLA is a model that is used for various scientific processes
and is capable of producing fractal patterns. It is in many ways similar to L - Systems but topped
with the advantage of being able to adapt to its surroundings in addition to yielding stochastic fractal
shapes.

DLA has been widely used to perform simulation on flat 2D planes as well as on 3D surfaces. The
project aims at producing a tool capable of generating fractal patterns inside 3D models. The tool
presented here can provide a simple (although primitive) technique for artists to implement DLA in
Houdini. The system designed is fully procedural and is adaptable to any geometrical shape. This can
then be used to create effects like vine creeper, injection or growth proliferation.

2 Previous Work
There are two primary growth algorithms in computer graphics especially when it comes to creating
fractal like growth patterns: L - Systems and Diffusion Limited Aggregation.

2.1 L-Systems
L – Systems or Lindenmayer Systems use a mathematical language in which an initial string of char-
acters is matched against rules which are evaluated repeatedly and the results are used to generate
geometry. The result of each evaluation becomes the basis for the next iteration of geometry, giving
illustration of growth.

An L System involves three main components:

• Alphabet: Valid characters that can be included

• Axiom: A sentence that describes the initial state of the system

• Rules: Rules are applied to the axiom and then applied recursively, generation new sentences
over and over again

L-Systems get its geometrical representation from Turtle Graphics. This places each alphabet with
a specific movement which when used as a sentence generates a command describing the sequence of
actions to be undertaken by the turtle: moving forwards a given distance, turning through a given
distance. Ergen
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Figure 1: L-System generations and Turtle Graphics

L-System has diverse applications because of its ability to create natural fractal like forms. Though
based on simple rules to begin with, the recursive nature of an L-System, leading to self similarity
makes it easier to define complex plants models, algae forms, patterns like Koch curve, Cantor set,
Sierpinski triangle and many more. At each iterative step, the working set is replaced with the grammar
in parallel giving an adaptive way to create a variety of plants with subtle variations enabling them to
have a realistic look. Apart from graphics, L-systems have useful mathematical applications. Taking
an example, given by Smith (2013)using l-systems it can be shown that 2D or 3D space could be filled
with a 1D object; called the space filling curves and Hilbert Curve respectively.

2.2 Diffusion Limited Aggregation
This method was introduced by Witten and Sander (1983), who first experimented with DLA as a
model for irreversible colloidal aggregation. The process started at the grid center where a particle
was placed. Eventually a diffusing particle was introduced in the scene which was allowed to wander
freely until it was within a fixed distance of the center where it attaches to the central particle. After
the first particle is attached, another particle is released and so on, all of which undergo the same
process. Particles forming the structure undergo a Brownian motion (random walk) before attaching
themselves (Aggregating) to the structure. The particles are considered to be in low concentration
so that they don’t come into contact with each other and the structure grows one particle at a time
rather that by chunks of particles.

The initial aggregate need not necessarily be a particle; it could be an edge or a surface as well.
The course of action for all of them will be same. With the progress of time as the aggregate particles
multiply and grow, they produce complex structures with high levels of detail.

As Halsey (2000) mentions, many of the patterns we see in nature are the result of a host of
processes involving an interaction between the transport and thermodynamic properties of matter and
radiation involved. Usually transport is dominated by convection but in cases where instabilities in
the pattern generated is high, diffusion takes over like formation of river deltas, frost on glass, mineral
deposits and many other natural phenomenon. Since the process takes place at a per particle basis with
high unpredictability of the attachment point owing to the Brownian motion, the resultant pattern is
varied and random. Yet the association of one particle with other to form dendrite branches spread out
around the initial seed portrays a masked order. This order in chaos found DLA its place in computer
graphics. Cashmore (2009) mentions applications of DLA in other arenas of science like exploration of
oil and crystal formation. It is also used as a catalyst for certain chemical reactions, as a way to vary
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the rate of reaction without altering the end product. “Catalysts need a large surface area to be most
effective and often are arranged as a largely branched structure with many holes. This shape is akin
to structures which are simulated by DLA” Cashmore (2009)
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3 Technical Background
Though both DLA and L-Systems are based on the concept of incremental growth, what differentiates
DLA from L-Systems is the versatility and quality of the results DLA offers with the potential of
generating dendrite forms as seen in a number of natural objects including lichens, crystals, neurons
and lightening.

There are few examples of DLA being implemented on or inside 3D surfaces. One very significant
for this project is by Cashmore (2009). He develops a tool for generation of DLA on the 3D surface
and uses it to create ivy like growth structure as well as applies texture map to create lava effect, rust
propagation and displacement effect. He uses the concept of SDF volume in Houdini to create a thin
layer over the geometry to facilitate the movement of particles and to prevent them penetrating into
or escaping from the geometry. The user is given the control to choose the initial area of growth via
a paint tool. The aggregate points generated are then connected using geometry and used to create
vines or veins, shader and displacement effect.

Bourke (2006) tests the idea of constraining DLA growth by a surface or solid described by an STL
file format which describes the surface as a collection of triangles. During simulation if the growing
structure intersects a triangle, either the new particle is not added to the branch which then continues
random walk or the intersection with the triangle is calculated and a branch is added that just touches
the constraint surface. A sphere is used as the particle emitter. Particles are introduced into the
simulation randomly on the surface of a sphere to get an even distribution at all locations especially
the places with small gaps where it might be unlikely for the particles to penetrate. He also experiments
with the multiple independent seeds for the not so easy to reach areas in the geometry.

One of the most prominent works in DLA is by Lomas (2005) who created the aggregate structure
by simulating the paths of millions of particles flowing in a field of force thus creating structures of
intricate design and immense complexity. Apart from just the Brownian motion, the particles are
influenced by the flow field. “Forms are created by a process of indirect design: the shape of forms is
governed by controlling initial conditions and rules for deposition rather than by designing the final
form directly.” Lomas (2005)

Stock (2003)experiments with DLA in 3D without any external constraint but introduces two new
factors of influence; stickiness and bulk velocity. Stickiness determines the probability of a particle
to attach to the aggregate structure. When a particle approaches another particle within a certain
distance, it is given a chance to stick. If it fails to stick, it is moved a tiny distance away from that
particle so that the diffusion distance for the next time step remains positive. It is observed that, lower
the stickiness factor, denser the aggregate. For the bulk velocity, in Stock’s own words, “The first task
for each random-walk-accelerated step is to determine the nearest element in the frozen structure. The
distance to that particle determines the radius of the sphere inside which the active particle must stay.
With no bulk velocity, the set of candidate positions is the surface of that sphere. With a non-zero
bulk velocity, the set of candidate positions is a smaller sphere tangent to the larger sphere. The
radius of the new sphere is calculated by solving for the mean diffusion time that would be capable
of convecting and diffusing the particle a distance equal to the distance to the nearest particle. Thus,
one random-walk-accelerated step is composed of a bulk motion step, and a spherical diffusion step,
instead of just a spherical diffusion step.” Stock (2003). It is observed that, lower the bulk velocity
lower is the density.

3.1 Mathematical Aspect
The measure of how complex a self similar object is given by Fractal Dimension (D). Approximately
said, it measures the number of points lying in a given set. Fractal Dimension connects the number of
particles with size of the cluster.

n = rD

or
D = log(n)/ log(r)
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• n = Number of particles

• r = size of the cluster

for a self similar object:

• n = number of self similar pieces

• r = magnification factor

for fractals in two dimensions, D ≈ 1.71 and in three dimensions, D ≈ 2.5.
Halsey (2000), states the observation reached through numerical simulations, that in high numbers

of spacial dimensions d, the fractal dimension of the cluster D → d-1.
“In addition, the fractal dimension of DLA appears to depend weakly on the geometry of the

simulation. The result D ≈ 1.71 is obtained for radial growth from a seed. However, for growth from
a surface or in a channel, one obtains a result closer to D ≈ 1.67, a small but robust difference from
the radial growth ... that seems to persist to the asymptotic growth limit.” Halsey (2000)
The original method of calculating fractal dimension is by computing density correlation function.

CT (r) =< ρ(r′)ρ(r′ + r) > (1)

Density correlation function for N particle aggregation gives information about particle distribution

C(r) = N−
∑
r′

ρ(r′)ρ(r′ + r) (2)

• C(r) = average density

• r = distance separating the two sites

C(r) can be considered as a measurement of the density in a shell with mass dM(r), radius r, and
thickness dr.

C(r) = dM(r)/2πrdr (3)

Amount of Mass of an object inside a circle of radius r has a power law relation:

M(r)∝rD (4)

Substituting equation (4) in equation (3)

C(r) ∼ drD/2πrdr (5)

⇒C(r) ∼ rD−1dr/2πrdr ∼ rD−2≡rD−d (6)

For a self similar fractal, the density-density correlation function is expected to scale as:

C(r) ∼ r−α (7)

From (6) and (7), we get:
D = -α + d

• D = Fractal dimension

• d = Euclidean Dimension
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4 Implementation
This section talks about the approach taken for implementing DLA in Houdini, problems encountered
on way, attempt at various solutions and finally the efficiency of the program in relation to different
affecting factors.

4.1 Methodology
The aim of the project is to create fractal like growth inside 3D geometry using the principle of Diffusion
Limited Aggregation. The implementation has been done in two parts: Text and 3D Geometry and
Intersection. The first part involves working with a single geometry, filling the geometry using growth
effect. The second part, however deals with how the growth will perform when two or more objects
are in contact or are penetrating into each other.

The process of Diffusion Limited Aggregation consists of the following main parts:

• The initial seed(s) called the “aggregate” which will start the growth process

• A particle called “walker” at a location inside the geometry which will undergo random walk to
reach the aggregate

• Collision happens between the walker and aggregate following which the walker stops and be-
comes part of the aggregate

• Generating new walker which will go through the same process as the previous one

• Repeating the process until the aggregate has grown to the desired size

4.1.1 Defining Initial Aggregate

The first stage is to decide the geometry in which aggregation is to take place. The tool already
provides a few default geometries but user has the option to import and apply aggregation to any
geometry. Only thing to take care when using an external geometry is to ensure that the “normals”
are properly oriented because if not, it will affect particle emission.

If it is Text, the user can type in a word or sentence, set the alignment, size, extrusion limit and
the space between the characters. The spacing between the characters is best to be kept at minimum
as it might affect the growth propagation if the distance between characters is greater than a certain
limit.

Text and 3D Geometry After choosing the geometry for the aggregate formation, the initial seed
has to be decided. This could be any of the static point(s) of the geometry say for example, point “0”.
Now, for any chosen geometry the point “0” will be the initial seed but there could be cases when the
user’s desired initial seed is not point 0 but some other point or a group of points or points at various
different locations of the geometry. Considering all these scenarios, the user is given the flexibility to
choose his/ her own initial seed region. Through the Paint option in Houdini, the user can paint over
any region of the geometry and the points scattered over that region will act as the initial aggregate.
The Paint SOP provides a very visual way with a better control to choose the growth region.

Intersection For intersection, the user is given the choice to use his/her own intersecting geometries
in addition to the main geometry. Unlike the 3D Geometry and Text, the initial aggregate for inter-
section is defined by the area of intersection of two or more geometries. So the first step is to retrieve
the area of intersection. For retrieving this area, firstly all the geometries are converted to volume
using IsoOffset. The Uniform Sampling Divs is set to 100 to define the fog volume within geometry
boundary. The converted volume is an opaque white fog. To view the intersecting part of fog volume,
Volume Visualization is used which adds detail attributes to the volume to allow for visualization of
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volumes that require multiple volumes to be joined together. Since we would now be dealing with just
the intersecting part, this can be converted back to polygons using Volume convert. The particles in
the main geometry which are near the particles in the intersection area will act as the initial aggregate.

Figure 2: Painted geometry surface

Figure 3: Particles scattered inside the geometry with colored point in the painted area

Figure 4: Aggregate points at the junction of intersection
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4.1.2 Scattering Internal Particles

After initial aggregate area is defined on the main geometry, the procedure for growth has to be set up.
This is done by scattering the particles within the geometry since the growth will take place inside. For
this purpose, the geometry is converted into a volume using IsoOffset with the Uniform Sampling Divs
set to 100. The points are then scattered inside the fog volume using Scatter node. Once the points
are scatted, they need to know the color information from the surface. For Text and 3D Geometry,
this is accomplished using Attribute Transfer which will transfer the color from the surface to points
in the painted region thus defining the region from where the growth will start. In case of Intersection,
the color is transferred from the points in the intersection area. The scattered points are then grouped
separately based on color as aggregate and walkers. The user is given the control to input the number
of scattered points. 3

4.1.3 Generating Random Walkers

Random walkers are particles which will via random movement collide with the aggregate points for
the process of growth to begin. The generation of random walkers is done inside the pop network
which handles particle simulation. The POP network uses the particles scattered inside the volume as
emitters for the random walkers. They are given a starting velocity as follows:

• fit01 (rand (@ptnum * $FF), 0.1, 1)

Analyzing the expression, the rand function creates a random number between 0 and 1. It takes the
combination of @ptnum which is the point number and the floating frame number $FF to ensure varied
speed for every particle per frame basis. It ensures that each particle has a random number between
0 and 1. The role of fit01 is to take the range from 0 to 1 and fit it to be between a new range from
0.1 to 1. To further randomize the movement, a unique number is multiplied to the random number
of each axis. If every particle has a different speed along each x, y and z axis the motion should be
completely random. In this manner, no particular direction will be given preference over the others
and thus following the process of creating random walks as described by the traditional DLA.

• fit01 (rand (@ptnum * $FF * unique_number), 0.1, 1)

A random walker can be generated at any location inside the geometry but there is a possibility that
they could fly out of the geometry during the random walk and in the process moving away from the
aggregate. If this happens, either collision detection can be set up to kill the particles as soon as they
hit the geometry boundary or a POP Kill could be used with the input geometry as the bounding
object. Bounding object ensures elimination of all the particles that step out of the bounded area.
Both the options will work equally well removing the particles flowing out of the geometry and giving
a random walk contained within the bounds of the geometry. Another option tested was to redirect
the particles moving out back into the object. The option was ruled out because, since the emitters
are continuously emitting, redirecting the particles would mean packing all the emitted particles since
the starting frame inside the geometry which will create a huge cluster of undesired particles.
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Figure 5: Emitter points scattered inside the geometry

Figure 6: Starting emission

4.1.4 Collision and Growing Aggregate

Now that random walkers are generated, it is to be checked if during their random movement they
collided with the initial aggregate or not. The collision can only happen when the walkers are aware
of the initial aggregate. Since the initial seed points are at SOP Level and the walkers are at POP
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Level, the walkers cannot interact with the seeds until they are brought down to the POP Level. A
sopsolver is used to bring the SOP Level information into POP Level. Using sopsolver the walkers are
introduced to the initial aggregate points at the first frame and those which are within the distance
threshold of the aggregate are stopped, grouped separately and added to the initial aggregate to form
the new aggregate.

The entire procedure is handled using vex code inside the sopsolver. Pcopen() function is used to
determine the closest point, “nearpt” for each walker. Pcopen() opens a point cloud which is used to
fetch points of the geometry within a certain distance. When the points are fetched, the pciterate()
operation is used to iterate through all the retrieved points. Since we are working with point numbers,
the point number of each point is imported using pcimport().

Once the “nearpt” is found, it is checked if it is in the aggregate group. If yes, the walker is asked to
stop, change color and is grouped under a separate group, “stopped”. After the first frame, the walkers
are made to interact with the new aggregate, i.e. the initial aggregate point and the newly stopped
points and the same process of stopping and adding to the new group continues till all the walkers
become part of the aggregate.

Algorithm 1 Walker point collision with the growing aggregate

1 select search distance
2 find two neighbor points within search distance
3 loop through neighbor points
4 fetch point number of neighbor points
5 if neighbor points belongs to aggregate or stopped group
6 stop current point
7 regroup from walker to stopped
8 change color
9 end if
10 end loop

In a similar manner just as the walkers are made aware of the growing aggregate, the scattered
points which are emitting the walkers need to be alerted of the new aggregate so that when they are
within the said threshold, the emission could stop. A feedback system was set up for the same using
File sop in Houdini. At the end of each frame, the points which haven’t collided are deleted and the
stopped points are written to the file. 6 Meanwhile another File sop is used to read in the previous
frame of aggregate particles. These are projected as a set of points in space which the solver sop uses
to check the distance between the emitters and their respective nearest aggregate points. The nearest
point is calculated using the nearpoint() function. Once the nearest point is found, the point() function
is used to get the position of the nearest point. We already know the position of the emitter and now
with the position of the nearest point we can calculate the distance between them and if it is within
the threshold, the emitter could be deleted so that emission from that emitter could stop.

Algorithm 2 Stopping emission based on new aggregate

1 select search distance
2 find nearest aggregate or stopped point
3 calculate nearest point position
4 calculate distance between emitter and resp. nearest point
5 if distance < search distance
6 remove from emitter group
7 end if
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4.1.5 Joining Aggregate Points

At the end of the simulation we will have a .bgeo file with thousands of points. These points could be
used as it is to create a particle effect or they could be used for some propagation like effect if joined
together using lines. The joining can be easily done since we know which point was stopped by which.

As mentioned earlier, inside the POP network the “nearpt” of each walker is found and if that
point is part of the aggregate or stopped group the walker is stopped. At the time when the walker
is stopped, a connection is established between the walker and its “nearpt”. As the point number of
both the points is known at this instance, they can be joined using a polyline by adding vertex to both
using addvertex() function and setting connection using addprim(). In this manner, as each walker is
stopped it connects to the point which stopped it using a polyline giving a propagation like growth
effect. 4

Figure 7: Geometry covered with aggregate points

Figure 8: Connected aggregate points
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4.1.6 Adding Geometry

Now that we have both points and lines, these can be used for carrying geometry which could then be
used for the application of different shaders or textures or simply colors to add aesthetic appeal.

Text and 3D Geometry

Wire Fill The lines are converted to geometry using the polywire sop which constructs polyg-
onal tubes around polylines with smooth bends and intersections and creating them into renderable
geometry. The tool provides the mechanism to use polywire in two ways: one is simply replacing the
lines with polywire giving user the control to change the width. The second is to have polywire with
varying width. For varying width, the concept of having thicker branches at the geometry center and
finer branches near the boundary is applied. The distance of each point from the geometry boundary
is measured using xyzdist() function. This distance is then used to drive the polywire width giving a
linear decrease as the points reach the geometry boundary. 7

Since this effect could also be used to grow hedge or foliage, specific points for appending additional
geometries for flowers and leaves would be required. For this purpose few points are selected as seeds
for growth. These seeds are selected based on two conditions: their nearness to the geometry boundary
and the number of neighbors. A small distance from the geometry boundary is considered so as to
keep the flowers or leaves well in sight and away from the central clustering. All the points within this
distance will be considered as potential seeds but to actually be a seed they have to fulfill the second
criteria as well i.e. the neighbor count. Growth can actually happen at any location in the foliage but
here we account for growth only at the end points and number of neighbors of a point is necessary as
it will tell us whether or not it is the last point of the branch. 10

Finally, geometry added on seed points need to look like they are part of the branch i.e their align-
ment should be in the direction of the branch. For the appropriate geometry arrangement, direction
of the normals has to be fixed. A proper connection should ideally have the normals pointing in the
direction of the branch. This could be achieved by taking vector difference between a point’s position
and the position of the point it will be connecting to. The difference then could be set as the direction
of normal. This way, all the normals will be pointing in the direction of the edge with the normals for
the extreme end points pointing directly outwards instead of being at some arbitrary angle.

Figure 9: Wire Fill: Uniform width
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Figure 10: Wire Fill: Varying width with distance from boundary

Figure 11: Wire Fill: Geometry added on seed points

Object Fill Similar to lines, the points could be replaced with geometry giving an abstract
psychedelic growth effect or to have a structure created with different shapes.

Like in case of selecting main geometry, the tool provides few default shapes to select from but
the user is given the option to import and use whatever object he/ she wants instead. The selected
shape will replace the aggregate points. Again, to make the effect more visually interesting, the choice
of scale variation is provided. The distance of each point from the boundary is calculated and Copy
Stamp is used to allot the distance to the Uniform Scale attribute of the object being copied. The
copied object near the boundary of the geometry will be smaller in size compared to the ones towards
the center. 7
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The above cases work fine as long as finer details like geometry overlap is ignored. But there could
be scenarios when interpenetration of geometries might not be a desirable effect and for the same
reason, an additional control for removing intersections is provided. For each point, the distance from
the nearest point is calculated and the half of this distance is used as scale of the geometry being
copied on that point. Only half the distance is used because, if the geometry being copied has any
protrusions, there is sufficient space to accommodate it well. 9

The other aspect considered for the shape fill is color. Similar to scale, color has been given a
variation based on the distance from the boundary. The change in color with distance gives a shading
effect with the darker shades towards the boundary and lighter shades towards the center. This can
again be randomized with a rand() function based on the point number @ptnum, frame $F or anything
user wishes to set.

Figure 12: Object Fill: Uniform scale

Figure 13: Object Fill: Scale varying with distance
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Figure 14: Object Fill: Check overlap

Figure 15: Object Fill: Complete Fill
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Intersection

Wire Fill Polywire is added to the polylines between the points. Similar to the case for 3D
Geometry and Text, wire could be either used with uniform width throughout or with applied variation.
In case of 3D Geometry and Text, the scale variation was applied based on distance from the boundary.
The same scale variation is applied here but with regards to distance from the points in the intersection
area (called as intersection points going forward). So, further a point is from the intersection points,
smaller with be the scale. 8

Firstly, for each point, the nearest intersection point is found using nearpoint(). The distance
between each point and its respective nearest intersection point is found. This distance is then fitted
between 0.1 and 0.9, so that regardless of the size of the object, the scale will always be within a
reasonable range between 0.1 and 0.9.

• @fit_distance = fit01(distance(@P, nearpoint_position), 0.1, 0.9)

Applying the fitted valued directly will give us increasing scale as the distance increases. Since we
require the opposite, we take the complement of the value before applying it to scale the width of
polywire.

• @point_distance = 1 - @fit_distance

Moving to adding additional geometry like flowers or leaves, unlike the 3D Geometry and Text where
all the end points within a certain distance from the geometry boundary are considered as seeds, the
seeds for growth for Intersection are selected in a slightly different manner. A distance value is provided
and if the distance of the point from the intersection point is greater than the provided distance, the
point will be considered as a potential seed point. The second criteria of having one neighbor remains
the same. This means, all the points beyond the said distance with one neighbor will sprout flowers
or leaves. 11

Figure 16: Wire Fill: Uniform width
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Figure 17: Wire Fill: Varying width with distance from the intersection points

Figure 18: Wire fill on intersection with geometry on seeds

Object Fill The object fill for Intersection is similar to Text and 3D Geometry apart from
scaling. Scaling in this case applies in a similar manner as the wire fill, the farther the point from
the intersection points, smaller the object being copied onto it. If the overlap is to be removed, the
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method of scaling with respect to the nearest neighbor is invoked and each copied object will scale
down accordingly to have its own independent space.

Figure 19: Object Fill: Area of interaction as the starting point

Figure 20: Object Fill: Complete fill

4.2 Problems Encountered and Attempted Solutions
A number of problems were dealt with during the development phase. Some of them were minor issues
with easy fixes but others required experimenting with different probable proposals. Few of the major
problems encountered and various solutions attempted are stated below.
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4.2.1 Controlling Particle Emission

The emitters which are birthing random walkers can keep releasing particles throughout the course of
simulation. When the growing aggregate reaches a certain distance from the emitter(s), it should stop
the particle emission thus avoiding the repeated clustering of particles at the same location. After
testing various approaches for controlling emission, two methods were arrived at.

First method is to nullify the birthing particles and second option is to remove the emitter itself.
In the first method, if the impulse emission is set to zero based on some condition, say frame

number for instance, it will affect all the emitters and they all will stop emission simultaneously. This
is not favorable since it might be possible that few of the emitters are still not in the contact region of
the aggregate. This leaves us with the second option to remove the emitters as they reach the vicinity
of the aggregate. While working on the method it was observed that though emitted particles and
emission rate could be controlled from inside the POP network, the emitters themselves cannot be
accessed from within POP network. This makes sense because, the initially scattered particles which
are acting as emitter are at the SOP Level and cannot be accessed inside POP network directly.

A feedback system was created to make the emitters aware of the growing aggregate and this was
done using a sover sop. Solver sop established connection between the emitters and the new aggregate
enabling the emitters to perform a distance comparison and to stop when within a certain threshold.

Figure 21: Clustering of particles because of continuous omission

4.2.2 Connecting Aggregate Particles

To establish a connection between the points, they were to be joined with polylines. This connection
can be established either after all the points are stopped or at the instance each point is being stopped.
Both the methods were tested. The first method was to check two nearest neighbors for each point in
the stopped group using the nearpoint() function and connecting to them. This did connect the points
but the joints were broken segments with pieces scattered all over the geometry. Per the understanding
this was because, firstly, the nearpoint() function considers one of the nearest points of a point as itself
and secondly, for a pair of points, the second near point for those points would be each other meaning
that each point would be connecting to itself and one other point thus giving the discontinuous pieces.
The neighbor point count was increased so that each point could connect to more than one point , but
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still the result was not as expected.
The second method was to connect the points at the time they are being stopped. Using pcopen()

the closest point to each walker was found. Once the closest point was determined, connection was
set only if it was part of the stopped group. This worked well giving a continuous spread of connected
points. After investigation, this approach was found to be most commonly used when working with
points also giving better results which is another reason for moving forward with this method. Tesla
(2009)

The other alternative was to use the method of copy stamping as described by Cashmore (2009).
He uses straight lines to be copied over stopped points. The distance between a point and the point it
collided with was used as stamp to vary the length of the line that is being copied to ensure that line
is of length that is equal to the distance between the points it is being placed between.

Figure 22: Connecting aggregate point with two neighbors (left) and connecting with multiple neigh-
bors

4.2.3 Normal Inversion for External Files

Apart from using the default geometries provided by the tool, the user has the flexibility to use any
desired geometry. Keeping note that this geometry could be a .bgeo or alembic (.abc) file, the tool’s
compatibility had to be tested with both these file formats.

A file of each format was imported and tested but it was noticed that particle emission was not
being handled properly. The emission was happening only at few selected parts of the geometry and
not throughout the geometry as was supposed to be. After several tests and modifications, it was
found geometry normals were not properly oriented. At certain locations, normals were flipped and
that is why the particle flow in those areas was interrupted.

The reverse node in houdini to change the direction of the normals could not be used since that
would change the direction of even those normals which are properly oriented.

In the Figure 24, all the normals of the geometry are flipped so using a reverse node will make
sense and will work as expected correcting the orientation to make them point outwards.

As for the Figure 25, the model was exported from Maya and the possible reason of normal inversion
for just one half of the geometry could be the mirroring of the geometry while modeling.

Even after several attempts, a global fix for the problem couldn’t be established and is advised to
keep a check on normals during modeling phase.

25



Figure 23: (From left) Normal inversion for the geometry (.bgeo): model with inverted normals, model
with fixed normals and model with aggregation applied

Figure 24: Normal inversion for the geometry: .abc

4.2.4 IsoOffset, Converting Geometry to Volume

For scattering points inside a geometry, the geometry is first converted to volume using IsoOffset.
During this conversion, there could be possibility of encountering noise or stretch lines. The reason
for such appearance is not thoroughly clear but it is observed that this is independent of whether
the geometry is imported from outside or is modeled in Houdini. Also it is not necessary that all
geometries when converted to volume will have the stretch lines.

One possible fix tested for this was to use Particle Fluid Surface. Once the geometry is selected, a
scatter node is appended to it which will scatter points on the surface of the geometry following which
the Particle Fluid Surface is used to generate a surface around the particles. The surface definition
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could be modified by changing Particle Separation parameter. This will generate a surface in the shape
of the passed geometry. After the desired shape is achieved, IsoOffset could be used which will give
volume properly wrapped within the geometry provided without any stretch lines.

The fix is not embedded in the tool because the surface definition is not constant and varies based
on the shape and complexity of the geometry. All the default geometries provided by the tool are
tested to have no stretch lines and for any geometry imported by the user, should the noise or stretch
lines appear, the fix can be used to have proper particle scattering.

Figure 25: (From left) Original geometry, converted to volume with stretch lines and points scattered
in the volume

Figure 26: (From left) Particle Fluid Surface applied on original geometry, converted to volume and
scattered points in volume

4.2.5 Geometry Level Transformation

Transformations could be performed at node level or at geometry level. For some reason, simulation
appears to be unresponsive to the geometry level transformations. When the geometry level trans-
formations are applied, the object is appropriately transformed leaving the particles at their original
location. This will make the transformed geometry treat the particles as external particles thus killing
them. If the same transformation is applied at the node level, the simulation work without an issue.

The possible fix tested for it was to change the Geometry Source from First Context Geometry
(i.e. solver) to Use Parameter Values with Use Object Transform in pop source inside pop network.
Using the latter option will transform all the particles with the main object. The simulation works but
since it is not specified that particle emission should happen only from walker group, both walker and
aggregate points will start emission. To enable emission only from walkers, the Source Group is set
to walkers with Group Type as points. When the simulation starts, it fails to recognize the aggregate
points and so the growth propagation doesn’t happen. Also if both the groups are considered as
emitters, the simulation works and the aggregation happens, but the pop network doubles up the
transformation and shifts the simulation outside the original object.

The tested fix didn’t work as expected and was abandoned. A permanent fix for the issue is one
of the future works to be looked into. Till then, if any transformations are required to be performed,
node level transformations can be relied upon.
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Figure 27: Geometry level transformation transforming the geometry without particles

Figure 28: Using Object Transform to set points back into the geometry and starting emission
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Figure 29: Simulation outside the object because of transformation being doubled inside pop network

4.3 Efficiency
The tool requires simulating particles inside the 3D object. Time taken for the process mainly depends
on the search distance. The search distance is directly proportional to the size of the object. Smaller
the search distance would mean processing larger number of particles per frame and might take 1:30-2
minutes to fully cover the object. With an optimal search distance (which is decided relative to the
object size), the time could be reduced down to 45-60 seconds. An even higher distance would take
about 15-30 seconds but the downside would be, the entire object will not be fully covered.

It is definitely slower than Houdini’s inbuilt fractal generator i.e. L-Systems which generates simple
patterns almost instantly and the more complex ones in less than 30 seconds. But compared to
attempting to build a similar structure manually which might take several hours, the tool is a better
option. Also within 3-4 attempts, the user can establish the optimal search distance which will optimize
both the number of particles processed per frame and the time taken for processing.

5 Applications
The section deals with three of the many possible ways the tool could be used for. Two different 3D
models: teapot and rubbertoy and a 3D text has been used to show the adaptive ability of the tool.

5.1 Vines
The connecting lines when applied with polywire could be used for vine like growth effect. Polywire
with the option of decreasing width with distance enabled has been used. This would, as stated before
have finer branches near the boundary of the geometry and thicker ones towards the center.

Default flowers are copied onto the seeds of growth, again with a variation effect with respect to
distance to have a better visual appeal. Instead of simply copying, the growth of the flower can also
be animated by scaling them with time but that aspect has not been considered here.

Apart from just the addition of the flowers (or any user preferred geometry), the user is given
the control to remove flowers from any location of the geometry. This is accomplished using Paint
tool. The removal area is painted upon and the seeds of growth which inherit the painted color using
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attribute transfer will no longer act as seeds of growth and any geometry placed on these points will
be removed. The purpose of the removal option is to give user further control over where to add the
additional geometry.

Figure 30: Vine growth on text

Figure 31: Painted area for removal of geometry

Figure 32: Vine post geometry removal
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5.2 Uncanny Growth
The propagation effect of DLA can be used to show spreading of disease, virus or any such uncanny
growth effect. The application shows the growth of an organic like matter which spreads inside the
geometry and subsequently engulfs it. For this effect, metaball with the copy to points option was
chosen. The reason of choosing metaball is because it provides a simple method for creating organic
looking surface. The effect has the feel of a blobby substance covering the geometry.

It was tested with both uniform color and color variation with distance, each giving interesting
results in its own stand.

Figure 33: Growth propagation using metaball in rubbertoy: Color variation with distance (left),
Uniform color

5.3 Injection
The injection effect is similar to the uncanny growth effect with the spread of blobby substance in
the geometry. It is called the injection effect because it appears as if the two rods are injecting or
releasing the blobby material into the geometry. The result is similar to the spreading effect shown in
the wolverine adamantium scene, X-Men Origins Wolverine. X-Men Origins Wolverine (2013)

Figure 34: (From left) Injection objects interacting with the geometry, growth starting at intersection
points, completely filled main geometry
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6 Conclusion
The tool developed allows user to input any geometry and fill it with points or connected lines. These
points and lines could be manipulated or topped with geometry to create realistic growth effect over
the chosen geometry. The tool is highly adaptable as the user has the choice to update the object the
geometry is being filled with or add his/ her own flowers and leaves for the vines. All these objects
can be used with uniform or multiple colors or used with different shaders to create the look based on
the production purpose it is being used for. Also the system is extremely flexible should there arise a
need to extend it further or as a prospective research option.

It is especially handy as it is time and cost efficient when it comes to creating textures that would
grow and animate inside an object.

Although the tool is capable of successfully achieving many effects, there still remains a plethora
of possibilities in terms of better controls, animation aspects and speed checks which is discussed in
the following section as the potential future works.

7 Future Work
The system designed could be further advanced by having control over the simulation start and finish
frames or providing the ability to limit the growth to a particular section of the geometry.

Another aspect that requires special attention is the number of particles. Larger the geometry,
greater will be the particles needed to completely fill the geometry which will slow down the process
incredibly. In such a case, the system needs to have the mechanism to reduce the point density through
minimum distance constraint i.e. removing the points within a particular distance of each point and
thus bringing down the number of points significantly but leaving the overall shape unaffected.
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9 Appendix

Algorithm 3 Separating walker and aggregate points

1 /*
2 Points which are almost red are grouped as aggregate and rest as \

walkers. This is because while painting the geometry surface , \
color applied may not be {1,0,0} but close to it.

3 */
4
5 if(@Cd.r>0.8 && @Cd.g<0.2 && @Cd.b <0.2)
6 {
7 @group_aggregate = 1;
8 }
9 else
10 @group_walker = 1;
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Algorithm 4 Connecting the aggregate points

1 /*
2 The walker points are stopped and grouped separately when they are within a \

particular distance of the aggregate points and each stopped point is \
connected using polyline to the point which stopped it.

3 */
4
5 // Setting search_dist as a user input
6 float search_dist = ch("Distance");
7
8 //Max points is 2 because one of the nearest point it will consider is itself
9 int maxpt = 2;
10
11 v@direction;
12 vector pos;
13
14 // Searching the nearest point within search_dist
15 int nearpt = pcopen(0, "P", @P , search_dist , maxpt);
16
17 // Iterating through the nearest points
18 while(pciterate(nearpt))
19 {
20 int ptn = -1;
21
22 // Importing the point number of the nearest point
23 pcimport(nearpt , "ptn", ptn);
24 // Checking if the point is part of "stopped" or "aggregate" group
25 if(inpointgroup (0, "stopped", ptn) == 1 || inpointgroup (0, "aggregate", \

ptn) == 1)
26 {
27 // Adding a polyline between this point and the previously stopped/ \

aggergate point
28 int prim = addprim(geoself (), "polyline");
29 addvertex(geoself (), prim , @ptnum);
30 addvertex(geoself (), prim , ptn);
31
32 // Adding this point to the stopped group and removing it from the \

stream and walker groups
33 setpointgroup(geoself (), "stopped", @ptnum , 1);
34 setpointgroup(geoself (), "stream_seed", @ptnum , 0);
35 setpointgroup(geoself (), "walker", @ptnum , 0);
36
37 // Stopping the point by setting velocity to 0
38 @v = 0;
39
40 // Changing color for identification
41 @Cd = {1,0,0};
42
43 // Position of the nearst point
44 pos = point(0, "P", ptn);
45
46 /*
47 Calculating difference between this point and the point which stopped\

it.
48 This difference will be set as direction for the normal so that when \

a geometry is placed , it will be positioned correctly.
49 */
50 @direction = @P - pos;
51 }
52 }
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Algorithm 5 Controlling emitters

1 /*
2 Checking if the emitter is within the "search_dist" of the growing aggregate.
3 If yes , remove the emitter from the group.
4 */
5
6 int nearpt;
7 float @dist;
8 vector pos;
9 float search_dist = ch("Distance");
10
11 //Find the nearest point to this point on the aggregate
12 nearpt = nearpoint(1, @P);
13
14 // Calculate the position of the nearest point
15 pos = point(1, "P", nearpt);
16
17 // Calculate the distance between this point and the nearpt
18 @dist = distance(pos , @P);
19
20 //If this point is within the search distance , remove from walker(emitter)
21 if(@dist <= search_dist)
22 {
23 @group_walker = 0;
24 }

Algorithm 6 Removing extra points

1 /*
2 Check for points not in stopped or aggregate group and remove them.
3 */
4
5 // Select points not in stopped group
6 if(inpointgroup (0,"stopped",@ptnum)!=1)
7 {
8 //Check if they are in aggregate group
9 if(inpointgroup (0,"aggregate",@ptnum)==1)
10 {
11 //if the points are in the aggregate group but are not connected , \

remove them
12 if(neighbourcount (0, @ptnum) == 0)
13 removepoint (0, @ptnum);
14 }
15
16 //if the points are neither in stopped nor in aggregate remove them
17 removepoint (0,@ptnum);
18 }
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Algorithm 7 Distance from object boundary

1 /*
2 Calculates distance from the object boundary and uses this distance to drive \

the polywire width or object size for 3D Geometry and Text.
3 */
4
5 f@mydist;
6
7 // Chekcing the distance of this point from the boundary of the input geometry
8 @mydist = xyzdist(1,@P);

Algorithm 8 Distance from intersection points

1 /*
2 This part is used for setting the varying size or width of the object fill \

and wire fill for Intersection.
3 As the distance from the visualization points increases , the size or width \

should decrease.
4 */
5
6 int near;
7 vector near_position;
8 float @fit_dist;
9
10 f@point_distance;
11
12 //Find the nearest visualization point to this point
13 near = nearpoint(1, @P);
14
15 // Position of the "near" point
16 near_position = point(1, "P", near);
17
18 // Distance between "near" point and this point and fitting it between 0 and 1
19 @fit_dist = fit01(distance(@P, near_position), 0, 1);
20
21 // Calculating complement since increasing the distance should decrease the \

width/ size
22 @point_distance = 1 - @fit_dist;
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Algorithm 9 Checking geometry overlap

1 /*
2 In case of Object Fill , making sure the copied geometries do not \

interpenetrate.
3 */
4
5 f@dist;
6
7 // Taking search_dist as the user input
8 float search_dist = ch("Distance");
9 vector pos;
10
11 //Find the nearest point to this point within search_dist
12 int handle = pcopen(0, "P", @P , search_dist , 2);
13
14 // Iterating through the retrieved points
15 while(pciterate(handle))
16 {
17 // Importing the position
18 pcimport(handle , "P", pos);
19
20 //If the point is not itself , calculate the distance between this point \

and its neighbour
21 if(@P != pos)
22 {
23 @dist = distance(pos , @P);
24 }
25 }

Algorithm 10 Setting seed points for additional geometry: 3D Geometry and text

1 /*
2 Setting seed points for the placement of additional geometry. These seed \

points are decided based on two criterias: 1. Their nearness to the \
object boundary and 2. The count of neighbours to check if its an end \
point.

3 */
4
5 // Checking the distance from the boundary. Setting a very small distance to \

keep the additional geometry closer to the boundary and away from central\
clustering.

6 if(@mydist < 0.05)
7 {
8 // Checking for points with only one neighbour
9 if(neighbourcount (0, @ptnum) == 1)
10 {
11 // Grouping the points under a new group
12 @group_seeds = 1;
13
14 // Setting a new color for identification
15 @Cd = {0,1,0};
16 }
17 }
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Algorithm 11 Setting seed points for additional geometry: Intersection

1 /*
2 This part defines from where the placement of addtional geometry will start.
3 The distance specified by the user is used as the minimum distance from the \

visualization points.
4 If any points lie beyond that distance , they would be considered as seeds \

for growth.
5 */
6
7 float choose_distance = ch("Distance");
8
9 // Checking if the distance of this point from the visualization points is \

greater than the user input distance. Using @fit_dist from Algorithm 8.
10 if(@fit_dist >= choose_distance)
11 {
12 // Checking for points with only one neighbour
13 if(neighbourcount (0, @ptnum) == 1)
14 {
15 // Grouping the points under a new group
16 @group_seeds = 1;
17
18 // Setting a new color for identification
19 @Cd = {0,1,0};
20 }
21 }

40


	Introduction
	Previous Work
	L-Systems
	Diffusion Limited Aggregation

	Technical Background
	Mathematical Aspect

	Implementation
	Methodology
	Defining Initial Aggregate
	Scattering Internal Particles
	Generating Random Walkers
	Collision and Growing Aggregate
	Joining Aggregate Points
	Adding Geometry

	Problems Encountered and Attempted Solutions
	Controlling Particle Emission
	Connecting Aggregate Particles
	Normal Inversion for External Files
	IsoOffset, Converting Geometry to Volume
	Geometry Level Transformation

	Efficiency

	Applications
	Vines
	Uncanny Growth
	Injection

	Conclusion
	Future Work
	References
	Appendix

