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Abstract 

Within this paper, it will be firstly presented briefly the history of Computational Fluid 

Dynamics by exposing previous and current state of the art techniques with particular focus on 

SPH approaches. Successively, the mathematical theory behind methods and algorithms 

utilized to achieve this project’s implementation will be discussed and explained. The current 

developed application described in this paper can perform simulations of both Newtonian and 

Non-Newtonian fluids according to two different SPH algorithms (WCSPH and PCISPH). The 

details of the developed piece of software will be exposed and the achieved results will be 

critically reviewed. 
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1. Introduction 

Simulations of fluid, due to their high demand of use within the VFX and gaming industries, 

are an important and significant topic within Computer Graphics. Even though the modelling 

of natural phenomena such as fluids has a prolonged history, it still remains a challenge for 

modern day researchers to achieve improving results. (FxGuide 2011). Moreover, 

computational efficiency becomes a fundamental topic while dealing with complex physically-

based simulations such as liquids. Therefore, various methods, techniques and algorithms have 

been studied and implemented following different approaches to try and achieve better results.  

This paper will be structured in the following way: firstly, the most functional and noteworthy 

methods within the Computer Graphics community will be chronologically cited and outlined 

in the subsequent section. Additionally, the technical background and documentation required 

for the developed program will be included.  

Furthermore, in order to distinct the different nature of these two diverse methods, a critical 

comparison between Eulerian and Lagrangian approaches becomes essential and thus it is 

present at the beginning of the third section of this document.  

Successively, fundamental SPH theory and the description of both Newtonian and Non-

Newtonian fluid models are described as both models will be present within the simulator. In 

addition, the program’s features and algorithms (WCSPH and PCISPH) on which the current 

piece of software is based will be exposed and explained in section four.  
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The description of the program’s structure and the overall application’s flow will follow: the 

simulator was implemented in C++ based on OpenGL for representation and Qt framework for 

the GUI.  

The simulated particle data can be exported from the simulator as text files and can be imported 

in different renderers for a more realistic visualisation. For this project, Houdini’s Particle Fluid 

Surface node has been used to reconstruct the fluid’s surface and Mantra to render it out. In the 

last section, the results are analysed and compared as well as current issues are described. 

 
Figure 1: Developed Application Interface (Personal collection). 
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2. Previous Work 

During the 1960’s, a group of researchers known as the T3 group of the Los Alamos National 

Laboratory discovered the first mathematical models to implement a fluid simulation (Evans 

and Harlow 1960). This first developed method was known as “particle-in-cell (PIC) method”. 

Few years later, the same group of researchers developed a second method, the Marker and 

Cell Grid method (MAC), that became widely used and is still used today in different hybrid 

methods due to its efficiency and functionality (Fxguide 2011). Following Evans and Harlow’s 

footsteps, in 1986 Bracknill and Ruppel developed the Fluid Implicit Particle method (FLIP). 

Successively, in 1996, the Navier-Stokes equations were solved for three dimensions and used 

to simulate fluids based on Eulerian fixed grids (Foster and Metaxas 1996).  

In 1977, a group of astrophysics invented the Smooth Particle Hydrodynamics method to 

simulate galactic motion and formation (Lucy et al. 1977). This method was then adapted to 

simulate liquids (Gingold and Monaghan 1977). In 1996, a new method for the calculation of 

the pressure and to calculate particle interactions in the SPH method was introduced by 

Desbrun and Gascuel. This allowed the SPH method to gain popularity in the Computer 

Graphics community. In 2003, free surface flows were simulated through SPH and the solving 

of the three-dimensional Navier-Stokes equations (Müller et al. 2003). Additionally, within the 

same research paper, it is proposed a method for calculating and including surface tension 

calculations in the simulation using colour fields. 

During the same year, an optimized spatial hashing neighbourhood searching algorithm was 

developed for collision detection of deformable objects (Tescher et al. 2003). In 2007, the 
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Weakly Compressible SPH solver was introduced and allowed to achieve fluid simulations 

with low compressibility (Becker and Tescher 2007). Successively, in 2009, Solenthaler and 

Pajarola proposed the Predictive Corrective Incompressible method in order to achieve 

incompressibility. However, better and more stable fluid incompressibility was achieved 

thanks to Raveendran’s hybrid method (2011). One year later, a local Poison method was 

developed for ever more accurate incompressibility (He et al. 2012). In the next few years, 

diverse cutting-edge researchers such as Solenthaler, Tescher and Ihmsen, worked together on 

a complete and extensive SPH method implementation (Ihmsen et al. 2014). 

In 2018, a hybrid incompressible SPH fluid solver with interface handling for boundary 

collisions has been proposed (Takahashi et al.). During the same year a FLIP method has been 

adapted to work on the GPU using Sparse Volumes producing very appealing results (Wu et 

al. 2018). At the same time, in order to achieve even more computational performance, an 

alternative has been found in developing a system that automatically distributes grid-based and 

hybrid simulations across cloud computing nodes, utilizing efficiently the parallelized 

computational power that cloud services have to offer (Mashayekhi et al. 2018). 

Regarding Non-Newtonian fluids in terms of Lagrangian approaches, different researchers 

have simulated viscous fluids with particle systems (Chang et al 2009), such as Miller and 

Pierce (1989) and Terzopoulos (1991). In 1999, Stora et al. realistically simulated lava flows 

according to an SPH approach. A few years later, Mao and Yang (2006) developed an SPH 

simulator based on co-rotational Maxwell modes. Successively, Paiva et al. (2007; 2009), 

edited the Navier-Stokes equations in order to simulate viscoelastic fluid and its interactions 

with solids by using a Generalized Newtonian Liquid mathematical model (Chang et al. 2009). 
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A few months later in 2009, Chang et al. implemented viscoelastic fluid solver by further 

modifications of the Navier-Stokes equations, increasing the variety of possible achievable 

simulation results and performance. Recently, in 2015, a stable and efficient particle-based 

method that can simulate coiling ad buckling, based on implicit integration formulations, has 

been developed (Takahashi et al. 2015). Moreover, this method granted more robustness for 

viscosity integration, it can handle variable viscosity and larger time-steps were allowed.  
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3. Technical Background 

3.1 Eulerian Grid-based VS Lagrangian Particle-based 

approaches 

Two main approaches have been discovered over the course of CFD’s history in order to 

achieve a successful fluid solver: the Eulerian grid-based method and the Lagrangian particle-

based method. Currently, the state of the art in fluid dynamic simulations is dictated by hybrid 

methods which involve parts of both approaches. 

 

Figure 2: Eulerian vs Lagrangian approaches (Liu et al. 2018). 

Following a Eulerian grid-based method, the fluid’s quantities are stored within the points in 

space (the grid). Moreover, this technique represents the fluid flow though the occurring 

changes in the field of velocity, density and pressure. Furthermore, this kind of approach can 

output fluid simulations of very high quality and are generally more precise than Lagrangian 

methods in handling pressure and incompressibility issues (Zhang et al. 1993). However, they 

are highly dependent on the grid resolution size and solving of spatial PDEs is required. 



 15 

The Lagrangian approach to simulate liquid dynamics, instead, treats the fluid as a particle 

system. The quantities (attributes) such as position, velocity, mass, etc., defining the fluid are 

stored in each particle. Every particle will contribute to the fluid’s flow by its reaction to forces.  

This method does not have any spatial limitations. However, to obtain a realistic fluid’s motion, 

a large number of particles is required, making this method less computationally efficient. The 

method used within this project’s implementation falls within the category of Lagrangian 

approach. 

3.2 SPH Theory 

Smoothed particle hydrodynamics (SPH) was invented by Lucy et al. in 1977 to simulate non-

axisymmetric phenomena present in astrophysics (Grindold and Monaghan 1977). The SPH 

method is particle system based. Therefore, it does not require a grid for the calculations of 

spatial derivatives (Monaghan 1988). According to this method, the equations of momentum 

and energy become ordinary differential equations. As instance, the pressure gradient will be 

expressed as a force between particles (Monaghan 1885). Furthermore, an interpolation method 

that allows any function to be expressed in terms of its values at a set of disordered points is 

used and defined as “the heart of SPH” (Monaghan 1988). 

The integral interpolant of any function 𝐴 𝒓  is defined by: 

𝐴$ 𝒓 = 𝐴(𝒓′)𝑊 𝒓 − 𝒓′, ℎ 𝒅𝒓′ 

Equation 1: Integral interpolant of function 𝐴$ 𝒓 (Monaghan 1992). 
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The interpolation is over the total space and W is an interpolant kernel provided with two 

specific proprieties: 

𝑊 𝒓 − 𝒓′, ℎ 𝒅𝒓′ = 1 

Equation 2:  Kernel's first condition of existence. 

and 

lim
2→4

𝑊 𝒓 − 𝒓5, ℎ = 	𝛿 𝒓 − 𝒓5  

Equation 3: Kernel's second condition of existence. 

The limit is to be considered as the limit of the corresponding integral interpolants (Monaghan 

1988). The integral interpolant is then approximated through a summation interpolant: 

𝐴8 𝒓 = 	 𝑚:
:

𝐴:
𝜌:
𝑊 𝒓 − 𝒓:, ℎ  

Equation 4: Summation of the interpolant to approximate the integral interpolant.  

Where the summation index 𝑏 denotes a particle id. The considered particle has mass	𝑚:, 

position 𝒓: and density 𝜌:. The value of any quantity 𝐴  at 𝒓: is denoted by 𝐴:. 

Monaghan (1988, 2) continues stating the fundamental point of the SPH method: “The essential 

point is that we can construct a differentiable interpolant of a function from its values at the 

particles by using differentiable kernels”. Therefore, derivatives of this interpolant are 

calculated through ordinary differentiation, with no need of finite differences or grids. 
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Consequentially, ∇𝐴 would result as: 

∇𝐴8 𝒓 = 	 𝑚:
:

𝐴:
𝜌:
∇𝑊 𝒓 − 𝒓5, ℎ 	 

Equation 5: Integral Interpolant gradient value. 

And the Laplacian: 

∇>𝐴8 𝒓 = 	 𝑚:
:

𝐴:
𝜌:
∇>𝑊 𝒓 − 𝒓′, ℎ  

Equation 6: Integral Interpolant Laplacian value. 

3.3 Navier-Stokes Equations 

The Navier-Stokes equations are a set of non-linear equations which describe a fluid’s flow at 

any given point. A three-dimensional version of the Navier-Stokes equations has been firstly 

derived by Foster and Metaxas (1996). Furthermore, these set of equations are based on the 

Conservation of Mass and Conservation of Momentum Laws (Müller et al 2003). The mass in 

an SPH approach implementation is usually defined as a user-set constant. Therefore, the 

following equation (Equation 7) is used only in Eulerian grid-based methods. 

𝜕𝜌
𝜕𝑡
+ ∇ ∙ 𝜌𝐯 = 0 

Equation 7: Conservation of Mass 

𝜌	
𝜕𝐯
𝜕𝑡
+ 𝐯 ∙ ∇𝐯 = −∇𝑝 + 𝜌𝒈 + 𝜇∇>𝐯 

Equation 8: Navier-Stokes equation derived from the Conservation of Momentum equation 
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𝜌	
𝐷𝐯
𝐷𝑡

=	= −∇𝑝 + 𝜌𝒈 + 𝜇∇>𝐯 

Equation 9: Navier-Stokes equation reformulated by Müller et al. (2003). 

In these equations, 𝝆	is the density, 𝒑	is the pressure term, 𝒈	is gravity and/or external forces 

and 𝜇∇>𝐯 corresponds to the viscosity term.  

Interestingly, this reformulated equation can only be used for simulations based in particle-

system techniques due to the absence of the convection term (𝐯 ∙ 𝛁𝐯). Since the moving fluid 

is composed of particles, its resulting velocity field is equal to the time derivative of the velocity 

of all the particles (Müller et al. 2003). This is only valid for Lagrangian approaches. In 

addition, this particular reformulation of the Navier-Stokes equation is only functional for 

simulating fluids with a linear relationship between shear stress and shear rate (Newtonian 

Fluids).  

Consequentially, in order to describe the flow of Non-Newtonian fluids, Mao and Yang (2006) 

reformulate this equation as: 

𝑑v
𝑑𝑡

= 	−
1
𝜌
	∇𝑝 +	

1
𝜌
	∇ ∙ T +	

𝜇
𝜌
	∇>v +

1
𝜌
	𝐠 

Equation 10: Navier-Stokes reformulated by Mao and Yang for Non-Newtonian Fluid model (2006). 

With T being the stress tensor term. Specifically, Non-Newtonian 

fluids differ from Newtonian due to their non-linear relationship 

between shear stress and shear rate (Figure 2). Therefore, the 

stress term requires to be computed and included in the net force 

equation. 

 

Figure 3: Graph showing different shear 
stress and shear rate functions for different 

fluids (Fandom 2018). 
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4.0 Implementation Details 

This project’s implementation has been designed for being able to simulate both Newtonian 

and Non-Newtonian fluids according to two different SPH algorithms. The algorithms that 

were taken in consideration and as reference for this developed piece of software are 

respectively the WCSPH algorithm (Müller et al. 2003; Becker and Teschner 2007) and the 

PCISPH (Solenthaler and Pajarola 2009). Regarding Non-Newtonian Fluids, the methods and 

algorithm proposed by Mao and Yang in 2006 were adapted and modified with influence from 

the respective approaches of Paiva et al. (2009) and Takahashi et al. (2015).  

In terms of software design, the main solver algorithms are held within the FluidSolver class, 

as well as the fluid quantities parameters. Within the Particle class, the attributes of the particle 

instances are stored. Furthermore, specific classes have been designed for the respective 

components of the program such as Forces, Kernels, Spatial Hashing, Integrators and 

Boundaries. 

The application has been written in C++, based on OpenGL and NGL graphic libraries and 

utilizes Qt framework for the GUI. To support tensors, Eigen C++ library was found the most 

efficient and complete (Jacob 2015). The visualization of the fluid has been achieved through 

the use of SideFX’s Houdini and it’s built in renderer. 

In the following pages, the program’s UML diagram and main solver algorithms will be 

exposed: 
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Figure 4: UML Diagram of the developed application. 
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4.1 Mass 

The mass of every single particle is computed during the initialization phase of the program, 

according to a modified version of the volumetric density equation (Kelager 2006). 

𝑚P =
𝜌4 ∙ 𝑉	
𝑛

 

Equation 11: Volumetric density equation (Kelager 2006). 

Where 𝜌4 is the rest density of the fluid, V is the user set volume and n is the number of vertices 

(particles) loaded from the .obj file. 

The calculated mass will stay the same for the course of the entire simulation process. 

Moreover, the calculated mass is dependent from the number of particles loaded as .obj file 

and from both rest density and volume parameter set by the user. This allows the program to 

perform mass calculations for an arbitrary set of parameters given as input. This process is the 

same across all the different solvers. 
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4.2 Density  

In order to perform density calculations for every particle, the classic SPH technique known as 

Density summation is used (Monaghan 2005). 

𝜌P = 𝑚S
S

𝑊 𝒙𝒊 − 𝒙𝒋, ℎ 	 

Equation 12: Density summation equation for WC solver (Monaghan 2005). 

Additionally, the PCISPH solver requires a density prediction process to compute density 

variation in order to update the pressure values of each particle. A density summation analogue 

to Equation 12 is used for density prediction (Solenthaler and Pajarola 2009). 

𝜌P∗ = 𝜌P(𝑡 + 1) = 𝑚S
S

𝑊 𝒙𝒊(𝑡 + 1) − 𝒙𝒋(𝑡 + 1), ℎ 	 

Equation 13: Density summation prediction equation for PCI solver (Solenthaler and Pajarola 2009). 
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4.3 Pressure (WCSPH) 

During the initial phase of the WCSPH solver’s algorithm, a local scalar pressure value is 

calculated and assigned to every particle of the fluid according to a modified version of the 

Equation of State (EOS) described by Tait (Yu and Turk 2010). This version of Tait’s equation 

is more efficient than the original EOS used in Becker’s and Teschner’s paper (2007) due to 

the absence of power calculations. Alternatively, within the WC solver’s algorithm is also 

present a method to calculate scalar pressure values according to Poisson’s equation (Müller et 

al. 2003). Different approaches in order to compute initial pressure value for the particles were 

taken in consideration in order to employ the most efficient calculations within the developed 

piece of software. 

𝑘 ∙ 𝜌4
𝜌P
𝜌4
− 1  

Equation 14: Modified Tait's Equation of State (Yu and Turk 2010). 

     	𝑘 ∙ (YZ
Y[
− 1)\ 

Equation 15: Modified Tait's Equation of State (Becher and Teschner 2007). 

𝑘 ∙ (𝜌P − 𝜌4) 

Equation 16: Modified Poisson's Equation of State (Müller et al. 2003). 
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Once the scalar pressure values have been computed, the resulting pressure force acting on the 

particles is then calculated according to Monaghan’s (1992) equation. This formulation yields 

a symmetric force due to the arithmetic mean of the particle’s pressures. 

𝑭P
^_`aab_` = − 𝑚P𝑚S

S

(
𝑝P
𝜌P>
+
𝑝S
𝜌S>
)∇𝑊(𝒙P − 𝒙S, ℎ) 

Equation 17: Equation used for Pressure Force calculations in WCSPH algorithm (Monaghan 1992). 

4.4 Pressure Derivation and Pressure (PCISPH) 

According to the PCI algorithm, the scalar pressure values of the particles are not calculated 

during the initial phase of the algorithm using an EOS. Instead, scalar pressure is calculated 

through a corrective process: taking in consideration the predicted density of the particle and 

the respective predicted density error. The aim is to find a pressure p that changes the position 

of the particles in such way that the predicted density corresponds to the reference density 

(Solenthaler and Pajarola 2009). Moreover, the predicted density at point in time t+1 is 

calculated as exposed in Equation 13 therefore: 

𝜌P(𝑡 + 1) = 𝑚 𝑊
S

𝒙𝒊(𝑡 + 1) − 𝒙𝒋(𝑡 + 1), ℎ 	 

                              = 𝑚 𝑊 𝒙P 𝑡 + ∆𝒙P 𝑡 − 𝒙S 𝑡 + ∆𝒙S 𝑡S  

= 	𝑚 𝑊 𝒅𝑖𝑗 𝑡 + ∆ 𝒅𝑖𝑗 𝑡
𝑗

 

Equation 18: Pressure derivation (Solenthaler and Pajarola 2009). 
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Where 𝒅PS 𝑡 = 𝒙P 𝑡 − 𝒙S 𝑡  and ∆𝒅PS 𝑡 = ∆𝒙P 𝑡 − ∆𝒙S 𝑡 . Considering ∆𝒅PSas 

relatively small, the first Taylor approximation can be applied to the term 𝑊 𝒅PS 𝑡 +

∆ 𝒅PS 𝑡  resulting in: 

𝜌P 𝑡 + 1 = 𝑚 𝑊 𝒅PS 𝑡 +
S

∇𝑊 𝒅PS 𝑡 ∙ ∆ 𝒅PS 𝑡  

= 𝑚 𝑊 𝒙P 𝑡 − 𝒙S 𝑡 +
S

𝑚 ∇𝑊 𝒙P 𝑡 − 𝒙S 𝑡
S

∙ ∆𝒙P 𝑡 − ∆𝒙S 𝑡  

= 𝜌𝑖 𝑡 + ∆𝜌𝑖 𝑡  

Equation 19: Reformulation of predicted density formulation (Solenthaler and Pajarola 2009). 

Within this equation the term ∆𝜌P 𝑡  is unknown. After reformulation and using 

𝑊PS=W(𝒙P 𝑡 − 𝒙S 𝑡 ) it results in: 

∆𝜌P 𝑡 = 	𝑚 ∇𝑊PS ∆𝒙P 𝑡 − ∆𝒙S 𝑡
S

 

= 	𝑚( ∇𝑊𝑖𝑗∆𝒙𝑖 𝑡
𝑗

− ∇𝑊𝑖𝑗∆𝒙𝑗 𝑡 )
𝑗

 

= 𝑚(∆𝒙𝑖 𝑡 ∇𝑊𝑖𝑗 −
𝑗

∇𝑊𝑖𝑗∆𝒙𝑗 𝑡 )
𝑗

 

Equation 20: Difference of densities formulation (Solenthaler and Pajarola 2009). 
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Where ∆𝒙 can be derived through time integration methods (Semi-Implicit Euler). Neglecting 

all forces except pressure: 

∆𝒙P = ∆𝑡2
𝑭𝑖
𝑝

𝑚
 

Equation 21: Difference of position derivation (Solenthaler and Pajarola 2009). 

If the simplistic assumption is made that the particles carry equal pressures 𝑝P  and that the 

density corresponds to the rest density 𝜌4, this results in: 

𝑭𝒊
^_`aab_` = −𝑚𝟐 (

𝑝P
𝜌4>𝒋

+
𝑝P
𝜌4>
)∇𝑊PS = 	−𝑚𝟐(2

𝑝P
𝜌4>
) ∇𝑊𝒊𝒋

𝒋

 

Equation 22: PCISPH pressure force formulation (Solenthaler and Pajarola 2009). 

Inserting Equation 22 in Equation 21 it results in: 

∆𝒙P = −∆𝑡2𝑚(2
𝑝P
𝜌4>
) ∇𝑊𝒊𝒋

𝒋

 

Equation 23: Difference of positions reformulation (Solenthaler and Pajarola 2009). 

and considering the force as symmetric the following derivation is possible: 

𝑭S|P
^_`aab_` = 𝑚𝟐(

𝑝P
𝜌4>
+
𝑝P
𝜌4>
)∇𝑊PS = 	𝑚𝟐(2

𝑝P
𝜌4>
)∇𝑊𝒊𝒋 

Equation 24: Pressure force formulation (Solenthaler and Pajarola 2009). 
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The position of particle j will change by: 

∆𝒙𝒋|𝒊 = ∆𝒕𝟐𝒎(𝟐
𝒑𝒊
𝝆𝟎𝟐
)	𝜵𝑾𝒊𝒋	

Equation 25: Rate of change of particle j positions (Solenthaler and Pajarola 2009). 

Inserting Equation 23 in Equation 25 and considering ∆𝒙S|P = ∆𝒙Pwill result in: 

∆𝜌P 𝑡 = 𝑚(−∆𝑡2𝑚 2
𝑝P
𝜌4>

∇𝑊𝒊𝒋 ∙
𝒋

∇𝑊𝒊𝒋
𝒋

− (∇𝑊𝒊𝒋 ∙ ∆𝑡>𝑚(2
𝑝P
𝜌4>
)	∇𝑊𝒊𝒋

𝒋

 

∆𝑡>𝑚(2
𝑝P
𝜌4>
)(− ∇𝑊PS ∙

S

∇𝑊PS − (∇𝑊PS ∙
SS

∇𝑊PS)) 

Equation 26: Final difference of densities reformulation (Solenthaler and Pajarola 2009). 

After solving for 𝑝P  : 

𝑝P = 	
∆𝜌P 𝑡

𝛽(− ∇𝑊PS ∙S ∇𝑊PS − (∇𝑊PS ∙SS ∇𝑊PS))
 

Equation 27: Corrective pressure formulation in terms of density variation (Solenthaler and Pajarola 2009). 

where 𝛽 is corresponds to 

𝛽 = ∆𝑡>𝑚> 2
𝜌4>

 

Equation 28: Beta value formulation (Solenthaler and Pajarola 2009). 
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According to Equation 27 a pressure 𝑝P  is required to achieve a change in density ∆𝜌P 𝑡 . 

Taking in consideration Equation 29 and by reversing the error, Equation 30 is formulated. 

 

𝜌`__Z
∗ = 	𝜌P∗ − 𝜌4 

Equation 29: Predicted Density Error formula (Solenthaler and Pajarola 2009). 

𝑝P = 	
−𝜌`__Z

∗

𝛽(− ∇𝑊PS ∙S ∇𝑊PS − (∇𝑊PS ∙SS ∇𝑊PS))
 

Equation 30: Corrective pressure equation (Solenthaler and Pajarola 2009). 

Still referring to Solenthaler and Pajarola (2009), Equation 30 does manifest issues when 

particles suffer from neighborhood deficiency giving falsified values. Therefore, the formula 

has been modified by inserting a precomputed single scaling factor 𝛿. Resulting in: 

𝛿 =
−1

𝛽(− ∇𝑊PS ∙S ∇𝑊PS − (∇𝑊PS ∙SS ∇𝑊PS))
 

Equation 31: Single scaling factor (delta) value (Solenthaler and Pajarola 2009). 

And: 

𝑝P = 	𝛿𝜌`__Z
∗  

Equation 32: Resulting equation for corrective pressure calculations (Solenthaler and Pajarola 2009). 

Since the prediction-correction step is repeated, the corrective pressure is summed at every 

predictive-corrective iteration (Solenthaler and Pajarola 2009). 

𝑝P+= 𝑝P  

Equation 33: Pressure update equation (Solenthaler and Pajarola 2009). 
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4.5 Viscosity 

Viscosity is used to specify the behaviour and propriety of a fluid in opposing resistance in 

flowing. Moreover, this propriety can be quantified, and fluids can be differentiated 

accordingly: Newtonian fluids do have a linear relationship between shear stress and shear rate. 

On the other hand, Non-Newtonian fluids do not have constant viscosity and therefore the 

relationship between shear stress and shear rate is not linear. 

 For both solver algorithms, viscosity calculations have been done according to the solution 

proposed by Müller et al. (2003). Furthermore, applying the SPH rule for the 𝜇∇>𝐯 term of 

Equation 9 will result in: 

 

𝑭𝒊
oPapqaPrs = 𝜇∇>𝒗 𝒓𝒂 = 𝜇 𝑚S

𝒗S
𝜌S𝒋

∇𝑊PS 

Equation 34: Viscosity classic SPH formulation (Monaghan 1988). 

However, the resulting force is asymmetric due to the velocity field changes from particle to 

particle. Therefore, the force is symmetrized by using velocity differences, resulting in: 

𝑭𝒊
oPapqaPrs = 𝜇 𝑚S

𝒗S − 𝒗P
𝜌S𝒋

∇𝑊PS 

Equation 35: Viscosity force formulation according to Müller et al. (2003). 
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4.6 Surface Tension 

Molecules in fluids do attract each other (Morris 2000). Furthermore, these intramolecular 

attractive forces are equal in all direction and balance each other. However, the same forces 

acting on particles disposed on the surface of the fluid are unbalanced (Müller et al. 2003). 

Moreover, the tension forces have the direction of the surface normal and act toward the fluid. 

Additionally, surface tension forces do tend to minimize the curvature of the surface. A tension 

coefficient will contribute in determining the intensity of the fluid’s surface tension force. 

 

Figure 5: Surface Tension (Kyowa Ltd. 2018). 

The surface of a fluids is found by employing a field quantity which correspond to 1 at particle 

locations and 0 everywhere else (Müller et al. 2003). In literature, this field quantity is 

identified as color field. Applying the SPH rule will result in: 

𝑐8 𝒊 = 𝑚S
S

1
𝜌S
𝑊PS 

Equation 36: Color field fomulation according to SPH approach (Müller et al 2003). 
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The gradient field of the smoothed color field is equal to the surface normal pointing into the 

fluid. 

𝐧 = ∇𝑐8 

Equation 37: Gradient of the smoothed color field yielding the surface normal (Müller et al. 2003). 

Moreover, the divergence of n measures the curvature of the fluid’s surface (Müller et al 2003). 

𝜅 =
−∇>𝑐8
|𝐧|

 

Equation 38: Curvature formulation according to Müller et al. (2003). 

Consequentially, the surface tension force acting near the surface will result in: 

𝑭Pay`zaPqz = 𝜎𝜅𝐧 = 	−𝜎∇>𝑐8
𝐧
|𝐧|

 

Equation 39: Surface Tension Equation (Müller et al. 2003). 

Where 𝜎	is the surface tension coefficient of the fluid. Additionally, the force is only evaluated 

if |n| exceeds a set threshold due to the numerical problems caused in computing n/|n|. 

Alternatively, another method to simulate surface tension has been developed for this project’s 

implementation. Furthermore, this approach is based on reconstructing the surface tension as a 

sum of cohesion and curvature forces. However, in this piece of software the adhesion 

calculations are not included. Cohesion force is calculated as follows: 

𝑭P←Spq2`aPqz = 	−	𝜎𝑚P𝑚S𝐶(|𝒙P − 𝒙S|)
𝒙P − 𝒙S
|𝒙P − 𝒙S|

 

Equation 40: Cohesion force formulation (Akinci et al 2013). 
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Where C is a 3D spline function with the following conditions: 

𝐶 𝑟 =
32
𝜋ℎ�

(ℎ − 𝑟)�𝑟�																							2𝑟 > ℎ	 ∧ 𝑟 ≤ ℎ

2(ℎ − 𝑟)�𝑟� −
ℎ�

64
														𝑟 > 0 ∧ 	2𝑟 ≤ ℎ	

0																																													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 41: 3D Spline function created by Akinci et al. (2013). 

Where r is the distance between the pair of particles, h is the smoothing length and ℎ�	being a 

normalization factor. 

The smoothed gradient of the color field in this approach is calculated as  

𝐧𝒊 = ℎ
𝑚S

𝜌S𝒋

∇𝑊PS  

Equation 42: Gradient of the smoothed color field according to Akinci el al. (2013). 

With the h factor in order to achieve a computed normal which is scale independent. 

Successively, the force acting on the curvature of the fluid’s surface is calculated as  

𝑭P←Spb_o�rb_` = 	−𝜎𝑚P(𝒏P − 𝒏S) 

Equation 43: Curvature force formulation (Akinci et al. 2013). 

According to this method a symmetrized correction factor is computed: 

𝐾PS =
2𝜌4

𝜌P + 𝜌S
 

Equation 44: Symmetrized correction factor (Akinci et al. 2013). 
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Then, it is multiplied by the sum of the curvature and the cohesion forces: 

𝑭Pay`zaPqz = 	𝐾PS(𝑭P←Spb_o�rb_` +	𝑭P←Spq2`aPqz) 

Equation 45: Surface Tension formulation as sum of curvature and cohesion force. 
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4.7 Stress  

For Non-Newtonian fluids, the stress tensor is a nonlinear function of the velocity gradient 

(Mao and Yang, 2006). According to literature, a common method to calculate the stress tensor 

is to integrate the tensor-rate as in Gotekin et al. (2004) and in Owens and Phillips (2002). Both 

of these methods are based on a nonlinear co-rotational Maxwell model (Ellero et al. 2002).  

𝑑𝑇
𝑑𝑡

= 	Ω +	𝜇`𝐷5 −
1
𝜆
𝑇 

Equation 46: Tensor rate description according to corotational Maxwell model (Ellero et al. 2002). 

Where T is the stress Tensor, 𝜇` the shear modulus or elasticity, 𝜆 the relaxation time or 

intensity of the fluid’s behaviour in returning at its previous shape and Ω being equal to: 

	Ω = 	
1
2
𝑇 ∙ 𝜔 − 𝜔 ∙ 𝑇  

Equation 47: Rotation tensor formulation (Mao and Yang 2006). 

Furthermore, Ω, the rotational tensor, can be intended as a coordinate transformation change 

between the inertial frame and the frame rotating with the fluid’s angular velocity. Moreover, 

𝜔 will result in: 

𝜔 = 	∇𝑣 − (∇𝑣)y 

Equation 48: Difference of gradients of velocity vector and it’s transpose (Mao and Yang 2006). 
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where 𝛼𝛽 are 3D spatial coordinate therefore each element of 𝜔�� corresponds to: 

𝜔�� = 	
𝜕𝑣�

𝜕𝑟�
−
𝜕𝑣�

𝜕𝑟�
 

Equation 49: Formulation for calculating every element of ω (Mao and Yang 2006). 

D’ is the traceless strain tensor and is equal to: 

𝐷5 =
1
2
𝐷 −

𝑇𝑟𝑎𝑐𝑒(𝐷)
3

𝐼 

Equation 50: Equation for the traceless strain tensor according to Mao and Yang (2006). 

With: 

𝐷 = 	∇𝑣 + (∇𝑣)y	 

Equation 51: Formulation for the strain-rate tensor (Mao and Yang 2006). 

where each element of 𝐷�� is equal to: 

𝐷�� = 		
𝜕𝑣�

𝜕𝑟�
+
𝜕𝑣�

𝜕𝑟�
 

Equation 52: Formulation for calculating every component of strain-rate tensor D (Mao and Yang 2006). 

Consequentially, the partial velocity derivative on every particle according to SPH formulism 

corresponds to: 

𝜕𝑣�

𝜕𝑟:
= 	

𝑚S

𝜌SS

(𝑣S� − 𝑣�)
𝜕𝑊(𝑟 − 𝑟S, ℎ)

𝜕𝑟:
 

Equation 53: Partial velocity derivative calculation in SPH formulism (Mao and Yang 2006). 
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Therefore: 

𝛻𝑣P = 	
𝑚S

𝜌SS

𝑣S� − 𝑣� ⨂𝛻𝑊PS	

Equation 54: Formulation of velocity gradient (Paiva et al. 2006). 

Once the stress tensor has been computed for every particle, the stress term present in Equation 

10 can be formulated as: 

	
1
𝜌P
	∇ ∙ 𝑇P = 	

𝑚S

𝜌P𝜌S
𝑺P + 𝑺S

S

∇𝑊PS 

Equation 55: Calculations for the stress term (Paiva et al. 2006). 

This approach has been developed in such way in order to be temperature independent (Erktin 

2015). 
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4.8 Kernels 

Smoothing kernels are part of the heart of SPH methods as explained in section 3.2. 

Accordingly, different kernels are employed for the calculations of the different fluid 

quantities. Specifically, the kernel functions take two parameters: the distance between the 

neighbouring particles r and the smoothing length h. The smoothing length is a user set 

parameter and it determines the results of kernel functions values and neighbourhood 

determination. 

 

Figure 6: Example of smoothing kernel function (Acin 2018). 

For density calculations, a classical sixth order polynomial kernel has been used (Müller et al. 

2003). 

𝑊^q�s� 𝒓, ℎ = 	
315
64𝜋ℎ�

(ℎ> − |𝑟|>)�																					0 ≤ |𝒓| ≤ ℎ
0																																								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 56: Sixth order Polynomial Kernel (Müller et al. 2003). 
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The gradient of the sixth order polynomial kernel has been used instead for surface normal 

calculations and for the pressure predictive-corrective step of the PCI solver: 

∇𝑊^q�s� 𝒓, ℎ = 	−
945
32𝜋ℎ�

𝒓(ℎ> − 𝒓 >)>																					0 ≤ |𝒓| ≤ ℎ
0																																										𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 57: Gradient of the sixth order Polynomial kernel (Müller et al. 2003). 

The Laplacian of this function is used for calculating surface tension force according to Müller 

et al. (2003). 

∇>𝑊^q�s� 𝒓, ℎ = 	−
945
32𝜋ℎ�

(ℎ> − 𝒓 >) (3ℎ> − 7 𝒓 >)															0 ≤ |𝒓| ≤ ℎ
0																																																														𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 58: Laplacian value of the sixth order polynomial function (Müller et al. 2003). 

Instead, for cohesion forces calculations the 3D Spline function described in Equation 33 is 

used. Furthermore, for the surface normal calculations it was required to compute the curvature 

force, using the gradient of the sixth order polynomial kernel. 

For calculating pressure forces in the WCSPH solver, a Spiky kernel based on the work of 

Desbrun and Gascuel (1996) was developed and used in this implementation. Specifically, 

since this function no longer tends toward zero, it contributes in solving particle cluster 

problems.  

∇𝑊a^P s 𝒓, ℎ = 	−
45
𝜋ℎ�

𝒓
𝒓
(ℎ − |𝒓|)>																					0 ≤ |𝒓| ≤ ℎ

0																																											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Equation 59: Gradient Spiky kernel (Desbrun and Gascuel 1996). 
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According to the literature, a kernel of which the Laplacian value is always greater than or 

equal to zero is required for achieving correct viscosity calculations. Therefore, the viscosity 

kernel function described by Müller et al. (2003) has been implemented and used. 

∇>𝑊oPapq¡�^�� 𝒓, ℎ = 	
45
𝜋ℎ�

(ℎ − |𝒓|) 																				0 ≤ |𝒓| ≤ ℎ
0																																				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 60: Viscosity kernel (Müller et al. 2003). 

The gradient kernel value implemented for the stress tensor calculations of this implementation 

is analogous to the function described by Monaghan’s Spline kernel (1992) or Müller et al. 

polynomial kernel (2003). Mao’s and Yang’s gradient of the spline kernel was also 

implemented, but did not give functional results (Erktin 2015). 

∇𝑊a^�Pz` 𝒓, ℎ = 	−
9

4𝜋ℎ¢

𝒓
ℎ
− 1.33 𝒓																		0 ≤

𝒓
ℎ
≤ 1					

−
1
3
(2 −

𝒓
ℎ
)>

ℎ
𝒓
𝒓											1 ≤ 		

𝒓
ℎ
≤ 2

0																																												𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Equation 61: Gradient Spline Kernel (Mao and Yang 2006). 
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4.8 Integration and Prediction 

Once the total forces acting on every particle has been summed, a method to compute the new 

velocity and position is required. Therefore, within this project’s implementation, a Semi 

Implicit integration technique is also present. The same method is used for the prediction step 

of the PCI solver. 

a)							𝒗Pr¥∆r = 𝒗Pr + 𝑭𝒊𝒕 ∙ ∆𝑡 

						b)							𝒙Pr¥∆r = 𝒙Pr + 𝒗Pr¥∆r ∙ ∆𝑡 

Equation 62: Semi-Implicit Euler Integration Scheme a) Velocity b) Position (Kelager 2006). 

4.9 XSPH 

A correction method was introduced in 1989 by Monaghan in order to prevent particle 

penetration by adjusting the velocity of the particles. The correction is performed after the 

integration step and is defined by Monaghan (1989) as: 

𝒗§ = 	𝒗P + 𝜀 𝑚S[
S

𝒗S − 𝒗P
(𝜌P + 𝜌S)/2

]𝑊PS 

Equation 63: XSPH velocity correction formulation (Monaghan 1989). 

where 𝜀 is 0 ≤ 𝜀 ≤ 1 and 𝑊PS is the sixth polynomial kernel. 
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4.10 Neighbor Search (Spatial Hashing) 

Neighbourhood determination of a particle is a fundamental process within an SPH based 

solver. Furthermore, basic neighbour searching algorithms generally have high complexity, 

which become even more inefficient with bigger particles count. With an efficient neighbour 

approximation technique in an SPH solver, it is possible to achieve a substantial increase in 

terms of performance and computation time. Therefore, a Fast Nearest Neighbour Searching 

(FNNS) algorithm has been developed for this project’s implementation based upon the 

Standard C++ multi-map container. The algorithm chosen for the current piece of software is 

the Spatial Hashing Algorithm described by Teschner et al. (2003). 

Spatial hashing is a process by which a 3D or 2D space is projected onto a 1D hash-table 

(Hastings et al. 2005). In order to implement a spatial hashing algorithm for an 3D SPH solver, 

three features are fundamental: a 3D grid, a hash function and a hash-table. Moreover, the grid 

is defined by the cell size and two points that set the cell in space. Specifically, the hash 

function takes positional data and returns a respective grid cell that corresponds to a 1D bucket 

in the created hash table (Hastings et al. 2005).  

During the first step of the algorithm, the position of the considered particle i is discretized in 

with respect to a user-defined cell size l (Tescher et al. 2003). Still referring to Kelager’s work, 

the cell size has been set equal to the smoothing length of the kernels (Ihmsen et al. 2011).  
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According to the discretization process, the coordinates of the particle are divided by the cell 

size and rounded to the closest smaller integer: 

𝑖, 𝑗, 𝑘 :	i=⌊x/l	⌋,	j	=	⌊y/l	⌋,	j	=	⌊z/l	⌋	

Equation 64: Discretization formula (Kelager 2006).	

Successively, the hash function maps the obtained discretized positions to a 1D index h, so that 

the information is store in a hash table with index equal to ℎ: ℎ = ℎ𝑎𝑠ℎ(𝑖, 𝑗, 𝑘) (Kelager 2006). 

The hash function is defined in the current implementation as: 

ℎ𝑎𝑠ℎ 𝑥, 𝑦, 𝑧 = 	𝑥	𝑝1	𝐱𝐨𝐫	𝑦	𝑝2	𝐱𝐨𝐫	𝑧	𝑝3 𝐦𝐨𝐝	𝑛 

Equation 65: Hash function (Kelager 2006). 

where p1, p2, p3 are big prime numbers with the respective value of 73856093, 19349663 and 

83482791 and n corresponds to the hash table size. Furthermore, the size of the hash table is 

set to be the double of the particle count (Teschner et al. 2003) and is determined according to 

Kelager’s (2006) definition: 

𝑛 = 𝑝𝑟𝑖𝑚𝑒(2 ∙ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝐶𝑜𝑢𝑛𝑡) 

Equation 66: Hash table size calculations (Kelager 2006). 

where prime(x), x ∈ ℤ is a function which will return the next prime number ≥ 𝑥 (Kelager 

2006).  
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The particle query within this piece of software is based on a bounding box method according 

to the work of Kelager (2006). The bounding box is defined around the particle taken in 

consideration according to the cell size and the position of the particle. 

𝐵𝐵ÁPzÂÃZÄ 2,2,2 Å	 

𝐵𝐵Á�ÃÂÃZ¥ 2,2,2 Å	 

Equation 67: Calculations for the bounding box determination (Kelager 2006). 

Once the bounding box is defined, an iteration over three dimensions is performed so that the 

possible neighbors can be found (Priscott 2010). The existence of neighbors is controlled 

through a normal hash map due to the requirement of returning unique results. If the candidate 

particle is not an existing neighbor, the distance between that particle and the current particle 

is calculated. If the distance results less than the grid size, then it is stored as a dynamic 

neighbor on the normal hash map. Specifically, in terms of complexity this algorithm takes 

O(n) (Kelager 2006). 
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5.0 Results, Issues and Suggestions for further studies 

This program’s implementation has been designed in order to simulate Newtonian and Non-

Newtonian fluids according to two different Smoothed Particle Hydrodynamics approaches. 

The achieved results for the diverse solver algorithms are exposed and analyzed in the 

following section. 

As shown in Figure 6 and 7, the Weakly Compressible based solver works correctly, and the 

output of these solvers is quite realistic. Moreover, the computation time of the WCSPH for 

Newtonian fluids is acceptable for low particle count. Once the particle count increases, also 

does the computation time. Specifically, the simulation remains stable with over 100k particles 

allowing an adequate realistic simulation of fluids. 

Figure 7: WCSPH solver simulating water with 10k particles (Personal collection). 
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The WCSPH Non-Newtonian solver’s simulations do manifest viscoelastic behavior (Figure 

9). Furthermore, higher smoothing length and smaller time-step are required for this solver to 

work efficiently. Therefore, the computation time increases drastically when simulating Non-

Newtonian fluids. The simulations are stable, usable and the results are quite appealing within 

a limited number of iterations.  

Figure 8: WCSPH simulating water with 100k particles (Personal collection). 

Figure 9:WCSPH Non-Newtonian Fluid with high elasticity and relaxation parameters (Personal 
collection). 
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Moreover, it can be confirmed that the possible achievable results according to this method are 

restricted (Chang et al. 2009).  Dropping spheres simulations does give similar results to the 

reference paper of Mao and Yang (2006). Additionally, according to the obtained analyzed 

results, the XSPH velocity correction (Monaghan 1989) covers a fundamental role in the Non-

Newtonian solvers. In addition, it has been noted that the fluid tends to shrink in order to gain 

a viscoelastic consistency subject to the computed exceeding stress force and the disharmony 

between the rest density of the fluid and the particle mass. In some cases, the excessive stress 

force modifies the fluid flow in an unrealistic way.  

The incompressibility of the fluids simulated with the WCSPH algorithms is still an issue. Even 

though, changing the EOS from a Poisson to a modified Tait’s allowed to achieve low level of 

compressibility particularly in Newtonian Fluids (Figure 8).  

 

Figure 10: WCSPH Non-Newtonian fluid with low elasticity and relaxation parameters (Personal collection). 
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The PCI algorithm-based solver for both types of fluids is not complete. This algorithm was 

developed in order to deal with incompressibility of the fluids. Still, the incompressibility of 

fluids was not achieved. In particular, only the pressure calculations are working and therefore 

included in the implementation, generating simulations that resemble a fluid, but cannot be 

defined realistic (Figure 11). In addition, viscosity calculations were also included but high 

viscosity coefficients lead toward an unstable simulation. Similarly, for surface tension, two 

different approaches were implemented in order to give the fluid a more realistic and appealing 

aesthetics.  

Nevertheless, both approaches did not give the expected results. Therefore, viscosity and 

surface tension calculations are included in the implementation only as proof of concept 

(Figure 12). Furthermore, the resulting density prediction calculations have been overestimated 

in order to achieve a density variation that would allow a scalar pressure value to enable the 

fluid to flow.  

Figure 11: PCISPH simulating water with 10k particles (Personal collection). 

Figure 12: PCISPH simulating water with 100k particles (Personal collection). 
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However, in terms of computational time, the PCISPH solver for Newtonian Fluids is slightly 

more efficient than the WCSPH, confirming that further refinements and improvements could 

be significant in achieving an overall better solver. Simulations performed with this algorithm 

are stable with over 100k particles. 

Regarding the PCI solver for Non-Newtonian fluids, the achieved results do present some 

viscoelastic behavior (Figure 13). Yet, the solver is not functional nor efficient. Furthermore, 

the volume is not preserved correctly especially with low elasticity and relaxation parameters. 

Moreover, computation time is way too high due to the high smoothing length and small time-

step required for the simulator to work. Additionally, a supplementary neighbor search is 

performed before calculating the pressure force, in order to achieve the obtained results, which 

causes a drastic decrease in terms of performance. 

After profiling with Instruments the current piece of software several times, it was found that 

the main issue for all solvers was neighbor approximation. Specifically, in the case of the PCI 

based solvers which suffers more from this type of problem, there was deficiency in the 

neighborhood determination which resulted in falsified values (Solenthaler and Pajarola 2009). 

 Figure 13: PCISPH Non-Newtonian Fluid demonstrating some viscoelastic behaviour with extremely high elasticity 
and relaxation parameters (Personal collection). 
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This had to be taken in consideration when performing calculations for the resulting forces 

acting on the fluid’s particles, including pressure and stress. Accordingly, an improvement in 

the neighbor search algorithm would result in an increase in terms of performance for all 

solvers due to the high influence of the particle count on the FNNS algorithm. Therefore, 

different neighborhood determination techniques could be implemented and tested to 

circumvent this problem such as a dynamic Verlet list or a plane sweep algorithm. 
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6.0 Conclusion and Future Work 

The current implementation presents a Weakly Compressible and Predictive-Corrective based 

SPH solvers for Newtonian and Non-Newtonian fluids. The WCSPH solver for Newtonian 

fluids can be defined complete of the fundamental basic SPH simulator features. On the other 

hand, the Non-Newtonian WC solver does require some optimization in terms of performance 

in order to be defined completely functional. However, appealing results can be achieved 

through the use of this algorithm. Instead, the PCI based solver for Newtonian fluids presents 

different issues and cannot be defined complete of SPH fundamental features due to the 

absence of viscosity and surface tension calculations. Moreover, the PCI Non-Newtonian 

solver cannot be defined neither functional nor efficient due to the high computation time 

required to successfully simulate fluids. 

Different improvements could be made in the future for all solvers starting from a more 

efficient and accurate neighbor determination algorithm. Specifically, this improvement could 

result in a significant increase of efficiency and accuracy in the calculations for the PCI based 

solvers which suffer from neighborhood deficiency (Solenthaler and Pajarola 2009). 

Furthermore, adaptive time-stepping could be a solution in order to achieve an increase in 

performance (Akinci 2010). In addition, in order to prevent particle scattering due to sharp 

velocity field variations, Ghost Particles SPH methods (Schechter and Bridson 2012) could be 

included in the future.  

In order to deal with incompressibility of the fluid, the Position Based Fluid method proposed 

by Macklin and Müller (2013) could offer instead a more optimal solution. Additionally, an 
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arbitrary object boundary and collision technique could also be included, increasing as a 

consequence the number of different possible scenarios creatable from the simulator. 

For Non-Newtonian fluid solvers, an optimization in terms of computation time would allow 

the respective solver to be defined efficient. Additionally, a dependency from temperature can 

be included as proposed (Paiva et al. 2006). Therefore, allowing more control over the elasticity 

and viscosity of the fluid over time. Furthermore, different approaches in describing Non-

Newtonian fluids flow could have probably resulted more efficient and might be tested in the 

future (Peer et al. 2015). 

Finally, a parser could be included within this project’s implementation so that fluids 

parameters could be loaded to the simulator UI from a text file. This would allow a faster 

generation of different simulations and scenarios. In addition, a functionality that would allow 

the user to save the fluid parameters of an appealing simulation onto a properly formatted text 

file, could also be implemented. 

Figure 14: Frame from the simulation process (Personal collection). 
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Figure 15: SideFx’s Houdini Network used to render out the simulation 
frames (Personal collection). 
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