

Procedural Forest Generation with L-System
Instancing

Masters Project Report

Ben Carey

MSc Computer Animation and Visual Effects

August 2019

Contents
Abstract ... 3

1. Introduction .. 3

2. Previous Work ... 4

2.1 L-Systems .. 4

2.2 Other Methods .. 4

3. Technical Background ... 6

3.1 L-System Formalisation ... 6

3.2 Instancing Branches .. 7

3.2.1 Definitions .. 7

3.2.2 Extending the L-System .. 7

3.2.3 The Instance Cache .. 8

3.2.4 The Instancing Algorithm ... 9

4. Implementation .. 10

4.1 OpenGL ... 10

4.2 User Interface ... 10

4.3 L-System Generation ... 11

4.4 Instance Methods ... 12

4.5 Forest Generation ... 13

4.6 Terrain ... 14

4.7 Rendering and Shaders ... 14

4.8 Tree Painting Tool ... 15

5. Results and Future Work... 16

6. Conclusion ... 18

Bibliography .. 18

Appendix ... 19

L-System Syntax and Semantics .. 19

Abstract

Producing densely populated believable forests can be a challenging process in CG, due to the size and

complexity of the geometry required. This problem is exacerbated when trying to render in real time,

for example in gaming or interactive projects. It is often necessary therefore to employ procedural

methods to generate the tree geometry and to employ techniques to improve the efficiency of the

rendering. This paper is concerned with the implementation of one such method, by Kenwood et al

(2014) [8], which uses carefully constructed instancing of L-Systems at shader level to efficiently

produce a forest of varied trees. The implementation is built as a stand-alone tool in C++, using

OpenGL and Qt Creator.

1. Introduction

The creation of large forest assets is one of many problems in computer graphics that cannot

realistically be solved by 3D artists alone: while modellers and texture-artists can create an individual

CG tree to a far greater degree of detail and realism than any procedural method, they run into two

major issues when trying to replicate this work at the level of forests. The first is of course the amount

of work required: producing each tree asset will take an artist a considerable amount of time, and

individually creating the hundreds or even thousands required for a large forest scene is simply not

plausible in the timeframe of any professional 3D project. Secondly, if each tree is created separately,

the amount of memory required for the forest as a whole will likely be prohibitively large, potentially

too large to be stored on most PCs; and even if doesn’t exceed the computer’s memory capacity, the

render times for such a forest would probably be unacceptably long.

Consequently, procedural generation of vegetation has been the subject of considerable study, giving

rise to methods like L-systems and Diffuse Limited Aggregation. Such techniques have been developed

by studying the growth of plants and the many factors that influence them, and finding algorithms

that mimic some part of this process. By employing stochastic elements, these methods can easily

generate a large number of distinct trees, and can offer creators familiar with the procedure a number

of ways to modify these trees’ shapes to fit artistic direction.

Using these methods, memory usage is often still a problem however: if every tree is individually

produced using some procedural method, this still requires storing a large amount of data for each

one, and sending a large number of vertices to the renderer. This is a particular problem in computer

games, or other cases where real-time rendering is required. One solution is to simply produce a small

number of hero trees and then instance them on the shader; but this repetition is likely to be noticed,

particularly in interactive media.

In this paper, we look at a method to produce a large forest scene with distinct trees in a memory-

efficient way that allows for real-time rendering, following a procedure introduced by Kenwood et al

in their paper ‘Efficient Procedural Generation of Forests’ (2014) [8]. Their technique uses L-systems

to fill up a cache of branches, and then performs an algorithm to instance these branches on the

shader to form a forest. In this way we can take advantage of the efficiency of the GPU for instancing,

but because the instancing is performed at the level of branches, we can still build up a unique set of

trees. This project implements Kenwood et al’s method as a C++ tool built using OpenGL and Qt

Creator, and additionally performs various other techniques in the shader to further distinguish the

trees and improve the final look of the forest, demonstrating the efficiency of the method by showing

how much can be done in the shader without too greatly affecting the speed of the program.

2. Previous Work

2.1 L-Systems

L-systems are perhaps the most famous technique for procedural digital plant generation, created by

biologist Aristid Lindenmayer as a mathematical model of plant growth (1968) [1]. The various systems

and practices that have developed around them are explored in depth by Prusinkiewicz and

Lindenmayer in ‘the Algorithmic Beauty of Plants’ (1990) [5]. L-systems are a type of formal language

with a ‘rewriting system’, consisting of an alphabet, an initial word in that alphabet called an ‘axiom’,

and a series of ‘replacement rules’, defining a replacement of some letter or sub-word with some

other word in the alphabet. An output string is then formed by repeated applications of the

replacement rules on the initial axiom. For uses in computer graphics, certain letters in the alphabet

can then be interpreted as commands to a ‘turtle geometry’ drawing system (Prusinkiewicz, 1986) [4],

allowing us to produce a visual representation of the plant. The use of recursion allows L-systems to

develop exponentially more complexity with each new application of the rules, mimicking the increase

in complexity of plant life as it grows.

We can also introduce stochastic processes into L-system generation to allow the system to produce

random variation in the plant structures it creates. This has been proposed by a number of papers, for

example by Yokomori (1980) [2], who formalises a stochastic L-system as an L-system along with a

probability mapping assigning each replacement rule a probability, with the requirement that the sum

of the probabilities of all rules with the same precedent is 1. In this way, we can assign multiple

replacement rules for the same variable and at each stage the system applies one of these rules with

a given probability; this allows us to generate a large number of distinct trees from the same system.

Figure 1: plants produced by L-systems

2.2 Other Methods

In spite of the versatility of L-systems, there are a large number of alternative methods for

procedurally generating plants in 3D applications. One criticism of L-systems is their inability to

account for surrounding environment: while L-systems can describe individual plants well, they cannot

simulate the interaction of such plants with outside objects, each other, or even themselves. This is

obviously an important consideration when generating forest scenes.

One alternative system is ‘Diffuse Limited Aggregation’ (DLA): this is a ‘kinetic phenomenon’ first

proposed by Witten and Sander (1981) [3], whereby an initial seed or set of seeds (called an

aggregate), is placed somewhere on a lattice, then particles are spawned in random areas around the

edge of the lattice and undergo Brownian motion until they make contact with the aggregate. When

they touch the aggregate, they are added to it and stay in this position. In this way, the aggregate

grows, and due to the nature of the construction it develops branching structures. By assigning

constraints to the particle spawning, seed positions and Brownian walk, we can get some level of

control over the structure produced; for example, we can avoid intersection of the aggregate with

other objects by declaring that no particle inside another object can be added to the aggregate.

Figure 2: an example of Diffuse Limited Aggregation

More complicated methods for forest generation often involve some form of ecological simulation, or

similar techniques, to determine the growth and interaction of trees in the forest environment. For

example, in ‘Modelling Asymmetric Growth in Crowded Plant Communities’ (Damgaard, 2009) [7], a

set of mathematical models is proposed to allow us to quantify the relative growth rates of various

plant species of different sizes due to competition in a crowded environment. The recent paper

‘Synthetic Silviculture: Multi-scale Modeling of Plant Ecosystems’ (Makowski et al, 2019) [10] presents

a method to efficiently mimic things like tropism and competition for resources by considering a

‘multi-scale representation for plant ecosystems’, considering growth separately at the level of

branches, plants and the ecosystem as a whole.

However, despite the benefits these more complex systems offer when it comes to describing and

simulating plant interactions, L-systems have the advantage of simplicity: the recursive nature of their

construction gives us a clear understanding of the make-up of the overall structure and of the points

where branching occurs, which allows us to manipulate the structure in a way we couldn’t with, for

example, DLA. This is exploited by Kenwood et al in ‘Efficient Procedural Generation of Forests’ (2014)

[8] to allow us to build up a large number of trees by copying instances of branches, which we will

explore in more detail in the next section. Nonetheless, the aforementioned papers provide an

important context to consider this project in, as they suggest a number of possible avenues for future

extensions to the program.

3. Technical Background

3.1 L-System Formalisation

Before looking at the instancing algorithm, a more formal understanding of L-system production is

required. For the purposes of this paper, we will be using stochastic L-systems, for the most part

following the definition by Prusinkiewicz in ‘Algorithmic Beauty of Plants’ (2019) [5], though with some

changes specific to our implementation:

A stochastic L-system is an ordered quadruplet 𝐿 =< 𝑉, 𝜔, 𝑃, 𝜋 > where

• 𝑉 is a finite alphabet, 𝑉∗ represents the set of all words over 𝑉, and 𝑉+ represents the set of

all non-empty words

• 𝜔 ∈ 𝑉+ is a nonempty word called the axiom

• 𝑃 ⊂ 𝑉+ × 𝑉∗ is a set of productions, each written as 𝜇 = 𝜒 for some 𝜇 ∈ 𝑉+, 𝜒 ∈ 𝑉∗, with 𝜇

known as a precedent, or non-terminal, and 𝜒 referred to as the replacement or just the RHS

• 𝜋: 𝑃 → (0,1] is a function from each production to the range (0,1], called the probability

distribution, with the requirement that ∑ 𝜋(𝑝)𝑝 = 1 for all rules 𝑝 that share a precedent.

We then define a rule in the system as a set of all productions that share a given precedent (although

within the code of the C++ program, rule is also used interchangeably with production). An application

of a rule 𝑟 with precedent 𝑎 to some word 𝑤 over 𝑉 consists of exchanging all occurrences of 𝑎 in 𝑤

with a replacement from one of the productions in 𝑟, with the probability of a given production 𝑝

being chosen equal to 𝜋(𝑝). If there are multiple overlapping occurrences of 𝑎 in 𝑤, the process of

replacing is performed from left to right: the first occurrence, 𝑎1, of 𝑎 in 𝑤 is replaced, and the next

occurrence of 𝑎 to be replaced will be the first subsequent occurrence that did not overlap with 𝑎1.

For a given ordering of the rules in the system, a derivation in 𝐿 consists of a finite number of

applications of the rules to the initial axiom, performed in the given order (cycling round to the first

rule again when we’ve got through all of them). The resultant word is called the derived or generated

word, and its age or generation is defined as the number of rule applications required to reach it.

To turn a derived word into a 3D asset we just need to define an interpretation of various letters of

the alphabet for the turtle graphics system to use to draw, which we will call the semantics of the

language: in general, certain symbols will be interpreted as commands to do things like moving

forward and drawing a line, rotating the current position, and saving or retrieving information to/from

the stack. The specific interpretations employed in this project are covered in the ‘L-System Syntax

and Semantics’ section of the appendix; they are heavily based on the ones used by the Houdini L-

System node [11]. For the purposes of this paper, the most important symbols are the branching

commands, ‘[‘ and ‘]’: they effectively tell the turtle to create a branch for the tree by saving the

current position at ‘[‘, then returning to it when the corresponding ‘]’ is reached.

3.2 Instancing Branches

3.2.1 Definitions

The instancing method proposed by Kenwood et al (2014) [8] works by modifying the initial axiom and

rules of an L-system to keep track of branches as they’re introduced to the system and use them to fill

an instance cache. A few definitions are required first to supplement the L-system formalization above.

Consider an L-system 𝐿 =< 𝑉, 𝜔, 𝑃, 𝜋 > containing the symbols ‘[‘ and ‘]’ as part of its alphabet with

the semantics defined above. We will call the sub-word enclosed by a ‘[‘ symbol and its corresponding

‘]’ a branch. We will say it is a valid branch if it contains a letter that is a precedent of some rule in 𝐿

(this helps to rule out branches that don’t offer any stochastic variation to the system, as such

branches will not be useful for our method). Kenwood et al assign each valid branch an id, with two

branches given the same id if and only if they contain the same letters.

In a derived word, we call the sub-word between a ‘[‘ and its corresponding ‘]’ a derived branch, and

call it a valid derived branch if it was valid in the production that introduced it. Valid derived branches

inherit the id from the branch that introduced them. We also define the age of each valid derived

branch to be the age of the derived word when the branch was introduced to it.

The key concept behind Kenwood et al’s method is that for any two derived words of the same

generation, 𝑤 and 𝑣, replacing any valid derived branch in 𝑤 with any valid derived branch in 𝑣 of the

same age and id produces another correctly derived word in 𝐿. When the system is used to describe

trees with stochastic variation, this gives us a way to build up new correct trees from a small number

of precalculated ‘hero’ trees by randomly selecting branches from each one.

3.2.2 Extending the L-System

To utilise this property of L-systems, we will create an extension of the alphabet 𝑉′ ⊃ 𝑉, containing

new symbols that we can add to the semantics. We introduce two symbols that represent commands

to record the current branch (and all subbranches in it) as an instance, called the startInstance and

endInstance commands, and one representing a command to get an instance, called the getInstance

command. For now, we will refer to them respectively as 𝑠, 𝑒 and 𝑔. The s and g commands each take

two parameter inputs, representing the id and age of the branch.

Kenwood et al’s procedure involves adding these new symbols to the axiom and rules of 𝐿. First, we

replace the axiom 𝜔 with an extended axiom 𝜔′ = 𝑠(0,0)𝜔𝑒, which represents a command to record

the whole tree as an instance, treating it as a branch with id 0 introduced at age 0. Then for each

production 𝑝 in 𝐿, if 𝑝 contains 𝑛 valid branches, we replace 𝑝 with 2𝑛 new productions, representing

the possibility for each branch of either recording it as an instance or calling to replace it with another

instance of the same id and age. For example, the production

𝐴 = ! [𝐵]\\\[𝐵]\\\𝐵

would be replaced with

(1) 𝐴 = ! 𝑠(𝑖𝑑, 𝑎𝑔𝑒)[𝐵]𝑒\\\𝑠(𝑖𝑑, 𝑎𝑔𝑒)[𝐵]𝑒\\\𝐵
(2) 𝐴 = ! 𝑔(𝑖𝑑, 𝑎𝑔𝑒)\\\𝑠(𝑖𝑑, 𝑎𝑔𝑒)[𝐵]𝑒\\\𝐵
(3) 𝐴 = ! 𝑠(𝑖𝑑, 𝑎𝑔𝑒)[𝐵]𝑒\\\𝑔(𝑖𝑑, 𝑎𝑔𝑒)\\\𝐵
(4) 𝐴 = ! 𝑔(𝑖𝑑, 𝑎𝑔𝑒)\\\𝑔(𝑖𝑑, 𝑎𝑔𝑒)\\\𝐵

Once these new productions have been introduced, we are left with a new set 𝑃′ of productions, so

we need to define a modified probability distribution 𝜋′: 𝑃′ → (0,1] satisfying the required conditions

to create a new L-system 𝐿′ =< 𝑉′, 𝜔′, 𝑃′, 𝜋′ >. We do this by using the old probability distribution

and a global instancing probability 𝜌: for a production 𝑝′ ∈ 𝑃′ formed from an original production 𝑝 ∈

𝑃 with 𝑛 valid branches, we define

 𝜋′(𝑝′) = 𝜋(𝑝) × 𝜌𝑖 × (1 − 𝜌)𝑛−𝑖

where 𝑖 is an index representing the number of occurrences of the getInstance command in 𝑝′. In the

example above then, if the production had a probability of 0.3, and the instancing probability is 0.4,

the new productions would respectively have probabilities

(1) 0.3 × 0.62 = 0.108
(2) 0.3 × 0.4 × 0.6 = 0.072
(3) 0.3 × 0.4 × 0.6 = 0.072

(4) 0.3 × 0.42 = 0.048

which sum to 0.3 as required.

When we create the new productions, we immediately assign the first parameter of each newly added

symbol as the id of the relevant branch. We assign the second parameter when applying the rule to a

derived word to reflect the current age of the word when the rule is applied.

3.2.3 The Instance Cache

This process leaves us with a new L-System 𝐿′ where derived words contain the symbols 𝑠, 𝑒 and 𝑔

around or in place of the branching symbols ‘[‘ and ‘]’. We now need to define the interpretation of

these symbols in the semantics of 𝐿′ so the turtle graphics system knows how to deal with them. While

we’ve so far considered this extended L-system in very general terms, for the rest of this section we’ll

assume that the interpretations of symbols in 𝐿 by the turtle graphics system involve building up

buffers of vertices and indices representing geometry to send to the renderer, and that at each stage

of the interpretation process the turtle has a saved position and orientation, that can be represented

as a single transformation.

To add our new symbols to this semantic system, we require an instance cache structure. This is a

device that stores transformation data for branch instances according to their id and age and allows

us to retrieve a random instance of a given id and age. An instance consists of a transformation

determining the position and orientation of the start of the branch relative to the base of the tree,

data determining the vertex and index buffers required to draw the branch, and a list of exit points

with associated id, age and transformation, representing points where another branch instance is

required to complete the current branch. Note that an instance can stretch over several generations.

 We define the interpretations as follows:

𝒔(𝒊, 𝒂) Create an instance using the current transformation, mark it as active, and add it to the
instance cache with id 𝑖 and age 𝑎. Assign the instance a pointer to the end of the index buffer
to mark the beginning of the render data.

𝒆 Deactivate the instance started by the corresponding 𝑠 command and mark the length of the
index buffer required to draw it (note that just like with ‘[‘ and ‘]’, each 𝑒 symbol will correspond
to exactly one 𝑠 symbol; for example, in the word 𝐹𝑠(1,1)[𝑠(2,1)[𝐹𝐹]\𝐹𝑒]𝑒 the first 𝑠 is paired
with the second 𝑒).

𝒈(𝒊, 𝒂) Mark the current position as an exit point with id 𝑖, age 𝑎, and transformation equal to the
current transformation, for all currently active instances. This will be used later in the
instancing algorithm to tell the program to retrieve an instance from the cache of that id and
age.

3.2.4 The Instancing Algorithm

Once this extended L-system 𝐿′ has been defined and created, we can perform the main algorithm to

produce a forest from the instance cache. First, Kenwood et al fill the instance cache by running the

L-System a predetermined number of times to produce a small number of derived words representing

the ‘hero trees’. These words are interpreted according to the L-system syntax, and the startInstance,

endInstance and getInstance symbols mean that instances are added to the instance cache during

interpretation.

Next, a large number of points are scattered across a grid to represent initial tree positions for the

forest (the method of scattering is beyond the scope of Kenwood et al’s paper). Each point position is

viewed as a transformation and assigned an id and age of 0, then fed into a create() function to

produce an instanced tree. This is a recursive function that receives id, age and transformation inputs.

It retrieves a random instance from the instance cache of the given id and age, then computes the

transformation needed to place that branch in the required position in world-space based on the input

transformation and the relative transformation of the instance. The resultant transformation and data

for the instance’s vertex and index buffer are added to an output variable to be sent to the renderer.

The function then iterates over all exit points in the current instance and computes the world-space

transformation corresponding to that exit-point from the input transformation and the exit-point’s

relative transformation. It uses this, alongside the exit-point’s id and age, as input to recall the function

and retrieve more branch instances to complete the structure. Pseudo-code for the algorithm from

the paper is below.

Figure 3: the pseudocode from Kenwood et al’s paper (2014) [8]

The result of this process is a list of transformations alongside pointers to index buffer ranges,

representing geometry for the entire forest. However, while the trees have been built from randomly

selected branch instances, and so should for the most part be distinct, we have only had to store a

relatively small number of vertices in memory – the vertices making up the initial hero trees. This data

can be sent to the renderer, where the transformations can be applied on the GPU, resulting in a much

faster render than if the trees had each been created individually.

4. Implementation

4.1 OpenGL

The aim of this project was to implement Kenwood et al’s algorithm as a forest creation tool. The first

hurdle to overcome when beginning the implementation was deciding on the type of platform to use.

Working within a DCC would have had a few notable advantages: firstly, many programs, like Houdini

for example, come with pre-made L-system tools with a large number of user parameters, that would

save a lot of work at the start of the project. Secondly, if the procedure could be implemented within

a package like Houdini, this would automatically allow it to fit into many professional pipelines,

thereby majorly increasing its utility.

However, the project was ultimately created as a standalone C++ tool using OpenGL (with the NCCA

NGL library) in Qt Creator, for a number of reasons. To start with, the algorithm requires manipulation

of the L-system syntax and semantics, which would have been hard to do within the confines of an

existing L-system tool; despite the extra work required initially, coding the L-system generation and

interpretations from scratch offered more control over the process. Additionally, the efficiency of

Kenwood et al’s method comes from the ability to send all the transformation data to the shader or

renderer, to be performed on the GPU. This could prove tricky within many DCC packages where the

user’s control over how data is rendered in the viewport can be limited; whereas it is a procedure

well-suited to the workflow of OpenGL, which supports instanced draw methods and allows a large

degree of manipulation on the shaders, with the ability to transform vertex positions and add

geometry all on the GPU.

4.2 User Interface

The user interface for the tool was created as a UI form in Qt Creator. It is split into two main sections:

the L-System tab and the Forest tab. The L-System tab contains 3 subtabs allowing the user to define

the axioms and rules of the forest’s different L-systems, as well as various L-system parameters. The

Forest tab displays the result of the instancing algorithm, and allows users to manipulate the terrain

of the forest as well as the scattering of the trees.

The form contains an OpenGL window that renders the data for the above tabs, through an object of

class NGLScene. This class contains members representing all the key elements of the program: a set

of LSystem objects that hold the data for each L-system subtab, 𝑚_𝐿𝑆𝑦𝑠𝑡𝑒𝑚𝑠, two Forest objects,

𝑚_𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡 and 𝑚_𝑝𝑎𝑖𝑛𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡, and TerrainData and TerrainGenerator objects,

𝑚_𝑡𝑒𝑟𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 and 𝑚_𝑡𝑒𝑟𝑟𝑎𝑖𝑛𝐺𝑒𝑛 that collectively determine the data for the terrain. The interface

is implemented through signals and slots that allow the user to alter the internal states of these

member objects as well as other members of NGLScene; the details of these member objects will be

covered in the following sections.

4.3 L-System Generation

The LSystem class takes care of both the generation of a derived L-system word from a given axiom

and set of rules, and the creation of geometry data from that word using the program’s ‘turtle

graphics’ semantics (the details of which are covered in ‘L-System Syntax and Semantics’ in the

appendix). For string generation, an internal Rule struct was created to group together productions

and probabilities in an easily accessible format; when a user calls the generate command on the

LSystem tab, this sends a call to the 𝑏𝑟𝑒𝑎𝑘𝐷𝑜𝑤𝑛𝑅𝑢𝑙𝑒𝑠() method for the currently active L-system

object, which fills the member variable 𝑚_𝑟𝑢𝑙𝑒𝑠 according to the user-defined productions and

probability ratios. The 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑒𝑒𝑆𝑡𝑟𝑖𝑛𝑔() method then returns a derived word for the L-system

of age 𝑚_𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 by repeated string replacement, using the random engine member 𝑚_𝑔𝑒𝑛 to

help determine which replacement we use at each point. To help with string parsing, this project

makes use of the external Boost library for splitting strings and simple replacements, and the standard

library regex for string searching.

The 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() function performs the turtle graphics interpretation of this string, filling

vertex, index and other buffers to be used by NGLScene for rendering. This method is implemented as

a large switch statement, applied to each character of the string in turn. At each stage of the loop, the

function keeps track of the current position with the variable 𝑙𝑎𝑠𝑡𝑉𝑒𝑟𝑡𝑒𝑥, the direction the turtle is

facing, 𝑑𝑖𝑟, and the vector representing the turtle’s right, 𝑟𝑖𝑔ℎ𝑡. It also keeps track of a number of

other variables like the current step size, angle and thickness. Starting a branch with the ‘[‘ command

causes all these variables to be pushed to stacks of saved values, and ending that branch with ‘]’

retrieves the top-most value from each stack. Symbols that permit bracketed parameters use the

function 𝑝𝑎𝑟𝑠𝑒𝐵𝑟𝑎𝑐𝑘𝑒𝑡𝑠() to determine if the subsequent characters of the string represent

parameters for the command; if not they use default values.

Because 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() is used to make geometry both for the individual L-systems in the L-

System tab and for the hero trees used in the creation of the forest, the LSystem class contains a

Boolean member 𝑚_𝑓𝑜𝑟𝑒𝑠𝑡𝑀𝑜𝑑𝑒. For every buffer vector member of the LSystem class there is a

corresponding hero buffer member, and the start of 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() declares a number of

pointers to buffers; the pointers are then each assigned to either a standard buffer member or the

corresponding hero buffer member depending on whether or not 𝑚_𝑓𝑜𝑟𝑒𝑠𝑡𝑀𝑜𝑑𝑒 is true. This way

the same code allows us to fill up either the hero buffers or the standard ones as required. When using

standard buffers, they’re reassigned to empty at the start of the function, but hero buffers aren’t

because we want to be able to assign vertices from multiple trees to a single hero buffer.

Figure 4: L-systems created using the tool

4.4 Instance Methods

Before we can apply 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() in forest mode to an L-system object, we need to rewrite the

rules of the L-system to add in the instancing symbols required for Kenwood et al’s algorithm. For this

project, the symbols ‘@’ and ‘$’ were chosen to represent calls to startInstance and endInstance

respectively, and ‘<’ was chosen to represent a call to getInstance. A fourth symbol ‘>’ was also added,

which we will call the endGetInstance command: in this implementation getInstance no longer

replaces a branch but instead getInstance and endGetInstance are placed around a branch in the same

way as with startInstance and endInstance. This is to deal with the rare but possible case of the

instance cache being empty for a particular (id, age) combination when we perform the instancing

algorithm: in most cases, after a ‘<’ command has been interpreted by 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦, the function

is told to simply skip to the corresponding ‘>’ and move on, treating the string as if the branch had

been removed; but if the instance cache has no entries for that id and age when the ‘<’ symbol is

reached, it is treated as if it is an ‘@’ symbol, in addition to its other interpretation, and the

corresponding ‘>’ then takes the role of ‘$’.

These symbols are added by the 𝑎𝑑𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑠() method, which adds @(0,0) and $

around 𝑚_𝑎𝑥𝑖𝑜𝑚 and then refills 𝑚_𝑟𝑢𝑙𝑒𝑠 by replacing each production with a number of alternate

productions including the symbols ‘@’, ‘$’, ‘<’ and ‘>’, and altering the probabilities accordingly using

𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝑃𝑟𝑜𝑏, as described in section 3.3.2. To aid this method, each rule is given a variable

𝑚_𝑛𝑢𝑚𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠 which represents the number of valid branches in the rule; this is assigned to each

rule by 𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠() (called in the 𝑏𝑟𝑒𝑎𝑘𝐷𝑜𝑤𝑛𝑅𝑢𝑙𝑒𝑠() method), which determines whether a

branch is valid or not by using the regex expression 𝑚_𝑛𝑜𝑛𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 (a string describing the

precedents of each rule) to check whether or not a non-terminal occurs in the branch.

𝑐𝑜𝑢𝑛𝑡𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠() also fills a list 𝑚_𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠 of valid branches of the rules in the system (which

includes the axiom as the first element) and the index of each branch in this list is used as the id

parameter for each ‘<’ and ‘@’ symbol by 𝑎𝑑𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑠(). The age parameter is initially

replaced with the symbol ‘#’. At each stage of rule application, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑇𝑟𝑒𝑒𝑆𝑡𝑟𝑖𝑛𝑔() will switch

each ‘#’ in the replacement of any rule it is applying with the current age of the derived word it is

applying it to.

Consequently, after a call to 𝑎𝑑𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑠(), we have created a new set of rules that

include instancing symbols, and a subsequent call to 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() with 𝑚_𝑓𝑜𝑟𝑒𝑠𝑡𝑀𝑜𝑑𝑒 set to

true allows us to start filling the instance cache. The implementation of the instance cache uses the

Instance class, which contains as members all the elements discussed in section 4.2.3: a transform

matrix, indexes representing the start and end points of the relevant hero index buffers for rendering,

and a list of ExitPoint objects, which each contain an id, an age and another transform. The instance

cache itself is represented by a triple nested std::vector of Instance objects, 𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑎𝑐ℎ𝑒, where

the outer index corresponds to the id of the instance, the middle index represents the age, and the

inner index separates multiple instances of the same age and id. This nested vector structure is in fact

employed multiple times throughout the project, so a set of macros were created in

InstanceCacheMacros.h to improve readability and reduce repetition in the code. Using this, the

instance cache is defined as a 𝐶𝐴𝐶𝐻𝐸_𝑆𝑇𝑅𝑈𝐶𝑇𝑈𝑅𝐸(𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒).

The interpretations of the symbols ‘@’, ‘$’ and ‘<’ are then defined in 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() as stated in

3.2.3, with the additional interpretations of ‘<’ and ‘>’ when 𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑎𝑐ℎ𝑒 is empty at the given

id and age defined as described above.

4.5 Forest Generation

The NGLScene Forest member 𝑚_𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡 deals with the actual generation of the forest

from branch instances. It contains a list of LSystem objects, 𝑚_𝑡𝑟𝑒𝑒𝑇𝑦𝑝𝑒𝑠 (one for each tree tab) and

when the user renders the forest scene, 𝑚_𝑓𝑜𝑟𝑒𝑠𝑡 calls the LSystem method 𝑓𝑖𝑙𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑎𝑐ℎ𝑒()

for each member of 𝑚_𝑡𝑟𝑒𝑒𝑇𝑦𝑝𝑒. 𝑓𝑖𝑙𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑎𝑐ℎ𝑒() calls 𝑎𝑑𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑖𝑛𝑔𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝑠() for the

L-system, and resizes its instance cache according to the number of unique branch ids and the

generation number. Then it sets 𝑚_𝑓𝑜𝑟𝑒𝑠𝑡𝑀𝑜𝑑𝑒 to true, clears all hero buffers and calls

𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() 𝑚_𝑛𝑢𝑚𝐻𝑒𝑟𝑜𝑇𝑟𝑒𝑒𝑠 times where 𝑚_𝑛𝑢𝑚𝐻𝑒𝑟𝑜𝑇𝑟𝑒𝑒𝑠 is a member of the Forest

class passed into 𝑓𝑖𝑙𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑎𝑐ℎ𝑒() as a parameter.

With this done, the instance cache of each L-system member of the forest is filled, and

𝑚_𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡 calls 𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑜𝑟𝑒𝑠𝑡(). This in turn calls 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝐹𝑜𝑟𝑒𝑠𝑡() which scatters points

across the terrain to fill 𝑚_𝑡𝑟𝑒𝑒𝐷𝑎𝑡𝑎, a list of initial tree transforms and tree types. Then for each tree

in 𝑚_𝑡𝑟𝑒𝑒𝐷𝑎𝑡𝑎, it calls 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑒𝑒() which implements the pseudocode from Kenwood et al (2014)

presented in section 3.2.4, iterating through the exit points of instances to build the tree from

branches taken at random from the given (id, age) position of the given tree types’ instance cache.

In this implementation however, the output data takes a different form to the one presented in figure

3. To speed up the rendering in NGLScene, by allowing us to use the command

𝑔𝑙𝐷𝑟𝑎𝑤𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑑, it was necessary to group together all occurrences of the same instance

in the output. To achieve this, the instance cache structure was re-used, letting us create an output

member variable of type 𝑠𝑡𝑑: : 𝑣𝑒𝑐𝑡𝑜𝑟 < 𝐶𝐴𝐶𝐻𝐸_𝑆𝑇𝑅𝑈𝐶𝑇𝑈𝑅𝐸(𝑠𝑡𝑑: : 𝑣𝑒𝑐𝑡𝑜𝑟 < 𝑛𝑔𝑙: : 𝑀𝑎𝑡4 >) >,

𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒. Here the 𝐶𝐴𝐶𝐻𝐸_𝑆𝑇𝑅𝑈𝐶𝑇𝑈𝑅𝐸 as usual separates elements based on id, then

age, then different instances of the same id and age; meanwhile the outer std::vector of

𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒 separates instances taken from the instance caches of different tree types,

while the innermost index separates different branches using identical instances. When 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑒𝑒()

adds data to 𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒, it simply adds the current transformation to the list of

transformations in 𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒 of the given instance (specified by tree type, age, id and inner

index). This leaves us with a nested list of transformations to send to the renderer, each of whose

positions in the nested structure determines the branch instance that it corresponds to; in NGLScene

this means for each 𝑡, 𝑖𝑑, 𝑎𝑔𝑒 and 𝑖𝑛𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥 we can create a transform buffer from

𝑚_𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡 . 𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚_𝑐𝑎𝑐ℎ𝑒[𝑡][𝑖𝑑][𝑎𝑔𝑒][𝑖𝑛𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥]

 and vertex and index buffers using

𝑚_𝐿𝑆𝑦𝑠𝑡𝑒𝑚𝑠[𝑡]. 𝑚_ℎ𝑒𝑟𝑜𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠

𝑚_𝐿𝑆𝑦𝑠𝑡𝑒𝑚𝑠[𝑡]. 𝑚_ℎ𝑒𝑟𝑜𝐼𝑛𝑑𝑖𝑐𝑒𝑠

with the start and end points of the index buffer determined by

𝑚_𝐿𝑆𝑦𝑠𝑡𝑒𝑚𝑠[𝑡]. 𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑎𝑐ℎ𝑒[𝑖𝑑][𝑎𝑔𝑒][𝑖𝑛𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥]. 𝑚_𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝑚_𝐿𝑆𝑦𝑠𝑡𝑒𝑚𝑠[𝑡]. 𝑚_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐶𝑎𝑐ℎ𝑒[𝑖𝑑][𝑎𝑔𝑒][𝑖𝑛𝑛𝑒𝑟𝐼𝑛𝑑𝑒𝑥]. 𝑚_𝑒𝑛𝑑𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

We then send these buffers to the shaders to draw the instances and perform the transformations

per instance in the vertex shader.

4.6 Terrain

The terrain for the forest is created with the variables 𝑚_𝑡𝑒𝑟𝑟𝑎𝑖𝑛𝐺𝑒𝑛 and 𝑚_𝑡𝑒𝑟𝑟𝑎𝑖𝑛, objects of

classes TerrainGenerator and TerrainData. These classes were imported from a previous project and

the details of how they work is beyond the scope of this report, but in short TerrainGenerator uses a

Perlin noise module from the library Libnoise to generate a heightmap, which is then passed into

TerrainData. TerrainData takes this heightmap and performs a LOD reduction algorithm on it,

following a method presented by Lindstrom and Pascucci (2009) to speed up the rendering of the

terrain. Whenever trees are placed on the grid, care is taken to use the Perlin noise with same

parameters to determine their height.

For this project, a few additional methods were added to each class to allow us to pass more data

from the terrain to the shaders: in TerrainGenerator, 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑁𝑜𝑟𝑚𝑎𝑙𝑠() allows us to use the

heightmap data to find approximate normals, tangents and bitangents for each vertex in the terrain.

This data is passed on to the TerrainData class, along with UVs for each point on the terrain, and these

are put into buffers to be sent to the renderer during 𝑓𝑖𝑙𝑙𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠𝐴𝑛𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠𝐹𝑜𝑟𝑅𝑒𝑛𝑑𝑒𝑟𝑖𝑛𝑔(). This

data allows us to bring in texture maps and normal maps and link these up to a diffuse lighting model

in the shader.

Figure 5: the terrain

4.7 Rendering and Shaders
In ‘Efficient Procedural Generation of Forests’, Kenwood et al state that their aim is merely to show

the efficiency of the method, and consequently no attempt is made to improve the aesthetic

appearance of the trees. In this project, we additionally want to demonstrate how the technique could

be built upon with shader work to produce more fleshed-out scenes. Consequently, a lot of shader

techniques were used; while the final effect is still far from the quality of a production level scene, it

illustrates how a company may be able to use such a method in its pipeline.

The first challenge to sort out was how to send all the relevant data to the shaders; this can often be

a bottleneck in animation pipelines so it was important to find a way to minimise the amount of data

sent. This was all done in the shader methods and VAO building methods in NGL scene; in VAOBuilding,

NGL VAO objects are created and bound to buffers to be sent to the shader; in ShaderMethods,

textures and uniform variables are loaded to the shaders. Because binding buffers to a VAO can be

costly, multiple VAO objects were created, each dealing with a different object and hence a different

set of vertex and index buffers – this means that we can reduce the amount of times an individual

VAO must be bound and unbound.

Two types of NGL VAO class were used for rendering: for most of the scene, the standard NGL

SimpleIndexVAO was used; but this doesn’t support instanced drawing, as was necessary for the forest

algorithm, hence it was necessary to write a new VAO class, InstanceCacheVAO. When setting data

for this VAO, in addition to sending it vertex and index buffers, transform data from the forest output

𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒 is added, as well as indexes representing the start and end of the current

instance in the index buffer; these transforms are then applied each to a different instance using

𝑔𝑙𝐷𝑟𝑎𝑤𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑑. To make use of this, all VAOs used in forest rendering are stored in

cache structures reflecting the structure of 𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒 and each one is initialised as an

InstanceCacheVAO. Building them then just involves iterating through the cache structure, initialising

each VAO as an InstanceCacheVAO and sending it the corresponding transform data from

𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒 and instance data from the relevant L-System’s instance cache, as discussed in

section 4.6. All VAOs of either class type can also be given additional buffers with the function

𝑎𝑑𝑑𝐵𝑢𝑓𝑓𝑒𝑟𝑇𝑜𝐵𝑜𝑢𝑛𝑑𝑉𝐴𝑂().

Once this is set up, any number of methods can be applied on the shader to improve the look of the

scene. For this project, we use geometry shaders to add thickness to the trees, then apply textures

and normal maps to them, using a TBN matrix to link the normal map to a basic diffuse lighting model.

We also add commands to create polygons and default leaves to the L-System semantics, which are

created with separate sets of buffers and hero buffers and rendered using separate VAOs. The leaves

are rendered as points, which are turned into planes in a geometry shader and assigned leaf textures

with alpha maps. All of this results in relatively low overhead since the calculations are not

computationally complex and it is all done on the GPU; it is considerably faster, for example, to create

the extra geometry for the trees on the geometry shader than to create additional vertices for each

branch to be sent into the shader.

Figure 6: close-up showing some of the results of the shader work

4.8 Tree Painting Tool
As a final improvement to the tool, a painting method was added to allow users to paint trees directly

onto the terrain. A user can select one of the 3 basic L-Systems created in the LSystems tab as a ‘brush’

and use the mouse to paint these across the terrain. This is done by the function

𝑔𝑒𝑡𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑𝑃𝑜𝑖𝑛𝑡𝑂𝑛𝑇𝑒𝑟𝑟𝑎𝑖𝑛() in NGLScene, which uses ray casting to determine a ray in world

space pointing from the cursor into the screen using projection, view and model matrices (following a

tutorial by Anton Gerdelan, 2016 [12]). The method then moves along this ray at regular intervals and

compares the y-value at each point with the corresponding value from the terrain Perlin noise module;

once this reaches below a specified threshold, we have found the point of intersection with the plane,

and can draw a tree at this point.

The trees are added to 𝑚_𝑝𝑎𝑖𝑛𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡, a second Forest member that’s used to take care of these

painted trees. This object uses the instancing algorithm 𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑟𝑒𝑒() just like 𝑚_𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡

does, and is drawn using its own sets of instance cache VAOs; but trees are added to it one at time

with the internal method 𝑎𝑑𝑑𝑇𝑟𝑒𝑒𝑇𝑜𝐹𝑜𝑟𝑒𝑠𝑡(), rather than all at once with 𝑐𝑟𝑒𝑎𝑡𝑒𝐹𝑜𝑟𝑒𝑠𝑡(). This

addition extends the tool to make it much more versatile from an artist’s perspective, allowing them

to choose the positions of various parts of the forest.

Figure 7: the painting tool in action

Figure 8: a scattered forest

5. Results and Future Work

The project has successfully recreated the algorithm introduced by Kenwood et al in ‘Efficient

Procedural Generation of Forests’ (2014), using instancing of L-Systems at the level of branches to

produce a forest with a varied range of trees at a relatively speedy rate. Kenwood et al said that they

aimed to produce forests with trees in the range of around 10,000 with rendering times of a few

seconds; our tool achieves this, though it slows down considerably as the generations of the LSystems

increases and thus the size of the instance cache increases.

There are user controls that can help to combat this problem: the number of hero trees used for each

L-system in a forest and the instancing probability can both be changed. There was also a limit added

to the instance cache in 𝑐𝑟𝑒𝑎𝑡𝑒𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑦() in the LSystem class, where no instance can be added to

a cache at certain id and age if that entry of the cache is already too full; adding this as a user interface

option would be another way to improve user control over the data flow. Additionally, Kenwood et al

suggest the use of hash tables for the instance cache, which would produce a much more efficient

way of storing and accessing the data than the nested std::vector structure used here.

The painting function is a good addition to the tool from the perspective of artistic direction and

versatility, and leaves a lot of fairly straightforward avenues for future expansion; for example,

allowing the painting of multiple trees at once for speed, or allowing us to erase individual trees.

Unfortunately, as it currently stands, the paint tool isn’t able to fully take advantage of the instancing

algorithm’s efficiency: this is because adding new trees to the forest as the user moves the mouse

requires updating 𝑚_𝑝𝑎𝑖𝑛𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡’s 𝑚_𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝐶𝑎𝑐ℎ𝑒 member, which in turn requires the

instance cache VAOs to be rebuilt, which is a relatively slow process. This problem has been partially

resolved by giving 𝑚_𝑝𝑎𝑖𝑛𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡 the member variable 𝑚_𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑𝐶𝑎𝑐ℎ𝑒𝐼𝑛𝑑𝑒𝑥𝑒𝑠 which marks

which bits of the transform cache have been changed at each point of the painting process and allows

us to only rebuild the corresponding VAOs; but the function still slows down very quickly when using

trees with large numbers of generation as the paint brush.

An easy solution would be to just paint dots onto the terrain, then create trees from the dot positions

only after painting has been finished; however, this loses the advantages of real-time feedback on the

painting process. Finding a solution that allows the painting tool to make proper use of the speed of

the instancing technique to create real-time painting is a subject for further work.

It would also be good to find ways to incorporate the tool more readily into other pipelines: at the

moment, it would perhaps fit into the pipeline of a companies that, for example, have their own game

engines hard coded in C++, allowing them to easily fit this code into it; but porting it into a DCC would

be a trickier prospect, and one worth looking into. Additionally, it would be worthwhile expanding the

tool to incorporate other types of L-systems or even other plant simulations: while L-systems aren’t

generally able to interact with external environments, it would be entirely possible to incorporate

some form of ecological simulation to inform the initial placement of trees, for instance.

6. Conclusion
This project has presented a C++ tool that efficiently generates and renders forests from L-system

instancing, in a manner that could allow for usage in real-time media. It addresses two of the major

issues faced by CG artist in forest creation, speed and variation: the trees are distinct but are still

rendered in a short space of time. Additionally, the paint tool introduced demonstrates a way that

artists could use such a method to produce scenes in a more controlled way. The method used for the

algorithm makes integration with other software potentially challenging, but coding it from scratch

gives it the project a large degree of flexibility in terms of improvements to the user interface and

possibilities for extensions.

Bibliography

[1] Lindenmayer, A., 1968. Mathematical models for cellular interaction in development, Parts I and
II. Journal of Theoretical Biology, 18:280–315.

[2] Yokomori, T., 1980. Stochastic characterizations of EOL languages. Information and Control,
45:26–33.

[3] Witten Jr., T. A., Sander, L. M., 1981. Diffusion-Limited Aggregation, a Kinetic Critical
Phenomenon. Phys. Rev. Lett. 47, 1400 – Published 9 November.

[4] Prusinkiewicz, P., 1986. Graphical applications of L-systems. In Proceedings of Graphics Interface
’86 — Vision Interface ’86, pages 247–253. CIPS.

[5] Prusinkiewicz, P., Lindenmayer, A., 1990. The Algorithmic Beauty of Plants. New York: Springer-
Verlag.

[6] Lindstrom, P., Pascucci, V., 2001. Visualization of Large Terrains Made Easy, Proceedings of the
IEEE Visualization Conference, October 24-26

[7] Damgaard, C., 2009. Invited Talk: Modelling Asymmetric Growth in Crowded Plant
Communities. Third International Symposium on Plant Growth Modeling, Simulation,
Visualization and Applications, Beijing , pp. 267-269.

[8] Kenwood, J., Gain, J., Marais, P., 2014. Efficient Procedural Generation of Forests. Journal of
WSCG 22(1).

[9] Gerdelan, A., 2016. Mouse Picking Ray Casting. Anton’s OpenGL 4 Tutorials, website,
http://antongerdelan.net/opengl/raycasting.html

[10] Makowski, M., Hädrich, T., Scheffczyk, J., Michels, Dominik L., Pirk, S., Palubicki, W., 2019.
Synthetic Silviculture: Multi-scale Modeling of Plant Ecosystems. ACM Transactions on Graphics
(TOG), Volume 38 Issue 4, July 2019, Article No. 131

[11] Side effects software, 2019. Houdini Engine 17.5 Documentation: L-System geometry node.
https://www.sidefx.com/docs/houdini/nodes/sop/lsystem.html

[12] De Vries, J., 2019. Learn OpenGL Website. https://learnopengl.com/

http://antongerdelan.net/opengl/raycasting.html
https://www.sidefx.com/docs/houdini/nodes/sop/lsystem.html
https://learnopengl.com/Introduction

Appendix

L-System Syntax and Semantics

The interpretations for the L-systems created in this project are based heavily on the ones used by the

Houdini L-System node [11]:

Every production must contain exactly one ‘=’ character. The characters preceding the ‘=’ sign

constitute the non-terminal to be replaced, the characters after are the string that will replace it.

Optionally, a production can contain one (and only one) ‘:’ symbol. This must appear after the equals

sign and marks the end of the replacement string. The symbols after the ‘:’ represent the probability

ratio of the production being applied; if these symbols cannot be parsed to a float, they are discarded

and the program assumes that they represented a 1. Similarly, if no ‘:’ symbol is given, the production

is automatically assigned a probability ratio of 1. Note that when the L-system is generated, all

productions with same precedent are grouped together and their probability ratios are normalised to

produce a value between 0 and 1 for each rule, with their sum adding to 1. Thus, 3 productions with

the same precedent that are all concluded with the string “:1” will each be assigned a probability of
1

3
.

The full syntax for a production is then:

𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑡_𝑠𝑡𝑟𝑖𝑛𝑔 = 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡_𝑠𝑡𝑟𝑖𝑛𝑔: 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑟𝑎𝑡𝑖𝑜

In addition to the restrictions on the symbols ‘=’ and ‘:’, the following characters cannot be used in a

production since they are used in the implementation of the instancing commands in the program:

‘$’, ’@’, ’<’ and ’>’. Attempting to use these, or incorrectly using ‘=’ and ‘:’ will result in the rule being

discarded. It is also forbidden to use the symbol ‘{‘ after a previous use of ‘{‘ that hasn’t been

concluded by a corresponding ‘}’, since this would mean creating a polygon within a polygon (see

below), which the program doesn’t know how to deal with.

All other symbols are allowed, in any order. After generation of the final L-system string, all unknown

symbols will be ignored and known symbols will be interpreted as defined below (all brackets following

characters are optional and if no bracket is given the specified default value will be used).

F(p) Move forwards a distance of p (default: current step size), creating geometry
f(p) Move forwards a distance of p (default: current step size), creating no geometry
+(p) Turn right p degrees (default: current angle)
-(p) Turn left p degrees (default: current angle)
&(p) Pitch up p degrees (default: current angle)
^(p) Pitch down p degrees (default: current angle)
/(p) Roll clockwise p degrees (default: current angle)
\(p) Roll anticlockwise p degrees (default: current angle)
“(p) Multiply current length by p (default: step size scale)
;(p) Multiply current angle by p (default: angle scale)
!(p) Multiply current thickness by p (default: thickness scale)
[Start branch: save all data at this point
] End branch: revert all data to the saved values from the corresponding branch begin point
{ Start polygon
} End polygon
. Add the current position as a vertex of the current polygon
J Add the default leaf object to the current position
This symbol is replaced at each stage of the L-system generation with the age that it is

introduced at. Consequently, it cannot be used as a precedent for a rule.

