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Abstract

This is an implementation of the smoke fluid settlement based on the BiMocq2(2 levels of Bi-directional

mapping of convective quantities) method to obtain a more detailed, more precise and stable fluid sim-

ulation. This implementation is done using houdini so that Houdini users can easily apply it in their

daily work. This implementation is slightly different from the original paper. The order of the algorithm

steps is slightly adjusted, and the final method of affecting the speed variable is changed to better fit

Houdini’s original smoke simulation.
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Chapter 1

Introduction

Fluid simulation based on Euler’s equations has successfully reproduced various phenomena in com-

puter graphics, such as liquids and fireworks. The framework of solving the Navier-Stokes equations in

a time-division manner, especially the key insights of using the Semi-Lagrangian scheme to deal with

nonlinear convection terms, brings its most significant advantage, namely stability, and therefore easy

to control, however the biggest problem is: numerical diffusion(Bridson, 2016).

Besides, the current popular fluid simulation methods have the problem of insufficient details under

the same resource situation, or require more resources and time to satisfy the details. At the same time,

the popular Volume Up-res method is difficult to set up, or the added details are incoherent and unreal.

So in order to get a more effective and detailed fluid simulation, a new method called BiMocq2(double

levels of Bi-directional mapping of convective quantities), a more stable, accurate, and more detailed

fluid simulation method(Qu et al., 2019), has been introduced.

This article will focus on the implementation of the BiMocq2 method in Houdini, which uses the new

HDA to replace the original smoke Advect part of the Pyro tool. it could obtain a more detailed, more

accurate and stable fluid simulation, simultaneously, keep the way of using simple and artist-friendly.
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Chapter 2

Previous Work

Semi-Lagrangian advection method(Stam, 1999) has been widely used in some highly practical simula-

tion for computer graphics and opened a wide range of utilisation for physically-based fluid animation.

However, due to the repeated use of field interpolation, the semi-Lagrangian method has a problem of

numerical diffusion. Therefore, a large number of algorithms have been proposed to solve this problem.

2.0.1 Higher order Semi-Lagrangian methods

For example, BFECC(Kim et al., 2005) and MacCormack(Selle et al., 2007) are the most important

and commonly used fluid settlement methods in Houdini. They are all based on Semi-Lagrangian and

restore the numerical accuracy of the flow by measuring the difference between the flow before and after

at a given time step. It has been proved that it could reduce dissipation and diffusion encountered in

various advection steps in fluid simulation such as velocity, smoke density and image advections(Kim

et al., 2005). However, this method lacks the necessary mechanism to avoid accumulated errors, so the

process will eventually disappear.

2.0.2 Particle-grid hybrid methods

At present, the most commonly used fluid solution in graphics is Particle-grid hybrid methods(Jiang

et al., 2015), which has abandoned the previous pure Eulerian or Lagrangian algorithm (for example,

SPH, which has been abandoned after Houdini15). The FLIP(Zhu and Bridson, 2005) algorithm in

Houdini is to copy the particle velocity increment to the Euler grid behind it and then calculate the

pressure field in the Euler grid, and then calculate the new non-dispersive velocity field based on the

calculated pressure field, and then Copy it back to the particles. One of the great benefits of this
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is that it combines the advantages of the European method that can effectively discretize and solve

the pressure equation and the pull method to solve the leading term with small numerical dissipation.

APIC(Jiang et al., 2015) and PolyPic(Fu et al., 2017) methods further amend the numerical noise of

FLIP by constructing other functions to retain local flow characteristics.

2.0.3 Vorticity modeling

Most visual effect fluid solvers are calculated based on time, where the flow velocity is first advection

in the flow and then projected as an incompressible fluid. ”Even if a highly accurate advection scheme

is used, the self-advection step typically transfers some kinetic energy from divergence-free modes into

divergent modes, which are then projected out by pressure, losing energy noticeably for large time

steps(Zhang et al., 2015).” Instead of taking smaller time steps or using significantly more complex time

integration, many people propose method dealing with the curl form of Navier-Stokes equations, like

WeiBmann and Pinkall (2010) introduce a vortex filaments to deal with this curl form.

Recently, Zhang et al. (2015) proposed a new scheme called IVOCK (Comprehensive Vorticity of Con-

vective Motion), which can cheaply capture most of the losses in self-convection by identifying self-

convection as ”a violation of the vorticity equation(Zhang et al., 2015)”.

2.0.4 Energy preserving solvers

The common point of existing methods is that energy loss is not only a function of simulation duration,

but also depends on the size of the grid and the number of time steps performed during the simulation.

And often use complex computer systems to eliminate this effect. Mullen et al. (2009) proposes a simple,

unconditionally stable, fully Euler integration scheme without numerical viscosity, which can keep the

fluid movement active without relying on a correction device. recent research made by Zehnder et al.

(2018) provides an alternative approach for detail-preserving fluid animation that is surprisingly simple

and shows great energy preservation.
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Chapter 3

Technical background

3.0.1 Navier-Stokes Equations

In physics, Navier-Stokes equations are a set of partial differential equations describing the movement of

viscous fluid materials, and are widely regarded as good fluid flow models. Assuming that the velocity

and pressure are known at some initial time t = 0, the evolution of these quantities over time is given

by the Navier-Stokes equation:

∂u

∂t
+ u · Ou = −1

ρ
Op+ v · O2u+ f (3.1)

O · u = 0

where u, p, ρ, v, frepresent velocity, pressure, density, and forces such as gravity. Integrating the above,

we can get the following Figure 3.1 to illustrate the factors that cause fluid changes.

Figure 3.1: Navier-Stokes Equations: Incompressible Flow
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3.0.2 Semi-Lagrangian Advection

The Semi-Lagrangian Scheme (SLS) is a numerical method used to express the equation of fluid motion.

this scheme uses the Euler framework, but the discrete equation comes from Lagrange’s viewpoint. The

idea is to calculate the source of point parcel at each time step. Then, an interpolation scheme is used

to estimate the value of the dependent variable at the grid points surrounding the point from which the

particles originate.

from Lagrangian view of Navier-Stokes Equations we can get:

dρ

dt
+ div(ρv) = 0 (3.2)

In this research, only the advection part should be considered for the entire algorithm,so when in the

time division framework, we can get:

∂v

∂t
= −v · Ov (3.3)

the dρ
dt could be consided as ρcurrent - ρback,wet can get a Simple Forward Euler estimation:

ρcurrent = ρback − vback∆t (3.4)

So we can understand that Advection means transport quantity from one region to another along the

fluid’s velocity field(Fedkiw et al., 2001).

3.0.3 VEX Language in Houdini

VEX is the abbreviation of ”Vector Expression Language”. It is Houdini’s embedded scripting language.

It is a high-performance C pedigree scripting language for writing custom nodes or shaders. It also

absorbs many concepts of Pixar’s RenderMan shading language. Houdini automatically compiles VEX

scripts before execution, so it can process a large number of data points efficiently. For example, in most

other languages, you must traverse all the points in some way to create or modify data, VEX only needs

one line @value = 0 can complete the creation or modification of attributes, which is very efficient. At

the same time, VEX can import external custom functions (i.e.*.h file) which is extremely convenient

and flexible. One disadvantage of coding, especially in vex wrangle editors, is very forgiving when you

get things wrong. The error messages are incredible, grammatical errors are easy to cause, and help is

not always helpful.
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3.0.4 New Pyro Solver(Sparse)

In Houdini18, a new smoke solving system is introduced, called SPARSE PYRO. This solver can run

in sparse mode, that is, the required calculations are only performed in the region of interest controlled

by the active field, which will greatly save computing time and resources.

Prior to Houdini 18, pyro simulations involving combustion used a fuel field. The subsequent combustion

reaction, heat refresh, and smoke generation are all solved in the DOP part. However, the new workflow

requires that burns be generated immediately in the SOP and introduced as part of the procurement.

The burning volume is created as the source of the initial explosion. Then, this instantaneous combustion

merges with the flame field and divergence of the subject.

This method has tremendous advantages of predictability and more control. Its entire structure is more

concise and more logical. It is completely based on Navier-Stokes Equations to construct the entire

system. The main body can be clearly divided into advection, force, projection, dissipate and other

parts, which correspond to the NS equations in Figure3.1.
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Chapter 4

Implementation of BiMocq2

In this section, we will first explain the principle of the BiMocq2 algorithm in detail, and then explain

its implementation in Houdini, including backward mapping, forward mapping, error correction and our

time integration scheme, which uses two levels of Mapping is used to effectively predict the convective

velocity field in the later stage. For the sake of brevity, our algorithm discussion and explanation will

only focus on the velocity field, but the same derivation is still valid for any other fluid field.

4.0.1 BiMocq2

BiMocq2 was first proposed by Qu et al. (2019). In general, the BiMocq2 (n levels of bidirectional flow

mapping) method has the following characteristics when used to solve fluids:

• This proposed method is unconditionally stable and can simulate arbitrarily large ∆t (even in

some cases CFL>30).

• The advection scheme is purely Eulerian, which can be easily parallelized through GPU, increasing

performance by 45 times.

• This method track multi-level mapping to improve sharpness and coherence of the simulation

simultaneously keeping the computational efficiency.

• Based on the mapping function, the method offers a long-term error correction function to improve

the visual quality of the product for further simulation.

• This method has strong compatibility with previous fluid solvers, so it can be integrated into

existing pipelines with minor modifications.
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The main framework of BiMocq2 can be divided into four-part, given in Figure4.1:

Figure 4.1: Schematic illustration of a one-level BiMocq2

• Step 1: update the forward mapping by solving a partial differential equation of the mapping γ.

• Step 2: update the backward mapping by solving the advection equation of the mapping χ.

• Step 3: any fluid quantity φ is obtained by using the updated backward mapping χT+∆t and

interpolating the fluid origin buffer φ0 and accumulation buffer ∆φT .

• Step 4: accumulate any fluid change through the updated forward mapping γT+∆t to accumulation

buffer ∆φ (Qu et al., 2019).

In general, the BiMocq2 method does not have too difficult parts to implement, but it takes a certain

amount of time for the DMC algorithm and RK3 algorithm used in the backward and forward parts.

4.0.2 Modification of BiMocq2 in Houdini implementation

Although the original BiMocq2 method is already very clear and organized, some minor modifications

have been made to the original method due to the limitations of Houdini’s node operation. The process

of the original version can be seen in Figure 4.2.The process changes can be seen in Alg1, and the

Re-initialization part has not changed.
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Figure 4.2: The original design of program pipelines of BiMocq2

Algorithm 1 Implementation pipelines of BiMocq2.

Input:
un,χcurr,χtemp,χinit,γcurr,χprev,∆ucurr,∆t,

Output:
un+1,uchange;

1: un+1 → Semi-advect(un,∆t);
2: χcurr → BackwardUpadte(un,∆t); [Sec4.0.3]
3: γcurr → ForwardUpdate(un,∆t); [Sec4.0.4]
4: float Distortion = estimateVectorDistortion(χcurr,γcurr);
5: if(Distortion > 1.0 or forceinitframe > 10)
6: Reinitialize(); [Sec4.0.6]
7: χprev → Advect(χinit, u

n, ∆t);
8: χtemp → Calculationerror(χprev,χinit,γcurr);
9: χinit → Cumulateerror(χtemp,χcurr); [Sec4.0.5]

10: uchange → IntegrateMultiLevel(χprev,χcurr);
11: un+1 → ApplyChange(un, uchange);
12: return un+1

It is worth concerning that the original method needs to consider the changes to the fluid, made by

the force, projection field etc. The current method does not need to consider these, because these will

be calculated and recorded in the FieldChange field. This method will Creating errors but will make

the implementation of the algorithm easier, all processes can be completed in an HDA.

4.0.3 Backward Mapping Update

The repeated application of semi-Lagrangian convection is one of the main origins of numerical diffusion.

MCM is designed to skip all intermediate interpolations by going back to the previous moment and
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directly interpolating from that moment to obtain a sharper fluid state.

The idea is to find a backward mapping χ, so that given a spatial position x(T), this mapping will

calculate its original position x(t0) to satisfy Eqn4.1, showing below:

x(t0) = χ(x(T )) = x(T )−
∫ T

t0

u(x(τ), τ)dτ (4.1)

then we dynamically advect the mapping as:

Dχ

Dt
=
∂χ

∂t
+ u(t) · Oχ = 0 (4.2)

Given a fluid parcel at x(T), the backward mapping of χ(x(T )) returns its original position x(t0) which

actually remains fixed as the fluid parcel moves. With Eqn4.2, may acquire a new time step mapping

by simply advecting a long time step map. We can use semi-Lagrangian advection to get:

χn+1(x) = χn(x̄) (4.3)

where x̄ = x−∆t · un(x) in the standard Semi-Lagrangian solvers.

However, Semi-Lagrangian Advection has been proved that in highly rotational velocity fields, this

simple strategy drastically loses its accuracy(Qu et al., 2019). therefore, the dual-mesh characteristics

(DMC) has been introduced.

Dual mesh characteristic

It is developed based on The particle-mesh method (PMM)(Cho et al., 2018). PMM is a powerful

calculation tool that can be used to simulate a convection-based diffusion flow. However, the method

in practical applications shows the so-called ”ringing instability(Cho et al., 2018)”, so the second mesh

which is formed by tracking back the cells along with the characteristics was imported. The DMC

algorithm proves to be conservative in quality, without oscillation, with negligible dissipation, and more

effective than conventional schemes. The numerical results show its accuracy and efficiency(Cho et al.,

2018). ”DMC solves a final value problem to find the starting point of fluid parcel whose trajectory

ends at fixed grid nodes. With piecewise linear velocity field, DMC derives an analytical solution which

contains exponentials(Qu et al., 2019).”

The DMC routine can be described as following(explained in 1D, will achieve in 3D): let x be the point
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position where we store our mapping, the other point position x̂ will be:

x̂ =


x− h if v(x) <= 0

x+ h if v(x) > 0

(4.4)

Now assume that the speed can be linearly mixed between x and x̂:

v(ξ) = v(x̂) + (ξ + x̂)a; a =
v(x)− v(x̂)

x− x̂
(4.5)

a =
v(x)− v(x̂)

x− x̂
(4.6)

because of v(x)dt = dξ, could get:

∆t =

∫ tn

tn−1

dt =

∫ x

x̄

1

v(x)
dξ (4.7)

Combining (4.7) and (4.4) we can get the tracing-back position as:

x̄ =


x− v(x)∆t if a = 0;

x− 1
a (1− e−a∆t)v(x) otherwise;

(4.8)

the implementation of BackwardUpdate with DMC can be see below:

Figure 4.3: Implementation of BackwardUpdate with DMC
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4.0.4 Forward Mapping Update

After completing the backward mapping, it is time to introduce its corresponding forward mapping,

which is used to track accumulated fluid changes and their characteristics. However, when there are

external influences such as viscosity and pressure, we should consider the acceleration of the fluid.

Mathematically speaking, the relationship between the accumulated fluid change and its original position

can be defined as:

∆u(x(t0), t) :=

∫ t

t0

dτ
Du

Dt
(x(τ), τ) (4.9)

then we define a forward mapping γtt0(x) : x(t0) 7→ x(t),With this forward mapping, the accumulated

change can now be updated as:

∆u(x, t+ ∆t) = ∆u(x, t) + δ(γt+∆t
t0 (x), t+ ∆t) (4.10)

This means that to track acceleration, the integral along the time-reversed path should be evaluated to

accumulate fluid changes. This will be very time-consuming and labor-intensive.

Fortunately, according to the (Qu et al., 2019), practically all numerical tests can use the third-order

accurate Runge-Kutta method to avoid a large number of integral calculations.

Runge-Kutta method

In numerical analysis, Runge-Kutta methods (Runge-Kutta methods) are an important type of implicit

or explicit iterative methods for the solution of nonlinear ordinary differential equations. These tech-

niques were invented by mathematicians Karl Runge and Martin Wilhelm Kutta around 1900.

The derivation of the third-order Runge-Kutta is very complicated, and the more detailed derivation

process needs to refer to the article of Ralston (1962). The final result of the derivation will be directly

given here:

yn+1 − yn =
2

9
k1 +

1

3
k2 +

4

9
k3 (4.11)

where:

k1 = hnf(xn, yn)

k2 = hnf(xn +
1

2
hn, yn +

1

2
k1)

k3 = hnf(xn +
3

4
hn, yn +

3

4
k2)
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the implementation of ForwardUpdate with RK3 can be see below:

Figure 4.4: Implementation of ForwardUpdate with RK3

4.0.5 Error correction and Accumulated Fluid Changes

Currently, there are still two possible sources of numerical diffusion, which may deter getting more visual

details in actual simulations. ”Any numerical dissipation generated until the reinitialization time will

be inherited in future simulations. At the same time, sampling from the previously mapped fluid state

to obtain the current flow prediction may also be affected by diffusion.(Qu et al., 2019)” Assume that

the numerical spread e between the long-term backward and forward mapping of the estimated fieldφ

is:

φ∗(xg) = I(φ0, χ(xg)) (4.12)

where I represents a sampling method and φ0 represents the initial state. so that e should be:

e(xg) =
1

2
(I(φ∗, γ(xg))− φ0(xg)) (4.13)

When making long-term corrections, cumulative changes must be considered. Assuming that the long-

term error is calculated into, the formula becomes:

φ∗(xg) = I(φ0 + ∆φ, χ(xg)) (4.14)

e(xg) =
1

2
(I(φ∗, γ(xg))− (φ0(xg) + ∆φ(xg))) (4.15)

Due to the limited data processed by Houdini Gasfield Wrangle node at one time, the entire process of

this part is divided into three parts.

The first part is for φ∗(xg):
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Figure 4.5: Implementation of Advect Velocity by BackwardVelocity

The second part is for e(xg):

Figure 4.6: Implementation of Advect Velocity back by ForwardVelocity

Here, the two functions actually complete a BFECC(Back and Forth Error Compensation and Cor-

rection) type error correction.

The third part is used to collect fluid changes, which is to get φ0 + ∆φ :

Figure 4.7: Implementation of collect fluid changes

This part requires special attention and is the biggest difference from the original method. Mainly

because of the following two reasons:

1. In Houdini, especially the use of GasField wangle node data transmission has great restrictions.

When using VEX in these nodes, auto-bind is invalid. You can only manually specify the field

to be used, and there is a limit of 4 inputs. This makes the entire section(Error Correction and

Accumulated fluid changes) divided into many subsections.

2. In order to make the entire realization process in an HDA more friendly and simple, this part gives
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up the monitoring of the original target, and instead only records the changes of the target field,

which means giving up monitoring the dissipation of the target field that caused in the process of

force and projection etc.

4.0.6 Re-initialization and Estimate the Distortion

When the backward and forward mapping is highly distorted, the indicated mapping function will no

longer be accurate. So reinitialization is required to reinitialize the mapping function. During the

reinitialization, the mapping will be set to the initial state, and there is mandatory initialization length

is set. The specific initialization algorithm is summarized as shown in Figure 4.2.

The method used to detect the high distortion of the backward and forward mapping is also very simple.

Ideally, if all calculations are accurate, the backward mapping of the forward mapping of the position

will return the position itself. Therefore, the inaccuracy can be measured by looking at the difference

between the front and back mappings of the position. The formula is as follows:

d1 = ‖γ(χ(x(t)))− x(t)‖

d2 = ‖χ(γ(x(t0)))− x(t0)‖

dmax = max(d1, d2) (4.16)

the implementation of estimate the distortion can be seen below:

Figure 4.8: Implementation of estimate the distortion

Due to the limitation of the use of VEX in the DOP nodes, Function cannot directly manipulate data

with @name. The whole re-initialization method is completed inside Houdini, as shown below:
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Figure 4.9: Implementation of Re-initialization

When reinitializing the double characteristic mapping, the first thing to do is to retain the previous

backward mapping which is very important, maintaining the key data for later Multi-level mapping.

Then the current target field is reinitialized to the position of the grid unit.

4.0.7 Multi-level Mapping

Although the reinitialization of the mapping may solve the distortion problem, after the reinitialization

operation, it will introduce obvious blur and incoherence at the frame. In order to better preserve the

visual clarity and temporal continuity of the simulation, two levels of mapping can be used to track the

fluid volume.

Multi-level mapping part is the most difficult to understand and confusing part of the whole method.

The formula is actually very simple, but it is very difficult to understand how it is used.

Let tI−1 be the time when the previous reinitialization of the mapping occurred, simultaneously Let tI

be the time when the most recent mapping reinitialization occurred, get:

χ0(x(tI)) : x(tI) 7→ x(tI−1) (4.17)

χ1(x(tI)) : x(t) 7→ x(tI) (4.18)

where t is the current time step, then,Combine the above two formulas to get:

χt(x(t)) : x(t) 7→ x(tI−1) = χ0(χ1(x(t))) (4.19)
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Therefore, with two-level forward mapping, the velocity component at the grid unit XX can be repre-

sented as:

x = χt(xg)

u(xg, t) = I(uI−1, x) + I(∆uI−1, x) + I(∆uI , χ1(xg)) (4.20)

so the vel change can be repersent as:

Ou = u(xg, t)− I(uI−1, x) = I(∆uI−1, x) + I(∆uI , χ1(xg)) (4.21)

where Ou should be the e(xg) got from Equ4.15 so the implementation of can be see below:

Figure 4.10: Implementation of Double Advect Velocity Error

In the original paper(Qu et al., 2019), the two processed velocity fields were also mixed to obtain

a more accurate velocity field. However, because the process of this algorithm implementation only

requires the change of the velocity field, so the implementation stop here. please read the original paper

if need.
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Chapter 5

Results and Discussion

5.0.1 Result

The BiMocq2 method is implemented in Houdini mainly to get a more accurate solution with more

details. From the results, the original setting is reached. The BiMocq2 method not only gets more

details under the same conditions, which leads to the better visual richness, but also leads to more

turbulence.

Figure 5.1: the left one is the Houdini preset billowy Smoke. The right one is the result of replacing the
MacCormack advection in the preset with BiMocq2
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simple Semi-Lagrangian

The Figure5.2 below is a comparison between the Semi-Lagrangian method and the Bimocq2 method.

It can be found that the difference between the two methods is not obvious without the influence of too

many other factors. This is mainly because in this simple case, the fluid dissipation and error are small,

and the difference between various algorithms is not too large.

Figure 5.2: The left one is Semi-Lagrangian. The right one is BiMocq2

Addition of other conditions

But the situation is different when other noise parameters are added. The Figure5.3 below is the result of

adding some other parameters(disturbance turbulence) on the basis of the Semi-Lagrangian simulation.

It can be found that BiMocq2 gives more credible details:
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Figure 5.3: The left one is Semi-Lagrangian with Noise. The right one is BiMocq2 with Noise

With MacCormack

In addition, the BiMocq2 method shows strong compatibility and can be applied with Houdini in-built

fluid solution to get better results.

From the Figure5.7 below, it can be found that MacCormack obtains better and more detailed calculation

results than Semi-Lagrangian without changing all parameters, and BiMocq2 can add more credible

details on the basis of MacCormack.

Figure 5.4: The left one is MacCormack with Noise. The right one is MacCormack + BiMocq2 with
Noise
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With Collision

Also tested the situation with collision, as shown Figure5.6. It can be found that it works well with

collision. In this implementation, the abandonment of monitoring the dissipation of the target field

caused by the process of force and projection did not cause too much loss.

Figure 5.5: The left one is Semi-Lagrangian with Collision. The right one is BiMocq2 with Collision

Figure 5.6: The left one is MacCormack with Collision. The right one is MacCormack + BiMocq2 with
Collision
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5.0.2 Insufficiency

Time-consuming Problem

It has to be said that the BiMocq2 method takes much more time than other in-built fluid solutions

and does not reach the speedup of at least 2 to 45 times stated in the original article(Qu et al., 2019).

Figure 5.7: The left one is the time using in-built Semi-Lagrangian. The right one is BiMocq2

The main reason should be that too many operations to read and write data drag down the perfor-

mance of the algorithm. Since the gasfield-wrangle node can only read 4 fields of data at a time, and

the data cannot be transmitted between the two nodes, this leads to a lot of unnecessary read/write

operations, which leads to the entire algorithm taking more time.

Accuracy Test

At present, only tests related to velocity field have been completed. Although the function of the scalar

field has been completed, the effect is not obvious in the current test. Accuracy tests, such as the Vortex

Leapfrogging test and Rayleigh-Taylor Instability test, need to set up a specific working environment,

plus a long time to solve. Unfortunately, there is no time to do it.

5.0.3 Furure Work

Accuracy Test

First of all, accuracy tests should be completed to determine whether the algorithm is implemented

correctly. Although implementation has shown very good characteristics of BiMocq2, because there are

some modifications to the original process structure during the algorithm implementation, Accuracy

tests can help determine whether these changes are correct.

Optimize the BiMocq2 algorithm

the implementation of BiMocq2 algorithm is far from over, there is still a lot of work to be done. The

whole algorithm has great prospects. From the results, the added details of the algorithm are very
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delicate and real. And the algorithm has strong compatibility and stability, if the settlement time

problem is solved, it can be widely used.

GPU Acceleration

In addition, as the Qu et al. (2019) said, the BiMocq2 method is a pure Euler method with accuracy

and low dissipation. It should be easily parallelized with the help of GPU, achieving a 45X performance

improvement. Houdini supports the OpenCL protocol for GPU acceleration, so this will be a good

research direction.

Applied to Fluid

The characteristics of BiMocq2 algorithm make it have great potential to be applied to fluid simulation.

Specifically, this method also has great potential in numerically predicting the vortex of circulating

flow. Imagine that the length of the vortex segment can be determined by forward mapping so that the

time vorticity can be determined. This method can avoid the vortex stretching term in the numerically

unstable 3D simulation.
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Chapter 6

Conclusion

The purpose of this project is to get a more effective and detailed fluid simulation method. The current

popular fluid simulation method has the problem of insufficient details under the same resource situation,

or require more resources and time to meet the details. At the same time, the popular Volume Up-res

method has trouble in setting, or the added details are incoherent and unreal. The BiMocq2 method

can get more and more real details under the same resources. Although the implementation still has

issues such as Time-consuming, it primarily meets the requirements.
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Appendix A

Code and Video

All relevant codes are seen in Github

Showreel can be seen in vimeo
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https://github.com/yangdissy/BiMocq_Solver_implementation
https://vimeo.com/449915334
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