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Abstract 

This report documents the design and implementation of a real time procedural generation system for 

creatures in video games.         

 The final system, implemented in unity and written in C#, utilizes free form deformation 

techniques and automatic rigging to create a base body. A novel limb attachment algorithm then attaches, 

and scales pre-made body parts to create one of three creature types: flying, swimming, or walking. Each 

creature type has procedural idle and movement animations. Of particular note is the procedural walking 

system for walking creatures, which uses the size and speed of the creature to create natural looking 

motion.            

 The project successfully generates a wide array of random creatures in real time, with reasonably 

natural looking animations for all. While there are limitations to the visual fidelity and range of 

animations for each creature, it is hoped that this project offers a more open-ended procedural creature 

generation system than has come before and can aid in future work in this area.  
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1 Introduction 
In the context of video games, procedural generation refers to the generation of content in the game 

algorithmically, rather than manually by an artist or game designer. When implemented well, procedural 

generation allows for the creation of a vast amount of content that would be completely infeasible to 

construct by hand. This can greatly extend the lifespan of a game and relieve some of the burden from 

artists and designers. 

Traditionally, procedural generation is used for tasks such as level or map generation. With a 

correct set of building blocks and rules in place this can be implemented quite effectively (see Minecraft, 

Spelunky, Binding of Issac and more). While most procedural generation systems essentially combine 

existing characters, props and environment pieces, some games have also attempted to procedurally 

generate these individual elements. This is often a much more complex task, that in many cases is best left 

to artists and designers. 

An interesting specific case of this is procedural creature or animal generation. Most notably 

attempted by the game No Mans Sky (2016), randomly created animals and monsters can lend a game 

world extra variety and keep the player engaged for longer. Creating varied creatures from scratch, which 

all look and move convincingly is non-trivial. This project will focus on developing such a system in the 

game engine Unity, which will eventually be implemented into a game currently in development called 

“Duel Space”. Given the time constraint, and the researchers initial unfamiliarity with much of the 

technology, the scope is limited to creating low fidelity creatures, each with a movement, idle and turning 

animation (all driven procedurally).  

2 Research and Design 

2.1 Previous Work and Technology 
Procedural creature generation is a broad topic, with many component parts. As well as academic 

research into specific elements such as procedural animation, it is prudent to examine approaches to the 

problem in current video games. By far the two most notable examples of creature creation in games are 

Spore (2008) and No Mans Sky (2016). It is worth noting that an obvious limitation is the fact that none 

of the code or algorithms for either game are available to the public. As such the analysis done here is 

done primarily based on observation of the finished product, as well as on some sparse developer 

interviews. 
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Spore was a steppingstone for both procedural content generation and creature creation in games. 

However, the creatures that populate Spore are actually not procedurally generated at all, at least not 

entirely.            

  Spore offers an in-depth system for users to design creatures. The core stages are as follows: 

First the player decides on the number of segments the spine will have and how it will bend. Each 

segment of the spine can be increased or decreased in size which informs how thick the body is around 

that segment. From this point the player can drag and drop a variety of parts and pieces on to the creature: 

eyes, mouths, arms, legs and accessories like spikes, feet, hands etc. These pieces can be attached to 

almost any point on the created base body. Legs will always extend from the attachment point to the 

ground, where they meet the floor. The player can drag each joint of arms or legs to reposition them, 

creating wildly disproportioned limbs. Every creature has a wide variety of animations such as walking, 

attacking, eating and singing which all adapt to the skeleton of the given creature. For example, a creature 

with very large legs will walk at the same speed as a creature with smaller legs, but the step size will be 

much greater and the frequency much less.  

 

Figure 1: Stages of creature creation 

While the worlds which players can inhabit in Spore are procedurally generated, the creatures 

themselves are not. The reason for this is undocumented. While it could be argued that this was done to 

allow for more interesting, artist created designs, that seems to go against the core ethos of the game. As 

such it seems more likely that implementation difficulty was the main issue. The Spore creator is 

incredibly open ended, allowing for as many arms, legs, mouths eyes as the player desires, and each can 

be attached to any point on the creature. This allows for some great customization but creating generative 

methods to constrain this huge array of options would likely be challenging (although again, this is purely 

speculative).            

 There were a few notable takeaways from Spore which formed some early ideas for this project: 
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Starting from the base body and using this to inform the creature, then attaching limbs after this stage; 

Limiting the scope of what is possible to make generation easier; Adapting animations procedurally as the 

size and shape of limbs is altered. 

Around 8 years later Hello Games promised to deliver on a fully procedural world, including procedural 

creatures, in their game No Man’s Sky (2016). While many of the touted features didn’t make it into the 

games original release, it boasted an impressive procedural creature generation system. Specific details 

are hard to come by, however it is possible to infer some inner workings. In an interview with game 

informer (A Behind-The-Scenes Tour Of No Man's Sky's Technology, 2014) studio head Sean Murrey 

goes into some detail on creature generation and gives some brief glimpses of internal developer tools. He 

states that artists create thousands of component parts which creatures can be made with, this is to be 

expected of course. More revealing however is when Murrey describes each creature type as a 

“silhouette” explicitly created by artists, for example lizard, rat, fish, cow etc. There are apparently 

hundreds of these creature types, each able to create a wide variety of “variants”. Catching a glimpse of 

the developer tools which generate these variants gives more information.    

 Looking at three examples (figure 2), it appears that each variant has essentially the exact same 

rig. For example, each lizard variant has a tail, head at the front, backwards knees at the front, and a 

double knee at the back. Each part of the body can be scaled, and attachments such as head, shell, wings 

etc. can be added from a vast pool. Animations modify to fit the rig however it is scaled, similarly to 

Spore. Even without knowing the exact algorithm used, it is clear that No Man’s Sky’s procedural system 

benefits from a huge bank of artist created assets as well as some strict predefined animal types. This 

reinforces the idea that having a limited scope is important for effective procedural generation. As well as 

this, the idea of having some predetermined animal types was a useful takeaway which was utilized in this 

project. 
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Figure 2: Three creature types and different variants  
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After garnering a high-level understanding of how Spore and No Man’s Sky approach creature creation, 

academic works relating to both procedural creature generation and animation were surveyed for 

techniques which could be useful. 

 “Creature generation using genetic algorithms and auto rigging” (Hudson, 2013) is a Houdini based 

system which deals purely with creature generation and rigging, with no considerations made for 

animation. The main algorithm essentially builds a creature from a series of segments which correspond 

to bones in the rig. It starts by modifying the size and angle of the base body sections, before choosing a 

random number of legs, arms and number of sections for the wings, arms and fingers. Arms, legs and 

heads attach to predetermined segments of the main body. Working in segments like this means that 

automatic rigging is straightforward. The results are impressive (figure 3) though there are some 

limitations. 

 

Figure 3: A set of randomly generated creatures (Hudson, 2013) 

Legs can only be added in biped and quadruped styles, and arms attach to the same point at the 

shoulder, no matter how many there are. The generated mesh should be replaced with one of higher 

fidelity and subsequently reskinned, which is not ideal. Genetic algorithms also play a part here, all 

features of the creature are stored and can be used to “breed” existing creature designs to create new ones. 

This feature is useful for the intended use of this project (creating creature designs for artists to work with 

further). A similar approach could potentially have been used to optimize the creatures produced in this 
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project. By cross breeding creatures until they fit a set of success criteria, it could allow for fewer bizarre 

unconvincing looking creatures to be generated. However, it is quite possible that converging to a suitable 

solution would be time consuming, and therefore not suitable for real-time applications. As such this idea 

was not explored. Instead, the core takeaway from this project was the idea of using the skeleton of the 

base body to dictate the attachment points for limbs. 

Procedural animation is a well-researched topic, and several interesting approaches have been used for 

characters/creatures. Physically based animations are animations driven by some underlying physics 

system, which the animated character lives within. Karl Sims’ work (1994) is one of the earliest examples 

of procedurally generated creatures and it relies primarily on physically based methods. Similar to 

(Hudson, 2013) and (Hornby and Pollack, 2001) creatures are created from a series of segments. 

Segments are combined, with the points between them acting as points of articulation. Genetic algorithms 

are used here to combine segments to create creatures capable of moving in specific conditions such as 

walking, jumping, or swimming, by way of various fitness functions.     

 Other physically based methods (Geijtenbeek, 2013), (Tan, Gu, Turk and Liu, 2011) vary in 

implementation approach but share the same general principal of tuning parameters of an animation over 

a series of generations, such that a character can successfully move themselves through space with 

physics acting on their body. While these approaches are effective in their domains, they are not well 

suited to this project for two main reasons. Firstly, as was mentioned previously, optimization approaches 

such as these can often take many generations to converge on an acceptable solution. This makes these 

approaches less suitable for real-time domains such as video games. Secondly, the animations generated 

by these methods often do not look very natural. This is because it is easy to create success criteria for a 

creature moving from one place to another, but a lot harder to optimize for if it ‘looks right’. When 

dealing with entertainment media, it is usually more important for the end product to look visually 

appealing than to be physically accurate. As such, other approaches were explored. 

As with many problems in animation, neural networks have been proposed as a solution for creating real-

time procedural animation (Samyn et al, 2014). Using either motion capture data, or handmade animation 

as training data, a neural network is capable of created a parameterized model. This model is then able to 

adapt an existing animation to a new scenario based on it’s training data. Using Fuzzy controllers, artist 

friendly parameters can be tuned to modify the finished animation. This capacity for artist control is the 

main appeal here, as traditionally procedural animation techniques have existed somewhat separately 

from traditional animation artists. However, the finished quality of the animations produced is highly 

dependent on the quality and breadth of training data supplied to the neural net. Given that this project is 
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focused on creating animations for creatures that do not exist (and could have any number of limbs) the 

reliance on quality training data here is a major pitfall. This project also has no real need for artist control, 

as such utilizing machine learning in this way was deemed infeasible.  

Many procedural animation methods leverage Inverse Kinematics. In contrast to physically based 

methods, kinematics is purely concerned with the motion of objects, without considering any of the forces 

causing it. In the context of animation, Inverse Kinematics deals with solving for the positions/rotations 

of a series of joints, given a desired destination for an end effector and a position for the root of the joint 

chain. For example, when animating a leg, usually the foot would be the end effector and the hip would 

be the root. If a new goal position is supplied for the foot, then the hip and knee joint rotations will be 

solved for, such that the end effector is moved as close towards the goal as possible (while respecting any 

constraints such as knee direction). If you were to move the hip (root), then the leg joints would bend so 

that the foot stays in the same position. Various solutions exist (Badler and Zhao 1994) (Aristidou and 

Lasenby, 2009) each with their own benefits and drawbacks. Most 3D digital content creation (DCC) 

tools, including game engines, contain some form of inverse kinematics solver. For the purposes of this 

project the exact IK implementation details are not necessary and can be taken as a black box.  

 

Figure 4: An IK leg setup (Autodesk, 2016) 

Inverse kinematics has successfully been leveraged for the goal of creating convincing, 

procedural animation), particularly for walking/running. Since access to motion capture is not feasible, 

only purely procedural methods such as Chung and Hahn (1999) were considered. Implementations vary 
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but generally a series of parameters such as step length, step frequency and walk speed are used to predict 

where a footstep will be made, then drive a foot position based on how close the character is to this 

predicted step position. This foot position acts as the new goal position for the end effector. Modern 

methods (Skovbo Johansen, 2009) usually involve a ray being cast onto the environment to place each 

step. This method is highly suited to real-time due to low computation and is highly adaptable on the fly 

due to its parameter driven nature. This makes it well suited to procedural creatures as things like leg size, 

speed and gate will vary from creature to creature and being able to tune a simple set of parameters to 

reflect this in animation is ideal. As such this approach was the foundation of the procedural walking 

system created here. 

2.2 Initial Idea 
Post examination of both creature generation and procedural animation techniques, a high-level series of 

steps for the creature generator was constructed which outlined the core problems that would need 

solving. Taking inspiration from Spore it was decided that generating a base body would act as the 

starting point for the creature. From this point the base body would need to be rigged so that it can move, 

with the bones acting as reference points for attaching limbs (as in (Hudson, 2013)). These limbs would 

then be driven by an IK based procedural animation system, which would adapt the animation as needed 

depending on the size and speed of the creature. The goal was to get as close to the level of freedom 

offered by Spore as possible, but procedurally generated. 

 

Figure 5: An early illustration of the stages of creature creation 
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2.3 Requirements 
A small set of requirements was designed. These requirements helped both guide the direction of 

implementation, and act as success criteria for evaluation upon completion of the project. 

Number Requirement Priority Dependencies Justification 

1. The system must be built using 

the Unity game engine. 

H / The creature generator is 

intended to be 

incorporated into a Unity 

based game.  

2. Each creature should have an idle 

animation. 

M / An idle animation gives 

life to the creatures but is 

less important than a 

procedural walk, as it is 

less specialized to the 

creature than a walking 

animation. 

3. Each creature must have 

animations to move forward and 

turn left / right. 

H / This is a good example 

animation for the creature 

as the movement 

animation will need to 

vary procedurally based 

on the limbs, size and 

speed. 

4. The generator must be able to 

produce creatures at a variety of 

sizes. 

H / Important to add variety. 

5. The generator must be able to 

produce creatures at a variety of 

speeds. 

H / Important to add variety. 
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6. Walking animations must scale 

convincingly with the speed and 

scale of the creature. 

H 3, 4, 5 Important for visual 

fidelity. 

7. The generator should be able to 

produce creatures with a variety 

of movement styles eg. Swim, 

Fly, Walk 

M 3 Important to add variety. 

No Man’s Sky is an 

example of this approach 

being necessary. 

8. The generator must be able to 

create a variety of different 

looking base bodies. 

H / Important to add variety. 

9. The generator must be able to 

create creatures with a variety of 

different limb styles (eg. Bipedal, 

quadrupedal). 

H / Important to add variety. 

10. The creatures created must look 

generally feasible + convincing. 

H / Creatures need to be as 

convincing as those 

which were designed by 

hand, e.g. No creatures 

with tiny legs at the front 

which look like they 

would topple over. 

11. Creature generation should take 

no more than half a second. 

M / Creature generation needs 

to effectively be real time 

to be useful in the context 

of video games.  
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3 Technical Background 
As well as inverse kinematics, which was touched on earlier, there are two concepts which play an 

important role in the creature generator implementation: Free Form Deformation (FFD) and the 

rigging/skinning of 3d models. These concepts will be explained here so as not to bog down the 

implementation section, which is mostly concerned with the novel aspects of this project. 

3.1 Free Form Deformation 

FFD is an older technique (Sederberg and Parry, 1986), used to smoothly deform objects by manipulating 

a three-dimensional grid of points surrounding the mesh. 

 

Figure 6: FFD in action (Sederberg and Parry, 1986) 

Vertices of the mesh to be deformed are placed in a local coordinate space defined by three vectors S,T 

and U. A point P using the system is given by P = P0 + Ss + Tt + Uu. The s,t,u components of a point P 

can be found using simple linear algebra: 

s = (T x U) ⋅ (P - P0) / ((T x U) ⋅ S) 

t = (U x S) ⋅ (P - P0) / ((U x S) ⋅ T) 

u = (S x T) ⋅ (P - P0) / ((S x T) ⋅ U) 

In order to modify the points, the local coordinate system must be transformed. To do this the region 

encompassed by S, T and U is split into a grid of points such that there are l points in the S direction, m 

points in the T direction and n points in the U direction.  

A single control point P (i,j,k) is given by P = P0 + i/l S + j/m T + k/n U. Deformations are achieved by 

manipulating the control points, either algorithmically or by hand. The deformed position of a point in 
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global space can then be found by computing the points s,t,u coordinates and then evaluating its trivariate 

Bernstien Polynomial: 

𝑃(𝑠, 𝑡, 𝑢) = ∑ (
𝑙

𝑖
)

𝑙

𝑖=0

 (1 − 𝑠)𝑙−𝑖𝑠𝑖 ∑ (
𝑚

𝑗
)

𝑚

𝑗=0

(1 − 𝑡)𝑚−𝑗𝑡𝑗  ∑ (
𝑛

𝑗𝑘
)

𝑛

𝑘=0

(1 − 𝑢)𝑛−𝑘𝑢𝑘    

Although an older method, it allows for very smooth, natural deformation since multiple control points 

contribute to the final vertex position. 

3.2 Rigging and Skinning 

Rigging and skinning are fundamental parts of the animation pipeline, and are crucial to understand when 

developing an animated character from scratch. After creating a mesh, a rig is created for it. A rig acts as 

a skeleton for the mesh. It is comprised of “bones” which can have other bones connected at either end. 

Bones themselves can be stretched or deformed, but generally when dealing with characters such as 

humans or animals with ridged skeletons bones have a fixed length and size.  Each connection between 

bones acts as a point of articulation for the rig. A bone can be rotated via its connection point to a parent 

and any child bones will follow its transformation. For example, if using traditional forward kinematics 

(FK), a bicep bone can be rotated about the shoulder connection, any forearm and hand bones will follow 

the same motion as they are connected. The rig will have a “root” which acts as the source of all other 

bones, transforming a root bone will also transform all other bones in the rig. In human characters the hips 

usually act as the root of the character. Constraints can be added to joints to give them realistic 

limitations, for example restricting an elbow to not rotate past 180 degrees. As well as FK motion, where 

each bone follows its parent, a rig can use inverse kinematics. As mentioned previously, IK takes a root 

node and a position for the end effector and calculates the rotations of the bones in between so that these 

positions can be honored.  
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Figure 7: A standard human rig and skinning of a leg bone (Game Dev Insider, n.d.) 

Skinning is the process by which bones are mapped to vertices on the mesh. To maintain a 

smooth look for organic characters multiple bones can contribute to the final position of a vertex. At a 

knee, both the upper and lower leg bones would likely contribute. Weight painting is the process by 

which artists (or in our case an algorithm) dictate the weight of influence each bone has on the mesh 

vertices. Any vertices with no associated bone weighting will not be transformed along with the rig. 

Traditionally, both rigging and skinning are done by hand using DCC tools, however recently several 

solutions to algorithmic rigging and skinning have become popular to alleviate the artist workload 

(Mixamo, n.d.). 

4 Implementation 

The creature generator was written in C# using the Unity game engine. Unity was selected for a few 

reasons. Unity is an industry standard and has wide adoption, this creature generator is intended to play a 

role in a Unity based game which is currently in development. It also offers support for compute shaders 

more readily than its main counterpart, Unreal Engine. While they were not utilized here, they offer a 

good avenue for future optimization of some parallelizable tasks. Additionally, the researcher of this 

project had little prior experience with Unity and felt that implementing in an unfamiliar engine would be 

a valuable learning experience, even if progress was slower. 
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The final implementation is fairly similar to the initial idea presented section 2.2. Each stage in 

the process and the reasoning behind it is explained here in step by step manor. Some specific code level 

details are omitted for brevity but the source code is available at https://github.com/kingkristo. Comments 

should be verbose enough to answer any outstanding questions. An additional element which was decided 

on during production was having three core creature types (similar to No Man’s Sky): walking, flying and 

swimming. Each would build upon the same base generation system, but with some specific variations for 

each creature type.  

4.1 Body Generation 

4.1.1 Linear Interpolation 

The first step of generation is creation of the base body, this base body then informs the attachment of 

limbs. A few methods of generating a base body were considered. Taking a base sphere mesh and 

modifying each vertex programmatically was deemed too complex, especially to create a body that looks 

like a creature. Choosing from a set of base bodies with pre-set limb attachment points was too limiting. 

 In the end a hybrid of these two methods was implemented. Using a single pill shape as the base, 

a set of nine base bodies were constructed, based loosely on different animals and their body types. It 

should be noted that while real life animals were used to inspire the different base bodies, accuracy to any 

specific real-life animals is not an aim of this project. A wide variety of interesting, strange looking 

fantasy animals is more desirable. If the aim is to create animals more closely tied to existing ones, a 

more restrictive artist centric approach (such as that of No Man’s Sky) would be more suitable. 
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Figure 8: Base bodies 

Three of these bodies are selected at random, and linearly interpolated between using a random weight 

between 0 and 1. For this reason it was important that each base body had the same number of vertices, 

and they were ordered in the same way.  

 

Figure 9: Lerped bodies 

It was already decided that the creatures would be created in a low polygon (low poly) style, in order to fit 

in with the game the creature generator is intended to be a part of. This had the added benefit of greatly 

increasing the performance of any parts of the algorithm where every vertex on the mesh is inspected (for 

example lerping base bodies). However, when some premade limbs were added it became clear that unity 

was doing some smoothing to the body, which made it contrast the low poly limbs.  
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Figure 10: An early creature 

To remedy this, a shader was constructed to do per face shading on the creature, each face of the 

mesh would be assigned a single colour, with no gradients or shading. The shader itself simply splits the 

material position into DDX and DDY partial derivatives. Final face colour = ((DDX x DDY) ⋅ ld) * mc, 

where ld is the light direction and mc is a material colour. 

 

 

Figure 11: A capsule with and without low poly shader applied 

4.1.2 Free Form Deformation 

While lerping base bodies was a good starting point, it was decided that it didn’t offer enough variation 

on its own, the bodies were all generally the same size. A few methods, such as using blend shapes, were 

explored to add more variation. In the end Free Form Deformation was selected due to its ability to create 

smooth, organic looking deformation easily. The method implemented is the same as that of (Sederberg 

and Parry, 1986). A 3 x 3 x 11 grid of control points is constructed around the mesh. Each 3 x 3 “slice” of the 

grid is randomly scaled in x , y and z directions. The swimming creature type has a smaller x and z, and larger 
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y range of random values than walking / flying creatures. This is because fish tend to have flatter bodies than 

land animals. 

 

Figure 12: Initial attempts at FFD 

Randomly scaling the slices in the z dimension meant that they would frequently get out of order, resulting in 

the body being concave on either end. To remedy this, instead of just randomly scaling the z dimension of each 

slice, the z value of the previous slice is stored, and some random amount is added to this to get the z position 

of the current slice. This method successfully added a lot of variation to the base bodies. 

 

Figure 13: Bodies modified by FFD 

4.1.3 Auto Rigging and Skinning 
After the body is created, it is then rigged and skinned. The number of bones is driven by the size of the body. 

Then the “neck” and “tail” vertices of the mesh are found. Originally these were just the two points on the 

mesh with the greatest distance between them, the idea being that this would allow different angles of spine 

(for example upright bipedal style). However once FFD scaling was implemented this method no longer 

worked in all cases.  
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Figure 14: Failed spine placement 

Drawing a curve through the body to form a spine was trailed at one point. However, after consulting with 

riggers and animators it was decided that having the neutral pose be anything but a straight spine could cause 

issues with achieving natural looking deformation while animating, this is why character models are usually 

rigged in a T or A pose, with straight limbs.        

 The initial method was revisited with some additional constraints. In the final algorithm the head and 

tail vertices are the two furthest away vertices that lie within a small threshold of the y and x coordinate of the 

mesh center. The head vertex is whichever of the two is furthest in front in the z direction. This successfully 

places the head and tail at logical positions.       

 Rigging of the spine itself is handled differently for swimming creatures and flying/walking ones. For 

the purposes of animating the swimming creatures, the head is the root bone and bones are added up to the tail. 

For walking and flying creatures, moving the neck and tail is simpler if the center is the root, as such bones 

project in opposite directions from the center towards the head and tail to form the spine. 

The final stage of rigging the body is adding attachment points where body parts can be attached. To do this, at 

each bone (other than the first and last) the closest vertices on the right side, left side and top of the mesh are 

found. New game objects are created at each of these points, these act as anchors for body parts to be attached. 

Each attachment point is parented to its corresponding bone, this ensures that the limbs move with the body. 

These new game objects are stored in an array for easy access, as well as the distance between the left and 

right points (used to attach limbs later). 
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Figure 15: Successful spine placement 

A capsule collider is added to the center of the body with a random height, this capsule height dictates how 

high from the ground the creature will be.  

The body is then skinned so that it moves with the bones. The method to do this is simple, each vertex is 

influenced by its nearest 4 bones. The wight assigned to each bone is dictated by the distance of that bone to 

the vertex. Having 4 bones influence each vertex ensures that deformations are smooth and there are no harsh 

bends. 

4.1.4 Body Adjustments 
After revisiting Spore, it was noted that a crucial stage of creature creation was bending the spine into an 

interesting shape, this added a lot of variety and personality (figure 1).    

 This was only implemented for flying and walking creatures as fish generally don’t have bent spines. 

Due to the fact the rig root for walking and flying creatures is the center, rather than the head, bending the tail 

and neck was simple. First the maximum angle that could be applied to each bone while preventing the neck or 

tail from rotating past 100 degrees was found (200 / bone number). It was important the spine didn’t bend past 

this point to prevent self-intersection and unnatural looking creatures. Two random angles are found between 0 

and the maximum, for both the tail and neck. Each rotation is then applied to every bone in the tail and neck to 

randomly bend them.   

A simple spherical head is then added to the tip of the neck, this is scaled based on the distance between 

attachment points at the second neck bone. A more involved random head generator was started, but ultimately 

scrapped due to time constraints. 
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Figure 16: Early creatures utilizing a head generator 

If after adding the head or bending the spine any parts of the creature intersect the floor, the capsule 

height is adjusted to accommodate. 

To both add visual variety and test the capabilities of the procedural animation, it was important that both the 

speed and size of creatures would vary. To this end the body is randomly scaled between 0.5 and 2. This scale 

is then used to set the initial movement speed of the controller script, which is further modified by some 

random amount. This resulted in a range of creatures both small and large, as well as fast and slow.  

 

Figure 17: A creature body after adding the head and adjusting spine with a bend 

4.2 Limb Attachment 

Before animation, limb attachment is where the main differences between flying, swimming, and walking 

creatures exist. Each has a unique method of limb placement suited to the creature type. 
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4.2.1 Flying Creatures 

Flying creatures have 4 different body parts that can be attached, two styles of “buzzing” wings, one style 

of “flapping” wings and legs. “Buzzing” wings are modelled after insect style wings, two styles were 

created: one inspired by butterfly wings and one inspired by fly wings. These wings have a basic script 

attached to them which rotate the wings at frequent intervals, giving the impression of fast insectoid 

wings. 

 

Figure 18: Wing types 

“Flapping” wings are modelled after bird wings. Bird wings flap slower than insect wings and can 

be seen bending with movement. To reflect this, these wings are rigged with 4 bones. Each bone uses a 

damped transform (Damped Transform, n.d.). A damped transform allows damping of a game object’s 

position and rotation to that of a constraint game object. The constraint game object will essentially 

follow the transform changes of the source object while aiming at it, with some damping. It’s useful for 

creating flowing objects like tails and tentacles, where each bone follows its parent. Here it creates a 

convincing flapping effect. It was important to only have a small number of bones to prevent the wings 

from flopping in the air too much and looking less solid. 

Since the flying creatures are always in the air, the legs need to hang in the air convincingly. A few 

approaches were trailed for this. Ragdoll legs flopped around too much and looked silly. The same 

damped transform approach used for the wings was attempted, and while the motion itself was good, the 

knee direction was not respected, and the length of the bones did not stay consistent (legs would appear to 

stretch at high speeds due to the delay in position change bone to bone). To fix this, the damped transform 

method was combined with a simple two bone IK for the leg (Two Bone IK, n.d.). A two bone IK rig 

takes a root bone, middle bone, and tip bone. The root will stay stationary, the tip will follow a target and 

the middle bone will be rotated to accommodate as needed. This is a typical IK setup as previously 

discussed. The two bone variant is especially made for things such as arms and legs, and provides a hint 

object which dictates the direction of bend in the “knee”. A simple two bone rig was created, with 
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damped transforms applied. At the tip of this is the target used to direct the leg tip in the two bone IK. 

This method was perfect for hanging legs, as the foot target moves with the body convincingly due to the 

damped transform, but the two bone IK ensures that the leg bends in the correct direction bones stay at a 

constant length.  

 

Figure 19: Flying leg setup 
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The algorithm for attaching these body parts is relatively simple and is presented here in pseudocode: 

Decide on a wing style. 

If “buzzing” style  

 Randomly scale wings in x,y and z directions. 

Attach wings to the top attachment point of a random bone in the front half of the spine. //in 

nature insect wings are always attached on the front half 

If “flapping” style  

 Uniformly scale wings by a random amount. 

 Attach wings to the left and right attachment points of the middle spine bone. 

Decide on a number of leg pairs between 1 and 8. 

Decide if legs will be closely packed. 

If bones are still available to attach limbs 

Decide a random uniform leg scale driven by the number of legs //legs are more likely to be small 

if there are more of them and vice versa 

If  “closely packed”  

Attach the first leg pair to the left and right attachment points of a random bone in the 

front half of the spine. 

For each subsequent pair of legs 

Attach to the first available bone which will not cause intersection with another 

pair of legs. 

Else 

 Attach legs at evenly spaced intervals so that they take up the length of the body. 

 

Since flying creatures don’t rely on legs the same way as walking creatures, the algorithm to attach legs is 

much more basic. The aim was to allow leg placements similar to that of insects such as the dragonfly 

where legs are clumped at the front, as well as allow for bird like legs and more fantastical arrangements. 
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Figure 20: Example flying creatures 

4.2.2 Swimming Creatures 

Swimming creatures have three types of body part that can be attached: tails, pectoral fins and dorsal fins. 

Each has two alternate styles. All of them are set up in the same way, with bones starting at the point 

where the fin attaches to the body, and ending at the point furthest from the fish. Fins have damped 

transforms applied in the same way as wings, but with a greater number of smaller bones. Increasing the 

number of bones gives more of a flowing motion than what was desirable for wings, emulating fins 

underwater quite effectively.  

 

Figure 21: A fin bone setup 
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Fin number and placement varies from fish to fish, and creating something that reads as a fish/swimming 

creature to a player is relatively easy. As such the fin attachment algorithm is largely random, with few 

constraints. It is presented here in pseudocode: 

-Decide on random number of dorsal fins 

For each dorsal fin 

 If bones are available that don’t intersect with existing dorsal fins 

  -Decide on dorsal fin style. 

  -Randomly choose an available bone and attach to its top attachment point.  

  -Randomly scale fin in x,y and z.  

-Decide on random number of pectoral fins. 

For each pectoral fin pair 

 If bones are available that don’t intersect with existing pectoral fins 

  -Decide on pectoral fin style. 

  -Randomly choose an available bone and attach to its left and right attachment points.  

  -Randomly scale fins in x,y and z. 

-Decide on tail style. 

-Attach tail to the tail bone tip. 

-Randomly scale tail in x,y and z. 
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Figure 22: Example swimming creatures 

4.2.3 Walking Creatures 

Walking creatures have 2 types of body part that can be attached: legs and arms. Each one uses a 

simple two bone IK rig, similar to the flying legs. The target positions are driven by a procedural 

animation algorithm which will be explained in a later section. The knee orientation of the legs is 

chosen at the start of the generation algorithm, it can be either forward, backward or sideways to 

represent different types of legs that exist in nature. 
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Figure 23: Walking legs and arms 

Limb placement for walking creatures was the most complicated to achieve. Because legs are 

directly tied to the movement animation of land base creatures, having them attach in a 

convincing way was vital. There were 4 main criteria for attaching legs: 

- Do not have legs overlap. 

- Make sure legs appear balanced (eg. The creature doesn’t look like it would fall over). 

- Have legs attach to the parts of the body that would support legs if it was real (eg. the 

widest points like hips). 

- Having a variety of different style creatures with fun designs. 

 Balancing these requirements in all cases is challenging given the variety of 

possible base bodies. Initially, using mesh volume calculation to find the parts of the mesh which 

would support legs was considered, however a much simpler method was found to be effective. 

Simply using the distance between left and right “hip” connection points gave a thickness for 

that part of the mesh very easily and with little computation. The algorithm presented in 

pseudocode here uses these distances to attach limbs and gives good results in most cases: 
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-Find bones with largest and smallest distance between left and right attachment points //“hip 

width” 

If ( body length is > 3 * distance from the ground OR the smallest hip width is >= 0.75 * 

largest) 

 - Add as many legs as possible without causing intersection/overlap. 

//if the body is close to a tube then add as many limbs as possible (an excuse to make 

creatures with large legs have more than two pairs of legs) 

//if the body is long but close to the ground then legs will be small, need to add lots to 

support the creature like a centipede. 

Else 

 - Add legs to the widest point 

- Find the next widest bone which does not overlap with existing legs 

If (next widest point is >= 0.75* original widest point)  

 Add legs to second widest point 

//if the second largest non-overlapping point is a similar size to the first, then we 

know this is a second wide point of the mesh and not just a small blob, as such it’s 

probably a good place to add legs. The fact that its non-overlapping with previous 

legs should mean it’s far enough away from other legs to be balanced.  

 Else  

If the large point where legs have been already attached is in the center (give or 

take 2 bones) 

 - Stick with one pair of legs //t-rex style 

Else 
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-Find the closest available bone to the opposite of the current leg and put 

a leg there // balance 

-Randomly decide whether or not to add arms based on how close first pair of legs is to the head 

// make it more likely to add arms the more space is between the head and first unusable bone 

If add arms 

 -add arms halfway between the head and first unavailable socket 

 

This method gives good results in most cases however there are some edge cases where the 

algorithm fails to achieve convincing results. If a very large pair of legs is added to the front or 

back of the creature to start with, it may overlap all available slots. This can leave the creature 

unbalanced with no free spaces to add more legs to correct. Secondly, if spine bending results in 

the thickest part of the creature being very close to the ground, then very tiny legs may be 

attached (leg size is driven by the distance between the attachment point and the ground). 

Finally, when legs are added the algorithm finds any bones which the leg will overlap with 

during its walk cycle and marks them as unusable. However, it does not account for the size of 

legs when adding them, it simply cares about which bones are available and not. This means that 

if a very small pair of legs is added to start with, it will only mark a small number of bones on 

either side as unusable. A large pair could conceivably be added to the first available bone next 

to the small legs and overlap them. These edge cases could be accounted for given more time, 

but unfortunately were left unsolved at the time of this project’s completion. 
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Figure 24: Example walking creatures 

4.3 Animation 

Each creature type has both movement and idle animations fully driven programmatically. Each creature 

type has a unique animation solution, with walking creatures being the most complex of the three. 

4.3.1 Flying Creatures 

Animation for flying creatures is relatively simple. Wings of both types rotate up and down, with insect 

style “buzzing” wings flapping at a much higher frequency as in nature. Flying creatures move up and 

down in the air when idle, for “flapping” wings the movement is faster and is in time with wing flaps. 

Creatures with buzzing wings stop moving up and down when moving forward, flapping creatures do not 

(to simulate bird style flying). From the middle of the body to the tail tip damped transforms are applied 

to every few bones, this makes this half of the body move with the movement of the creature. Damped 

transforms are used sparsely, as with flapping wings, to maintain a solid look to the body. The other half 

of the body bends in the direction of rotation. 
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4.3.2 Swimming Creatures 

Animation for swimming creatures is even simpler. Damped transforms are applied to every bone from 

head to tail. By simply moving the head back and forth when moving, the motion propagates through the 

body in a rippling motion, as if swimming in water. When idle the fish sways slightly as if in water. Any 

movement in the body also propagates to the fins which sway convincingly with the rest of the body. 

Before damped transforms were discovered, a swimming motion was attempted via a shader by using a 

sin function to drive displacement along the body. While this method seemed to work well on the body, it 

didn’t work once limbs were attached as it would cause them to become disconnected from one another.  

 

 

Figure 25: An early swimming creature with swim shader applied 

 

Figure 26: A creature with attached limbs with swim shader applied 
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4.3.3 Walking Creatures 

The idle animation of walking creatures is simply the root bone being moved up and down slowly frame 

by frame to evoke the creature breathing, the amount of movement is modified based on the creatures’ 

size. When turning the creature bends its neck and tail towards the direction of rotation, with the rotation 

amount being driven by the number of bones.        

 Initially these animations were handled within an update method, however once the project was 

built and packaged the idle animation did not look the same as it had in the inspector. This is because the 

number of times the update method is called varies depending on the environment. To alleviate this all 

update functionality was switched to a fixed update method, which is guaranteed to execute once per 

frame. 

The procedural walking algorithm used here is similar to many modern methods used for games (Skovbo 

Johansen, 2009), with modifications made to ensure movement is smooth for any creature size, speed and 

number of legs. 

Each leg has a target which dictates foot position. The position of this target is driven by a “targetMove” 

script. The bone which the leg is attached to is used as the “body” of the character as far as the animation 

script is concerned. On each frame a ray is fired from this bone towards the floor. If the distance between 

the foot position and the ray hit is large enough, then this means the body has moved far forward enough 

to warrant that a new step is taken. When this happens a new step position is calculated in front of the 

body, the distance of this new step from the body is driven by a step size parameter.  

 Different creatures walk with different gates, but often legs opposite from one another will move 

at opposing times. For example, humans take a step with one foot and then another. To maintain balance 

creatures with more legs do the same, creatures with 4 legs will usually take a step at the same time with 

legs diagonal from one another. This is not always the case, cats take steps with opposite legs at the same 

time when running for instance. However, when dealing with an arbitrary number of legs it was necessary 

to place some limitations on the styles of walking and these cases were not accounted for. This is a 

limitation of the generalized approach to animation taken here, as some specialist types of run/walk had to 

be abandoned in favor of a more generalizable style.  
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Figure 27: A typical human and animal walk cycle 

As a rule, legs opposite from one another take a step at opposing times. This is implemented by 

ensuring that a foot will only take a step when its opposite is stationary. This caused problems when 

adding multiple legs, as all legs on one side of the body would take a step at the same time. To remedy 

this, if more than one pair of legs has been added, the opposite foot reference of the left foot is 

overwritten with the foot target of the previous left leg which was added. This ensures that not only do 

opposing feet move at different times, but diagonal feet move at the same time (as the left foot will move 

only when the left foot behind it is stationary, and every right foot will only move when its opposing left 

foot is stationary). This only happens if the current and previous pair of legs are of a similar scale (within 

80%), as otherwise the scale discrepancy will cause the step frequency to be very different and moving 

opposite one another will not be feasible.       

 A step completion variable is used to lerp the foot position in between previous and new step 

positions. A sin function is used to raise the foot in the middle of the step.  At first this step completion 

was simply incremented by some amount each frame based on a speed parameter. Tuning this speed 

parameter correctly so that walking looked natural was challenging, so another approach was used. Step 

completion is instead driven by how close the creature body (the bone legs are attached to) is to the new 

foot position, this means that no matter the size and speed of the creature the legs will always be 

constantly in motion when walking, with no awkward pauses because the feet made a step to fast or the 

feet dragging behind due to being too slow. The problem with this method was that if the creature stopped 

moving halfway through a step, its feet would stay hanging in the air, which looked strange. To remedy 

this the initial method using a per frame step increment takes over if the creature is stationary, to complete 

any unfinished steps and bring the creature back to a neutral pose with all feet on the floor. 

 The last operation per frame is adjusting hip rotation. At first the movement of legs felt 
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disconnected from the body which stayed stationary. In nature when observing animals their body shifts 

depending on which feet are carrying their weight. To simulate this, the difference in height between a 

foot and its opposite is used to rotate bones in the spine. When a creature has its foot in the air, its “hip” 

will rise on that side, and fall on the other. This was a computationally cheap method of adding what 

looks like physically based motion to the creature.       

 Each time a leg is created, its size and speed are sent to the procedural animation script. The size 

is used to multiply the step distance, and step height. These are further multiplied by the speed if the 

creature has a speed multiplier above 1, this is to give the creature more of a running gate if it is fast 

moving.  

This process is the same for arms, except they ignore the target position in the y direction, to stay in the 

air. Arms also have an idle animation, with hands moving up and down slightly when stationary. 

The final procedural walking system adapts very well to any creature type and walking looks natural for 

any size, speed and number of legs. Due to the ray casting method, creatures are also able to accurately 

traverse uneven terrain. The main limitation is that essentially only one style of movement is represented, 

future work to expand this method with different styles of running which are hardcoded depending on the 

number of legs could add even greater variation. This is another example of generalization resulting in a 

poorer outcome. 

5 Conclusion 

Overall, this project has successfully delivered on its intended goal of creating an open-ended creature 

generator. It succeeds in creating a variety of creatures that for the most part look and move convincingly. 

There are a few limitations of the system which have been mentioned previously, most notably some edge 

cases in which the leg placement algorithm fails to create convincing walking creatures and the fact that 

only one style of walking animation is catered for. 

With that being said, there is a case to be made for the usefulness of such an approach. Generalizing 

procedural generation to this degree has notable drawbacks. Chiefly, ensuring the quality of the generated 

end result is challenging and generalizing prevents variation in some cases. For example, adding an 

arbitrary number of legs anywhere on the creature body leads to a wide variety of creatures, but prevented 

them from having bespoke movement animations suited to their leg layout. These could be hardcoded in 

in future, but at that point you are getting close to simply having a set of pre-determined creature types (as 

in No Mans Sky). If the access to artists is available, creating a vast pool of premade content is likely 

important to creating a polished generator of this kind.      



40 

 

 However, if access to artists is limited this approach successfully creates a wide variety of 

creatures from a very limited selection of component parts. 

5.1 Evaluation Against Requirements 

Revisiting the initial requirements, it can be said that they have all been fulfilled. That is not to say that 

the end product is perfect, but it does successfully meet the scope of requirements set before its 

completion. Requirements 1,2,3,4,5,7,8,9 and 11 are objective and were all achieved.   

 Requirements 6 and 10 (quality of creatures generated and their movement animation) are 

somewhat subjective so were evaluated via user testing. A series of users familiar with games was given 

free reign of the generator and asked if each creature looked and moved convincingly. On average out of 

100 different creatures evaluated by 4 different testers (25 creatures each). 95% were said to move 

convincingly and 83% were said to look convincing. The failures in movement were primarily due to the 

arm animation looking strange for small arms (which move back and forth quickly despite not making 

actual steps). Failures in the look of creatures was mostly down to problems with the leg attachment 

algorithm discussed previously. While not perfect acceptance rates, and using a limited pool of testers, 

95% and 83% are good enough to say requirements 6 and 10 are satisfied.  

5.2 Future Work 

There are several key areas of future work which offer avenues to improve the creature generator. 

 As highlighted in section 4.2.3 there are some edge cases which should be fixed to make the leg 

attachment algorithm of walking animals more successful.    

 Although speed was never an issue throughout development, base body generation (specifically 

FFD, rigging and skinning) could be translated to compute shaders to improve performance further.

 A greater focus on visual additions to the creatures generated would add more variation. For 

example a head generation system, pre made accessories like shells and horns to attach to the body or 

procedural texturing beyond colour changes.        

 Different procedural walking styles specifically tailored to the number of legs a creature has 

would add more variation. For example, kangaroo style hopping for two legs, cat like running for four 

legs, or snake like slithering for no legs.          

 Finally, optimization techniques could help ensure the quality of generated creatures, so long as 

those methods operate in real time.          
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