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Abstract

Fluid simulation is a well studied and important aspect of computer graphics,
and with increasing hardware power they are becoming more common in in-
teractive applications. This thesis focusses on exploring the idea of how these
fluid simulations can be used in the context of player interaction, and the novel
gameplay that can arise from the increasing usage of these simulated elements.
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Chapter 1

Introduction

Fluid simulation is a complex field of study in the realm of computer graphics,
with many differing approaches being continuously developed that consider a
wide variety of different use case requirements. Fluids show complex behaviours
and significantly add to the ’richness of virtual worlds’ [Muller et al.(2005)].
However, in real-time applications, and especially in videogames, there has been
a dirth of fluid simulations that allow for interaction outside of collision. As
computer hardware increases power, fluid simulations potentially offer a wide
variety of novel interactions, and it was in the potential of these interactions
that was the catalyst for this master’s thesis.

To limit scope, a single core gamplay concept was developed, that being
of the player controlling a sponge character that has the ability to absorb and
release water at various points around the game world. Fluids could then in-
teract with eachother, or with various other objects in different ways, taking
inspiration from common chemistry experiments.

This core gameplay mechanic allowed for an exploration into various forms
of fluid simulation, while narrowing scope of research towards a specific end use
case.

For clarity on part of the reader, in various areas of the project this concept
has been refered to by a working title of ’Frankensponge’.
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Chapter 2

Previous Work

With the ubiquitous frequency of fluids present in everyday life, they are a
common sight in videogames, and over the years a variety of techniques of
representing them have been developed and used.

Most common is the use of computationally inexpensive billboards and
meshes, covered with sometimes dynamic, orthertimes flipbook-animated ma-
terials. These are, naturally, not simulated, and are therefore relatively static.
They work for many situations, but are limited in terms of possible player in-
teraction.

A good recent example, however, of a more interactive approach to rendering
fluids is in the game Half-Life Alyx [Valve(2020)]. Here, shaders are used to give
the impression of bottles of liquid without having to do a full fluid simulation
[Polygon(2021)]. Again this is much cheaper in terms of computational cost, but
it still provides a greater level of realism and player interactivity as the shader
responds to player input, with the liquid appearing to move about as the player
tilts and shakes the bottle in VR. This being a VR game is also important; these
new mediums alongside the increase in hardware allow for (and in some cases
makes it a lot more necessary to have) new levels of player interaction that can
provide new gameplay and realism.

When looking at full fluid simulations, however, these are much less frequent
due to the high cost, however a number game engines currently include fluid
simulation systems, and in Unreal Engine there are two main ones that are
of particular relevance to this project. The first is a plugin called ’Niagara
Fluids’ [Epic2020] included as part of the release of Unreal Engine 5.0, and the
second a set of plugins available on the Unreal Marketplace called ’FluidNinja’
and ’FluidNinja Live’ [Andras(2022)], the former being a tool to bake out fluid
simulations for flipbook animations for effects and materials and the latter a
number of real-time fluid simulation effects.
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2.1 Niagara Fluid Plugin
The Niagara Fluids Plugin [Epic2020] is a plugin that ships with Unreal Engine
5, and provides a number of methods and templates relating to 2D and 3D
single simulations of both liquid and gasiform fluids. These simulations use a
hybrid approach with the simulation taking place on particles that are driven
in part by grids for attributes such as velocity, pressure, and divergence. As
with most sample content by unreal they are used as reference and as a base for
more complex simulations, and as such are relatively simple in appearance and
interaction, with few allowing for even collision with outside components.

2.2 Fluid Ninja
Fluid Ninja is an add on for Unreal Engines 4 and 5, with two major versions
being FluidNinja that is used to develop and simulate fluids to be baked into
flipbooks for low-cost fluid effects, and FluidNinja Live which implements a
wide range of real-time fluid simulation effects, including smoke, fire, and liquids
[Andras(2022)]. A lot of the simulations take place using grid-based methods,
with particular focus on aesthetics and optimisation for speed. There are a few
examples of interaction, mainly with the simulations being affected by object
collisions.
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Figure 2.1: A selection of the template fluid systems included in the Niagara
Fluid Plugin
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Chapter 3

Technical Background

Fluid: "A substance that cannot support shear stress in static equilibrium" or "a
substance that flows because it cannon resist deformation". [Muller et al.(2005)]

In the domain of fluid simulation there are a great number of different tech-
niques developed that are suitable to different contexts and requirements, how-
ever, like for most simulated phenomena, there are only a couple main ap-
proaches of simulating that this variety of techniques builds off of. In this case,
there is the grid-based Eulerian approach, and the particle-based Lagrangian
approach. Both techniques as a base incorporate and build from the Navier-
Stokes equations developed in 1822 as a method of describing the dynamics of
fluids [Muller2003].

∇ � u = 0

ρ
Du

Dt
= −∇µ+∇2u+ ρF

3.1 Grid-Based Eulerian Fluid Simulation
The grid-based Eulerian fluid simulation method was well summarised by [Stam(2003)].

As the name implies, the grid-based method simulates a fluid in a finite
region by dividing the simulation area into identical cells that are then sampled
into at the given cell’s centre.

This approach uses a variation on the Navier-Stokes equations to model a
fluid’s density moving through a velocity field:

∂ρ

∂t
= −(u �∇)ρ+ κ∇2ρ+ S

This equation gives three terms, the first, −(u �∇)ρ, moves the density along
the velocity field; the second, κ∇2ρ, diffuses the density at a given rate; and the
final term, S, is for inputs that increase density with new fluid coming from a
given source.
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3.1.1 Fluid Diffusion
Diffusion calculations exchange density with directly surrounding neighbour
cells, at a given diffusion rate. An unstable version is to model this forward:

Cell Density = (cell diffusion rate * value of
surrounding cells) - (4 * value of current cell);

In this version values will oscillate and diverge, so a more stable version goes
backwards to find where the density of a given cell is coming from:

Cell Density = (value of current cell + cell diffusion
rate * value of surrounding cells) / (1 + 4 * cell
diffusion rate);

This version can also handle any delta time value without the simulation break-
ing down.

3.1.2 Advection
Simmilar to the diffusion, a simple linear backtrace works backwards to find
the cells that feed new density values into the current cell, rather than working
the current cell’s values forward along the advection velocity field. The density
values of the four cells around the backtraced point are then lerped to find the
new density value.

3.2 Particle-Based Lagrangian Fluid Simulation
The particle-based Lagrangian fluid simulation method was summarised by
[Muller2003]. The specific techniques are built on the ideas of ’Smooth Par-
ticle Hydrodynamics’, a particle method that does not need a grid to calculate
spacial derivatives, instead being caulculated through a series of interpolation
formulae [Monaghan(1992)].

Here, fluids are represented by a set of positions, masses, and additional
attributes, computed as a smooth, continuous field from discrete values sampled
at particle locations through the equations from Smooth Particle Hydrodynamic
(SPH) methods [Muller et al.(2005)].

3.2.1 Density
The first attribute that is calculated is density:

ρS(r) =
∑
j

mj
ρj
ρj

W (r − rj , h) =
∑
j

mjW (r − rj , h)

Here, the output density ρS is driven by a sum of the masses of the other par-
ticles mj , weighted using a smoothing kernel W (r, h) weighted by the distance
between the current particle r and the current summed particle rj .
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3.2.2 Pressure
The application of the SPH rule to the pressure term of the Navier-Stokes equa-
tions −∇p, and made symmetrical, yields:

fpressure
i = −

∑
j

mj
pi + pj
2ρj

∇W (r − rj , h)

Here, the total pressure for the current particle i is calculated by the sum of
the masses of the other particles mj and the individual pressures p, calculated
using the ideal gas state equation:

p = k(ρ− ρ0)

Where k is the temperature-dependent gas constant, or stiffness of the fluid,
ρis the density calculated in the previous section, and ρ0is the rest density of the
fluid. The full pressure calculation then is weighted for each particle summed
using a smoothing kernel, as per the SPH method.

3.2.3 Viscocity
Particle viscosity is used to accelerate particles in the direction of the relative
speed of the other particles in the surrounding environment. Using the SPH
rule applied to the viscosity term µ∇2 and symmetrising the resulting formula
gives:

fviscosity
i = µ

∑
j

mj
(vj − vi)

ρj
∇2W (r − rj , h)

Where μ is the particle viscosity.

3.2.4 Surface Tension
Particles in a fluid are subject to attractive forces from neighbouring particles;
intermolecular forces inside a fluid are equal, however on the molecular level they
are unbalanced at the free surface (boundary between fluids). These net forces,
including surface tension, act in the direction of the surface normal towards
the fluid. A tension coefficient forms the strength of this surface tension force,
dependent of the attributes of the two fluids that form the surface.

With pressure, viscosity, and surface tension all calculated, the particles
can then be accelerated with the combined forces of these parameters with the
following formula:

ai =
1

ρi(f
pressure
i + fviscosity

i + fexternal
i )

Where fexternal
i is the sum of all external forces, including gravity and surface

tension.
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3.2.5 Extensions for Multiple Fluids
In order to extend this simulation to include multiple fluids, [Muller et al.(2005)]
suggests storing what would otherwise be global variables shared by all particles,
such as viscosity or the gas constant, and storing them as particle attributes that
can then be changed per particle. This gives way to several changed formulae
from those above. The viscosity vector calculation needs to support sepparate
viscosity values between the two particles being compared in the sum:

fviscosity
i =

∑
j

µj + µi

2
mj

(vj − vi)

ρj
∇2W (r − rj , h)

Other suggested aspects are relevant to simulate specific phenomena within
the fluid, such as air pockets with dynamic air particle creation and deletion
which are not relevant to the requirements of this project.

3.2.6 Smoothing Kernels
The smoothing kernels proposed include a general case kernel:

Wpoly6(r, h) =
315

64πh9

{
(h2 − r2)3 : 0 ≤ r ≤ h

0 : otherwise

A kernel for pressure ca lculation:

Wspiky(r, h) =
15

πh6

{
(h− r)3 : 0 ≤ r ≤ h

0 : otherwise

And a kernel for viscosity calculations:

Wviscosity(r, h) =
15

2πh3

{
− r3

2h3 + r2

h22 + h
2r − 1 : 0 ≤ r ≤ h

0 : otherwise

∇2W (r, h) =
45

πh6
(h− r)

W (|r| = h, h) = 0

∇W (|r| = h, h) = 0
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Chapter 4

Solution

Starting the solution phase of the project, Unreal Engine 5 was chosen as the
engine for the project in order to use the robust Niagara effects system.

4.1 Player Character
Given that this is a game, creation started with the player character and its
controls. Inheriting from the base Unreal Engine class of ACharacter was the
APlayerChar class, which uses the built in player movement and navigations
systems of Unreal Engine. The player can move across a 2D plane, with 2D being
chosen to limit the simulations similarly to 2D to reduce overall complexity of
the required solution to the essential elements. The player can also jump and
crouch, and absorb and release fluid.

4.1.1 Absorbtion & Releasing
Two inputs were created to control the player’s ability to absorb and release liq-
uid, which set publicly readable booleans that control importing and exporting
of fluid particle data described in following sections. .

As the player absorbs more, a few adjustments are made to the Charac-
terMovementComponent that controls player movement, based on the current
amount the character has absorbed as a percentage based on the total amount
it can absorb (a value that is exposed as editable in blueprints and on instanced
versions of the character). Jump velocity and ground friction are both decreased,
to replecate a slippier and heavier character. Also, a dynamic material instance
is used as the material on the sponge character (called ’M_Frankensponge’) with
a parameter called ’wetness’ that increases specularity and decreases roughness
parameters on the material when increased. This gives the sponge a shinier ap-
pearance, as if wet. Initially this material instance was set in C++ code, how-
ever creating the material this way caused issues with saving scenes in which the
player pawn was present, as the dynamically created material was not saved to
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a file, so this was moved to a blueprints version of the character which inherited
from the C++ version of the player character actor.

Figure 4.1: The sponge material at minimum and maximum absorbtion, showing
the difference in the wetness parameter.

4.2 Grid-Based Fluid Simulation
With the ability to import and export data to the Niagara effect, work could
then be done on making a fluid simulation that could use this data. The grid-
based method was chosen to test first due to it being closer to the techniques
used by the example fluid simulations given by Epic in the Niagara Fluid plugin.

Much of this simulation was achieved through transcribing equations and
code given in the existing papers given in the Technical Background section.

Grid2DCollections were used as the data storage method, allowing for mul-
tiple layers of data shared across all points on the 2D simulation grid. Data
from this could then be directly mapped to a Render Target used in rendering
the simulation to a material.

Based on [Stam(2003)], the order of simulation goes from fluid diffusion,
to fluid advection along the vector grid, with two copies of the fluid grid, one
current to work on and one to hold the previous information, with the two
being swapped after each simulation stage to clear the working grid and move
information to the previous grid. All are given the same resolution of cells in
the X and Y by use of system parameters set on the overview node.

Diffusion and Advection calculations were carried out in two scratchpad
modules using Custom HLSL nodes that allow for the direct writing of HLSL for
calculations, which meant that several dozen nodes with dozens of connections
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could be reduced to a dozen lines of code which was much more manageable
and much easier to parse for debugging purposes.

4.3 Importing & Exporting Data to Niagara Ef-
fects

With an initial fluid simulation completed, work could then be done on the
ability to import and export data to this Niagara effect to power the simulation.
This was a key technical challenge to allow for the core gameplay ability of being
able to absord and release liquid, to transport it between areas of the game
world.

In the context of Unreal Engine’s Niagara effects system, this importing and
exporting is achieved with the use of User Exposed parameters on the Niagara
end, and a set of function calls on the C++/Blueprints end.

4.3.1 Exporting Data from Niagara
Exporting data from niagara is done through an ’Export Particle Data’ node
on the node graph, or, at the emitter level, using the ’Export Particle Data to
Blueprint’ module. As can be seen in the figure below, exporting in this way
allows the user to export a total of three parameters, of two vectors and a float,
for a total of 7 float values maximum per particle. Although labelled, they can
export any arbitrary particle data of the given size, however for the case of
exporting fluid particle data only the Position and Size values were required.

Figure 4.2: The Export Particle Node

Once exported, this calls functions relating to a callback handler, ’INiagara-
ParticleCallbackHandler’, which is a function that is called from the Niagara
system with the exported data as its given input parameter.

4.3.2 Absorbtion & Releasing Calculations
To achieve the absorbtion and releasing actions key to the gameplay element of
absorbing/releasing fluid, at this point between exporting and importing data
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to the Niagara system collision checks are carried out between the player char-
acter’s bounding hitbox and each of the exported particles.

Collision is carried out by a sepparate function, FindPlayerBoundedParti-
cles, which tests the player BoundingBox boxcomponent against a sphere at
each particle location of the given particle’s size.

If the player is absorbing or releasing, checks are performed to find out how
much can be absorbed/released (based on how much the player has absorbed,
the max amount it can absorb, and the absorbtion/release rates), and this is
split amoung all the particles that were overlapped to

4.3.3 Importing Data to Niagara
Importing data back into Niagara is simpler on the C++/Blueprints side, with
a set of functions for importing different types of values (float, vector, etc.),
with array and non-array versions.

In the Niagara effect, a scratchpad module goes through for each particle
and reads in the new particle size.

4.4 Particle-Based Fluid Simulation
After producing a test of the grid-based fluid simulation method, another Ni-
agara effect was created to produce a particle-based fluid simulation, again
largely achived by transcribing the equations explained in the Technical Back-
ground section in scratchpad modules as part of separate simulation stages,
utilising Custom HLSL nodes. Extra attributes were added to particles, as per
the multiple fluid simulations of [Muller et al.(2005)], including particle specific
gas constants, viscosities, and rest densities, allowing for different fluid types to
be simulated together in the same particle system.

4.5 Extras
There are a few last parts that were also completed as part of this project.
A user interface was created to display the percent to which the player character
is full of liquid.
A range of tests were completed to evaluate the integrity of C++ classes. Testing
is not always feasable for very visual simulated projects such as this, especially
when using an effects system like Niagara, however tests were written to make
sure actors have necessary values.
A ’water spout’ actor was also created, with a simple fountain effect and a hitbox
that if the player is inside can use to absorb an unlimited amount of water, for
testing purposes and potentially for gameplay purposes in a hypothetical feature
complete version of the game.
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Chapter 5

Conclusion

The overall system still needs further refinement to make the visual aspects of
the project look more appealing, however all the requirements of the system are,
at least individually, fulfilled.

Unfortunately, documentation for many of the aspects of Unreal Engine
that were used throughout this project was limited or in many cases absent,
which was a major challenge. This was espcially true for the HLSL scripting
that is possible through HLSL script nodes in Niagara effects; while HLSL is
documented, unreal expands with its own functionality that is hard to find.

Importing data into a Niagara effect is relatively simple, as it is possible
to import unlimited arbitrary data, however to export data is limited. Render
targets can be exported, but are slow and complex to code or use in blueprints,
and the only alternative is the particle export which has limits to 7 floats per
particle, and data has to be attached to a particle to export, limiting useability.

5.1 Future Work
To build off of these simulations there is the potential to increase the number
of elements that interact with the fluids, given that this project includes data
importing and exporting to Niagara systems. These could include sources of
heat that increase temperature of particles, or trapped particles that increase in
pressure to push external objects, rather than it just being the fluid simulation
that reacts to the collision of other objects.
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