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Abstract 

This paper documents the design and implementation of an interactive shader editor tool 

which consists of a node-based interface and a code-based interface. The main goal of the 

tool is to provide developers with a platform to create, modify, and compile shaders with 

a real time preview of the changes. Moreover, it includes a node-based interface which is 

tailored towards artists where they can develop 2D shaders without prior programming 

knowledge. The editor includes real-time shader previewing, offering instant visual 

feedback on any modifications. This integrated approach aims to improve accessibility 

and usability for artists and developers, creating a more inclusive environment for shader 

development. The tool addresses the needs of both visual and code-based workflows to 

simplify shader creation and expand its appeal.    
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Introduction 

Shaders are fundamental components in modern computer graphics, responsible for 

determining how surfaces and effects are rendered on-screen. They are small programs 

that run on the GPU, controlling the final appearance of pixels, vertices, and textures in a 

scene. Shaders play a crucial role in today’s world through visual effects such as material 

properties, lighting and even shadows. They are important in achieving realistic graphics 

in various applications, from simulations to animations to games. Shaders come in 

different types, including vertex shaders, fragment shaders, and compute shaders. Vertex 

shaders process each vertex's data and determine its position in 3D space, while fragment 

shaders compute the color and other attributes of each pixel on the screen (Jeremias and 

Quilez 2014). Compute shaders, on the other hand, are used for general-purpose 

computing tasks that can be parallelized across the GPU (Mannub and Hinkenjann 2005).  

 

Shader development has traditionally been a complex and technical task, often requiring 

extensive knowledge of graphics programming. Recent advancements have started to 

simplify this process by introducing more intuitive tools and interfaces. Interactive shader 

development has emerged as a key approach, facilitating real-time experimentation and 

iteration (Jensen et al. 2007). This method allows users to interact with shaders 

dynamically, providing immediate feedback that is essential for refining visual effects 

while optimizing performance. Interactive shader development approaches facilitate a 

more intuitive interaction with shaders by allowing users to see the effects of their 

changes immediately. This has led to the creation of innovative tools that combine visual 

and code-based editing methods. Node-based systems, for example, simplify shader 

creation by allowing users to construct shaders through visual nodes that represent 

various operations and parameters. This approach not only enhances accessibility for 

artists but also provides a robust platform for developers to fine-tune and extend shader 

functionality (Mannub and Hinkenjann 2005). In addition to the node-based interface, the 

editor features an integrated code editor. This component provides developers with the 
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ability to write and modify shader code directly, leveraging advanced code editing 

features such as syntax highlighting and error checking. The combination of visual and 

textual editing tools allows for a flexible development environment where both artists and 

developers can work concurrently and efficiently (Jeremias and Quilez 2014). 

This project focuses on designing and implementing an interactive shader editor that can 

be used by developers and artists. The goal is to present a tool that supports users in 

creating, compiling, and manipulating shaders, with the added benefit of real-time visual 

feedback. The following sections will detail the design and implementation of this editor, 

illustrating how it enhances the shader development process and supports a collaborative 

workflow. 
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Related Work 

Shader development tools have advanced significantly over time. This section introduces 

a couple of work previously done related to this field, with a focus on interactive shader 

tools and their impact on shader development 

Shadertoy 

Shadertoy (2013) is an innovative platform that has had a significant impact on 

interactive shader development. Shadertoy provides an online environment where users 

can experiment with fragment shaders in real-time. The platform supports GLSL 

(OpenGL Shading Language) and allows for immediate visual feedback, which is 

essential for iterative shader design and refinement (Jeremias and Quilez 2014). 

Shadertoy’s primary advantage is its real-time rendering capability. Users can observe 

changes to shader code instantly, facilitating rapid experimentation and optimization of 

visual effects. It also promotes an active community by allowing users to share their 

shaders and discover those developed by others. This collaborative feature increases 

learning and drives innovation within the shader development community. (Jeremias and 

Quilez 2014). 

 

 

  Figure 1: “Raymarching - Primitives” (Shadertoy 2013) 
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GLSL Sandbox 

GLSL Sandbox's basic online platform for GLSL shaders provides a complementary way 

to interactive shader creation. This tool prioritizes usability and accessibility, making it a 

valuable resource for both new and experienced shader developers (Jensen et al. 2007). 

GLSL Sandbox enables users to preview shader results in real-time and adjust shader 

parameters dynamically. The simple interface facilitates instant feedback, which is 

essential for fine-tuning shaders and trying out various visual effects. The platform’s 

community features, including shader sharing and modification, also contribute to a 

collaborative environment that encourages knowledge exchange and creative exploration 

(Mannub and Hinkenjann 2014).  

 

Figure 2: Example of shader created using GLSL Sanbox (GLSL Sandbox). 

Python Scripting 

The integration of python scripting into shader development represents a significant 

advancement in the field. As discussed by Mannub and Hinkenjann (2005), python 

scripts offer a high-level approach to shader management, providing a more flexible and 

programmable environment for developers. 
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Using Python for shader development simplifies the creation and manipulation of shaders 

by automating tasks and customizing tool functionalities. This approach is particularly 

beneficial for developers familiar with Python, as it allows them to leverage their existing 

programming skills to enhance shader development workflows. The ability to integrate 

Python scripting also facilitates the development of custom tools and extensions, further 

extending the capabilities of shader development environments. 

Node-based Editors 

Node-based shader editors have greatly impacted shader creation by offering visual 

interfaces that simply the complexity of traditional shader programming. Tools such as 

Unreal Engine’s Material Editor and Blender’s Shader Editor, are great examples as users 

construct shaders through graphical nodes representing different functions and operations 

(Jensen et al. 2007). The node-based approach simplifies shader development by 

providing a visual representation of the shader’s data flow, making it more accessible to 

users with limited programming experience. This method not only enhances usability but 

also supports collaborative workflows by providing a common platform for artists and 

developers to work together on shader design. 

Technical Background 

This section delves into the technical concepts that are fundamental to the design and 

implementation of the interactive shader editor  

Fragment Shader Pipeline 

The fragment shader pipeline is a key component of modern graphics programming, 

influencing how pixels are processed and rendered on the screen. In a typical graphics 

pipeline, vertices are first transformed from 3D space to screen space through a series of 

stages including vertex transformation, primitive assembly, and rasterization. The 
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rasterization stage generates fragments, which are potential pixels on the screen, from the 

primitives (points, lines, or triangles) (Jensen et al. 2007). 

The fragment shader operates on these fragments, calculating their final color and 

attributes based on various inputs like texture maps, lighting conditions, and material 

properties. This process involves evaluating the shader code, which manipulates the 

fragment's attributes to produce the desired visual effects. The results are then written to 

the framebuffer, which represents the final image displayed on the screen. 

In the context of the interactive shader editor, leveraging the fragment shader pipeline 

allows for real-time visual feedback. Users can instantly see the effects of shader 

modifications, facilitating an iterative development process. This real-time feedback is 

crucial for refining visual effects and optimizing performance, as it provides immediate 

insight into how changes impact the final rendered output (Jeremias and Quilez 2014). 

Ray Marching and Signed Distance Functions (SDFs) 

Ray marching is an advanced technique for rendering complex 3D scenes and effects 

within shaders, particularly effective when using Signed Distance Functions (SDFs). Ray 

marching involves casting a ray from the camera into the scene and stepping along the 

ray’s path to determine intersections with surfaces (Mannub and Hinkenjann 2005). This 

method is particularly suited for rendering implicit surfaces described by SDFs. 

Traditional rasterization processes geometry in a scene to determine pixel colors. On the 

other hand. Ray marching computes the distance from a ray’s origin to the nearest surface 

in the scene. This method is computationally expensive but enables for highly detailed 

visual effects that would be difficult to achieve with traditional rendering techniques 

(Jeremias and Quilez 2014). 

An SDF provides the shortest distance from any point in space to the nearest surface. By 

evaluating the SDF at each step along the ray, the algorithm can determine whether the 

ray has intersected a surface. If the distance falls below a predefined threshold, the 

algorithm considers the ray to have hit the surface, allowing for shading calculations. If 

the ray does not intersect any surface within the maximum number of steps, it is deemed 

to have missed all surfaces (Jeremias & Quilez 2014). The use of SDFs offers several 
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advantages: they allow for the representation of complex geometries with minimal 

memory usage and enable smooth blending between shapes. The interactive shader editor 

integrates ray marching and SDFs, providing users with the ability to create and 

manipulate sophisticated 3D shaders. This integration supports procedural generation of 

surfaces and volumes, granting users extensive creative control over their visual outputs. 

Lighting 

Lighting is one of the most important components of shader programming, as it directly 

influences both the realism and visual attractiveness of the generated scene. Lighting 

calculations in real-time shader creation must be accurate and efficient in order to 

preserve performance while producing the intended visual effects. Lighting in shader 

development can be grouped into different categories with varying degrees of complexity 

and realism. Below are examples of lighting generally used to contribute to creating 

realistic environments in real-time applications.  

• Ambient is the fundamental type of light used in shader development. It 

represents the non-directional light found in an environment. It provides a 

foundation level of illumination to make sure that the scene is not black.  This 

light is frequently used along with other lighting models to produce more realistic 

scene renderings. 

• Diffuse lighting is essential for simulating how light scatters across rough 

surfaces. It is based on Lambert's cosine law, which states that the brightness of a 

surface is directly proportional to the cosine of the angle between the surface 

normal and the incoming light direction (Pharr et al. 2023). The intensity of 

diffuse light 𝐼" on a surface is calculated as 

 

𝐿" is the light intensity, 𝑵 is the normal vector at the surface point, and 𝑳 is the 

direction vector from the light source to the surface point (Akenine-Möller et al. 

2018). The dot product 𝑵 ∙ 𝑳 determines the angle at which the light hits the 

surface, influencing the brightness perceived by the viewer. 
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• Specular lighting occurs when the light hits an object’s surface and reflects back. 

This sort of lighting depends on the viewer's position relative to the light source 

and the surface. It is used in shaders such as metal or glass. The specular 

reflection is often calculated using models such as the Phong or Blinn-Phong 

models, which consider both the angle of incidence and the shininess of the 

surface (Glassner, 2014). 

Implementation Overview 

This project focuses on implementing a real-time shader editor, integrating both a code 

editor and a node editor. The node editor is designed for compiling simple 2D shaders 

using node-based interface, while the code editor supports more complex shader 

techniques such as ray marching. The goal of this project is to provide flexible 

environment for real-time shader creation and testing, with an emphasis on ease of use 

and efficiency. The aim of this project is not on achieving photorealistic rendering but 

rather on providing a practical, user-friendly platform for developing and testing shaders 

in real-time.  This was implanted using OpenGL, Python, and Qt API. 

Functionality 

The node editor is a visual interface that allows users to create shaders by connecting 

various nodes, each representing a specific operation. This editor is ideal for users who 

may not be comfortable writing GLSL code directly or for quickly prototyping shader 

effects. The nodes are implemented using the NodeGraphQt library, which provides a 

flexible framework for creating and managing node-based UIs in Python. 

Node Editor 

Core Components: 

• Material Node: Represents the core material properties, including base color, 

specular highlights, and shininess. Users can select shading models (Lambert or 

Phong) and adjust material properties using sliders and color pickers. 
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• Color Node: Provides a constant color output that can be used as input to other 

nodes. It includes a color picker widget, allowing users to choose a specific color. 

• Blend Node: Allows users to blend two colors using different blending modes 

such as Multiply, Screen, and Overlay. This node is useful for creating complex 

color effects. 

• Texture Node: Facilitates the inclusion of texture maps into the shader. Users can 

load textures from files and connect them to other nodes, such as UV coordinates. 

• UV Node: Generates UV coordinates, which are essential for texture mapping. 

The UV Node ensures that textures are properly mapped to surfaces in the shader. 

• Gradient Node: Generates a gradient color based on UV coordinates, useful for 

creating smooth color transitions across a surface. 

In the node editor, users right click and choose the desired node into the workspace and 

connecting them in a correct manner.  

Code Editor 

The code editor is designed to allow users with programming skills develop complex 2D 

and 3D shaders.  

Core Features: 

• Syntax Highlighter: This component provides syntax highlighting for GLSL code, 

improving readability and helping users spot errors quickly. 

• Error Highlighting: The editor parses error messages from the GLSL compiler 

and highlights the corresponding lines in the code, allowing users to debug their 

shaders efficiently. 

• Real-Time Compilation: The editor compiles GLSL code in real-time, with any 

errors or successful compilations immediately reflected in the shader preview. 

The code editor is designed for users who are comfortable with GLSL and wish to 

implement more complex shaders, such as those using ray marching. The editor supports 

syntax highlighting, error checking, and real-time compilation of GLSL code, enabling 

users to write and test shaders efficiently. Figure 3 shows the code editor layout along 

with an example compiled shader.  
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Figure 3: Code Editor UI with example compiled shader 

Ray Marching Integration 

Ray marching is a technique used in the code editor to render complex 3D scenes. It 

involves simulating the path of light as it interacts with objects in a scene, calculating 

distances to surfaces using signed distance functions (SDFs).  

Key Components of the Ray Marching Implementation: 

• Signed Distance Functions (SDFs): These functions calculate the distance from a 

point in space to the nearest surface, which is essential for determining the point 

of intersection along a ray's path. 



 

15 

• Ray Marching Loop: The core algorithm iteratively advances a ray through the 

scene, checking distances at each step until it intersects a surface or exceeds a 

maximum distance. 

Pseudocode for Ray Marching: 

 

Figure 4: Ray Marching Pseudocode 

 

Challenges Encountered  

One of the most significant challenges encountered during the development of this 

project was the inherent limitations of the node editor, which is designed to compile only 

2D shaders. The node editor was intentionally simplified to focus solely on 2D shaders. 

This decision was made as it was a difficult process to incorporate nodes to compile a 3D 

render. Users are limited to working with 2D surfaces, which can be a significant 

drawback when attempting to create more complex or three-dimensional visual effects. 

The lack of support for 3D shaders in the node editor means that users who wish to 

develop shaders with depth, such as those used in ray marching or 3D texture mapping, 

must switch to the code editor, which can disrupt workflow continuity. Adding support 

for 3D shaders, for example, would involve not only extending the types of nodes 

available but also reworking the underlying GLSL code generation and real-time preview 
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systems to handle the increased complexity. This was challenge in the initial design 

choices, where the decision to focus on 2D shaders has long-term implications for the 

system's scalability. 

Another challenge was ensuring seamless integration between the node editor and the 

code editor. Since the node editor is restricted to 2D shaders, users who need to transition 

to more complex 3D shaders must use the code editor. However, this transition is not 

always smooth. The difference in capabilities between the two editors can lead to 

inconsistencies in the shader development process. For instance, a shader developed in 

the node editor might need to be entirely rewritten when switching to the code editor for 

3D effects, resulting in a duplication of effort. 

Efficiency and Effectiveness 

The node editor allows for experimentation and compiling of 2D shader. The code editor, 

on the other hand, provides direct control over shader logic, making it suitable for 

advanced users who require fine-grained control over both 2D or 3D shaders. 

Strengths 

Real-Time Feedback is one of the main strengths this tool. The ability to see changes 

reflected immediately in the preview window greatly enhances the development process, 

allowing for quick iteration and refinement of shaders. Moreover, the use of a flexible 

node-based framework means that new features, such as additional shading models or 

texture handling, can be integrated with minimal disruption to existing functionality. 

Specific to the code editor, it supports both 2D and 3D shaders. This versatility makes it a 

powerful tool for users who need to develop shaders for a wide range of applications, 

from simple 2D effects to complex 3D scenes. The ability to handle 3D shaders is 

particularly important for developers working in game development, simulations, or any 

field requiring realistic lighting and shading. 

The node editor is very simple and straightforward to use. It does not have many buttons 

or is not crowded. The real time preview is also present allowing the user to see the 

preview node by node as they make their changes.  
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Limitations 

 The node editor was simplified to focus solely on 2D shaders. This inherently restricts 

the types of shaders that can be created. Users are limited to working with 2D surfaces, 

which can be a significant drawback when attempting to create more complex or three-

dimensional visual effects. The lack of support for 3D shaders in the node editor means 

that users who wish to develop shaders with depth, such as those used in ray marching or 

3D texture mapping, must switch to the code editor, which can disrupt workflow 

continuity. 

Given that shader development often involves working with 3D effects and complex 

lighting models, users may find the node editor's 2D limitation to be a significant 

constraint. Managing user expectations and providing clear guidance on when to use the 

node editor versus the code editor was a necessary part of the project's documentation 

and user interface design.  

Another challenge was ensuring seamless integration between the node editor and the 

code editor. Since the node editor is restricted to 2D shaders, users who need to transition 

to more complex 3D shaders must use the code editor. However, this transition is not 

always smooth. The difference in capabilities between the two editors can lead to 

inconsistencies in the shader development process. For instance, a shader developed in 

the node editor might need to be entirely rewritten when switching to the code editor for 

3D effects, resulting in a duplication of effort. 

GLSL is a strict language with a high sensitivity to syntax and type errors. The code 

editor's real-time feedback can help catch these errors quickly, but resolving them can 

still be challenging, especially in complex shaders. Unlike traditional programming 

environments that offer advanced debugging tools, the code editor is limited in its ability 

to provide detailed, step-by-step debugging support. This can make it difficult to identify 

and fix issues, particularly when dealing with intricate shader logic or when errors are 

buried deep within the code. 
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Conclusion 

The primary objective of this project was to create an interactive shader editor that by 

creating a tool that is accessible to both artists and developers. This goal was achieved 

through the implementation of a hybrid interface that combines node-based graph along 

with text-based code editor. The real-time preview functionality successfully enables 

immediate visual feedback, a critical feature that supports and helps users to visualize the 

changes made to the shaders. There are several areas where the project could be 

improved. Firstly, the current node editor is restricted to a 2D interface, which does not 

effectively represent the complexities and spatial relationships of shaders that operate in a 

3D space. This can limit users with no programing experience to compile 3D shaders 

using this tool. Secondly, the editor handles basic shaders well, but performance can 

degrade with very complex shaders or when running on lower-end hardware. Optimizing 

the rendering pipeline could help improve the overall usage.  

Currently, the editor supports a range of shader functions but is still very limited in terms 

of integrating with external APIs and advanced rendering techniques such as ray tracing 

or volumetric rendering. Improving the tool is essential to be able to have full 

functionality. Further developments to the node editor need to be made. The node editor 

needs to be developed to allow the creation of 3D shaders. Moreover, more nodes need to 

be implemented so users can compile more complex 2D and 3D shaders.  

Some additional suggestions for future development include: 

• Advanced Shader Libraries and Templates: Providing a library of pre-made 

shaders and templates can help users quickly start projects and learn from existing 

examples, which is especially beneficial for those new to shader programming. 

• Integration with More Rendering Engines: Currently optimized for OpenGL, 

expanding support to include other rendering engines like Vulkan, DirectX, or 

even game engines such as Unreal Engine and Unity would make the tool more 

versatile and appealing to a broader audience. 

 



 

19 

References  

Akenine-Moller, T., Haines, E. and Hoffman, N., 2018. Real-time rendering, fourth 

edition. 4th ed. London: CRC Press. 

Anon., 2024. GLSL sandbox [online]. Glslsandbox.com. Available from: 

https://glslsandbox.com/e [Accessed 15 June 2024]. 

Beautypi, 2024. Shadertoy BETA [online]. Shadertoy.com. Available from: 

https://www.shadertoy.com [Accessed 15 June 2024]. 

Glassner, A. S., 2014. Principles of digital image synthesis. Morgan Kaufmann. 

Jensen, P. D. E., Francis, N., Larsen, B. D. and Christensen, N. J., 2007. Interactive 

shader development. In: Proceedings of the 2007 ACM SIGGRAPH symposium on Video 

games. New York, NY, USA: ACM. 

Jeremias, P. and Quilez, I., 2014. Shadertoy: Learn to create everything in a fragment 

shader. In: SIGGRAPH Asia 2014 Courses. New York, NY, USA: ACM. 

Kajiya, J. T., 1986. The rendering equation. Computer graphics [online], 20 (4), 143–

150. Available from: http://dx.doi.org/10.1145/15886.15902. 

Mannuß, F., 2005. Interactive Shader Development Using Python Scripts [online]. 

Psu.edu. Available from: 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=816db3b70345dec2e9

3003ac052d36b8130d6a0a [Accessed 10 July 2024]. 

Pharr, M. and Jakob, W., 2023. Physically Based Rendering, fourth edition: From Theory 

to Implementation. London: MIT Press. 

 


