
1

NCCA

MSc Computer Animation and Visual Effects
August 2024

Unreal Engine USD Attribute Toolset

by

Jack Purkiss

Bournemouth University, NCCA, Masters Project

i

Abstract

Proto Imaging is a studio that have been producing 3D animated video for over twenty years. Pre-
dominantly using Maya, Vray and a range of compositing and post-production software, they have
begun exploring the area of real-time 3D animation. Using the Universal Scene Description (USD)
developed by Pixar, this project aims to produce a set of pipeline tools to assist Proto Imaging in a
workflow between Maya and Unreal Engine. The project is divided into three sections: the USD At-
tribute Function Library, which allows direct access to and manipulation of USD attributes; interactive
tools for controlling USD animations within Unreal Engine; and functionality to automatically replace
USD shaders with native Unreal Engine materials.

Bournemouth University, NCCA, Masters Project

ii

Acknowledgements

I would first like to thank James Malloch at Proto Imaging for allowing me to collaborate with him.
Without his continued support, this project would not have been possible. Extending my thanks, I am
incredibly grateful for Jon Macey for his frequent assistance throughout this project and the rest of
year, as well as the rest of the NCCA staff.

Furthermore, I thank my fellow CAVE people, my friends, family and Laura for their encourage-
ment (and accommodation) on this project, and degree as a whole.

Bournemouth University, NCCA, Masters Project

iii

Contents

1 Introduction 1

2 Background 2
2.1 Data Transfer Approaches . 2

2.1.1 FBX . 2
2.1.2 Alembic . 2
2.1.3 USD . 2
2.1.4 USD vs FBX . 3

2.2 USD in Unreal Engine . 4
2.2.1 USD Plugin . 4
2.2.2 Unreal Wrapper Classes . 5
2.2.3 Runtime access . 5

2.3 Proto Imaging Requirements . 6
2.3.1 Custom attribute access . 6
2.3.2 USD animation playback controls . 6
2.3.3 USD shader swap . 6

3 Solution 7
3.1 USD Attribute Blueprint Function Library . 7

3.1.1 Exporting custom attributes . 7
3.1.2 Blueprint accessible functions . 8
3.1.3 Template functions . 8
3.1.4 Value retrieval . 9
3.1.5 Vector Support . 9

3.2 USD Interaction . 9
3.2.1 Level Sequence Player Manager . 10
3.2.2 Button blueprints . 10
3.2.3 Widget Button Function Library . 12
3.2.4 Example Blueprint . 13

3.3 USD Editor Tools . 13
3.3.1 Camera Information and duplication . 15
3.3.2 Attribute Export to sequence . 15
3.3.3 Material Swap . 16
3.3.4 Disable manual focus . 16

4 Results 17
4.1 USD Attribute Uses . 17

4.1.1 Object Locations . 17
4.1.2 Particle system attributes . 17

Bournemouth University, NCCA, Masters Project

iv

4.1.3 Animated materials . 18
4.2 Material swap . 18
4.3 Interactive HUD . 19
4.4 Testing and Design changes . 19

4.4.1 Testing . 19
4.4.2 Design Changes . 19

5 Conclusion 20

Appendix A Code 22

Appendix B Blueprints 26

Bournemouth University, NCCA, Masters Project

v

List of Figures

2.1 USD Stage Editor . 4
2.2 USD Generated level sequence . 5

3.1 Maya Custom Attribute Exporter GUI . 7
3.2 Get Translation attribute demo . 8
3.3 Level Sequence Player Manager Flowchart . 10
3.4 Parameters to set up Play Frame Range Button . 11
3.5 Play Frame Range Function Node . 12
3.6 USD Editor Tools Window . 14
3.7 Camera Main Camera Number Attribute . 14

4.1 Icon placed with translate vector attribute . 17
4.2 Particle and Material Attributes being assigned . 18
4.3 Scanner with swapped Unreal Material using custom Universal Scene Description

(USD) attributes for colours and particle rate . 18

B.1 Play Frame Range Button Construct . 26
B.2 Play Frame Range Button Blueprint . 27
B.3 Stop Sequences Button . 27
B.4 Pause/Play Button . 27
B.5 Play Frame Range Blueprint Function 1/2 . 28
B.6 Play Frame Range Blueprint Function 2/2 . 28
B.7 Find Camera By String Function . 28
B.8 Set Sequence Player Function . 29
B.9 Get Sequence Player Function . 29
B.10 Stop Current Sequence Function . 29
B.11 Is Current Sequence Function . 29
B.12 Example Custom Loop Number Blueprint . 30
B.13 Example Infinite Loop Blueprint . 30
B.14 Example Stop Sequence Blueprint . 30
B.15 Proto Imaging Example HUD . 31

Bournemouth University, NCCA, Masters Project

vi

List of Algorithms

1 GetSdfPathWithName . 9

Bournemouth University, NCCA, Masters Project

vii

List of Tables

2.1 Comparison between FBX and USD formats . 3

Bournemouth University, NCCA, Masters Project

viii

List of Acronyms

DCC Digital Content Creation. 1, 2

FBX FilmBox. 1, 2, 3

USD Universal Scene Description. v, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20

Bournemouth University, NCCA, Masters Project

1

1 Introduction

For over two decades, Proto Imaging (2024) have produced linear pre-rendered animated CGI videos
for a diverse client base, from Dyson to Honda and leading aerospace companies. Utilising ‘tradi-
tional’ CGI workflows, they use predominantly Maya, Vray, and a range of compositing and post-
production software to create pre-rendered animated CGI videos. In recent years, they have begun
looking to enter the real-time 3D animation space, with a view to offer clients standalone apps for
exhibitions. Unreal Engine (2024) is currently one of the leading Digital Content Creation (DCC) tools
in providing real time 3D graphics, frequently being used within small and large scale productions
due to its high quality rendering in a real-time context.

With the end goal of producing a real-time interactive CG product, this project aims to provide a
collection of pipeline tools to assist Proto Imaging in the development of such a product. Due to Un-
real Engine’s limited 3D modelling, rigging and animating toolsets, and Proto’s existing Maya skillset,
a pipeline that enables the majority of the product to be produced in Maya is essential. After their
experimentation with different data transfer methods, Proto determined that the most viable format for
the immediate future is USD, as opposed to alternatives such as FilmBox (FBX) and Alembic. The
benefits and fallbacks of these approaches will be explored in the next chapter. In recent years, USD
has been growing in popularity. Support for it in different DCC’s is in progress, with developments still
frequently being made. In this project version 5.4.2 of Unreal Engine is being used, which includes
a USD Importer plugin that is still in beta. Interaction with the USD file and assets are therefore not
fully supported within Unreal Engine, so this project aims to bridge some of these issues to assist in
a more stable Maya to Unreal Engine pipeline.

On import, Unreal Engine converts USD prims into the appropriate Unreal assets to be used, such
as static mesh’s and cameras. All animation from a USD is included in its generated level sequence.
All of these assets are stored transiently in the project, meaning that within each session all of their
references change unless imported completely into the project as Unreal assets. The process of
working with a client means that animation and ideas change frequently during a project. With the
major animation work being created outside of Unreal Engine, Proto requires that the production
process must be flexible with this thus removing the option to import everything natively into the
Unreal project. Additionally, to use USD in a packaged Unreal Engine project build the USD stage
must be loaded in runtime. The set of tools built as part of this project seek to provide access to USD
attributes in the editor and at runtime, as well as providing interaction with cameras, and animated
frame ranges from both user and USD generated sequences.

Bournemouth University, NCCA, Masters Project

2

2 Background

2.1 Data Transfer Approaches

2.1.1 FBX

FBX (FilmBox) was originally developed by Kaydara before it was acquired by Autodesk, and has
since become one of the primary 3D data transfer methods used throughout most DCC tools. These
files can store a wide range of data types, such as geometry, animation, textures, lighting and rigging
in both binary and ASCII encoding (Ardolino et al. 2014). With a comprehensive set of features for
animation and rigging, including keyframes, inverse kinematics and blend shapes, FBX is often the
preferred approach in data exchange for skeletal animation between various 3D applications.

2.1.2 Alembic

Developed by Sony Pictures Imageworks and Industrial Light and Magic, alembic is an open-source
software framework for efficient storage and sharing of 3D geometry and animation (SPI, ILM 2024).
Alembic works by baking animated scenes into its vertices, capturing the end result of animations and
simulations without having to store their underlying procedural networks or dependency graphs. This
allows Alembic files to be used across multiple DCC’s. However, it can become incredibly inefficient;
by storing every vertex at every frame the result can be a very heavy file.

Additionally, Alembic lacks shader support required for the desired pipeline. With these issues
present, it is not an appropriate data transfer approach for this project.

2.1.3 USD

Universal Scene Description (USD) is an open-source framework developed by Pixar to optimise the
interchange of 3D graphics (Pixar 2023). Contrary to the previously discussed approaches, USD
aims to encapsulate data for each of the areas in the pipeline. Typically, many of the cooperating
applications in the pipeline have their own form of scene description designed for their specific needs.
In USD, data is organised into a hierarchy of Prims. Each prim then contains child prims, but also
Attribute and Relationship properties. Attributes are values of a given type, with the option to have
associated time samples to provide animation to them. Example attributes would be transformations,
with the option to add custom attributes as well. Relationships are multi-target ”pointers” to other
objects within the USD hierarchy. A typical example of this could be a material prim, with the mesh’s
using that material pointing to it with a relationship.

There are many benefits to using USD over other methods. Unlike other packages, a ’stage’
is set up, where any number of assets can be assembled and organised into sets, scenes and
shots to be used within any application. This stage is set up with composition arcs of operators
(subLayers, inherits, varientSets, references, payloads, specialises). The sublayer operator provides
opportunities for multiple artists to collaborate on the same assets and scenes, by allowing them to

Bournemouth University, NCCA, Masters Project

3

work within their own layer. Combining this with the support across multiple applications provides
substantial pipeline opportunities.

2.1.4 USD vs FBX

Feature FBX USD
Format Proprietary format owned by Autodesk Open-source format originally devel-

oped by Pixar
Age Older but well established in the indus-

try
Newer format that is still evolving

Referenceable No, all scene components must be im-
ported, requiring careful handling of
animation data

Yes, scenes can be quickly updated
within Unreal Engine as the USD is up-
dated

Animation - Hierar-
chical

No, unsupported for Unreal Engine. All
objects are combined, requiring com-
plex process to rebuild hierarchies

Yes, as a scene descriptor all of the
hierarchies remain intact

Animation (Cam-
eras)

No, camera animation must be im-
ported as animation curves and ap-
plied to the camera actor, with its at-
tributes set manually

Yes, camera animation and many
camera attributes are exported directly

Animation (Skeletal) Yes skeletal animation is the primary
animation format supported by FBX

Yes, skeletal animation is also estab-
lished in USD

Shaders Legacy shading models such as
Phong, Blinn, and Lambert. These
have very rudimentary properties, and
Phong is not native to Unreal Engine

Modern PBR shaders, including usd-
PreviewSurface and MaterialX.

Bitmap Textures Supported with limited attributes Supported with extensive attributes,
including individual subchannels, such
as the green channel only of a bitmap

Full Scene Export No, rebuilding a complex Maya scene
is convoluted

Yes, as the main concept behind USD
the entire scene can be exported in a
single file

Table 2.1: Comparison between FBX and USD formats

In the context of transferring individual assets between applications, FBX has been the standard
for years, and is well supported for this reason. Particularly with animated characters, it is effective
and has many functional pipelines from Maya to Unreal Engine. However, Proto Imaging requires
a pipeline where an entire scene within Maya can be set up with hard body animation, hierarchical
relationships, locators and cameras, and continue working on it from within Unreal Engine. While FBX
does offer some hierarchical features, these are not supported within Unreal Engine. Individual assets
would have to be exported out and reassembled with the game engine which is not sustainable,
particularly with frequent updates to the project.

These areas are precisely what USD is best for. With its composition arcs, the hierarchical ap-

Bournemouth University, NCCA, Masters Project

4

Figure 2.1: USD Stage Editor

proach combines perfectly within USD. The hard body animation is able to translate as expected, and
additional areas such as shaders and cameras can be transferred to. With all the data being stored
within the USD stage, it can be updated within Maya and worked on within Unreal Engine immedi-
ately, without any extra steps, in theory allowing a streamlined approach to production. Additionally,
the options for custom attributes and metadata can provide a flexibility to exchange additional data
that can be customised between projects.

However, with USD having been open-sourced since 2016, it is still in the process of being
adopted across all DCC’s. Houdini’s Solaris and NVidia’s Omniverse are areas that provide USD
interaction properly, although Unreal Engine remains in its beta stage.

2.2 USD in Unreal Engine

2.2.1 USD Plugin

As of Unreal Engine 5.4.2, to obtain access to USD functionality, the USD Importer plugin must be in-
stalled. Within the Unreal editor, this provides accesses to the USD Stage Editor and UsdStageActor.
As of this version, the USD Importer is a beta feature, so caution is encouraged when shipping with
it. Version 5.5 separates the content of the plugin into an importer plugin and a runtime plugin, but at
the time of writing has not been fully released. The Stage Editor, shown in Figure 2.1, is the visual
interface working natively with the USD data (Epic Games 2024b). Here, the prims are displayed
within the hierarchy, with non destructive attribute available, loading and unloading content with Pay-
loads, textures and materials and more. Any changes made to the USD, either from the Stage Editor
directly or through the UsdStageActor and generated assets, can then be saved back onto the USD
file directly.

The UsdStageActor is present within the level, and contains the Unreal representation of the
prims from the USD. When using USD, a UsdAssetCache is generated, which is where the prims are
converted into their UObject equivalents. Under each child of the UsdStageActor hierarchy contains
the corresponding component, such as a static mesh, or a camera. An important point to note here, is
that all of these assets are stored transiently, meaning that between sessions their object references

Bournemouth University, NCCA, Masters Project

5

Figure 2.2: USD Generated level sequence

will change. This can lead to challenges when using the objects in blueprints, for example one might
set up some logic with a camera. If this camera was used regularly in the project, the object reference
would remain and will work the same each time. Using one of the USD generated assets will result
in an error, due to this reference change.

Any animated features within the USD file will be present in a transient level sequence under the
details of the UsdStageActor, seen in Figure 2.2. Similar to the other generated assets, any logic that
references this will be lost between sessions. Changes or additions made to this level sequence can
be saved back onto the USD file as timesampled data in the same way as other changed data. The
animations on the USD are all set with time samples relative to the Time track on the file. Therefore,
by putting a UsdStageActor onto another level sequence and setting keyframes for the time track, the
animations within the USD file will play accordingly.

2.2.2 Unreal Wrapper Classes

In order to access the USD features when writing an Unreal Engine C++ module, Unreal provides the
UnrealUSDWrapper module within the USD Importer plugin as a layer between the Unreal and Pixar
API’s. Many of the USD classes have a corresponding wrapper class used in the UE namespace, that
provide access to most, but not all, of their features. An example use case of this might be starting
with a UsdStageActor to access its USD Stage. With the stage object, one can access a prim, stored
as a UE::UsdPrim. From here, access an attribute from the prim, stored as a UE::UsdAttribute. In
both of these cases, most of the features from the original pixar classes are still available. The value
from a UsdAttribute is stored as a UE::VtValue, accessing the pxr::VtValue class. Primitive types
such as float, double and int can be accessed directly from here, however types such as vectors
require additional conversions to be accessed in Unreal.

2.2.3 Runtime access

Unreal Engine supports the loading of USD files at runtime with the Set Root Layer blueprint node.
This works similarly to the approach in the editor, by creating the required assets and components as
expected. Direct access to generated components remains challenging due to the object references
not being directly accessible at this stage.

Additionally for this to work in a packaged project build the Project.Target.cs file in the project’s
source folder must be adjusted with ”GlobalDefinitions.Add("FORCE ANSI ALLOCATOR=1");”. How-
ever, this is not achievable from an Unreal Engine version available from the Epic Games launcher,
and requires the engine to be built from source to be adjusted. To use runtime features in C++, pre-
cautions must be taken in the module’s build file and throughout the header and source files also. Any
code that may be affected must be wrapped with an ”#if USE_USD_SDK” macro to avoid compilation
errors. Appropriate conditional statements must be added to the build files to ensure the Usd SDK is

Bournemouth University, NCCA, Masters Project

6

only enabled at suitable times, which is highly dependent on the operating system being used.
This is relative to Unreal Engine version 5.4.2, with these features all within the USD Importer

plugin. Version 5.5 is currently in development at the time of writing, and separates some features out
of the USD Importer plugin and into a separate runtime USDCore plugin. Therefore, the mentioned
runtime approaches are likely to change with the upcoming updates.

2.3 Proto Imaging Requirements

Having determined that USD is the data transfer approach of choice due to the quick file updates
between applications, there are a few issues with it that require addressing. This project is aiming to
bridge the following areas to fulfil Proto Imaging’s production needs.

2.3.1 Custom attribute access

All animation edits throughout production are created in a Maya source file. This includes hard body
animation, camera animation (with camera cuts) and vector positions/rotations. These could be used
for a range of tasks, including setting positions of icons in a scene, particle emitters, particle emission
rates, curves and any other potential custom use cases. This requires a pipeline to be able to export
a custom attribute for an object out of Maya, and an approach to be able to read the data from the
USD in Unreal Engine.

2.3.2 USD animation playback controls

Proto’s vision is to create many thousands of frames of animation within Maya as a main timeline
containing everything. Once in Unreal, the specification is to produce an interactive app that can draw
on specific frame ranges to playback at will. The camera cuts could number up to 80+, with additional
camera animation and static cameras also present outside of these main camera cuts. Finding all of
the frame ranges within the editor is therefore important, with options available to access the cameras
and attributes. Tools should also be available to interact with the desired frame ranges smoothly,
with flexibility for different playback scenarios. At times, imported cameras can have issues with
focus settings coming off the USD. An additional useful feature for Proto would involve automatically
disabling these auto assigned properties from Unreal, for increased efficiency in production.

2.3.3 USD shader swap

USD shaders are being treated by Proto as read-only as the USD will be periodically overwritten
as updates are made. In Unreal Engine, a material can be added to a generated component and
when saved, will add this shader as a relationship on the USD. However, as the USD files are being
overwritten often, the material will not persist when the USD is reloaded. While reasonable shaders
created in Maya can be transferred on the USD, Proto have many cases where more complex Unreal
materials may be required. Potentially hundreds of materials could be involved with a project, so a
system is required where complex Unreal materials can be set up with names matching the materials
on the USD to automatically swap them round. This should work quickly, allowing a quick swap on
any new USD update. In the case where the project is production ready, the materials can be saved
back onto the USD to run natively.

Bournemouth University, NCCA, Masters Project

7

3 Solution

3.1 USD Attribute Blueprint Function Library

3.1.1 Exporting custom attributes

Before looking at the problem of reading attributes in Unreal Engine, they must first be exported out of
Maya. With the regular USD exporter for Maya, the default attributes on an object will be exported to
its corresponding prim, however any user defined attributes will not be recognised, resulting in them
being ignored by the exporter. For them to be recognised, a string attribute must be added to the
Maya object with the name ”USD_UserExportedAttributesJson”. This attribute must then contain a
json as a string, in the format:

{"usdAttrName": attr, "usdAttrType": attr_type, "usdAttrValue" : attr_value}

with attr attr being the custom attribute name, and then the corresponding type and value of the
attribute. To make this practical for an artist to use, a python script was written with pyside, allowing
the user to select an object from the outliner and select any user defined attributes they wish to
export. This then creates the JSON string attribute with all of the custom attributes to be recognised
by the USD exporter.

From the request of Proto Imaging, this tool was kept as a script to be pasted into the script
editor in Maya (Code A.1). Proto frequently use different versions of Maya, across multiple machines.
Therefore, keeping the tool as lightweight as possible is valuable, with an aim to keep potential
maintenance to a minimum. To write a custom exporter or a more formal plugin could present higher
risk in the tool not working between versions, and may require more time spent on the installation.
With the script run, the user can select which attributes they wish to choose from their current selected
object from the pyside GUI, seen in Figure 3.1.

Figure 3.1: Maya Custom Attribute Exporter GUI

Bournemouth University, NCCA, Masters Project

8

Figure 3.2: Get Translation attribute demo

3.1.2 Blueprint accessible functions

With the aim to have access to the USD prim attributes, the use cases for this scenario must first be
analysed. The key examples given in the brief by Proto Imaging mainly involve finding the location
of an object, or the value of a custom attribute at a given time. As this needs to be customisable
to the situation and able to work in a running product, this functionality must be blueprint accessible
to be available in runtime. One of the examples involves connecting an icon to a position above an
object in the scene. To do this, one would create a widget blueprint of the desired icon and in the
blueprint, retrieve the location of the desired object and set the widget location to that. However the
issue with this remains that these object references are lost between sessions. A similar approach to
the FindCameraByString function could be used here, but this does not address the use case for a
custom attribute and is only applicable to an objects location.

To solve this, a set of functions have been written for the most common types to be used, with
future opportunities to expand into more types if needed. In this case, GetUsdAttribute functions are
written for ’Float’, ’Int’ and ’Double’, with corresponding functions for ’Vec3’s of each of these types.
Additionally, each of these also have a matching function with a timesample input to find the attribute
value when animated. The function has three parameters, with the additional timesample parameter
for the animated function. First, the UsdStageActor object is referenced which allows access to the
USD Stage. Then, the string name of the desired prim and attribute name are used to be able to find
the value.

3.1.3 Template functions

Once the blueprint function is called for one of the given non vector type, it calls an internal template
function passing the given type as typename T. The functionality is the same for both the animated
and regular attribute retrieval, with the only difference being when the value is retrieved the animated
function provides a timesample as an additional argument. This can be seen in Code A.2.

Bournemouth University, NCCA, Masters Project

9

3.1.4 Value retrieval

To find the attribute object from the arguments given, a Depth-First Search is applied on the USD
Stage hierarchy to find the SdfPath for the provided prim, as seen below:

Algorithm 1 GetSdfPathWithName
Require: CurrentPrim, TargetName, PathResult

1: function GetSdfPathWithName(CurrentPrim, TargetName, PathResult)
2: if CurrentNode.Name = TargetName then
3: PathResult← CurrentPrim.Path
4: return
5: end if
6: for Child in CurrentPrim.Children do
7: GetSdfPathWithName(Child, TargetName, PathResult)
8: if PathResult is not empty then
9: return

10: end if
11: end for

This path is required to find the Prim object which will be used to find the desired attribute. With the
prim and attribute found, value of the attribute is accessed with bool bSuccess = Attr.Get(Value);

stored as a UE::VtValue object. The contained value still cannot be accessed from here, so the
ExtractAttributeValue function is called with the provided typename. The pxr::VtValue is retrieved
from the UE::VtValue, and checked to ensure that it is holding the correct type. Once confirmed, the
value is finally returned for the appropriate type, as seen in Code A.3.

3.1.5 Vector Support

The approach is slightly altered when accessing a vector attribute. In this case, only the double,
float and int Vec3’s are supported. The pixar Vt types for these are GfVec3d, GfVec3f and GfVec3i,
which don’t directly work in a return statement the same way as the primitive types. In this case, an
extra step is taken to check whether the held value is the specified vector type, and an additional
ConvertUsdVectorToFVector template function is called with the desired vector type. By default,
FVector’s hold doubles, so for simplicity the function returns doubles for all cases. For Proto’s use
case, this is suitable, however could be adjusted for greater accuracy in the future.

3.2 USD Interaction

To provide interaction with the USD level sequence, and any other level sequence, a library of widget
blueprints, and blueprint functions has been included in the plugin. These serve to provide function-
ality to play a given frame range from a level sequence, assign start and end cameras and determine
whether animations are looped. With Unreal Engine being traditionally used for game development,
most functionality works outside of a linear timeline with predominantly event based approaches
used. Working in video, Proto Imaging are used to a linear approach to working. Due to this, the
aim here is to adapt this linear approach to fit into Unreal Engine. with the vision to have one main

Bournemouth University, NCCA, Masters Project

10

Figure 3.3: Level Sequence Player Manager Flowchart

timeline that contains all animation, this set of widgets and tools allows frame ranges of this animation
to playback seamlessly, providing interaction across a linear timeline.

3.2.1 Level Sequence Player Manager

Typically to play a level sequence from a blueprint, a Create Level Sequence Player node is used
with the desired level sequence object as an input. Then, a Play node is used, or other playback
controls, to trigger the sequence.

However this is problematic in situations where sequences are called from different blueprints
or multiple times. In these cases, a new level sequence player is generated every time, resulting
in multiple instances of the same sequence, or different sequences trying to use the same asset.
With these overlaps, unwanted affects can be cause, like glitches in playback and general resource
conflicts.

To address this issue, a Level Sequence Player Manager Blueprint has been designed (Fig-
ure 3.3). This actor blueprint holds a Level Sequence Player as a variable. Alongside this, is the
WidgetButtonFunctionLibrary which contains a set of functions that can interact with this manager
blueprint.

3.2.2 Button blueprints

To assist in the USD interactivity, a set of five Widget blueprint classes have been created, each
being a button with different functionalities. With the installed plugin, the user can then use these
button widgets on a canvas, or anywhere it may be needed. Each button has a style variable, which
allows the user to customise the style to their liking which is assigned in the pre construct phase of
the blueprint. To allow the user to have full customisation of a text box, there has not been a pre built
in text box, but instead an empty slot allowing the user to add one themselves, or anything else they
may prefer. These buttons were created first in the design process, with their functionality then being
encapsulated into the function library in the section 3.2.3 to provide more flexibility in project design.
Each button has a set of variables that can be adjusted in the widget blueprint designer, which are
used to determine the actions of the button.

Bournemouth University, NCCA, Masters Project

11

Figure 3.4: Parameters to set up Play Frame Range Button

Play Frame Range Button

To use the Play Frame Range button (Figures B.1, B.2), the user must input start and end camera, and
their corresponding blend times. If no end camera is given, the start camera is used. These cameras
are both found with the FindCameraByString function, due to USD camera references not remaining
consistent. Then, the user can select the target level sequence from the content browser that will
play when the button is clicked. This is for any regular level sequence, for USD level sequences the
following button is to be used. A start and end frame is then given, which is the important feature
for Proto’s use case of importing a large project timeline. There are other options to allow looping of
the frame range, with a boolean to determine whether to loop or not alongside the number of loops
desired. There is also the option to loop infinitely, which will overwrite the other option.

USD Play Frame Range Button

The USD Play Frame Range button inherits the Play Frame Range button and works in the same way.
The only difference is that on the construct event it will find the UsdStageActor in the level and assign
the corresponding level sequence to the target level sequence. This overwrites any input target level
sequence the user may add. There is not a method to remove that variable being present through
the inheritance.

Stop Sequences Button

Using the level sequence manager and the widget button function library, this button (Figure B.3)
checks to see whether there is currently an assigned sequence player in the level sequence player
manager. If there is, it will stop that sequence playing. This is a simple button, but is particularly
useful to interrupt an infinite loop and is essential in a set of interactive buttons.

Bournemouth University, NCCA, Masters Project

12

Figure 3.5: Play Frame Range Function Node

Pause Play Button

Similar to the Stop Sequences button, the pause play button (Figure B.4) uses the level sequence
player manager to check that there is currently an assigned level sequence. Then, it uses the Is-
Paused function from the sequence player and if it is currently paused, it plays and if it is playing, it
pauses.

Switch Camera Button

The switch camera button takes the camera name and blend time as inputs. Using the
FindCameraByString function, it sets the camera with that string to the view target with the given
blend time. An example use case of this could be multiple static cameras around a scene, allowing
the user to change their view target to explore the scene. This would also be suitable if there are
multiple animated cameras in a sequence.

3.2.3 Widget Button Function Library

Play Frame Range

The Play Frame Range function (Figures B.5, B.6) is the core to the interactivity of a level sequence
in the project. Originally, the blueprint was part of one of the buttons in the next subsection, but it was
since extracted into its own function. By having it in a separate function, the use cases of this widens
to be used within any blueprint to be set off by more than just a widget button click. This node can
be seen in Figure 3.5.The parameters are the Start Camera, blend time into the camera, the level
sequence object, start frame and end frame. Using the previously mentioned level sequence player
manager, it first checks to ensure there is a valid level sequence player assigned to the manager, and
stops the current sequence if there is. The camera is then assigned to the view target and the input
level sequence is set to the level sequence player manager. Then the sequence is played within the
specified frame range.

Bournemouth University, NCCA, Masters Project

13

Find Camera by String

As the camera components generated by the USD are transient, an alternative approach to referenc-
ing their object has to be made. For this reason, the FindCameraByString was included (Figure B.7),
which is frequently used to find any camera object by a user’s input string. As well as assisting with
the issues with referencing the objects, it also provides greater opportunities for logic in blueprints
checking camera names, and for parameters to buttons and functions.

Set Level Sequence Player

Providing a connection between a blueprint and the Level Sequence Player Manager, this function
(Figure B.8) is used to assign a provided level sequence to the Level Sequence Player variable, ready
to play.

Get Level Sequence Player

This function (Function B.9) is how the Level Sequence Player is accessed from its manager, allowing
the blueprint to access it so that the sequence can be played.

Is Current Sequence Player

To ensure that there are no runtime errors, this function (Figure B.11) should be called in any function
before attempting to stop a sequence. It checks to see whether any sequence has been assigned
to the Player variable, so that there aren’t any issues trying to get a null pointer which could lead to
crashes.

Stop Current Sequence

After using the Is Current Sequence Player function, this can be used to stop any current playing
sequence associated with the player manager (Figure B.10).

3.2.4 Example Blueprint

Included with the plugin is an example blueprint (Figures B.12, B.13, B.14), showcasing a few ap-
proaches to use the widget button function library outside of the buttons. This is largely to assist in
the learning for Proto, to demonstrate how to use them within a number of loops, infinite loop or to
stop, in this case with key press events. These could be copied into a level blueprint for example.

3.3 USD Editor Tools

Extending the editor standalone window plugin class, this module combines a set of editor tools
relating the USD prim attributes (Figure 3.6). During tests to get a packaged project out of Unreal
Engine, there was a period of time where Proto Imaging were having trouble getting a functioning
build that could include the USD in runtime. This is still a potential hurdle for the future, although more
recent tests have displayed promise that functionality should be available. A few of these tools come
from the idea that instead of using the USD at runtime, it can be used during production alongside
the frequent updates from Maya. When production ready, all of the assets could be imported directly

Bournemouth University, NCCA, Masters Project

14

Figure 3.6: USD Editor Tools Window

into the project to be packaged without the need for the USD. In this case, there could be a need for
custom attributes that wouldn’t be available otherwise.

As part of Proto Imaging’s Maya workflow, they use a cameraMain with a custom attribute contain-
ing camera numbers (Figure 3.7). These camera numbers are in reference to other cameras in the
project. Using a script, this camera number attribute is key-framed, adjusting cameraMain to serve
as a form of camera cuts in Maya. It was very important to Proto to keep this workflow in Unreal
Engine, meaning some of the following tools are dedicated specifically for this pipeline.

Figure 3.7: Camera Main Camera Number Attribute

Bournemouth University, NCCA, Masters Project

15

3.3.1 Camera Information and duplication

At the core of the camera functionality here, is the struct FCameraInfo. The class contains an array
property containing all of the camera’s in the USD, each one stored in this struct format. The camera
prims are found with a depth first search on the USD hierarchy, finding any prims matching the
type ”Camera”. Once they are found, the name, SdfPath, translation and rotation attributes and
timesamples, start and end frame and camera properties are all stored in the struct.

Camera Frame Ranges

Once found, their name and frame ranges are displayed in the window. This is to assist the user when
combining with the play frame range function and buttons. A project could contain many cameras,
making it challenging to remember the originally assigned frame ranges. As Proto’s vision is based
around these frame ranges, this is a beneficial addition. The cameras are also checked to see if
they are featured in camera main’s camera number custom attribute. If they are, their camera main
frame ranges are added to the struct and dislpayed in the window alongside their animation. This is
a key tool, with more importance than the individual camera’s animation as it affects both animated
and static cameras. These frame ranges can then be referenced by the artist when determining what
frame ranges to use in their buttons and functions.

Camera Duplication

Next to the frame ranges is a button to create a duplicate of that USD camera. When clicked, a
CineCameraActor is spawned. The starting translation and rotation are set, as well as the camera
properties including the focal length, focus distance, FStop and the horizontal and vertical aperture.
If no level sequence path has been added, then a static camera with these properties will be created.
If however a level sequence path has been added then the AddCameraToLevelSequence function is
called.

To add the animated camera to a level sequence, a Guid must be found for the generated camera.
If valid, a transform track is added with the Guid, and then a transform section added to the track.
The section must have its frame range set, which can be calculated using the start and end frame
multiplied by the ticks per frame. The ticks per frame can be calculated by the level sequence’s tick
resolution divided by the level sequence display rate. In this section, channels have to be added for
the X, Y and Z for the translation and rotation values of the camera. As the time samples were saved
onto the camera info struct, they can be iterated over, with the translate and rotate values set only
on the key-frames from the timesamples array, which provides the animation of the camera on the
level sequence. These translation and rotation values are found using the functions described in the
UsdAttributeFunctionLibrary discussed in Section 3.1. The camera duplication may be used in
cases where camera animations may want to be set off at different times, or to use outside of the
USD without editing the USD itself.

3.3.2 Attribute Export to sequence

The option to export an attribute onto a sequence means that the animated attribute values can
be completely imported into the project, without ties to a USD. This may be desired if there is an

Bournemouth University, NCCA, Masters Project

16

animated attribute, such as a particle rate, that does not need to tie to the USD but is featured on it.
In the case of this project, it is only set up for float attributes but has the potential to expand into other
types.

The user enters the level sequence path, prim name and attribute name.
Functions GetUsdAttributeInternal and GetUsdAnimatedFloatAttribute from the
UsdAttributeFunctionLibrary are used to find the attribute from the input strings, and then
its value. The track and section is set up in the same way as the camera duplcation, but with a float
section and track instead of a transform track. Then, the attribute values are added to the keyfames
using the timesamples found from the attribute.

3.3.3 Material Swap

To address Proto’s need to swap USD shaders with Unreal materials with the same name, a button
has been added to find all of the UMaterial objects in the specified directory. This functionality will be
accessed from a button on the editor window.

When the button is clicked, the GetAllMaterials function is called. This looks into the con-
tent browser, specifically in the path ”/Game/Materials” and searches for any UMaterials. Then the
TraverseAndCollectMaterials is then called, performing a depth first search on the USD, checking
to see if the current prim has a material binding relationship. If the relationship exists, the target paths
are gathered for these bindings. For each path, material’s shader prim is found, with the object name,
material name and prim path stored in a FMaterialInfo struct. The array of collected materials are
compared with the found Unreal materials to check if their names match. If they match, then the com-
ponent generated by the prims with the found material relationship are assigned the Unreal material.
This new binding can be saved back onto the USD, and will be used in future Unreal sessions.

3.3.4 Disable manual focus

The disable manual focus button runs through the level and changes all of the cameras’ focus settings
to the enum Do Not Override instead of Manual. This is a small tool to assist in early problems with
development where cameras imported from the USD had issues with their focus settings and would
appear blurry. However with added focus settings to the USD from Maya, this issue hasn’t appeared,
so isn’t needed often.

Bournemouth University, NCCA, Masters Project

17

4 Results

This chapter looks at the different cases that Proto have been using these tools during and since their
production. At the time of writing, new uses are still being found frequently. Lots of these approaches
such as the exporting of custom attributes and animated materials would not otherwise be possible
from Maya to Unreal Engine.

4.1 USD Attribute Uses

4.1.1 Object Locations

One of the main uses for accessing vector attributes has been finding the location of objects. In
Proto’s work, this has been to include icons that can float above different objects in the scene. Helping
to provide a greater interaction in the product, these icons can be clickable to serve as buttons, or
display information panels about the items in the scene. These icons can appear above static objects
by finding their default translation attributes (Figure 4.1), or animated objects by finding the translation
values at the current time from the UsdStageActor.

4.1.2 Particle system attributes

The position of a particle system can be changed with the previously mentioned approach, using a
translation vector. Proto have also used USD attributes to control particle rates and custom colours
of particles by exporting these attributes and assigning them in the level blueprint. This allows them
to animate these values alongside the rest of the project, as it fits, rather than having to adjust these
after the import into Unreal Engine. In this case, particle system variables such as the spawn rate
have to be exposed to be able to change from other blueprints, which then allows it to be set to the
value as normal.

Figure 4.1: Icon placed with translate vector attribute

Bournemouth University, NCCA, Masters Project

18

Figure 4.2: Particle and Material Attributes being assigned

Figure 4.3: Scanner with swapped Unreal Material using custom USD attributes for colours and
particle rate

4.1.3 Animated materials

After normalising colours in Maya, the RGB values can also be exported as vectors to be used in
Unreal Engine. A Material Parameter Collection is used, which has its vector parameter set in the
level blueprint and its parameter value read in from the material graph. Having this set up with
animated vector values allows the animation of materials, reading in the attribute value at the current
time sample, further providing options to import these areas from Maya.

4.2 Material swap

After setting up animated materials with a colour attribute, Proto then needed to be able to access
this Unreal Material. The material swap tool has allowed this, with Proto using an animated colour
material as an animated scanner in the scene, changing colour when it spots what it’s looking for.
Having animated this in Maya, at first it doesn’t appear to have the desired affect, as the material’s
colour remains the same from the USD shader. Accompanied by the animated material, Proto have
been able to incorporate this into the project. This is a proof of concept for one material swap,
however it shows great potential to be able to swap change the USD shader to custom Unreal Engine
ones automatically within a large scale project.

Bournemouth University, NCCA, Masters Project

19

4.3 Interactive HUD

Using the Widget Button’s made in this project, Proto have set up a base level HUD (Figure B.15)
for the user to interact with the scene with. This utilises the frame ranges to play different sections
of the USD animation. In addition to these buttons, Proto have set up clickable icons in the scene
which utilise the functions in the Widget Blueprint Function Library to carry out frame range playback
as desired.

4.4 Testing and Design changes

4.4.1 Testing

Throughout the development of this project, there was frequent testing carried out to ensure that
the tools worked as expected. All updates were pushed to the github repository and downloaded by
Proto. Through this back and forth, bugs and unprotected sections of code were found and fixed to
prevent crashes. Unreal Engine includes an Automatic Test Framework (Epic Games 2024a) which
was initially used to produce unit tests for the functions, however some issues appeared with this. As
most of the functions require access to a USD stage, this is set up using the Set Root Layer function
for the UsdStageActor, which works asynchonously. Due to time constraints, this was unable to be
set up completely. With this, the plugin was frequently tested manually using incorrect inputs and
invalid setup scenarios to ensure that it won’t lead to crashes. In these situations, many conditionals
are set up to write error and warning logs and to return default values to allow the project to continue.

4.4.2 Design Changes

Buttons

One of the major areas in the project that changed was the approach to buttons. Originally, the
project was to revolve around the buttons due to them being the core interaction with the USD. This
was extracted into the Widget Button Function Library, predominantly to a more flexible Play Frame
Range function, allowing frame ranges to be played from other areas like the floating icons, or key
presses on a keyboard. It also allowed more automated processes, with detailed blueprints being
able to play sequences, while utilising the Level Sequence Player Manager to ensure synchronised
playback.

The buttons were also set up with functionality in mind, without styling being a factor. This was
apparent to be a problem for Proto as flexibility in button design is important to produce professional
applications, so styling options were added to the buttons and their text.

Camera Frame Ranges

At first, the camera frame ranges window just displayed the frames of animation for each camera.
However, this was far less important information to Proto than seeing the ranges used by camera-
Main as this treats static cameras with equal value. Having these options appear provided greater
productivity when working in Unreal, as the user will not have to look far to see what frame ranges
they must set up their functions for, or which camera to set for these ranges.

Bournemouth University, NCCA, Masters Project

20

5 Conclusion

This project aimed to assist Proto Imaging with integrating their Maya workflow into Unreal Engine to
allow them to transition into real-time 3D animation. USD was chosen as the ideal file format after
comparisons with other formats, such as FBX and Alembic, to handle the frequent changes typical of
client-driven projects. Importing USD files would directly allow this, with a set of tools that could keep
a project developing by interacting with the file in a one way setting.

These developed tools have addressed many of the challenges associated with using USD in
Unreal Engine. The USD Attribute Function Library provided direct access to previously inaccessi-
ble values, assisting with actor locations, particle rates, and animated materials in a runtime setting.
Alongside this, the Widget Button Function Library provided a selection of functions enabling inter-
action with USD animation, by setting off animations within given frame ranges. Sequences were
synchronised with a manager class so that they do not cause any issues overlapping with one an-
other. The functions written for this have also extended out of the buttons, providing Proto with a
flexible set of tools for animation playback anywhere in the project. Within the editor, material swap
functionality was developed to allow a user to swap their USD shaders with materials created within
Unreal Engine, assisting in an adaptable workflow.

Going forwards, the main development is to rebuild this plugin to work in version 5.5 of Unreal
Engine. Currently built for version 5.4.2, Proto were unable to get a successful project build with
runtime USD features in any 5.4 build of Unreal Engine. At the time of writing, Unreal 5.5 is currently
being developed but has not been released. Using the Unreal Engine github, Proto were able to
produce a successful build of a USD based project. However due to the changes of the USD plugins
in this new version, many features of the plugin will need rebuilding to be able to package in this later
version.

Additionally, the Automation Test Framework for Unreal Engine will be incorporated in order for the
plugin to be a better developed piece of software. Further functionality can be added to the types of
attributes that can be accessed as part of the USD Attribute Function Library. Currently only available
for float, double and int types, this is a large area to expand as required for a wider range of attribute
transfer.

From a user interaction perspective, the display window containing the frame ranges could be im-
proved. one area here could be to improve expand the material swap into its own section displaying
materials found to allow the user to select which materials to swap, rather than an automated ap-
proach across all of them. The same concept can be applied to the disable manual focus, although
that remains a relatively minor feature. While the import attributes to a level sequence isn’t required
with runtime USD access, this area in the UI could also be expanded to work alongside the USD
Stage Editor for a quicker experience selecting attributes.

In conclusion, this project has successfully addressed several of the limitations associated with
the current USD functionality in Unreal Engine, while also directly resolving specific pipeline chal-
lenges faced by Proto Imaging. By developing tailored tools and workflows, the project has laid the
groundwork for a more flexible and efficient real-time animation pipeline.

Bournemouth University, NCCA, Masters Project

21

Bibliography

Ardolino, A., Arnaud, R., Berinstein, P., Franco, S., Herubel, A., McCutchan, J., Nedelcu, N., Nitschke,
B., Robinet, F., Ronchi, C., Samour, G., Turkowski, R. and Walter, R., 2014. Geometry and Models:
3D Format Conversion (FBX, COLLADA). 19–37.

Epic Games, 2024a. Automation system in unreal engine. https://dev.epicgames.com/

documentation/en-us/unreal-engine/automation-system-in-unreal-engine. Accessed:
2024-08-11.

Epic Games, 2024b. Universal scene description in unreal engine.
URL https://dev.epicgames.com/documentation/en-us/unreal-engine/

universal-scene-description-in-unreal-engine, accessed: 2024-08-05.

Pixar, 2023. Universal scene description. https://openusd.org/docs/. Accessed: 2024-08-03.

Proto Imaging, 2024. Profile - proto imaging. https://www.protoimaging.com/profile.shtml. Ac-
cessed: 2024-08-08.

SPI, ILM, 2024. Alembic: Interchange framework for computer graphics. URL https://www.alembic.

io/, accessed: 2024-08-08.

Unreal Engine, 2024. Unreal engine 5.4. URL https://dev.epicgames.com/documentation/en-us/

unreal-engine/unreal-engine-5.4-release-notes, accessed: 2024-08-08.

Bournemouth University, NCCA, Masters Project

https://dev.epicgames.com/documentation/en-us/unreal-engine/automation-system-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/automation-system-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/universal-scene-description-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/universal-scene-description-in-unreal-engine
https://openusd.org/docs/
https://www.protoimaging.com/profile.shtml
https://www.alembic.io/
https://www.alembic.io/
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-5.4-release-notes
https://dev.epicgames.com/documentation/en-us/unreal-engine/unreal-engine-5.4-release-notes

22

Appendix A - Code

1 class AttributeSelectionDialog(QtWidgets.QDialog):

2

3 def __init__(self , parent=get_main_window ()):

4

5 # Sets up the GUI

6

7 def update_selected_objects(self , *args):

8 self.selected_objects_list.clear ()

9 selected_objects = cmds.ls(selection=True)

10 if selected_objects:

11 for obj in selected_objects:

12 self.selected_objects_list.addItem(obj)

13

14 def update_attributes(self , item):

15 self.attributes_list.clear ()

16 user_defined = self.user_defined_checkbox.isChecked ()

17 attributes = cmds.listAttr(item.text(), userDefined=user_defined)

18

19 if attributes:

20 for attr in attributes:

21 if attr == "USD_UserExportedAttributesJson":

22 continue

23 self.attributes_list.addItem(attr)

24

25 def create_usd_attributes(self):

26 selected_object = self.selected_objects_list.selectedItems ()[0]. text()

27 selected_attributes = [item.text() for item in self.attributes_list.

selectedItems ()]

28

29 attr_json = {}

30 usd_attr = "USD_UserExportedAttributesJson"

31 if cmds.attributeQuery(usd_attr , node=selected_object , exists=True):

32 cmds.deleteAttr(selected_object , attribute=usd_attr)

33

34 for attr in selected_attributes:

35 attr_value = cmds.getAttr(f"{selected_object }.{ attr}")

36 attr_type = cmds.attributeQuery(attr , node=selected_object , attributeType

=True)

37

38 attr_json[attr] = {"usdAttrName": attr , "usdAttrType": attr_type , "

usdAttrValue" : attr_value}

39

40 cmds.addAttr(selected_object , longName=usd_attr , dataType="string")

41 cmds.setAttr(f"{selected_object }.{ usd_attr}", json.dumps(attr_json), type="

string")

Code A.1: Maya Custom Attribute Exporter

Bournemouth University, NCCA, Masters Project

23

1 template <typename T>

2 T UUsdAttributeFunctionLibraryBPLibrary :: GetUsdAttributeValueInternal(

3 AUsdStageActor* StageActor , FString PrimName , FString AttrName)

4 {

5 UE:: FUsdAttribute Attr = GetUsdAttributeInternal(StageActor , PrimName , AttrName);

6

7 // Check that an attribute has been found from the given inputs

8 if (!Attr)

9 {

10 UE_LOG(LogTemp , Warning , TEXT("Specified attribute is not holding any value")

)

11 return T();

12 }

13

14 // Using the Unreal wrapper of the pxr type VtValue

15 UE:: FVtValue Value;

16 bool bSuccess = Attr.Get(Value);

17

18 if (! bSuccess)

19 {

20 UE_LOG(LogTemp , Warning , TEXT("Failed to get value for Attribute: %s"), *Attr

.GetName ().ToString ());

21 return T();

22 }

23

24 // Required to return the useable type within Unreal

25 return ExtractAttributeValue <T>(Value);

26 }

Code A.2: GetUsdAttributeValue Template Function

1 UE:: FUsdAttribute UUsdAttributeFunctionLibraryBPLibrary :: GetUsdAttributeInternal(

AUsdStageActor* StageActor , FString PrimName , FString AttrName)

2 {

3 // Check if the StageActor is valid

4 if (! StageActor)

5 {

6 UE_LOG(LogTemp , Error , TEXT("StageActor is null"));

7 return UE:: FUsdAttribute ();

8 }

9

10 // Retrieve the Usd stage from the actor

11 UE:: FUsdStage StageBase = StageActor ->GetUsdStage ();

12 if (! StageBase)

13 {

14 UE_LOG(LogTemp , Warning , TEXT("No Usd Stage found"));

15 return UE:: FUsdAttribute ();

16 }

17

18 UE_LOG(LogTemp , Log , TEXT("Found stage"));

19

20 UE:: FSdfPath PrimPath;

21 UE:: FUsdPrim root = StageBase.GetPseudoRoot ();

22 if (!root)

Bournemouth University, NCCA, Masters Project

24

23 {

24 UE_LOG(LogTemp , Warning , TEXT("Failed to get PseudoRoot"));

25 return UE:: FUsdAttribute ();

26 }

27

28 // Retrieve the path of the specified prim

29 GetSdfPathWithName(root , PrimName , PrimPath);

30 if (PrimPath.IsEmpty ())

31 {

32 UE_LOG(LogTemp , Warning , TEXT("PrimPath is empty for PrimName: %s"), *

PrimName);

33 return UE:: FUsdAttribute ();

34 }

35

36 // Get the prim at the specified path

37 UE:: FUsdPrim CurrentPrim = StageBase.GetPrimAtPath(PrimPath);

38 if (! CurrentPrim)

39 {

40 UE_LOG(LogTemp , Warning , TEXT("No Prim found at path: %s"), *PrimPath.

GetString ());

41 return UE:: FUsdAttribute ();

42 }

43

44 // Get the attribute from the prim

45 const TCHAR* AttrNameTChar = *AttrName;

46 UE:: FUsdAttribute Attr = CurrentPrim.GetAttribute(AttrNameTChar);

47 if (!Attr)

48 {

49 UE_LOG(LogTemp , Warning , TEXT("No Attribute found with name: %s"),

AttrNameTChar);

50 return UE:: FUsdAttribute ();

51 }

52

53 return Attr;

54 }

55

56 T UUsdAttributeFunctionLibraryBPLibrary :: ExtractAttributeValue(UE:: FVtValue& Value)

57 {

58 // Access the pxr VtValue from the Unreal wrapped FVtValue

59 pxr:: VtValue& PxrValue = Value.GetUsdValue ();

60

61 // Check to ensure the value is of the specified type

62 if (PxrValue.IsHolding <T>())

63 {

64 // Access the value of the specified type from the VtValue

65 T AttrValue = PxrValue.Get <T>();

66 UE_LOG(LogTemp , Log , TEXT("Successfully retrieved attribute"));

67 return AttrValue;

68 }

69 else

70 {

71 UE_LOG(LogTemp , Warning , TEXT("Attribute is not holding a value of specified

type"));

Bournemouth University, NCCA, Masters Project

25

72 }

73 return T();

74 }

Code A.3: USD Attribute Value Extraction

Bournemouth University, NCCA, Masters Project

26

Appendix B - Blueprints

Figure B.1: Play Frame Range Button Construct

Bournemouth University, NCCA, Masters Project

27

Figure B.2: Play Frame Range Button Blueprint

Figure B.3: Stop Sequences Button

Figure B.4: Pause/Play Button

Bournemouth University, NCCA, Masters Project

28

Figure B.5: Play Frame Range Blueprint Function 1/2

Figure B.6: Play Frame Range Blueprint Function 2/2

Figure B.7: Find Camera By String Function

Bournemouth University, NCCA, Masters Project

29

Figure B.8: Set Sequence Player Function

Figure B.9: Get Sequence Player Function

Figure B.10: Stop Current Sequence Function

Figure B.11: Is Current Sequence Function

Bournemouth University, NCCA, Masters Project

30

Figure B.12: Example Custom Loop Number Blueprint

Figure B.13: Example Infinite Loop Blueprint

Figure B.14: Example Stop Sequence Blueprint

Bournemouth University, NCCA, Masters Project

31

Figure B.15: Proto Imaging Example HUD

Bournemouth University, NCCA, Masters Project

	Introduction
	Background
	Data Transfer Approaches
	FBX
	Alembic
	USD
	USD vs FBX

	USD in Unreal Engine
	USD Plugin
	Unreal Wrapper Classes
	Runtime access

	Proto Imaging Requirements
	Custom attribute access
	USD animation playback controls
	USD shader swap

	Solution
	USD Attribute Blueprint Function Library
	Exporting custom attributes
	Blueprint accessible functions
	Template functions
	Value retrieval
	Vector Support

	USD Interaction
	Level Sequence Player Manager
	Button blueprints
	Widget Button Function Library
	Example Blueprint

	USD Editor Tools
	Camera Information and duplication
	Attribute Export to sequence
	Material Swap
	Disable manual focus

	Results
	USD Attribute Uses
	Object Locations
	Particle system attributes
	Animated materials

	Material swap
	Interactive HUD
	Testing and Design changes
	Testing
	Design Changes

	Conclusion
	Appendix Code
	Appendix Blueprints

