
Creation of a Maya Tool
Based on the Paper

Character Articulation
through Profile Curves

By

Vanessa Stotz s5602665

MSc Computer Animation and Visual Effects
at Bournemouth University, UK

August 2024

ABSTRACT

Rigging still relies heavily on corrective blend shapes and skeletal deformation, which makes it

a cumbersome process. This work presents the development of a tool in Autodesk Maya based

on the new deformation technique for character articulation introduced by Pixar Animation

Studios. The tool provides a framework for drawing and editing the curves, benefiting from

Maya’s native functions. Resulting in an extra layer added to the rig, enhancing the skeletal

deformation.

i

Contents

Page

1 Introduction 1

2 Previous Work 3

2.1 Skeleton-Subspace Deformation . 3

2.2 Pose Space Deformation . 4

2.3 Free-Form Deformation . 5

2.4 Wires . 6

2.5 Curvenet and Cut-Mesh Algorithm . 7

3 Technical Background 10

3.1 Bezier Splines . 10

3.2 Calculate Control Points . 11

4 Implementation 14

4.1 User Interface . 15

4.2 Workflow . 16

4.2.1 Creating Curvenets . 16

4.2.2 Connecting Geometry . 17

4.2.3 Drawing Curves and calculating Profile Curves 17

4.2.4 Editing Profile Curves . 21

4.2.5 Connecting Curves and Mesh . 25

4.2.6 Connecting Curves and Rig . 26

ii

4.2.7 Saving Curvenet Data . 27

4.3 User Test . 28

4.3.1 Drawing the Curves . 28

4.3.2 Deformation . 29

4.3.3 Animation Test . 30

5 Conclusion 31

6 References 33

Appendix 35

iii

List of Figures

2.1 Group Interface (De Goes et al. 2022) . 8

3.1 Bezier Spline (Gleicher 2017) . 10

3.2 visualisation of calculating control point (personal collection 2024) 13

4.1 Group Interface (personal collection 2024) 15

4.2 Tab 01 Interface (personal collection 2024) 15

4.3 Tab 01 Interface (personal collection 2024) 16

4.4 Drawn Curve in draw environment (personal collection 2024) 21

4.5 edit curve environment (personal collection 2024) 22

4.6 split curve with created locator and cube (personal collection 2024) 23

4.7 left: curve before splitting, right:curve after splitting (personal collection 2024) 24

4.8 left: seperated points, right: merged points (personal collection 2024) 25

4.9 deformed object (personal collection 2024) 26

4.10 curves drawn on the test object (personal collection 2024) 28

4.11 Top: default drop-off, Bottom: adjusted drop-off to match the characters size

(personal collection 2024) . 29

4.12 Top: deformation with the default skinCluster Bottom: shape enhanced with

the curvenets (personal collection 2024) . 30

iv

Introduction

The animation of a character stands and falls with the quality of the rig. The animation

should be able to show a wide range of motions and emotions. Therefore, the character

must be pushed into extreme poses while maintaining a strong silhouette. With good skin

deformation, a rig can easily provide all of this. It should not only be able to not break dur-

ing motions but also maintain the volume of the character. Although there are established

methods of skinning, corrective blend shapes are still required. They are often sculpted to

enhance specific poses. Another problem with these techniques is their dependency on the

mesh. Therefore, the skeletal deformation needs to be rebuilt after a mesh, especially its

resolution, is changed.

A new approach is found in the paper Character Articulation through Profile Curves pub-

lished by Goes et al. in 2022. This approach benefits from the independence of the rig

from the mesh, as it is profiled by Bezier splines traced along the mesh. This separates

the articulation controls from the underlying surface. Therefore, the rig remains unaffected

by changes to the model. Since the skeleton is only connected to the curve points and the

deformation of the mesh can be re-evaluated at any time. It also provides the animator more

precise control over the shape, as they can directly deform the object. Curvenets further

reduce the number of control points that need to be added to the rig.

1

Introduction

This work is a continuation of the project submitted in Animation Software Engineering

and CGI Techniques in term one. The aim of the work is to provide a deeper and more

detailed understanding of the presented paper and a solution for implementing its algorithm

as a tool in Autodesk Maya, using exclusively the built-in tools and functions.

The work first provides a detailed understanding of the presented paper and other relevant

works; it then explores technical algorithms necessary for discussing the implementation in

Maya. It concludes with a user test of the tool and possible further improvements.

2

Previous Work

Different deformation techniques are used to skin a character to a rig. The chosen tech-

nique depends on the performance requirements and complexity of the animation. Common

deformation techniques include skeleton-subspace deformation, pose space deformation, and

free-form deformation. They can be used either individually or in combination. (McLaughlin

et al. 2011)

2.1 Skeleton-Subspace Deformation

Skeleton-subspace deformation (SSD) is the standardised technique for industry software.

Each vertex of a deformed surface lies in a subspace defined by the rigid transformation of

some control mechanisms, mostly joints. Each vertex can be influenced by a series of joints

Ω, and its new position is notated with:

p̄ =
∑

wkL
δ
kL

0
k
−1
L0
Pp (2.1)

Where L0
p is the transformation of point P from the local space of the joint to world space.

L0
k defines the transformation of the stationary joint in world space, while Lδ

k defines the

transformation of the moving joint. The deformation can be controlled by the weight factor

wk.(Lewis et al. 2000, Liu et al. 2003)

3

Previous Work

Besides its versatility, the deformation is limited to its defined subspace, leading to un-

predictable results. Another limitation is the lack of direct shape manipulation.(Lewis et al.

2000)

2.2 Pose Space Deformation

Pose space deformation (PSD) can often be used as an addition to Skeleton-subspace de-

formation as it allows direct manipulation of the shape, thus providing a solution to the

limitations of SSD (McLaughlin et al. 2011). PSD is a “purely kinematic approach to de-

formation” and therefore free “from underlying forces."(Lewis et al. 2000, p. 168). The

new shape is defined by the pose space, which is defined by pose controls such as joints or

abstract manipulators like UI controls. δ⃗ for each vertex are stored in the pose space. The

new position of the vertex point is determined by

p+ δ⃗ (2.2)

where δ⃗ equals the radial basis function for scattered interpolation in 2.3. (Lewis et al. 2000)

δ̂(x) =
N∑
k

wkϕ(∥x− xk∥) (2.3)

Rather than being dependent on the vertex point, the radial basis function only depends

on the distance between the initial and deformed positions (Döring 2017). Each vertex can

have more than one δ⃗ (Lewis et al. 2000). Although this method allows direct manipulation

of the shape, it is a time- and data-intensive method, as each vertex must be manipulated

individually.

4

Previous Work

2.3 Free-Form Deformation

Free-form deformation (FFD) deforms an object directly using a coordinate grid and there-

fore eliminates the need for a control mechanism (Parent 2008). The edges of the grid are

often Bezier curves, defining the faces as Bezier surface patches (Sederberg and Parry 1986).

Free-form deformation creates a “local coordinate system that encases the area of the object

to be distorted” (Parent 2008, p. 143). The local coordinate system is described by a set of

three vectors (S, T and U). The user can then manipulate the grid directly by moving the

control points of the Bezier curves, resulting in a relocation of the surface vertices (Parent

2008, Sederberg and Parry 1986). Each vertex has a world coordinate (x, y and z), but is

also registered in the free-form deformation by having relative coordinates (s, t and u) to it.

The local coordinates are defined as

x = x0 + sS + tT + uU (2.4)

With its vectors being

s =
T × U(X −X0

T × US
, t =

S × U(X −X0

S × UT
, u =

S × T (X −X0

S × TU
(2.5)

Where 0 < s < 1, 0 < t < 1, 0 < u < 1, if the point lies within the FFD. The control points

on the lattice in global space are defined by

Pijk = X0 +
i

l
S +

j

m
T +

k

m
U (2.6)

Where (S, T , U) represents the unmodified local coordinate grid. Each direction of the

local coordinate system can have an individual number of control points. This is taken into

account with (l, m, n). “The deformation is specified by moving Pijk from their undisplaced,

lattical position” (Sederberg and Parry 1986, p. 153). The preferred interpolation is done

“by a trivariate tensor product Bernstein polynomial" (Sederberg and Parry 1986, p. 153).

The deformed position of any point within the lattice can be calculated using

xffd =
l∑

i=0

(
l

i

)
(l − s)l−isi

(
m∑
j=0

(
m

j

)(
(1− t)m−jtj

(n∑
k=0

(
n

k

)
(l − u)n−kukPijk

)))
(2.7)

5

Previous Work

To compute this equation, the results of (2.5) and (2.6) are needed(Parent 2008, Sederberg

and Parry 1986).

Calculating a free-form deformation is rather simple and allows easy and smooth control

of a character’s movement based only on the positions of the control points. However, it

is not suitable for detailed articulation as its rigid nature contrasts with the predominantly

organic nature of a character. Even combining multiple grids to better replicate the char-

acter is still not enough as they may not correspond to the meaningful parts of the shapes

the user wants to change. Free-form deformation can also easily destroy the character if not

carefully designed. (Joshi et al. 2007, Gal et al. 2009)

2.4 Wires

Singh and Fiume (1998) and Gal et al. (2009) introduce the idea that any object can be

characterised and deformed by a small set of curves or wires. To preserve the essence of

the shape, wires should preferably be constructed along "sharp mesh edges” or “intersections

between smooth surfaces” (Gal et al. 2009, p. 33:4). This leads to a finer deformation of the

surface while still being independent of its complexity. A wire is defined as a “curve whose

manipulation deforms the surface of an associated object near the curve” (Singh and Fiume

1998, p. 1) and is defined with ⟨W,R, s, r, f⟩.

Where W is the wire curve and R is the reference curve. The scalar s defines the radial scale

around the curve, while r defines the radial influence around the curve. f : R+ → [0, 1] is the

density function, with it normally being C1 and is implemented with f(x) = (x2 − 1)2, x ∈

[0, 1].

Wire deformation is calculated for each point P0 of an object. Its deformation depends

6

Previous Work

on the difference between W and R and is deformed only when it is within the volume of

radius r with respect to the reference curve and 2.8 > 0.

F (P,R) = f

(
∥P − C(pc)∥

r

)
(2.8)

Pc defines the parameter value that minimizes the Euclidean distance between a point on the

object and a curve point on the reference curve. So if ∥P−C(pc)∥ = 0|, the point lies exactly

on the reference curve and is completely influenced by the deformation. (Singh and Fiume

1998) Gal et al. (2009) improves on Singh and Fiume (1998) implementation by adding some

intelligence to the curve, so that they are aware of other wires affecting the same shape. The

relationships between them are established and maintained during deformation.

2.5 Curvenet and Cut-Mesh Algorithm

The drawbacks of the wire frameworks is the assumption that the mesh edges are connected

to the control curves, limiting the setup of the wires to the specified mesh resolution (De

Goes et al. 2022). De Goes et al. (2022) eliminates this problem by introducing a new mesh-

cutting algorithm that detaches the curve networks from the mesh edges. The new method

is based on the Cartesian cut-cell method, and the resulting mesh holds the information

of the vertices of the input mesh and the curve samples while splitting the surface faces

into smaller polygons. These polygons "can be non-planar, non-convex, or even include

cracks" (De Goes et al. 2022, p. 139:6). Cracks are possible due to the permission of the

cut-edges branching out of the faces. Before initialising the cut-mesh every profile curve is

converted into a curvenet. A curvenet is a polyline with evenly spaced points. The cut-

mesh is then initialised by a copy of the input mesh and “the neutral position q̆ for each

curvenet sample” is sampled onto “the closest point p̆ on the surface mesh” (De Goes et al.

2022, p. 139:7). Each sample is categorised as either a vertex, edge or face sample. There

are different combinations to connect the curvenet segments to the cut-mesh and cut the

7

Previous Work

polygons accordingly. They can be seen in Fig. 2.1. To update the cut-mesh connectivity,

the newly created faces must be identified. Therefore, a tangent space for every cut-vertex

is identified. The algorithm benefits from the fact that the cut-mesh is a direct copy of

the input mesh; therefore, the tangent space is transferred from the underlying point or

polygon. Due to its discrete representation of the input mesh, it facilitates the deformation

of the input mesh with the curvenet.

Figure 2.1: Group Interface (De Goes et al. 2022)

The interpolation is divided into two groups. The first is represented by any cut-

vertex that coincides with a mesh vertex, while the second is represented by any cut-vertex

that corresponds to a curvenet segment or an intersection between a curvenet segment and

a mesh edge. Both groups define a solution space with

ϕh = V ϕv + Cϕc (2.9)

V ϕv represents points from the first group and Cϕc represents points from the second group,

with V and C being matrices and ϕv and ϕc being vectors. After the discretization of the

cut mesh has been defined, the final shape can be calculated. The deformation is defined

using a two-step optimization. First, the “deformation gradients from the curvenet segments

8

Previous Work

to the mesh vertices” (De Goes et al. 2022, p.139:8) are interpolated with positions q̆ and q

from the undeformed and deformed curvenets. The deformation gradient is described with

the help of

minfvED(V fv + Cfc) (2.10)

and optimised with the Dirichlet energy

ED(ϕh] = ϕt
hLhϕh (2.11)

for a more harmonious interpolation. The deformation gradient for each cut-face is stored

in a matrix y. The final step is to compute the new “vertex positions that best match

the interpolated deformation gradients while preserving surface details and reproducing the

target curvenet samples”(De Goes et al. 2022, p. 139:8). Therefore, the new position

approximates the values of y while still enforcing the location of the sample of the posed

curvenet. Although De Goes et al. (2022) introduce a new method for free-form deformation,

they are not eliminating the use of SSD, as the control points of the curvenet can be connected

to an underlying control mechanism. Therefore, it can be said that curvenets are just a new

method of skinning a character to a skeleton, which provides more flexibility for animators.

9

Technical Background

3.1 Bezier Splines

The paper defines the Profile Curves as cubic Bezier splines (De Goes et al., 2022). Bezier

splines are often used to represent curves in computer graphics as “they are easy to control,

have a number of useful properties and there are very efficient algorithms for working with

them” (Gleicher 2016, p. 386). The curve is controlled by d+1 control points, where d is the

degree of the curve. The control points form a convex hull to which the curve is bound. The

curve interpolates through its start and end points while “the shape is directly influenced by

the other points” (Gleicher 2016, p.385). This leads to the definition that the spline is affine

invariant and transforming the control points “is the same as performing those operations on

the curve itself.” (Gleicher 2016, p. 388), which makes it such a powerful curve for computer

graphics.

Figure 3.1: Bezier Spline (Gleicher 2017)

10

Technical Background

Therefore, a cubic Bezier spline has a degree of three and four control points. An

example curve can is seen in Fig. (3.1) And can be written mathematically as :

f(u) =
d∑

i=0

bi,3pi (3.1)

Where the blending functions of degree 3 for the Bezier are defined as

b0,3 = (1− u)3,

b1,3 = 3u(1− u)2,

b2,3 = 3u2(1− u),

b3,3 = u3,

(3.2)

Which this leads to

f(u) = (1− 3u+ 3u2 − u3)p0 + (3u− 6u2 + 3u3)p1 + (3u2 − 3u3)p2 + (u3)p3 (3.3)

3.2 Calculate Control Points

As just seen, a Bezier curve is defined by four control points. Nevertheless, the tool only

requires the user to define the start and end point of the curve. The inner control points are

calculated by the tool. The paper of De Goes et al. (2022, p. 139:5) describes the interior

control points as “points forming tangent handles” that are initialised “perpendicular to the

surface normal”. A possible algorithm was already found during the project work in the

course Animation Software Engineering and is described in more detail here. This approach

is a combination of a plane in Hessian normal form and a line perpendicular to it. Hessian

normal form is another way of writing a plane equation and is often used to determine the

distance between a point and a plane.

E : n⃗0(x⃗− p⃗0) = 0 (3.4)

11

Technical Background

Each point on the plane satisfies the requirement of being an inner control point, as it is

created with the outer control point and its normal vector. The normal vector is the normal

vector of the face closest to the control point. However, to create the convex hull in the

correct direction, the intersection point between the plane and a line passing through the

other outer control point must be found. This line is also perpendicular to the plane and is

defined by using the same normal vector and the other outer control point

L : x⃗ = n⃗+ tp⃗1 (3.5)

The intersection point is calculated by setting up the plane equation in its coordinate rep-

resentation.

E : n1x1 + n2x2 + n3x3 = n1p1 + n2p2 + n3p3 (3.6)

The point variables of the plane equation are substituted with those of the line and the

new equation is then transposed to parameter t. With the resulted parameter, the final

intersection point can be determined by solving the equation of the line.

L : x1 = n1 + tp11

L : x2 = n2 + tp12

L : x3 = n3 + tp13

E : n1(n1 + tp11) + n2(n2 + p12) + n3(n3 + p13) = n1p01 + n2p12 + n3p13

(3.7)

To ensure that the curve is drawn close to the surface, the distance vector between the

intersection point and the control point is determined and normalised. After dividing the

vector by a third of the length between the start and end point, the final inner control point

is determined by adding it to the control point. A visualisation of the calculation can be

seen in Fig. (3.2).

12

Technical Background

Figure 3.2: visualisation of calculating control point (personal collection 2024)

13

Implementation

The tool described in this work shows an approach to implementing the new algorithm intro-

duced by Goes et al. (2022) in Maya. The goal of the tool is to provide a different method

of skinning the character to the rig by replacing the skeletal subspace deformation with a

wire deformation. Therefore, it should eliminate the need for corrective blend shapes and

provide the animator more freedom to play with and improve the shape of the mesh. The

tool offers a straightforward way to create a curvenet, provides multiple editing options to

optimize the curves, and offers an easy way to add deformation to the mesh and rig.

The tool is written entirely in Python and uses only Maya’s native functions to create

objects within it. The goal is to create a tool that is easy to install and use. The whole

source code is distributed across multiple functions. Important datatypes in the script are

a list for all the different curvenets in the scene and a dictionary containing the individual

information of a curvenet. The curvenets information are its name, the name of the mesh

and a list of every profile curve with the name of the Bezier and its two tangents.

The tool is divided into different steps, which are reflected in the structure of the tool.

This chapter provides further insight into the user interface and the approach, as well as

explanations of various functions. It then concludes with a user test leading to possible

further improvements.

14

Implementation

4.1 User Interface

The tool’s layout can be divided into a group and two tabs. The group (Fig. 4.1) provides

information about the current selected curvenet and its mesh. In addition, it stores the

functions for adding and deleting a curvenet and selecting a new mesh.

Figure 4.1: Group Interface (personal collection 2024)

The first tab (Fig. 4.2) contains all the elements required to create and edit the

curvenet. It is divided into three groups. The first contains the functions for drawing the

curves, the second contains the functions for editing the curves and the last allows editing

the control points. Each of these groups must be activated by checking the checkbox. This

adds a specific environment to the viewport and is simplifying the process. The user must

actively uncheck the box before they can do anything else.

Figure 4.2: Tab 01 Interface (personal collection 2024)

The second tab (Fig. 4.3) is exclusively for connecting the curvenet to the mesh and

the rig. The upper part contains the function of adding and deleting selected points to and

15

Implementation

from the skeleton, where the lower part adds or deletes the curvenet as a deformer.

Figure 4.3: Tab 01 Interface (personal collection 2024)

4.2 Workflow

4.2.1 Creating Curvenets

Multiple curvenets can exist in one file, allowing different meshes of a character to be edited

separately. All existing curvenets are displayed in the user interface. Each time a new cur-

venet is created, the curvenet data is reset and the user-selected name is added. The input

name acts as a prefix for all objects and other associated data, such as a series of empty

groups that are created after the new curvenet is initialised. This helps sort all the data of

the curvenet.

If a user wishes to delete a curvenet, the associated groups and internal data are also deleted.

When changing the curvenet, the data of this curvenet is loaded from the scene file. A more

detailed description of how the data is stored and read can be found in chapter 4.10 .

16

Implementation

4.2.2 Connecting Geometry

To draw the curves and later add a deformer, the tool relies on a mesh. All the users must

do is select the mesh and confirm its selection. The name of the mesh is then stored in the

curvenet dictionary and can be retrieved at any time. For a better overview, the name is

also displayed in the user interface.

4.2.3 Drawing Curves and calculating Profile Curves

Drawing curves is the core of this tool, as this step determines the shape of the profile curves

that deform the mesh. Therefore, finding the best approach drawing the curves was a main

focus . The first step was to figure out how to draw the curves onto the mesh. The challenge

is to let the user draw only the start and end point of the curve while the other points are

calculated by the tool. The first thought was to place locators at the positions of these

points, but that seemed counter intuitive. A natural approach would be to simply draw a

curve, which is then converted into the required curve shape. The EPCurveTool in Maya

allows the user to draw a curve with a defined degree in the viewport. The length of the

curve is set by the user when exiting the tool. Since the curve should only have two points

and to prevent the user for having to manually enter and exit the curve tool, an environment

needs to be created for drawing.

Drawing Environment

The environment allows the user to draw a linear line on the surface. To ensure that the

points are on the surface, the mesh is made live inside the environment. The mesh is further

set to the x-ray shading mode to make drawing easier. To ensure that a new curve is drawn

after the previous one has two points, it is necessary to monitor the number of clicks or the

17

Implementation

index number of the control point. After drawing a curve point, Maya changes its selection

to the point. So a possible condition is:

Algorithm 1 Drawing Condition 01
if selected control point == 1 then

Quit the tool

Calculate the new curve

Re-enter the tool

end if

The missing part in this condition is a way to call the condition every time a point

is drawn. The first approach was to use a filter event which tracks whether the left mouse

button is clicked while the mouse is in the maya viewport. This filter is activated as soon

the environment is entered. This changes the algorithm to:

Algorithm 2 Drawing Condition 02
if leftMouseButton == pressed then

if selected control point == 1 then

Quit the tool

Calculate the new curve

Re-enter the tool

end if

end if

However, this resulted in an incorrect creation of the curves, as curves were not

created after the second point was drawn, but rather after the third point. Therefore the

first point of the next curve was drawn, which was not an intuitive solution. The problem

is that the selection does not change until the mouse button is released. So the condition

always received the previous information. A natural solution would have been to change

the first if-condition in Algorithm 2 to “left mouse button == released”. Somehow, this

18

Implementation

caused unpredictable behaviour in Maya and did not produce the expected results. The

final solution was found using a scriptJob. A scriptJob is an option to run a function every

time an event happens in Maya. One of the valid events is SelectionChanged. Therefore, the

job is created every time the environment is entered and deleted as soon it is exited. The

algorithm used is Algorithm 1.

Calculating the Profile Curve

After a curve has been drawn, the new curve must be calculated. To do this, the curve

points of the drawn curve must be extracted, and the missing ones calculated, as well as the

control handles for the curve points. Before calculating the inner control points using the

algorithm described in Chapter 3.2, the existing points are checked to see if a point is within

the threshold, but only if the Merge Points option was enabled while drawing. The threshold

is the radius of the sphere to be created as a control handle. The radius is determined using

Algorithm 5 and checking for a closest point is done using Algorithm 9 (Appendix). If a

point is found, within this radius, its position is taken.

After all points are calculated, a Bezier curve and two linear curves are created. The linear

curves connect an outer control point to its nearest inner control point. This is for visual

purposes only. The Bezier curve and tangent control points are controlled by a cluster, which

is a child of the control handle.

To add the cluster and sphere handle, the script runs over each control point of the curve

and adds it and the tangent point with the same position to a list. If the point is an outer

control point and the merge points option is enabled, the script first checks whether a cluster

already exists. This is done using Algorithm 11 (Appendix).

If the merge point option is disabled or the point is an inner control point, a new clus-

19

Implementation

ter and its control handle are created. The cluster is created using Algorithm 3 while the

sphere handle is created with Algorithm 4 and the size is determined using Algorithm 5.

The size of the control handles should not be too large if the object is small but still large

enough for large objects. Therefore, the size is determined based on a ratio between the area

of the object bounding box and the area of the underlying face. To prevent the sphere from

becoming too small, the minimum is set to 0.1. An example of the calculated curve can be

seen in Fig. (4.4).

Algorithm 3 Create New Cluster
select points to add to the cluster

create a new cluster

create a control handle

parentConstraint the cluster to the control handle

hide the cluster

Algorithm 4 Create Control Handle
get the radius of the sphere

create the sphere and assign a shader to it

lock and hide rotation and scale and visbility

Algorithm 5 Calculate Sphere Size
area = area of the bounding box of the mesh

areaFace = area of the closest face mesh

areaRatio = areaFace/area

radius = max(abs(math.sqrt(abs(areaRatio)/4 * math.pi))*0.5, 0.1)

20

Implementation

Figure 4.4: Drawn Curve in draw environment (personal collection 2024)

4.2.4 Editing Profile Curves

There are two ways of editing the curves after creating them. The first method focuses more

on the actual curve while the other one focuses on the control points.

Editing Curves

In this environment the focus is solely on the Bezier curves. Therefore, the handles are

hidden and the mesh is set to x ray shading (Fig. 4.5). The curves can either be deleted

or split into two new curves. For both options a curve must first be selected. Since its name

is needed to perform the corresponding functions.

21

Implementation

Figure 4.5: edit curve environment (personal collection 2024)

Due to the way the splitting algorithm works, the user must enter and exit the process.

Entering the process works as follows:

Algorithm 6 Start Split Curve
create a locator

create a cube

create nearestPointOnCurveNode

and set the locator position to .inPosition

and connect .result.poistion to the cubes translation

select the locator

The user then moves the locator, while the cube indicates the location of the split

(Fig. 4.6). When the user is satisfied with the position the process is ended by:

22

Implementation

Algorithm 7 End Split Curve
newPoint = result position of nearestPointOfCurveNode

get the start and endpoint if the selected curve

ensure that newPoint is on the mesh, otherwise get the closestPoint on the mesh

delete the selected curve

create two new curves with

startPoint = startpoint and endpoint = newPoint

startPoint = newPoint and endpoint = endpoint

delete locator

delete cube

delete nearestPointOnCurveNode

Figure 4.6: split curve with created locator and cube (personal collection 2024)

23

Implementation

Figure 4.7: left: curve before splitting, right:curve after splitting (personal collection 2024)

To delete the curves the user simply presses the delete button after selecting the curve

and Algorithm 10 (Appendix) is executed:

Editing Points

All curve handles can be edited and moved throughout the whole process. However, this

environment provides an advanced option for editing the handles that move the outer control

points and therefore those on the mesh. To allow better focus on these handles, the tangent

handles are templated and cannot be edited in this environment. The advanced option is

to make the mesh live, meaning the handles only move along the surface. This environment

also offers the possibility of merging and separating handles. One or more handles must first

be selected, to execute these processes . Control points of curves are usually controlled by

shared handles, if they are within a certain threshold. If the user decides to connect curves

together, the the process gets executed with the Merge Points Button, while Separate Points

separates the curves from connected handles so they can be moved individually (Fig. 4.8).

The process of merging points can be found in Algorithm 12 (Appendix), while Algorithm

13 (Appendix) shows the algorithm of separating points.

24

Implementation

Figure 4.8: left: seperated points, right: merged points (personal collection 2024)

4.2.5 Connecting Curves and Mesh

In order to add deformation to the mesh, the curvenet must be added as a deformer. This

is done using the Maya wire deformer. The user does this simply by clicking “Add De-

former”. Algorithm 14 (Appendix) runs under the hood. As can be seen in Chapter 2.4 a

wire deformer requires wire curves and reference curves. Therefore, a copy of all curves is

created. To provide greater control over the deformer, a custom attribute is added to the

main curvenet group. This attribute controls the drop-off distance of the deformer, which is

corresponds to the radius value of the wire deformer.

Before adding the deformer, the transformation of all control handles is frozen. It is im-

portant to have a zero transformation for each controller so that the animator can reset the

sphere to its original position at any time, if necessary.

If the user chooses to delete the deformer again, each transformation of the sphere han-

dles is reset to its zero position to ensure that the deformer and all copied curves and added

attributes are deleted correctly. The following algortihm is run:

25

Implementation

Algorithm 8 Delete Deformer
get the child groups of the mainCurvenetGroup

if baseCurvesGrp in child groups then

reset the position of the sphere handles to zero

get the input connections of the mesh

and delete the wireDef

delete the dropOffDistanceControl attribute

and delete the baseCurvesGrp and baseClusterGroup

end if

Figure 4.9: deformed object (personal collection 2024)

4.2.6 Connecting Curves and Rig

De Goes et al. (2022) describe that the handles of each profile curve can be added to the rig

using well-known approaches such as skinning. The skinning method does not work, as the

connection between the sphere and the handles relies on real transformation and otherwise

would be lost. Therefore, the handles are added to the joints with a parent constraint. This

26

Implementation

led to the realisation that each sphere handle must be within an offset group, otherwise the

animator would lose the ability to edit the handles directly. To connect the control points to

the rig, each selected sphere handle is connected to each selected joint. Deleting the influence

simply deletes the connection from the selected control points.

4.2.7 Saving Curvenet Data

It is important that users are able to manipulate the curvenet after reopening a scene.

Therefore the curvenet data is stored in the Maya scene file. The stored data is the list of

all existing curvenets and the dictionary of each curvenet. The data is updated after every

change made in the scene. For example, adding a new curvenet to the list, selecting a mesh,

or drawing and editing the curves. Only the curvenet list and the data of the currently

selected curvenet are loaded in the script, as well as the names of the groups. This ensures

that the code does not have to deal with a lot of data at a time.

There are various methods to save data in a Maya file. The methods are optionVar, fileInfo

or within a custom node. It was first tried to save the data using optionVar, as this allows

different data types such as dictionaries, lists, and strings. However, optionVar does not

save the data within the current file, but as a local variable that can be accessed by any

Maya file in the same environment. This would have lead to too much data and pose the

risk of name collisions and therefore incorrect behaviour of the tool.

Therefore, the method of fileInfo was chosen to save data in Maya, as a custom node could

be accidentally deleted by the user. File information is stored in the source code of the file,

regardless of whether it is saved as a .ma or. mb file. The only downside is that fileInfo

only accepts strings. Therefore, the data needs be converted to a string before being saved.

This results in the data already being stored as strings in the curvenet dictionary. Since

27

Implementation

pymel.core works with its own datatypes, the strings must be converted back into the data

types using pm.PyNode().

4.3 User Test

The tool was constantly tested throughout the process, but only on simple objects. This

test is intended to provide further insight into the functionality with more complex meshes.

The objects tested are a human and a quadruped character.

4.3.1 Drawing the Curves

Drawing the curves showed no problems. The sizes of the control handles are reasonable,

but with larger objects than the test object, it was sometimes difficult to connect the curves

while in the drawing process. However, this can be easily fixed later by using the Merge

Point option in the editing environment.

Figure 4.10: curves drawn on the test object (personal collection 2024)

28

Implementation

4.3.2 Deformation

A quick deformation test without the Curvenet being connected to the rig showed that the

created drop-off control attribute was much needed. It had to be changed for the test objects

to get a nice deformation.

Figure 4.11: Top: default drop-off, Bottom: adjusted drop-off to match the characters size

(personal collection 2024)

29

Implementation

4.3.3 Animation Test

The created curvenet of the arm shown in Fig. (4.12) was added to the character’s existing

rig. However the wire deformer did not act as expected, as it was assumed that the wire

deformer would completely replace the need for a skin deformer. But removing the skin

deformer caused the wire deformer to stop working too. But after using the deformer in

addition to the skin cluster, it worked fine and could be used to improve the character’s

shape.

Figure 4.12: Top: deformation with the default skinCluster Bottom: shape enhanced with

the curvenets (personal collection 2024)

30

Conclusion

Curvenets are a new approach to rigging, which uses the use of a free-form deformation with

a possible combination to a skeleton-subspace deformation. Instead of influencing the mesh

vertices with the skeleton, the control points of the curvenet are influenced by it. This leads

to more freedom for the animators, as they can deform the shape of the input mesh with the

curvenet while still animating in a traditional way. This eliminates the need for corrective

blend shapes. The rigger hereby has fewer control points which need to be attached to the

skeleton.

The goal of this work was to implement a tool in Maya for creating curvenets. Its require-

ments were ease of installation and use, as well as exclusive use of Maya’s native functions.

The user tests showed that the tool is working for complex characters and provided promis-

ing end results. However, there are a few things that could be improved.

Although the size of the control handles is based on the size of the object and its faces,

it is not always created as excepted. The control handles tend to be too large for small

objects, while also being too small for large objects. This complicates drawing the curves

occasionally, as the same size is used as a threshold to connect the curves. Therefore, the

existing approach needs to be improved, or a new one found.

To be able to edit the curvenet every time a scene is re-opened, the data is saved in the

31

Conclusion

Maya file with fileInfo. This leads to a large amount of data for large curvenets. Especially

for saving each curvenet individually. A possible improvement could be to only save the list

of existing curvenets in the scene and not each curvenet individually. The other informa-

tion needed could be extracted based on the name and hierarchical structures. However,

this could then lead to an incorrect execution of the tool, as names and hierarchies can be

deleted or renamed by the user.

Currently, the tool allows the creation of different curvenets in a scene, depending on the

selected mesh. However, it is not possible to combine two different curvenets to the same

mesh. Therefore, the introduction of sublayers for the curvenets can make sense. This would

provide a better overview of the curvenets and allow the user to divide the curvenets into

further sections, such as the distinction between arms, legs and body. This would also open

new methods like mirroring profile curves.

An important feature of a good rig is its scalability. As part of this work, the scalability of

the curvenet was not tested and therefore requires further testing and possible improvements.

For the purpose of this work, Maya’s built-in wire deformer was sufficient and produced

good results. However, as was seen in the user test, the wire deformer did not replace the

skin deformer, as initially assumed. Rather, it is used as an additional layer. However, this

eliminates the need for corrective blendshapes and still achieves a good deformation. In

further iterations, a customised wire Deformer based on De Goes et al. (2022) newly intro-

duced cut-cell algorithm can be developed and therefore replace the need of skeleton-subspace

deformation completely.

32

References

De Goes, F., Sheffler, W. and Fleischer,K., 2022. Character articulation through profile

curves. ACM transactions on graphics [online], 41 (4), 1–14. Available from:

http://dx.doi.org/10.1145/3528223.3530060.

Döring, D., 2017. radiale Basisfunktion [online]. Spektrum.de. Available from:

https://www.spektrum.de/lexikon/mathematik/radiale-basisfunktion/8900 [Accessed 11 Aug

2024].

Gal, R., Sorkine, O., Mitra, N. J. and Cohen-Or, D., 2009. iWIRES: An analyze-and-

edit approach to shape manipulation. In: ACM SIGGRAPH 2009 papers. New York, NY,

USA: ACM.

Gleicher, M., 2016. Curves. In: Fundamentals of Computer Graphics. Fourth edition.

| Boca Raton: CRC Press, Taylor & Francis Group, [2016]: A K Peters/CRC Press, 359–404.

Joshi, P., Meyer, M., DeRose, T., Green, B. and Sanocki, T., 2007. Harmonic coordinates

for character articulation. ACM transactions on graphics [online], 26 (3), 71. Available from:

http://dx.doi.org/10.1145/1276377.1276466.

Lewis, J. P., Cordner, M. and Fong, N., 2000. Pose space deformation: A unified approach

33

References

to shape interpolation and skeleton-driven deformation. In: Proceedings of the 27th annual

conference on Computer graphics and interactive techniques - SIGGRAPH ’00. New York,

New York, USA: ACM Press, 165–172.

Liu, F., Liang, R. and Ye, D., 2003. Skeleton Subspace Deformation with displacement

map. [online]. Available from: http://dx.doi.org/10.2312/egs.20031045.

McLaughlin, T., Cutler, L. and Coleman, D., 2011. Character rigging, deformations, and

simulations in film and game production. In: ACM SIGGRAPH 2011 Courses. New York,

NY, USA: ACM.

Nguyen, D., Talbot, J., Sheffler, W., Hessler, M., Fleischer, K. and de Goes, F., 2023.

Shaping the elements: Curvenet animation controls in pixar’s elemental. In: ACM SIG-

GRAPH 2023 Talks. New York, NY, USA: ACM.

Parent, R., 2008. Computer Animation: Algorithms and Techniques. Burlington: Mor-

gan Kaufmann.

Sederberg, T. W. and Parry, S. R., 1986. Free-form deformation of solid geometric models.

In: Proceedings of the 13th annual conference on Computer graphics and interactive tech-

niques. New York, NY, USA: ACM.

Singh, K. and Fiume, E., 1998. Wires: A geometric deformation technique. In: Pro-

ceedings of the 25th annual conference on Computer graphics and interactive techniques -

SIGGRAPH ’98. New York, New York, USA: ACM Press, 405–414.

34

Appendix

Algorithm 9 Find Closest Point
listOfPointsOnMesh = all the curve points that are on the mesh

if not point in listOfPointsOnMesh then

newPoint = point

else

if point in listOfPointsOnMesh then

newPoint = point

else

get closest Point in List with threshold

if distance of clostestPoint and point are <= threshold then

newPoint = closestPoint

else

newPoint = point

end if

end if

append Point to listOfPointsOnMesh

newPoint

end if

35

Appendix

Algorithm 10 Delete Curve
curveParentGroup = parent of curve

connectedAttributes = connections to the curve

clusters = []

for connection in connectedAttributes do

if connection == clusterHandle then

append connection to clusters

end if

end for

delete curveParentGroup ▷ deletes bezier curve and the two tangents

remove curve from the profilecurve list of the curvenet

for cluster in clusters do

children = children of the cluster

if len(children) == 1 then

clusterHandle has still a connection

appears if the curve was not connected to any other curve

if children == "parentConstraint" then

get the target of the parentConstraint ▷ == control handle

delete control handle and cluster

else if connection of the cluster == Cluster then

cluster is not connected to anything anymore

happens to curves that were connected to other curves

for child in children do

if children == "parentConstraint" then

get the target of the parentConstraint ▷ == control handle

delete control handle and cluster

end if

end for

end if

end if

end for

36

Appendix

Algorithm 11 Check For Existing Cluster
listToAdd ▷ List of all the points to be added to the cluster

clusterExists = False

existing Cluster = 0

clusterInScene = all existing clusters in the scene

for clusters in clusterInScene do

pointsInCluster = all the points connected to the cluster

pointPosition = positon of Cluster

if distance between pointPosition and listToAdd Point position < 0.001 then

clusterExists = True

existing Cluster = cluster

end if

end for

if clusterExists then

add the listToAdd to the cluster

else

create a new cluster

end if

37

Appendix

Algorithm 12 Merge Points
connectionList = []

poinList = []

for for spheres in selected Spheres do

get the connected cluster

for connections in cluster do

append connections to connectionsList

if not "tangents" in points then

only adds beziercurve points

append points to pointList

end if

end for

end for

averagePoint = 0

for point in pointList do

averagePoint += point

end for

averagePoint l̄en(pointList)

ensure that averagePoint is on the mesh, otherwise get the closestPoint on the mesh

for point in pointList do

get start and endpoint

delete Curve

if ".cv[0]" in point then startPoint = averagePoint

elseendPoint = averagePoint

end if

create new ProfileCurve

end for

38

Appendix

Algorithm 13 Seperate Points
connectionList = []

poinList = []

for for spheres in selected Spheres do

get the connected cluster

for connections in cluster do

append connections to connectionsList

if not "tangents" in points then

only adds beziercurve points

append points to pointList

end if

end for

end for

for point in pointList do

get start and endpoint

delete Curve

create new ProfileCurve

end for

39

Appendix

Algorithm 14 Add Deformer
get the child groups of the mainCurvenetGroup

if not baseCurvesGrp in child groups then

freeze the transformation of all control handles

create baseCurveGroup and baseClusterGroup

bezierlist = []

baseCurveList = []

for bezierCurve in curvenet do

bezierList.append(bezierCurve)

bezierCurveList.append(duplicate of bezierCurve)

get the cluster connections of bezierCurve

for cluster in cluster connections do

get the group of the connected sphereHandle

connect the group to a new cluster, which controls the duplicate curve point, so

the baseWire moves along with the rig

end for

end for

add attribute "dropOffDistanceControl" to mainCurvenetGroup

add wire deformer wireDef to the mesh

for i in bezierList do

connect bezierList.worldSpace[0] to wireDef.deformedWire

connect baseCurveList.worldSpace[0] to wireDef.baseWire

connect dropOffDistanceControl to wireDef.dropOffDistance

end for

set rotation of wireDef to 0

hide baseCurveGroup and baseClusterGroup

end if

40

	Title Page
	Abstract
	1 Introduction
	2 Previous Work
	2.1 Skeleton-Subspace Deformation
	2.2 Pose Space Deformation
	2.3 Free-Form Deformation
	2.4 Wires
	2.5 Curvenet and Cut-Mesh Algorithm

	3 Technical Background
	3.1 Bezier Splines
	3.2 Calculate Control Points

	4 Implementation
	4.1 User Interface
	4.2 Workflow
	4.2.1 Creating Curvenets
	4.2.2 Connecting Geometry
	4.2.3 Drawing Curves and calculating Profile Curves
	4.2.4 Editing Profile Curves
	4.2.5 Connecting Curves and Mesh
	4.2.6 Connecting Curves and Rig
	4.2.7 Saving Curvenet Data

	4.3 User Test
	4.3.1 Drawing the Curves
	4.3.2 Deformation
	4.3.3 Animation Test

	5 Conclusion
	6 References
	Appendix

