This project presents an alteration to an already existing method presented for generating crack patterns on surface meshes. This original method creates identifiably realistic crack patterns
This project combines Material Point Method with J-integral to calculate crack tip parameters which are used to determine the crack propagation. This is implemented as a custom solver in Houdini and the solver is used to create a Houdini Digital Asset. The developed asset provides a user to simulate a reasonable crack propagation with some user controls.
This project creates shadow effects with Houdini Digital Assets (HDA). The aim is to generate shadow geometries on given models and eventually consume it entirely. Shadow geometries are created by the first HDA, users could select different patterns and manipulate the parameters to create a variety of looks. The second HDA generates particles that create the consuming effect on the given model and swirl decomposing effects after consumption.
This work demonstrates the usage of voronoi fracture extrusions for creating a procedural city blocks. The user is able to control 4 stages of the creation the flora such as trees, bushes, waters like rivers), buildings (city centre, residential area, administrative buildings) and roads with pathways.
This project documents the procedural simulation of rotting and decay, which is a natural phenomime many have seen. It can be simulated to add realism to a scene. Several papers relating to this topic have been discussed, highlighting some of the commonly used techniques. A custom-made solver was developed in Houdini18.5 using the Pyro Sop Solver and predominantly the VEX Wrangles and VOP networks to simulate this process. This report outlines the framework to create a rotting simulation of several fruits; apple, banana and orange. This digital asset will allow the user to input their modelled fruit and set various parameters to create the desired rotting effect they wish. Further development is required to add further realism into the simulation
This pproject demonstrates the generation of a Houdini Digital Asset for ivy growth. This procedural tool can generate a variety of different scenes based on user defined parameter values. The ivy is generated using a sort of particle based method first introduced in 1985 by Reeves and Blau (1985). Using this as the basis for the growth algorithm, the HDA also simulates external tropisms such as gravitropism and phototropism. Along with the ability to automatically generate ivy, this tool allows the user the more stylistic approach of drawing ivy directly onto the environment geometry. This highly art-directable procedural tool demonstrates an easy way to generate climbing ivy.
A custom MPM solver created in Houdini using mostly VEX and gas microsolver nodes. The ten step process presented in 'A material point method for snow simulation' is implemented. A tool to create custom snow scenes in Houdini using the solver is also provided.
Thesis A Fluid Implicit Particle (FLIP) Sovler Built in Houdini
Abstract The following thesis presents the research and implementation of a Fluid Implicit Particle (FLUID). A literature review is included in order to highlight the most commonly used techniques for simulating fluids in the Visual Effects and Computer Graphics industries as well as critically analyse and compare them.