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Abstract. We present a novel sketch-based 2D animation technique, which 
allows the user to produce 2D character animations efficiently. It consists of 
two parts, sketch-based skeleton-driven 2D animation production and 2D 
motion capture. The user inputs one image of the character and sketches the 
skeleton for each subsequent frame. The system deforms the character and 
creates animations automatically. To perform 2D shape deformation, a variable-
length needle model is introduced to divide the deformation into two stages: 
skeleton driven deformation and nonlinear deformation in joint areas. It 
preserves the local geometric features and global area. Compared with existing 
approaches, it reduces the computation complexity and produces plausible 
results. Because our technique is skeleton-driven, the motion of character can 
be captured by tracking joints position and retargeted to a new character. This 
facilitates the reuse of motion characteristics contained in existing moving 
images, making the cartoon generation easy for artists and novices alike.  
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1   Introduction 

Sketch-based animation has gained increasing popularity in the field of computer 
graphics due to its intuitiveness and importance as a useful tool for character 
modeling and animation. Many papers [1,2,3] have been published and several 
techniques have been developed into commercial software, e.g. [4]. With the help of 
sketch-based techniques, animators can translate their 2D drawings directly into 3D 
models. Instead of handling the detail step by step, the modeler/animator can visualize 
and evaluate the fast-prototyped models at an early stage, which can be further refined 
with other 3D tools to meet the practical needs. However, compared with the progress 
in 3D animation, 2D animation has not benefited as much from these advantages. 
Most professional cartoon studios still produce huge amounts of animation (key-
frames and in-betweens) manually [5], which is a laborious and time-consuming 
process. The generation of key-frames and in-between frames are the two most 
important and labor intensive steps in 2D animation production. To best use the 
animators time, the key-frames are drawn by skillful key-framers, while the in-
betweens by those who are less experienced and skillful, known as the in-betweeners. 
Although some software tools, e.g. Animo, Toon Boom [6], have been helpful in 
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generating in-between frames, they often lack of ‘personality’ in comparison with 
those created by a human in-betweener. The software-generated in-betweens have to 
be tweaked by the animator to give back the ‘personality’ to the animation. In 
practice, many in-betweens remain created manually.  

Motivated by the skeleton-driven 3D animation techniques and some recent 
progress in 2D deformations, e.g. [7], in this paper we present a new technique aiming 
to improving the degree of automation for the production of 2D animation without 
sacrificing the quality. Our method consists of two parts, Part 1: 2D animation 
sequence generation and Part 2: motion capture and retargeting. Part 1 can be used 
independently to create an animation sequence. If it is combined with Part 2, one can 
easily reuse the ‘motion’ of an existing animation sequence and apply it to a different 
character. The primary application of our technique is 2D animation production. But 
it is also applicable to interactive graphical systems where the user can deform a 2D 
shape directly by moving its skeleton. Since it is very simple to use, we anticipate that 
this method is not only of interest to professional cartoon production houses, but also 
to novices for creating 2D moving graphics. 

The most important issue concerning Part 1 is to handle the complex shape 
deformation of characters both realistically and efficiently. For a character at a given 
orientation (for example, side view, front view or back view), we first generate its 
skeleton by analyzing the geometry of the boundary curve. Similar to a 3D character, 
the skeleton acts as the driving structure and controls the deformation of the character. 
To deform a character, we introduce the so called variable-length needle model and 
propose an algorithm called skeleton driven + nonlinear least squares optimization. 
The idea is to divide the 2D shape deformation into two components. The first is 
skeleton driven deformation, which is controlled purely by the corresponding segment 
of the character skeleton; and the other is nonlinear least squares optimization, which 
is to compute the deformation in the joint areas which are associated with the skeletal 
joints. Our observation suggests during animation most complex deformation occurs 
around the joint areas of a character. For the interest of computational efficiency, the 
skeleton driven deformation is treated simply as a linear transformation. Only the 
deformation in the joint areas is solved by nonlinear least squares optimization. To 
ensure realistic deformation, properties such as boundary features and local area 
preservation are maximized during animation. The property of global area 
preservation is also easily achieved by the variable-length needle model. Therefore 
once the first frame is given, the animator can easily create an animation sequence by 
drawing the skeleton for each subsequent key-frame. The system will produce the 
deformed character shape automatically, saving the animator from drawing the whole 
frame. 

Although large amounts of video, cartoon and traditional 2D moving images exist, 
few effective approaches are available to make use of these abundant resources due to 
the special characteristics and principles of 2D animation [8,9]. The main objective of 
Part 2 is to patch this obvious gap. Because our cartoon production technique is 
skeleton-based, we can naturally borrow the idea of motion capture from 3D 
animation to capture the ‘motion’ of a 2D animation sequence. In 3D animation, the 
skeleton length of a 3D character is usually constant during animation. However, in a 
2D case, changing feature lengths in the form of squash and stretch is one of the most 
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powerful and expressive principles of animation [8]. In this paper we will demonstrate 
that with our method we can use the 2D skeleton to represent these important and 
expressive transformations.  

Retargeting the captured motion to a different character has been extensively 
studied in 3D animation, e.g. [10]. We present a feature region based tracking 
method, commonly used in computer vision, to extract the motion of 2D objects in 
video or an image sequence. We apply a mixed optimization strategy coupled with 
template matching and Kalman prediction. Once the user has located all the joint 
regions of a character in the first frame, the system will track the motion of the joints 
automatically in the subsequent frames. The captured motion information is then 
retargeted to the predefined skeleton of a new 2D character to generate the 
deformation (animation). What to be noted is tracking is well studied in computer 
vision and our purpose here is not to develop a new tracking method. The novelty is 
to use this technique to capture 2D motion, which up to now remains an unsolved 
issue. To our knowledge, no effective 2D motion capture methods exist, which are 
good enough for 2D animation production.  

There are three key contributions in this paper: 

1. We present a sketch-based skeleton-driven 2D animation technique for cartoon 
characters. To produce a new key-frame, the user only needs to sketch the 
skeleton. 

2. To handle 2D shape deformation, we have developed a variable-length needle 
model and introduced the skeleton driven + nonlinear least squares optimization 
algorithm. Compared with other approaches, it is more efficient and able to 
produce plausible deformation with squash-and-stretch effects. 

3. We introduce a straightforward skeleton-based 2D motion capture method which 
can extract the motion from cartoon, video and rendered moving image 
sequences by tracking the motion of joints. Using both geometric and visual 
features, it prevents self-occlusion and feature disappearance in moving images. 

The remainder of this paper is organized as follows: the related work is discussed in 
Section 2. Our sketch-based skeleton-driven 2D animation technique is described in 
Section 3, while in Section 4 we describe the motion capture method. Section 5 gives 
the experimental results and comparison with previous approaches. The limitations 
and possible improvements in future will be discussed in Section 6. 

2   Related Work 

There is a significant body of previous work concerning 2D character animation 
[7,11,12,13]. Here we only discuss the most relevant developments including 2D 
shape deformation and motion capture. 

2D shape deformation: Most recent 2D deformation techniques are control point 
based. Although skeletons are incorporated into some commercial packages, the 
purpose is primarily to help pose a character, not to deform or animate a character [6].  
Igarashi et al. [7] designed an “as-rigid-as-possible” animation system which allows 
the user to deform the shape of a 2D character by manipulating some control points. 
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To reduce the cost, the authors presented a two step deformation algorithm, which 
simplifies it into two linear least-squares minimization problems. As it only 
approximates the original problem, it can produce implausible results due to its linear 
feature. Weng et al. [13] presented a 2D shape deformation algorithm based on 
nonlinear least squares optimization. The authors used a non-quadratic energy 
function to represent this problem, which achieves more plausible deformation 
results. However, the iterative solution is computationally more costly. Schaefer et al. 
[14] proposed a 2D shape deformation algorithm based on linear moving least 
squares. It avoids input image triangulation and performs smooth deformation 
globally. They also extended this point-based deformation method to line segments. 
However, as the authors admitted, this method deforms the entire image with no 
regard to the topology of the object. This weakness limits its use in 2D character 
animation. Wang et al. [15] presented another 2D deformation technique based on the 
idea of rigid square matching. Instead of using triangular meshes, they use uniform 
quadrangular meshes as the control meshes. As the obtained deformation is quite 
rigid, it is not a perfect fit for soft objects and the global area is not preserved. 

All above methods employ global optimization. One disadvantage of such global 
optimization is that the shape of all triangles needs re-computing even if a small pose 
change happens. This is computationally expensive and is not necessary in many 
cases. In our implementation, we divide the shape deformation into two components: 
skeleton driven deformation and nonlinear deformation of the joint areas. The former 
can be treated as a linear transformation and the latter is solved by nonlinear least 
squares optimization, but only for local regions. This local optimization scheme 
reduces the computation costs and can still achieve plausible deformation results. 

Motion capture and retargeting: Most research on motion capture and retargeting 
focuses on 3D animation [10,16]. Many effective algorithms have been developed and 
benefited numerous applications including computer games and film special effects. 
In contrast, little has been done for 2D animation. Bregler et al. [17] presented a 
method to capture and retarget the non-rigid shape changes of a cartoon character 
using a combination of affine transformation and key-shape interpolation. It is 
effective in representing the qualitative characteristics (i.e. motion in this case). But it 
is difficult to be precise. Therefore, although it can be useful for cartoon retargeting, it 
is not easy for the animator to control the movement and deformation accurately. In 
contrast, a skeleton-driven approach gives the animator better control of the 
deformation during animation. Hornung et al. [18] presented a method to animate 
photos of 2D characters using 3D motion capture data. Given a single image of a 
character, they retarget the motion of a 3D skeleton to the character’s 2D shape in 
image space. To generate realistic movement, they use “as-rigid-as-possible” 
deformation [7] and take projective shape distortion into account. In comparison, our 
method directly transfers the 2D motion data from an existing image sequence. We 
don’t require 3D motion data. Also it does not need the user to manually specify the 
correspondence between 2D and 3D poses of a character. Sykora et al. [19] proposed 
an image registration method by combining locally optimal block matching with as-
rigid-as-possible shape regularization. It can be used to motion capture a 2D object. 
However, the limitation is it cannot handle occlusion or large deformation. 
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2D animation can be regarded as a consistent image sequence. Our approach, 
which is influenced by several video based approaches [20,21,22], tracks the motion 
of the character’s joints. However, since our system needs dealing with a variety of 
characters with different shape and topology, the model-based tracking methods are 
ineffective. We choose more general features: texture (colour) and geometry 
information (position, velocity) of the joints to extract the motion of a character. 
Comparing with the KLT tracker [20], not relying on good feature selection, our 
algorithm directly tracks the interested feature regions (joints) for each frame. 

3   Sketch-Based Skeleton-Driven 2D Animation 

Our technique consists of five steps. We use a popular cartoon figure, mm (Fig. 1a), 
to illustrate the technique. 
 

    
(a)                       (b)                            (c)                            (d)                         (e) 

Fig. 1. Initial preprocessing before deformation. (a) Original template model, (b) Silhouette 
detection and discrete sampling, (c) Triangle mesh and curve skeleton, (d) Skeleton and 
decomposition, (e) The variable-length needle model. 

3.1   Silhouette Detection and Triangulation 

The user first imports a 2D character serving as the original template model, which 
can be represented by a BMP/JPEG image or vector graphics. The requirement is that 
the boundary of the object should be represented by a closed polygon. For BMP/JPEG 
images, we currently remove the background manually. Its silhouette is detected with 
the marching squares algorithm [23], forming a closed polygon. Distributing discrete 
points allows the polygon to be triangulated. Many triangulation algorithms exist. 
Here we adopt the Constrained Delaunay triangulation algorithm. The sampling 
density is adjustable at the user’s will to form sparser or denser meshes depending on 
the requirements. To make sure a character shape is properly triangulated, we require 
the template model should be expanded or the limb occlusion is solved beforehand. 
This can be performed with image completion [24]. 

3.2   Skeletonization and Decomposition 

The process of constructing a skeleton is called the skeletonization. The system first 
generates a curve skeleton of the character with the 2D thinning algorithm [25]. To 
produce an animation skeleton, the user locates the joints either on the curve skeleton 
or the mesh vertices. The curve skeleton of the example character is shown in Fig. 3c. 



 Sketch-Based Skeleton-Driven 2D Animation and Motion Capture 169 

Some end points of the curve skeleton branches (red points in Fig. 3c) can be used as 
skeletal joints directly. After skeletonization, the system attaches every vertex to its 
nearest skeleton segment. This is called the decomposition, which classifies the 
vertices into different regions. Here we use a region growing algorithm described in 
[26]. The decomposition result for the example cartoon character is shown in Fig. 3d. 
In this figure, there are 16 skeleton segments, which have been colour-coded to 
represent the associated vertex regions.  

Based on the classification of all the vertices, we now classify the triangles into 
two types, interior triangles and joint triangles. If the three vertices of a triangle are 
of the same color, i.e. they are all associated with one skeleton segment, the triangle is 
an interior triangle, otherwise the triangle is a joint triangle. Both types of triangles 
are shown in Fig. 1. We also sort the vertices into three categories, silhouette vertices, 
interior vertices and joint vertices illustrated in Fig. 2. Silhouette vertices form the 
contour of an object. Except for silhouette vertices, if all the neighbor triangles of a 
vertex are interior triangles, this vertex is an interior vertex; otherwise it is a joint 
vertex. 

 

                           

Fig. 2. Illustration of our definition of different types of vertices and triangles 

3.3   Shape Deformation 

Shape deformation is crucial to the quality of animation and is an essential step of our 
technique. The main objective for our algorithm design is both to minimize the 
boundary change, interior shape distortion and computational overheads. We deform 
a 2D character in two stages: skeleton driven deformation for each vertex region 
(Stage 1) and nonlinear deformation for the joint areas (Stage 2). For Stage 1, since 
the computation involves simple transformations, it incurs only a small overhead. 
Stage 2 minimizes implausible deformations. Although the computation is more 
complex, it involves only a small portion of the vertices. 

3.3.1   Variable-Length Needle Model 
Our Variable-Length needle model represents the geometry of the deformable object 
using a collection of variable-length needles. Each needle links a vertex to its attached 
 

interior triangle 

joint triangle joint vertex 

silhouette vertex 

interior vertex 
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skeleton segment. Each needle originates from the skeleton and extends outward in a 
fixed angle. The vertex is at the end point of a needle. The length of a needle is the 
Euclidean distance between the vertex and the corresponding skeleton segment. Fig. 
1e illustrates the variable-length needles model. 

3.3.2   Stage One: Skeleton Driven Deformation 
In skeleton driven deformation, the geometry of all vertices is determined only by the 
position of the corresponding skeleton segment. Because the points are close to the 
skeletal segment, it is reasonable to regard the needles as being subject to the affine 
transformations of the skeleton segment during animation. Rotation and scaling are 
legitimate transformations here. During transformation, the length and direction of the 
needles relative to the skeleton segment are unchanged, leading to fast computation of 
the new coordinates of the mesh vertices.  

Cartoon characters often exhibit significant squash-and-stretch deformations.  
An advantage of using our needle model is that the area enclosed by the boundary can 
be maintained by ensuring the change of the length of a needle to be reciprocal of  
the change of the linked skeletal segment length. Because the needles cover the 
character’s surface, this simple method effectively preserves the global area of the 
character and express the squash-and-stretch effects. Fig. 3 demonstrates the effect of 
global area preservation. One skeletal segment is used to deform the bottle. 

 

Fig. 3. Deformation with (middle) and without (right) global area preservation. The original 
object and variable-length needle model are shown on the left. 

Fig. 4 illustrates the deformation process of a cartoon character. As can be seen in 
Fig. 4c, d, the deformation is realistic. However, the texture and contour curve in 
some joint areas are not sufficiently smooth, and some joint triangles even overlap. 
This suggests that to minimize shape distortion, we need to concentrate on the joint 
areas and ensure the deformation conforms to the original model. This forms the main 
part of Stage two. 

3.3.3   Stage Two: Nonlinear Deformation in Joint Areas 
We employ two geometric entities as constraints to prevent shape distortion: rotation 
and scale invariant (RSI) Laplacian coordinates [27] and edge lengths of the 
triangular mesh. The former preserves the local shape feature of the contour curve and 
the latter for local area preservation.  
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Let (V , E ) be the 2D graph of a character’s mesh model, where V  and E are the sets 

of vertices and edges respectively. V can be divided into three subsets:
s

V which 

contains k  silhouette vertices, 
p

V which contains m  joint vertices, and
q

V which 

contains n m k− −  interior vertices.  

a. RSI Laplacian coordinates 
As the ordinary Laplacian coordinates do not account for rotation and scaling of the 
curve, here we use rotation and scale invariant (RSI) Laplacian coordinates [27] to 
handle the deformation of the silhouettes. Given that we are mainly interested in the 
joint areas where visible distortions occur, we only need to constrain the silhouette 

vertices in the joint areas, denoted by 'sV . To preserve the local features of the contour 

curve, we need to minimize the following objective function:    

    
2|| ( ) ( ) ||

i

i s

i
v V

T v T v
′∈

−∑ %          (1) 

where ( )iT v stands for the RSI Laplacian coordinates of  iv  before deformation; ( )
i

T v%  

stands for the RSI Laplacian coordinates of  iv  after deformation. 

b. Edge lengths 
We use the following energy function to penalize edge length deviation for joint 
triangles:  

  
2

, ,( , )

||| | | |||
i j p

i j i j
v v V i j E

v v v v
∈ ∈

− − −∑ % %    (2) 

| |
i j

v v−  is the edge length of i j
v v before deformation, and | |i jv v−% % is the edge 

length of 
i jv v after deformation. 

Combining (2) and (3), our overall objective function can be rewritten in the 
following matrix form:  

2 2

1 2|| || ||||w w′ ′− +s s p pTV TV HV - HV% %
   

(3) 

Assume the number of vertices in 
's

V  is 'k . ′s
V represents the coordinates of these 

vertices. H is a | |pE m× matrix, which is used to compute the edge vectors of joint 

triangles. The sum of weights: 1w and 2w are normalized to 1 and in our experiments 

we used equal weightings for both terms. However, the user can adjust the weighting 
to emphasize certain geometric properties.  
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(a)                      (b)                          (c)                          (d)                            (e) 

Fig. 4. Deformation process. (a) Sketched skeleton, (b) Deformed character displayed as a 
variable-length needle model. The blue lines represent the skeleton of the original template 
model before deformation, (c) Mesh and skeleton after the deformation of Stage one, (d) 
Character after the deformation of Stage one, (e) Character after the deformation of Stage two. 

This is a non-linear function and to solve the optimization problem efficiently, we 
adopt the iterative Gauss-Newton method. The result is shown in Fig. 4e where both 
the silhouette and texture inside the object are smoothly deformed compared with the 
result of Stage one. For this particular example, the computation converges with 36 
iterations. The number of iterations varies with many factors including the shape of 
model, the number of vertices and the magnitude of the deformation. In our 
experiment, the average number of iterations across all the examples is 35. 

3.4   Depth Adjustment and Fine Tuning 

Collision detection is a practical problem for the deformation of cartoon characters. 
When different parts of a character overlap, if the depths are not assigned properly, 
the overlapping parts may interpenetrate. Moreover, assigning static depth values for 
vertices [7] does not work in all possible situations. In our system, we allow dynamic 
depth adjustment through interaction. Upon the generation of a new deformed model, 
we monitor the mesh for self-intersection and set an appropriate depth order to the 
overlapping parts. When the user clicks any vertex in an overlapping part, all the 
vertices in this decomposed region will have the same depth value as the clicked one. 
Fig. 5a gives an example of depth adjustment.  

Our system also allows the user to fine tune the local geometric details of the 
model in two ways: sketch curves and point dragging. The sketch curves are used to 
fine tune the silhouette of an object. Similar to the nearest neighbor method, we 
search the start and end points of the silhouette segment along the object contour (the 
shortest Euclidean distances from the start and end points respectively to the sketch 
curve). For each vertex on the silhouette segment of the variable-length needle model, 
we fix the angle between the needle and the skeleton segment, and change the length 
of the needle to move its end point to the new position on the sketch curve. An 
example is given in Fig. 5b where the profile of the right arm is altered with a sketch 
curve. Point dragging is more straightforward. The user picks and drags any vertex to 
reshape the character. It can be very useful to edit or generate detailed shape changes 
after the skeleton-driven deformation is complete, such as facial expressions. Fig. 5c 
shows two examples. The left one changes the face expression and the right one 
creates a hedgehog hair. 
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                    (a)                                          (b)                                                (c)   

Fig. 5. Depth adjustment and fine tuning local geometric detail. (a) Deformed result before and 
after depth adjustment, (b) Sketch curve fine tuning, (c) Deformation through point dragging. 

3.5   In-Betweening 

In-between frames are generated by interpolating the deformation produced from the 
two stages discussed above, skeleton-driven deformation (stage 1) and non-linear 
deformation in the joint areas (stage 2). Many interpolation techniques can be used. In 
this Section, we explain how to generate the in-betweens given two key-frames. 
Suppose fstart, fskeleton-driven and fend represent the shape of the initial frame before 
deformation, the shape generated with the skeleton-driven deformation only and the 
shape of the end frame, respectively. The computation of each in-between frame f(t) 
consists of two elements. The first describes the skeleton-driven deformation which is 
solved by spherical linear interpolation (slerp). The second element represents the 
non-linear deformation which can be computed by the linear interpolation of the 
geometry displacement between fskeleton-driven and fend . The formula can be described as 
follows:      

[0,1]
( ) slerp[ (1 ) ] ( )start skeleton driven end skeleton driven

t
f t f t f t f f t− −
∈

= × − + × + − ×                     (4)  

4   Motion Capture and Retargeting 

Based on the method proposed above, we have also developed an effective algorithm 
to capture the motion of a 2D character. The basic idea is to track the joints using the 
well developed computer vision techniques. Once the first frame is identified from a 
moving image sequence, the curve skeleton is automatically extracted in the same 
way as was described earlier. Based on this curve skeleton, the animator marks the 
joints on the image. To capture the motion from the subsequent frames/images, the 
key step is to track the positions of the joints. Because we are concerned with 2D 
images/frames, it is reasonable to assume the texture of the joints unchanged between 
any two adjacent frames. Our design therefore is to track the joint positions using 
texture as the visual cue. It captures the motion of an original character and retargets 
it to the target character. To ensure it works correctly, the image sequences and the 
target character should satisfy the following preconditions: 

1. The image sequence is consistent, i.e. the change between two adjacent frames is 
relatively small. 

2. The target character has the same topology and a similar pose to that of the original 
character in the first frame. 
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3. The pose of the original character in the first frame is roughly expanded. There is 
no occlusion for all the joints. 

What needs pointing out is that our motion capture method is not limited to cartoon 
sequences only. It can capture a cartoon sequence, a video and a rendered 3D 
animation image sequence (Fig. 12). 

4.1   Tracking 

For a given image sequence or video as input, the system first subtracts the 
background for each frame [28]. The user then locates all the joints by marking small 
rectangles on the original character to indicate the joint positions, using the 
automatically generated curve skeleton as a guide. Fig. 6a shows an original 
character to be tracked. The red rectangles represent the located joint regions. 
Tracking and connecting all the joint positions in these frames lead to the generation 
of the skeleton in the subsequent frames. To map the captured motion to a target 
character (Fig. 6b), we require the target character to have a similar topology and pose 
to those of the original character. Moving images of static objects can be relatively 
easy to track with color information alone. But it is not sufficient for articulated 
characters. This is because parts of a character may overlap from time to time where 
color information disappears. In order to solve this problem, in addition to the color 
feature as discussed, we also use the geometric feature. The geometric feature allows 
the joint positions to be predicted in the next frame by estimating the velocity of the 
joints. 

  
(a)                                                                  (b) 

Fig. 6. Initial setup for motion capture. (a) Original character in the first frame and located 
joints, (b) Target character and its decomposition results. 

Assume n joints to be tracked in each frame, the positions of the rectangle centres 
at frame t form a geometric feature vector

1 2[ , , . . . , , . . . ] T
t t t m t n t=G g g g g  

1 1 2 2[( , ) ,( , ) ,...,( , ) ,...( , ) ]T
t t m m t n n tx y x y x y x y= . For the visual feature, we use an n 

dimensional feature vector
1 2

[ , , . . . , , . . . ] T

t t t m t n t
=C c c c c , where 

mt
c is the 

texture matrix of the m-th rectangle region. We track a joint (the centre of the  
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corresponding rectangle) between adjacent frames by searching the closest match in 
the previous frame. Using the Bayes’ rule with a uniform a priori distribution case, 

this process is equivalent to finding the maximum of ( | )tP F Θ , where 
t

F denotes 

a feature vector of the character at frame t. Θ denotes the feature parameters 
corresponding to the tracked result at frame t-1. Here the whole feature space is 
divided into two sub-spaces: geometric and visual spaces as follows: 

( | ) ( | ) ( | )c c g gt t tP P P=F Θ C Θ G Θ                                (5)  

where ( | )
c ctP C Θ and ( | )g gtP G Θ are PDFs (probability density functions) corresponding 

to the visual and geometric features respectively. Maximizing ( | )tP F Θ  can be 

described as the following optimization problem, which is to minimize the sum of the 
Mahalanobis distances in the sub-spaces, i.e.  

1

min
n

mt
m

D
=
∑                                                             (6) 

s. t.  
, ,mt c mt g mtD w D w Dα β= + ,  2 2

, ( ) ( )mtg mt mt mtmtD x y yx= − + −     

        
, ( ) ( ) ( )c mt r mt g mt b mtD w RedDiff w GreenDiff w BlueDiff= + +c c c      

where wα and wβ  are the weights used to normalize the corresponding distances. In 

our work, wα is 2
1 /(255) and wβ is 2(1/ )r . r is the radius of the search range. ,c mtD  

represents the measuring distance in RGB space. ,g mtD represents the distance between 

the centre of moving rectangle and the position of the predicted joint region centre.  
The Kalman filter is widely used for tracking as a subject of computer vision. 

Since the interval between adjacent frames is small in our work, we treat it as a 
uniformly accelerated motion in a time interval and use the following prediction 

model to compute the centres of the joint regions ( , )
m mt x yG    

   1

2
, 1 , -1( , ) ( , ) / 2

m mt t m m m t m tx y x y T T− −= + +G G V A                                (7) 

                  1 2, 1 [ ( , ) ( , )] /t tm t m m m mx y x y T− −− = −V G G                                                   

                  1 2, 1 [ ( , ) ( , )] /t tm t m m m mx y x y T− −− = −A V V  

where 1 ( , )t m mx y−G , , 1 , 1,m t m t− −V A are the tracked centre position, velocity and 

acceleration of the m-th joint at frame t-1. T is the interval between adjacent frames.  
Fig. 7a illustrates the joint tracking result of the character in Fig. 6a. We select 

four tracked frames in an 18 frame image sequence. As can be seen from frames 6, 
12, 18, the problem of self-occlusion is effectively solved with our position 
prediction algorithm.  
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frame1                         frame6                frame12                        frame18 

                                                                   (a) 

 
                                                                     (b) 

Fig. 7. Tracking and retargeting. (a) Joint tracking for the original character, (b) Deformed 
target character. 

This tracking method is not without limitations. Since the frame-by-frame tracking 
is inherently subject to error accumulation, the accuracy is limited to a small number 
of frames (around 30 in our experiments). One effective way to solve this problem is 
to divide a large image sequence into a number of segments which consist of fewer 
frames, and correct the tracking error for the first frame in each segment. Our system 
allows the user interactively adjust the tracking result at any frame when necessary. 

4.2   Retargeting 

To retarget a captured motion to the new character, we first produce a skeleton as 
described before. There is a lot of existing work on 3D animation, such as [10], which 
is directly applicable to our case. In this paper however, we only implemented a 
simple method to demonstrate the retargeting process. For a moving 2D character, a 
skeleton can have both linear (length) and angular (orientation) displacements, i.e. a 
skeleton segment can stretch / squash and rotate. The basic idea of our simple motion 
retargeting is to map the captured increments of both length and orientation angle of a 
skeletal segment, which can be computed by: 

, , , 1 , , , 1/ ,m t m t m t m t m t m tl l l α α α− −Δ = Δ = −                                   (7) 

where ,m tl , ,m tα represent the length and orientation angle of the m-th skeleton 

segment at frame t. For the target model, the length ,m tl′  and orientation angle ,m tα′  of 

the m-th skeleton segment at frame t can be trivially computed by: 

, , 1 , , , 1 ,,m t m t m t m t m t m tl l l α α α− −′ ′ ′ ′= Δ = + Δ                                       (8) 

Fig. 7b illustrates the retargeting result for the target character in Fig. 6b. 
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5   Experiments and Evaluation 

We design two experiments to comparatively study the computational complexity and 
visual performance of our deformation algorithm. The first is deforming a 2D flower 
model with our algorithm into four similar postures to those in [13]. The results are 
shown in Fig. 8. We test our algorithm on a 3.2GHz Pentium 4 workstation with 1GB 
memory. Table 1 gives the comparison results. Since our deformation algorithm does 
not perform nonlinear shape deformation for all triangles, it takes about a quarter of 
the time. This is especially significant when performing larger and more complex 
animations. 

     (a)  

(b) 

Fig. 8. Flower model deformed by our algorithm and [13]. (a) Deformation results with [13], 
(b) Deformation results with our algorithm (from left to right, original template, decomposition 
result and deformed figures). 

Table 1. Comparison of data statistics and timing 

Cartoon model: Flower  Method in [13]   Our deformation algorithm 

Boundary vertices 114 123 
Interior vertices 256 27 (Joint vertices) 

Precomputing time 22ms 9ms 

Iteration time 0.589ms 0.143ms 

The second experiment is to deform an elastic object both appeared in [7] and [15]. 
Two skeletal segments are used in our algorithm. Fig. 9 gives the results. As our 
method preserves the global area, comparing with the result in [7] and [15], it can 
express the squash-and-stretch effect of this elastic object naturally during 
deformation. 

                    
                             (a)                        (b)                         (c)                           (d) 

Fig. 9. Comparing our algorithm with the approaches in [7] and [15]. (a) Original object and 
decomposition result with skeleton, (b) Deformation result with our algorithm, (c) Deformation 
result in [7], (d) Deformation result in [15]. 



178 J. Pan and J.J. Zhang 

We also invited three animators to test our technique with two groups of 
experiments. The first was used to evaluate the visual quality and performance of 
animation production. The original characters were acquired from the Internet. Fig. 10 
and the video give the results. The second group is to test our motion capture and 
retargeting method. There are two experiments. The first (Fig. 11) is to track the joints 
of a jumping cartoon man and retarget the motion to a new character. We treat the hat 
and the man as two objects, and track them separately. The second one (Fig. 12) is to 
track the joints of a 3D running horse (rendered as a 2D image sequence using Maya) 
and retarget it into a cartoon gazelle.  

 

                           (a)                                                                         (b)                                 
 

   
                          (c)                                                                            (d) 

 
                                                                      (e) 

Fig. 10. Five groups of cartoon characters deformed by our algorithm. From left to right, 
original template model, decomposition results with skeleton, deformed figures. (a) mm, (b) 
Black cat sergeant, (c) Monkey king, (d) Spiderman, (e) Running horse. 

The consensus from the animators showed that our method is more efficient than 
the current practice adopted in many commercial cartoon production houses, as 
sketching a skeleton is much faster than drawing a whole frame. In fact it is 
encouraging to see that our design is consistent with their animation practice. To 
create a key-frame, often the animator would first sketch a stick figure (i.e. the 
skeleton) and then overlay the body shape on top guided by the stick figure. This 
process is called the deep structure. Sketching the skeleton alone relieves them from 
some of the time-consuming tasks, i.e. to draw the whole character body. They also 
believe that our motion capture technique will make an animator’s life much easier 
and have a positive impact on the cartoon production industry once a 2D motion 
database is established. 
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                                                                              (a) 

   
                       (b) 

Fig. 11. Motion of a jumping cartoon man retargeted to a new character. (a) Original cartoon 
character, (b) Retargeted new character. 

 
                                                                      (a) 

 
                        (b) 

Fig. 12. Joint tracking of a running horse (a) and retargeting to a cartoon gazelle (b) 

6   Discussion and Limitations 

In this paper, we have presented a sketch-based skeleton-driven 2D animation 
technique using sketches as the primary inputting means both for the creation and the 
control of the animation artifacts. It consists of two main parts. The first is concerned 
with the fast production of 2D character animation by sketching only the skeletons. 
Comparing with the traditional cartoon production pipeline, drawing a skeleton is 
much faster than drawing a whole frame. This allows denser key-frames to be drawn 
by experienced animators. By reducing the interval between key-frames, in many 
cases the in-between frames can be produced mainly by software without 
compromising the realism, unlike the current practice where human in-betweeners are 
the main workforce, which is often expensive.  

Given an original image of a character and the sketched skeleton sequence, our 
technique will generate a deformed character with different poses automatically. It is 
faster and less labour-intensive than the existing production practice. Our theoretical 
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contribution in this aspect includes a variable-length needle model, which 
successfully preserves the global area of a character during animation, which is an 
essential property for squash-and-stretch effect in cartoon animation; and the skeleton 
driven + nonlinear least squares optimization algorithm, which is computationally 
economic. 
   The second part of our work is concerned with the development of a skeleton-based 
2D motion capture technique. Once a skeleton is established in the first frame of a 
moving image sequence, we track all the joint positions from each subsequent image 
considering both geometric and visual features of the images. This 2D motion capture 
technique can be applied to various types of moving images, including 2D cartoon 
animation, videos and image sequences of rendered 3D animations.  
   Our research also reveals some limitations of the developed method. The first 
relates to the texture information of the template image. Because there is no 3D 
information of a 2D character, large pose change can result in loss of correct texture 
for subsequent frames. Although some research in matting, image completion and 
texture synthesis [18,24,29,30] has attempted to resolve this issue, it is still an open 
problem for all 2D deformation techniques. We plan to use image merging techniques 
to tackle it in the future. The second limitation is the error accumulation in tracking. 
Currently we correct the tracking error at the first frame of each sequence segment. 
We plan to use a more robust tracking approach in the future. The third place to 
improve is retargeting. Our current simple approach is only to demonstrate our motion 
capture method. It would be desirable to incorporate a 3D animation technique (e.g. 
[10]) to treat retargeting as a space-time optimization problem. The motion editing 
techniques developed for 3D motions are also relevant. 
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