
Computer-Aided Civil and Infrastructure Engineering 18 (2003) 121–131

Fast Volume Rendering and Cutting
for Finite Element Model

Xiaosong Yang

Department of Computer Science and Technology, Tsinghua University, Beijing 100084, People’s Republic of China

&

Yuanxian Gu, Yunpeng Li & Zhenqun Guan

State Key Laboratory of Structure Analysis for Industry Equipment, Department of Engineering Mechanics,
Dalian University of Technology, Dalian 116024, People’s Republic of China

Abstract: Based on the incremental slicing, a direct vol-
ume rendering algorithm for finite element meshes is
proposed. To improve the algorithm efficiency, the el-
ement compensation method and sliced polygon form-
ing method are presented. The image quality is improved
greatly by the hybrid rendering of both the volume data
and geometric surfaces. We also integrate a volume cutting
method with arbitrary convex polyhedron into the volume
rendering pipeline. This offers the user more flexibility to
explore the data distribution inside structures.

1 INTRODUCTION

Existing direct volume rendering methods can be classi-
fied into the ray-tracing, the element projection, and the
hybrid methods. The principal problem of the ray-tracing
method (Garrity, 1990) is that it is very time-consuming
in the intersection computing. The principal difficulty of
the projection method (Shirley and Tuchman, 1990) is
the sort operation of all elements. Even using the algo-
rithm of Max et al. (1990) and Williams (1992), it still
cannot solve the sort problem involving loops. Two ma-
jor algorithms are included in the slicing-based hybrid
method. The method of Giertsen (1992) and Silva and
Mitchell (1997) utilizes a set of planes that is parallel to

∗To whom correspondence should be addressed. E-mail: yxs@vis.cs.
tsinghua.edu.cn.

scan-line to intersect with structures. This approach suf-
fers from low image quality because of the sampling in
image space. Another method is Roni Yagel’s incremen-
tal slicing (IS) (Yagel et al., 1996) algorithm. The cutting
plane set is parallel to the image plane. It had better
image quality as the result of sampling in object space.
Because hardware is used to render polygons, it is faster
than existing methods.

The new algorithm presented in this article is based
on the IS method. To achieve better image quality and
real-time response, four major improvements have been
proposed:

1. On the basis of the element-type description table
(ETDT) recording the topology of various types of
elements, a fast uniform element-slicing algorithm
is given out to solve the bottleneck in IS. The slice
polygon forming operation in IS consumes nearly
90% of the computing time of the main loop.

2. Reduce the slicing number. The analytical graph in
IS shows that the time of rendering increases lin-
early with the slice number. To achieve satisfactory
quality at the least slices can also decrease the to-
tal rendering time. But a problem emerged during
the decreasing of slices. More and more small ele-
ments are neglected by falling entirely in the gap.
Sometimes these elements include important value
range, such as high stress in finite element analysis,

C© 2003 Computer-Aided Civil and Infrastructure Engineering. Published by Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA,
and 108 Cowley Road, Oxford OX4 1JF, UK.



122 Yang, Gu, Li & Guan

which should have been highlighted. An important
function is applied to classify these elements, and a
special element compensation method is utilized to
solve this problem.

3. The volume rendering is originally developed to
handle rectangular grids. In this kind of data, the
geometrical information is contained implicitly and
is always stressed out by iso-surface or other meth-
ods. But in the finite element model, the obvi-
ously supplied geometrical information is always
neglected. It is too hard to recognize the exact po-
sition of high-stress concentration from the vague
image. The hybrid algorithm given in this article
renders the volume data and geometrical faces to-
gether. The facets supposed to have certain trans-
parency are integrated with volume slices in front-
to-back order. The image quality is improved by
means of implementing the facet rendering by the
OpenGL shading models.

4. Although the volume rendering presents more in-
formation in the final image than the surface render-
ing, occlusion of important information in the back
is still a big problem. To give the user more flexi-
bility to explore the most important part by using
volume rendering, sets are defined in the 3D space
to differentiate the importance of different parts
in the structure. We can define different transfer
functions and even absolute transparency for each
set. In this paper, a stencil-based cutting method
with convex polyhedra is integrated into volume
rendering pipeline. To achieve real-time require-
ment, several improvements are proposed.

2 ELEMENT TYPE DESCRIPTION TABLE

The large-scale data set of finite element model always
needs a compact storage method to reduce the memory
consumption and improve algorithm efficiency. An ele-
ment set data structure shown in Figure 1 is used in this
article. To reduce duplicate data, the topological infor-
mation for element-face-edge-node is extracted and only
a type flag is stored with a node list for each element set.
The topological information of various element types is
stored in ETDT, as shown in Figure 2. Because each op-
eration is based on ETDT, the algorithm is applicable
to various element types as long as the correct ETDT is
supplied.

3 MODIFIED SLICING-BASED VOLUME
RENDERING ALGORITHM

A set of equidistant planes parallel to the projection
plane is used to slice the structure elements. The final

Element Set:1

Element Type:20

Vertex Num:8

Element Set:2

Element Type:10

Vertex Num:8

Vertex List Vertex List

1 2 12 13 42 43 55 56

Element:1 Element:2

Fig. 1. Element set data structure.

image is generated by the integration of the projected
slices in front to back order. This algorithm consists of
the following steps:

1. Initialization: Transform the grid points from
object-space to image-space, slice number compu-
tation, out-faced facets’ extraction

2. Do this for each slice
3. Updating active edge, element, facet list
4. Small element classification and compensation
5. Out-faced facet rendering
6. Sliced polygon forming
7. Rendering of sliced polygon and integration

The algorithm will be described in detail in the follow-
ing section.

3.1 Initialization

3.1.1 Coordinate transformation. The transformation of
all nodes’ coordinates has several acceleration meth-
ods, as a common matrix is used for all nodes. In IS
the OpenGL graphics library in feedback mode is used
to implement the transformation by hardware. But due
to the clipping process in OpenGL pipeline, some ele-
ments have to be neglected even when only one node
is lying outside the clipping box. And another memory
cache for temporary storage and an additional function
call for each node make it unworthy of the acceleration.
Therefore, the software implementation of coordinate
transformation is used in the implementation.

3.1.2 Out-faced facet extraction. Extract all the faces of
elements in the structure. In the extraction process, only
three node IDs are stored for each facet, because if two
facets have three nodes in common, there are inner faces
that will be deleted in the following bucket sorting. The
left list is the out-faced facet. To reduce memory con-
sumption, only an element ID and face index in the



Fast volume rendering and cutting for finite element model 123

1
4

1

34

5 6

78

2

5

1

2

3

4

7

8

9 10

1112

5
2

3

6

6
Edge ID

Node ID

Face ID

Element Type = 9
Description = Block element of 8 Nodes;
Element Type No = 10;
Element Node Number = 8;
Element Line Number = 12;
Element Line Node Order =

Line 1 = 1, 2,
Line 2 = 2, 3,
…

Element Surface Number = 6;
Element Surface Node Number = 4;
Element Surface Node Order =

Surface 1 = 1, 2, 3, 4,
Surface 2 = 5, 8, 7, 6,

…

Fig. 2. Element set data structure.

A

B

P1P2

Fig. 3. Different point ID, same coordinate.

element are stored with the facet. The topology of these
facets can be regenerated from the ETDT.

This method works well in most cases. But some-
times the facets extracted are not always out-faced. Dur-
ing the finite element mesh generation, a structure is
normally separated into several parts to create points
(Figure 3). On their common face, there are always two
points owning the same coordinates. Because of their
different IDs, they are treated as different points in the
previous method. As a result, the common face is left
out to be an out-faced facet (Figure 4a).

A pretreatment step is added before the volume ren-
dering loop to solve the problem. Combine the points
with the same coordinate to have only one point ID. The
result of the corrected method is shown in Figure 4b.

But this combination leads to another problem
(Figure 5). When different parts of the structure have
different point densities, two adjacent facets may have
three points in common and the last one is different.
The three-points method is invalid in this situation. This
always happened in the common face of different parts.

The extraction method is modified as follows:

1. Find the point with the minimum ID from all the
element faces.

(a) Facet extraction (b) Method corrected

Fig. 4. Example of out-faced facet extraction.

A

B

P1

P1

P2

P2

P3

P3 P5

P4

(a) Different point density (b)Three points in common

Fig. 5. Three nodes do not determine a common face.

2. Compare the first ID of various faces; if different,
they are definitely not common faces. This can save
a lot of unnecessary computation of full sort.

3. If the first ID is the same, go on with the second ID.
If it fails, try to compare point IDs in the reversed
order (i.e., the fourth ID). The third and the last ID
comparison will continue with the same order as the
second.

This method not only solves the extraction problem
but also reduces the maximum compare number of two
facets from 16 to 11. In most cases when two facets are



124 Yang, Gu, Li & Guan

0

1

45

99

13 2 25

31 9

67 23 71

Edge, Element, Facet Bucket

Fig. 6. Edge, element, out-faced facet bucket data structure.

not common, the compare is needed only once. But the
previous method needs a full permutation of vertex IDs
of every face. For each facet, the compare number re-
duced to half, as only the minimum ID is needed in the
new method.

3.1.3 Construction of edge, element, facet bucket data
structure. The bucket data structure is shown in Figure 6.
Take edge bucket as an example. For each slice, only one
bucket containing an edge list is stored. There are two
insertions for each edge according to its two nodes, one
is in-bucket, another is out-bucket.

The bucket number is given by bucket =(Z − Zmin)/
�Z. For element and facet, the bucket number is de-
termined by the maximum and minimum buckets of its
nodes. As only ID is needed by bucket, the total stor-
age of bucket structure is given by (EdgeNum + Ele-
mentNum + FacetNum) · 2, which will remain constant
as slice increases. In the computations of edge, element,
and facet buckets, lots of node calculations are redun-
dant. Thus, the bucket ID could be computed only once
for each node. The bucket number of edge, element, and
facet can be deducted directly from related nodes de-
fined in ETDT.

3.2 Updating active edge, element, facet table

The active table, just as in the scan-line polygon-filling
algorithm, records the intersection information between
edge (element, facet) and current slice. The slice in-
creases with the step of �Z from Zmin to Zmax. All the
IDs stored in current bucket will be traversed. Out-edge
will remove corresponding structures from the active list.
For in-edge, a new structure including interpolated co-
ordinate and data value is inserted into the active list.
Active element list only stores the element ID. The in-
tersection between element and slice can be found from
the active edge list. The processing of the active facet list
is more complicated and will be described in Section 3.4.

3.3 Small element classification and compensation

In the updating of the active element list, in- and out-
bucket for some elements may be the same. These ele-
ments are neglected for falling between two slices. The
number increases as the sampling slices step becomes
larger. This leads to less accurate images.

To solve the problem, adaptive slicing method was
used in IS algorithm to keep the number of missed
polyhedrons under control. Each element has the same
weight of importance during the consideration. How-
ever, the frequency of the data distribution and signifi-
cance of the data value in the application are not constant
for all elements. This treatment equally without discrim-
ination causes unnecessary slice computing added in fa-
vor of cutting down the total number of missed elements.

The algorithm proposed here provides users with a
new mapping function—an important function to give
an important weight for different elements. The element
passed through the threshold will fall into a list for com-
pensation during the slice rendering. Different mapping
functions will be defined for actual physical meaning of
the application. For stress value in finite element analy-
sis, higher stress location should give more attention. A
simple two-valued function is enough in this situation to
emphasize unexpected high-stress concentration.

During the implementation of the compensation al-
gorithm, the data field can be approximately assumed
varying linearly on the element edge because of its small
size. The rendering method used here is the traditional
element projection model. The small element compensa-
tion will be integrated into the image between two slices’
renderings.

3.4 Out-faced facet rendering

The facet ID, bit-based flag, and two intersection points
are needed for active facet list. Different from active
edge and element, intersection with both of the two ad-
jacent slices is needed in forming the cutting part of the
facet. The intersection with the previous slice should be
stored in active facet structure. The intersection with cur-
rent slice can be fetched from active edge list. The diffi-
culty here is the forming of the cutting polygon by two
slices. Figure 7 shows four relationships between slices
and facet:

1. In- and out-bucket are the same; the facet falls en-
tirely between two slices, just rendering the facet
directly.

2. This active facet is just inserted from current bucket.
There is no intersection with previous slice. Nodes
can be classified as in and out on the basis of their
bucket number. The intersecting node of the formed
polygon can be got from the corresponding active



Fast volume rendering and cutting for finite element model 125

a b

dc

Previous Current Slice

Fig. 7. Relative position between facet and two
adjacent slices.

edge. All the nodes should be sorted in the order
provided by ETDT to form the cutting polygon. To
tackle the next slice, two intersection points should
be recorded in the active facet list.

3. The current bucket is out-bucket for this facet. The
processing method is same as (2) except the inter-
section information is stored in active facet list.

4. Facet intersect with both of the two adjacent slices.
Four intersection points can be got in the same way
as (2) and (3). The polygon can by generated from
the intersecting point and node falling inside.

To simplify computing, an independent OpenGL
shading model is used to render facets. Then the result is
integrated into final image with a definite transparency.

3.5 Sliced polygon forming

To reduce memory occupation, ETDT is used to record
the topology information of various element types. The
algorithm of sliced polygon forming based on ETDT is
applicable to all kinds of element types, providing correct
ETDT is given.

1. Set node flag. Allocate one bit of memory for each
node, valued 1 or 0. It stands for the relative posi-
tion to the slice. It can be got directly from the com-
parison between current bucket and node bucket
number.

3

2

11

Face\Edge Edge 1 Edge 2 Edge 3 Edge 4
Face 1 1 (0) 2 (1) 3 (1) 4 (0)
Face 2 8 (0) 7 (0) 6 (0) 5 (0)
Face 3 1 (0) 9 (0) 5 (0) 10 (0)
Face 4 6 (0) 11 (1) 2 (1) 10 (0)
Face 5 7 (0) 12 (0) 3 (1) 11 (1)
Face 6 4 (0) 12 (0) 8 (0) 9 (0)

Fig. 8. Sliced polygon forming.

2. Computation of intersecting point. Traverse all the
edges of the element; if the flags of two nodes of
an edge are different, an intersection occurred be-
tween this edge and slice, and this edge must be in
the active edge list. The coordinate of intersection
can be fetched from the active list.

3. Forming of polygon. Figure 8 shows the generated
ETDT with the active edge flags. The flag 1 repre-
sents the edge intersection with the current slice.
Taking the first intersecting point from ETDT as
the first node of the polygon, then find another in-
tersecting edge on the same face with the previous
one from the edge table of ETDT. Its intersecting
point becomes the second. Search the table in the
same way until returned to the first node (Figure 8).
It can be proved that this method can form the cor-
rect sliced polygon, provided the element is a con-
vex polyhedral that is guaranteed by the algorithms
of finite element mesh generation.

3.6 The form of sliced polygon in case
of concave element face

8-nodes block element is a commonly used element type.
In some cases, the 4 nodes of some element faces cannot
stay in the same plane. For the two elements sharing
this face, one face must be concave (Figure 9a). To the
previous algorithm, each edge of the concave face may
have an intersection with the slicing plane (i.e., there are
four 1s in the same row of ETDT). The algorithm cannot
select the correct next face in the scan of intersected edge.
A preprocessing step is needed to preclude this case in
order to form the correct sliced polygon.

In fact, there are two possibilities in this situation (see
Figure 9a and Figure 9d). The forming process is different
for them. If wrong forming methods are used for the
upper and nether element—for example Figure 9b for
the upper element and Figure 9f for the nether element—
a hole will exist on the sampling path. If Figure 9c and
Figure 9e are used, overlap will happen at the same point.

To solve this problem, we need to analyze the two situ-
ations of Figure 9a and 9d. Actually 9a and 9d correspond
to two triangulation methods of the concave face. This



126 Yang, Gu, Li & Guan

(a) (b) (c)

(e)(d) (f)

Fig. 9. Sliced polygon forming in case of concave
element face.

is similar to the ambiguity problem in the iso-surface
generation of marching cubes algorithm. But only one
possibility is right in that case. For the problem in Fig-
ure 9, both cases can form the correct polygon. Figure 9b
and 9c give the forming method in case of 9a; 9e and 9f
give the correct polygon for 9d. If we concatenate the
upper and nether element, the sampling on the common
face is the same for both cases. Thus, the key point is
that the same triangulation method is used for both the
upper and the nether element.

In order to keep the consistency of triangulation, the
key parameters must be the same for them. A simple
method is to sum up the IDs of diagonal vertexes and
select the bigger one as the segmentation diagonal. But
in the mesh generation of FEA, vertex ID may be differ-
ent for the same point in the upper and nether element.
The merely coherent parameter is the coordinate. So the
coordinate sum is used instead of the vertex ID.

Actually our objective is the separation of four edges
into two groups by using the diagonal, rather than tri-
angulation. In Figure 10, edges AB and AD are in the
same group, as are edges BC and CD. Only the intersec-
tion points on the edges of the same group can form an
edge of the sliced polygon (i.e., only AD and BC can be
the correct edge).

In the preprocessing step, the start row cannot be the
line of four 1s. If the scan stops at the concave row of
ETDT, the next intersection can only be on the edge of
the same group.

a b

c
d

A

B

D

C

Fig. 10. Grouping of element edge on common face.

3.7 Rendering of sliced polygon

The hardware supported polygon RGBA filling is used
to integrate slices in the order from front to back. The
data values inside the polygon are interpolated from the
node value.

3.8 Transfer function selection

The optical model used in this article is the source-
attenuation model. The integral along each ray path
is solved by Riemann sum. This is an approximation
method on the assumption that data vary very little in-
side each step of the path. The error will increase with the
varying of data. The transfer function is the key point to
solve this problem. There are two independent transfer
functions used in volume rendering, one for color map-
ping and one for transparency mapping. The commonly
used transfer function is linear function or segment lin-
ear function, which has better accuracy. High opacity and
red color are always designated for high value data, such
as high stress range.

4 VOLUME CUTTING BY
CONVEX POLYHEDRON

The user can define several convex polyhedra to parti-
tion the 3D space of the FEA structure and define differ-
ent transfer functions for each part of them to set their
contributions to the final image. Here we take the term
set to represent a part in the partition. If one polyhe-
dron is used in cutting the volume, the entire 3D space is
partitioned into two sets. If the transfer function for the
transparency of a set is constantly 100%, this is the same
with a polyhedron cutting on the structure. This gives
the user more flexibility to control whether a set will be
rendered or how much of the set will be integrated into
the image. We use the stencil function in the OpenGL
pipeline to implement this function.



Fast volume rendering and cutting for finite element model 127

The stencil is a very important term in the OpenGL
specification. It controls if one pixel affects the value in
the frame buffer. If combined with depth test, it can finish
very complicated functions. Normally the video card of
PC supports 8 bits of stencil buffer. In our algorithm, each
bit corresponds to a polyhedron. So at most the user can
define eight polyhedra to partition the structure.

4.1 Stencil-based volume cutting

The volume rendering algorithm in this article uses the
integration of sliced polygon to get the final image. So
the set can be defined on the 2D slice planes. Figure 11
shows the sliced polygon between an element and the
current slice layer. If the intersection between the cutting
polyhedron and slice (Figure 12) can also be gotten on
the slice plane, the sets to which each pixel belongs will be
obvious. So if the intersection can be defined in the stencil
buffer before the rendering of the sliced polygon, the
volume cutting will be straightforward. Here we separate
the work into two parts:

1. Preprocess before the volume rendering. Partition
the polyhedron into front and back parts accord-
ing to each facet’s normal in the screen coordina-
tion. Disable stencil test, enable the write to stencil
buffer, and disable depth test.

2. For each slice in the volume rendering iteration:
a. Clear the content of stencil buffer, and set the

depth buffer with current slice’s z value. Enable

Slice i Sliced Polygon

Fig. 11. The sliced polygon between the element and slices.

Arbitrary convex

polyhedron

The intersect between slice

and polygon

Fig. 12. The intersection between polyhedron and slices.

depth test and disable the write of depth buffer
and frame buffer.

b. Set the stencil function to GL ALWAYS and
reference value to 1. Set the stencil opera-
tion to GL INCR. Render the back part of the
polyhedron.

c. Set the stencil operation to GL DECR. Render
the front part of the polyhedron.

d. Disable depth test and enable the write of frame
buffer. Set the stencil operation to GL KEEP.
Set the stencil function to GL EQUAL and ref-
erence value to 1. Now in the stencil buffer, the
pixel with value one is just the part of the struc-
ture inside the polyhedron.

4.2 Multiple polyhedra

For each set, the second step in section 4.1 should be
called once. For sets, much more time for the iteration
is needed. This makes the algorithm too hard to meet
the real-time requirement. Actually, the key factor that
affects the number of iterations is the number of sten-
cil reference values. Figure 13 shows eight sets defined
by three cutting polyhedra. Figure 14 shows the stencil
reference value for each set. If only the part inside the
three polyhedra is needed, it is not necessary to render
seven times for the seven different reference values. Ac-
tually, only once with the reference value 000 and stencil
function GL NOEQUAL is enough. So how to decrease

2 3 4

7
5

6

8
1

Fig. 13. Eight sets defined by three polyhedra.

000

001010 011

111
101110

100

Fig. 14. Stencil reference value for each set.



128 Yang, Gu, Li & Guan

XXX

X0X X1X

000

X01 X10 X11X00

100 001 101 010 110 011 111

Fig. 15. Addition of stencil reference value.

the number of reference values becomes the key factor
to speed up the algorithm.

In OpenGL, there is also a parameter, a mask for the
stencil function. Here an additional operation of stencil
reference value is defined to merge them together. Sup-
pose A and B are two reference values to be merged.
If A and B are different on only one bit, they can be
added together by using XOR. The invert of the sum C
can be used as the mask for stencil operation. The refer-
ence value can take either A or B. Take 010 and 011, for
example; they are different on only the least bit, and the
sum is 001. The mask for stencil is 110.

If there are many reference values needed for addi-
tion, the reference value and mask should be transferred
to the next addition together. A marker “X” is added on
the mask bit. For example,

010 + 011 + 110 + 111

= 01x + 11x

= x1x

The number of final reference values depends on the
order of addition. For example,

010 + 011 + 001 + 110 010 + 011 + 110 + 111

+ 111 + 101 + 001 + 101

= 01x + 001 + 110 + 1x1 = 01x + 11x + x01

= x1x + x01

The result of the addition for the same six reference
values is different. The final number of reference values
in the left addition is four. It takes nearly double the
time to finish the rendering as the right addition. So the
order of addition is very important for the algorithm
efficiency.

Here we use the data structure of the binary tree to
define the addition order. Each layer of the binary tree
corresponds to one cutting polyhedron. We need to com-
pute which bit the reference value has the most in com-
mon with. We put the bigger common bit at a higher

position in the binary three. Figure 15 shows the tree
and the addition process for the above example.

4.3 Out-faced facet cutting

In the algorithm presented in this article, out-faced
facets should also be considered in the polyhedra cutting.
Because the facet falling between two adjacent slices
doesn’t have constant depth value as sliced polygon, the
cutting operation is a little bit complicated. There are
two methods:

1. Assume a constant depth for all the facets falling
into the same bucket and render the facets just the
same way as with the sliced polygon. There will be
jagged edges at the boundary of the intersection
between cutting polyhedra and current slice, espe-
cially when the slice number is less than 200.

2. The first one is an approximate method that got
more errors when the slice number becomes even
less. To accurately render the facet, the exact depth
value should be set into the depth buffer. It takes
the following steps:
a. Clear stencil buffer and disable the write of

frame buffer.
b. Rendering the facet to write the exact depth

value into depth buffer.
c. Same with section 4.1 to render cutting polyhe-

dra to set stencil buffer.
d. Disable depth test and the write of depth buffer.

Enable the write of frame buffer. Render the
facet again.

Because each facet should take all the above steps (a–
d), the efficiency of the algorithm becomes worse. Or-
dinarily the second method is only used to get a more
accurate result when the slice number is too small. But
actually the best way for the user to get an accurate ren-
dered image is to increase the sliced number, which will
take the first method.

Figure 16 shows some examples of volume cutting by
using simple cubes, spheres, and cones.



Fast volume rendering and cutting for finite element model 129

Fig. 16. Example of volume cutting by convex polyhedra.

5 RESULTS

As the result of the algorithm optimization of sliced poly-
gon forming and the compensation of small elements, a
satisfying image of volume rendering can be achieved
within a very short time period. To evaluate the perfor-
mance of our algorithm, the algorithm was implemented
on a Pentium 350 with Riva TNT display card. Figure 17

and Figure 18 give the comparison of small element com-
pensation. Figure 19 and Figure 20 show the result of
out-faced faces rendering. It can be seen that the hybrid
rendering makes the image more realistic. The time used
by rendering, given in Table 1, shows that the present al-
gorithm can achieve a speed of 1 fps for a moderate-sized
data set of finite element model. It is enough to meet the
real-time requirement of finite element software.



130 Yang, Gu, Li & Guan

Table 1
Rendering time for five structures

Data set Element number Node number Facet number 50 slice (s) 200 slice (s) 300 slice (s)

Example 1 5040 6300 17620 0.733 2.095 2.99
Example 2 864 1300 816 0.26 0.799 1.158
Example 3 192 442 440 0.165 0.473 0.71
Example 4 1976 3827 3166 0.66 1.725 2.445
Example 5 125309 135000 18966 6.642 11.879 15.745

Fig. 17. Without small element compensation.

Fig. 18. With small element compensation.

Fig. 19. Without out-faced faces.

Fig. 20. Hybrid rendering of volume data and faces.

6 CONCLUSION

In this article, some technical approaches are pro-
posed to accelerate volume rendering and improve im-
age quality. The structure of ETDT is introduced to
unify different treatments of various element types and
greatly decrease the space consumption requirement of



Fast volume rendering and cutting for finite element model 131

volume rendering. Furthermore, the concept of impor-
tant function gives classification to the missed elements.
The compensation method to render important small el-
ements gives a satisfying image at the least slice num-
ber. And the hybrid rendering of out-faces with the
volume data improves the spatial perception of the vol-
umetric structure. Finally, the partition on the structure
defined by convex polyhedra makes the volume ren-
dering more powerful and flexible for the user’s data
exploration.

ACKNOWLEDGMENTS

The project was supported by the Scientific Fund for
National Outstanding Youth of China (19525206) and
the Special Funds for National Key Basic Research of
China (No. G1999032805).

REFERENCES

Garrity, M. (1990), Ray tracing irregular grid, Computer
Graphics, 24(5), 35–40.

Giertsen, C. (1992), Volume visualization of sparse irregular
meshes, IEEE Computer Graphics & Applications, 12(2),
40–8.

Max, N., Hanrahan, P. & Crawfis, R. (1990), Area and volume
coherence for efficient visualization of 3D scalar functions,
Computer Graphics, 24(5), 7–33

Shirley, P. & Tuchman, A. (1990), A polygonal approximation
to direct scalar volume rendering, Computer Graphics, 24,
63–70.

Silva, C. T. & Mitchell, J. S. B. (1997), The lazy sweep ray casting
algorithm for rendering irregular grids, IEEE Transactions
on Visualization and Computer Graphics, 3(2), 142–57.

Williams, P. L. (1992), Visibility ordering meshed polyhedral,
ACM Transactions on Graphics, 11(2), 103–26.

Yagel, R., Reed, D. M., Law, A., Shih, P. & Shareef, N. (1996),
Hardware assisted volume rendering of unstructured grids
by incremental slicing, IEEE-ACM Volume Visualization
Symposium, San Francisco, CA, Nov., 55–62.


