
Henry van der Beek – MSc Thesis 2006 1

Henry van der Beek
Crowd Scene
Report

Henry van der Beek – MSc Thesis 2006 2

1. Contents
1. Contents ..2
2. Introduction...3
3. Background ...4

3.1 Concept ...4
3.2 Story..5
3.3 Bullring Architecture...5

4. Research..7
4.1 Concatenating Animation ..7
4.2 Crowd Simulation..7

4.2.1 Craig Reynolds (Flocking) ..7
4.2.2 Softimage Behaviour ..8
4.2.3 Massive ..8

5. Pipeline ...9
5.1 Animation..9
5.2 Modelling..10
5.2 Modelling..10

5.2.1 Bullring ..10
5.2.2 Other Buildings...10

5.3 Simulation ...11
5.3.1 Outline..11
5.3.2 Class Design ...11
5.3.3 Process..15

5.4 Rendering..20
5.4.1 Generate mtor ribs ..20
5.4.2 Append biped ribs...20
5.4.3 Render ..21
5.5 Compositing ..22

6. Further Work...23
6.1 Uneven Terrain..23
6.2 More Animation Cycles...23
6.3 Simulate on Skeleton Level ...23
6.4 Fuzzy Logic...24

7. Bibloigraphy..25
7.1 Academic Papers ...25
7.2 Online Resources...25
7.3 Software Packages...25

APPENDIX: Storyboards..26

Henry van der Beek – MSc Thesis 2006 3

2. Introduction
The purpose of this project was to create an animation using a crowd scene
simulation. Due to the volume of processing required in scenes containing large
amounts of geometry, this was to be done using distributed rendering.

Henry van der Beek – MSc Thesis 2006 4

3. Background

3.1 Concept
The initial idea for this project was
inspired by a woodprint called “Malaga
Bullring” by Emma Stibbon (Picture 3),
which was in an exhibition on the
ground floor of Poole House in
Bournemouth University. I like the harsh
lighting and the simple majesty of the
print, and this is what made me decide to
base my project on it.

This was to be used as the basis for a
crowd simulation, and I decided that I
wanted to create an animation of a
crowd entering the bullring. This
reminded me of an experience I had
whilst travelling in Brazil. I was on a bus
travelling through Agua Fria, a poor
suburb of Recife in the North East.
There was a football match on, and the
hot air was full of dust and smoke, and
people shouting and screaming. The
stadium loomed out of the fog, made
from raw grey concrete and covered in
graffiti.

I was struck how the crowd seemed to
move as one faceless mass. The energy
and aggression washed over everyone as
a wave, and drew them onwards into the
stadium. It reminded me of Bosch’s
paintings of hell (Picture 1) and
Botticelli’s visions of Dante’s inferno
(Picture 2).

This was the kind of crowd that I was
aiming to simulate.

Picture 1: The Garden of Eartly Delights (Panel
3) (Hieronymous Bosch c. 1500)

Henry van der Beek – MSc Thesis 2006 5

3.2 Story
From these initial ideas I developed a simple story to base my simulation around.

The story starts with a crowd flowing into the bullring. When the crowd were all
seated, it is revealed that a monster is lying sleeping in the centre of the
auditorium. The crowd jeer and taunt the monster, who paces around
uncomfortably. Then, the monster finds that he can reach up to the edge of the
seats and climb up. As crowd begins to flee in terror, the monster grabs one of
them and eats it. The scene ends, with the monster running through the panicking
crowd, eating people (see Storyboards Appendix).
.

The music chosen for the scene was “Rusalka’s Ode To The Moon”, from the
opera “Rusalka” (1900) by Antonín Dvorak. In this, Rusalka sings to the moon
first in awe, then in reassurance. This represents the monster’s transition from
melancholy to content.

Silver Moon upon the deep dark sky,
Through the vast night pierce your rays.
This sleeping world you wander by,
smiling on men’s homes and ways.

3.3 Bullring Architecture
The first stage in modelling the scene was to look into the designs of the Malaga
Bullring and its surrounding area. From google maps, I was able to get a satellite
picture and a map.

During the course of the project I also took a trip to Seville, the town in Spain
most famed for bullfighting. I took the opportunity to visit the bullring, and took
several photographs. I also managed to get a picture of a schematic of the seating
stalls, which was useful in the modelling (Picture 11).

Picture 2: Canto XVII (Sandro Botticelli c. 1480) Picture 3: Malaga Bullring (Emma Stibbon 2002)
woodcut print, 112 x 153 cm

Henry van der Beek – MSc Thesis 2006 6

Picture 4: Malaga Bullring aerial view (source:
google maps)

Picture 5: Map of area surrounding Malaga Bullring
(source: google maps)

Picture 6: Seville Bullring interior (postcard) Picture 7: Seville Bullring interior (postcard)

Picture 9: Seville Bullring exterior (photograph) Picture 8: Seville Bullring tunnels (photograph)

Picture 10: Seville Bullring schematic (photograph) Picture 11: Seville Bullring schematic (photograph)

Henry van der Beek – MSc Thesis 2006 7

4. Research

4.1 Concatenating Animation
A built in feature of Maya, the Trax editor, allows animation to be transferred
between characters, and to be duplicated across the same character, for example if
you wanted to repeat a walk cycle a number of time.

However, I found the Trax editor very problematic and not very well documented,
so I wrote a simple script for exporting animation files in my own format (.clip
files). This worked by going through a skeleton hierarchy for a character, and
finding either the position or each keyframe for that particular joint. Another
script was then used to write the .clip files to new bipeds, thus duplicating the
animation.

Unfortunately when this was applied numerous skinned characters, maya seemed
to find it hard to handle all of the information, even if the viewport was not
updated during processing, and undo was turned off. Scenes with more that 100
bipeds became unmanageable and it was decided to switch to Renderman to place
the biped skins in the scene. This rules out the possibility of controlling the bipeds
on a skeletal level.

4.2 Crowd Simulation

4.2.1 Craig Reynolds (Flocking)

Craig Reynolds is famous for his work in both the fields of animation and
artificial life. In 1987 his paper “Flocks, Herds and Schools: A Distributed
Behaviour Model” was published. The paper applied simple rules to the describe
behaviour birdlike creatures called boids. This resulted in seemingly complex
behaviour of the flock, produced by the simple behaviour of the individual.

Reynolds' idea stemmed from an interest in the concept of autonomous characters.
While examining the behaviour of a flock of birds, he imagined himself flying as
a member of the flock. Assuming that as individuals, the birds were not especially
intelligent, Reynolds came up with three simple rules which would allow them to
continue flying together as a flock. Firstly, they would want to avoid colliding
with other birds. Secondly, they would want to keep moving at the same pace as
the rest of the birds, and finally, if they were drifting away from the flock, they
would alter their direction towards the rest of the flock. These three rules:
Collision Avoidance, Velocity Matching and Flock Centering; formed the basis of
Reynolds' work. In applying these, he found that he could quite accurately model
the behaviour of a flock of birds.

The paper then went on to outline how he had experimented with this behaviour.
Independent of any other criteria to cause behaviour, he found that the flock
tended to reach a steady or state in which no new behaviour was exhibited. To

Henry van der Beek – MSc Thesis 2006 8

liven up the flock, Reynolds introduced a “global direction” to model the flock's
will to fly towards a particular place, for example to migrate during the winter.
This took the form of a virtual carrot on a string, or a tendency to fly towards a set
“goal point” which would move along a particular path around the scene. Later in
the paper, another feature was introduced: obstacles for the boids to avoid. The
goal point was then used to steer the boids towards these objects, causing the flock
to split, and then reform, once the obstacle had been circumnavigated.

4.2.2 Softimage Behaviour

Behaviour is a crowd simulation package designed to be used with XSI. It
incorporates character terrain following, obstable avoidance and ragdoll stuntmen.

The characters and actions are modelled in XSI and then loaded into a behaviour
scene, where the final animation is constructed. Behaviour objects can be one of
three types of “actor”, that is any object which interacts in the scene. These are:

• Simple Props: inanimate objects to be avoided.
• Terrain: objects which movement curves must follow (only one terrain per

scene).
• Digital Actor: characters which move in the scene, as controlled by

Behaviour.

Each Digital Actor’s behaviour is defined by a finite state machine, which is
constructed as a series of linked nodes. Using this, it is possible to make an actor
behave differently depending on their proximity to an enemy, for example.

4.2.3 Massive

Massive (Multiple Agent Simulation System in Virtual Environment) is a piece of
crowd simulation software which was written by initially written by Stephen
Regelous for use in Lord of the Rings. It now exists as a standalone application
and has been used in many films and advertisements.

Similarly to Behaviour, character AI is build up in a series of nodes. However, in
Massive, the nodes are broken individual behaviour nodes (or brain), and group
behaviour nodes, dictating the personality of the group as a whole. In addition to
this, the system is on Fuzzy Logic, rather than a finite state machine, and so
outputs a much wider and more realistic array of behaviour.

Henry van der Beek – MSc Thesis 2006 9

5. Pipeline

5.1 Animation
The whole basis of the final piece
is the copying of animation to
many places within the scene,
managed by the simulation. This
animation was done in maya using
a simple skeleton with a smoothly
bound polygonal skin, with some
weights painted onto to body to get
satisfactory deformations.

Several key poses were chosen
(stopped, left foot forward, right
foot forward and seated), and these
poses were used as start and end
points for each animated sequence,
to allow the blending of different
pieces of animation.

For all of the walking and stopping
animation, the main axis of the
biped was kept in the same place,
so that any movement could be
controlled by the simulation.
However, in the cases of the longer
animated sequences (the sitting and
the climbing), the biped was
allowed to move relative to the
origin, so that the simulation could
maintain a constant position and
then apply a step increment when
the sequence was complete.

Each sequence was then rendered out as a series of rib files using the mtor rib
export feature.

Diagram 1: Animation cycles. Bipeds always start from
Stopped, and begin walking on their right foot (RStart),
which then leads into the closing of the step (RFinish).
From this position, they can either move into a left step
(LBegin) or into a stopped position (LStop -> Stopped),
etc.

Henry van der Beek – MSc Thesis 2006 10

5.2 Modelling

5.2.1 Bullring

As the bullring was to be defined in the simulation as a series of geometric shapes
(circles and lines) for the simulation, it was necessary to model the bullring
mathematically to make sure that the model and the simulation data matched up.

To allow this, the whole bullring structure was generated by a mel script
(generate_bullring.mel). This script creates the shape bullring based on the
values of nine variables, which are set in the text of the script. These are:

• Outside Radius (outer_rad)
• Inside Radius (inner_rad)
• Central Passage Radius (centre_rad)
• Centre Passage Width (cpass_w)
• Outer Tunnel Width (rpass_w)
• Inner Tunnel Width (spass_w)
• Passage Height (pass_h)
• Number of Entrances (num_ents)
• Number of Seating Rows (num_srows)

The height of the seating rows was not defined in the script, as this was already
defined as 2.0 units by the animation. A button was made in the maya shelf so that
the bullring could easily be generated after minor adjustments were made to the
shape in the script.

The script works by generating cubes and cylinders of various sizes, and then
using Boolean geometry operations to combine the pieces into the required
bullring shape.

As well as creating the model, the script is also responsible for generating
bullring_spec.txt, a text file containing the values of these nine variables, to be
read in by the simulation.

5.2.2 Other Buildings

Other buildings were modelled roughly based on the Emma Stibbon woodprint,
and photographs of the Malaga Bullring taken from the hills to the north. I felt that
accurately modelling the buildings was not necessary, in keeping with the harsh,
simplistic tones of the woodprint

Once the buildings were modelled, key vertices (ie. the corners) were chosen as
reference points for importing the buildings into the simulation. Another mel
script, write_out_locators.mel, was used to write out the global positions of these
points to a text file (scene_locators.txt), which was read in by the simulation.

Henry van der Beek – MSc Thesis 2006 11

Once again, a maya shelf button was made to output the locators, allowing the
buildings to be moved and scaled in the scene and keep the simulation up to date
with their positions.

5.3 Simulation
The Bullring executable formed the basis of the project. It was written in C++,
and can be adjusted at the command line for different numbers of bipeds, placing
of bipeds and numbers of frames. The simulation is then output in the form of two
types of text files, one for maya to read (Sim.txt), and the other to be rendered by
Renderman (biped.####.rib).

First I will outline the overall design of the simulation, and then I will go into
more detail about the classes used. Then I will explain the process of the
execution of the program.

5.3.1 Outline

The simulation models the movement of a number of bipeds as they walk through
an environment containing several objects. Using the same notation as XSI
Behaviour, every interacting object in the scene was called an actor; in the
program, all of these classes inherited from the base Actor class.

In general, the collision testing is done in two dimensions, thus all positions are
stored as Vector2 objects. When the bipeds enter the seating, some 3 dimensional
collision testing is applied, but still the x and z horizontal axes are kept separate
from the vertical y axis.

5.3.2 Class Design

Overview

The scene consists of the members of the crowd, which are called Bipeds, and a
number of Areas, which are defined as “areas in which the Biped can exist”. A
Biped’s movement depends primarily on which area it is in. For example, if a
Biped is in the Outside Area, it will walk towards the closest entrance to the
bullring. In addition to this, Bipeds also avoid each other and collision objects
within their Area.

Henry van der Beek – MSc Thesis 2006 12

Class Diagram

As the class structure is rather complicated, I have broken down the class diagram
into separate inheritance and usage diagrams.

Actor

An actor is defined as any object which is able to interact in the scene, from a
biped to the bullring. This is a generic abstract class which all elements in the
scene inherit from.

Though the simulation is primarily kept in two dimensions to minimise the
processing, the each Actor class contains a several vectors of three dimensional
objects (vertices, edges and polygons) to allow the scene to be visualised. These
objects are not used in the collision tests.

CWall

A Circular Wall is a circular object in the scene used for creating collision
boundaries, defined by a position and a radius. Objects which are within the
CWall’s radius are considered to be colliding, and objects outside the radius are
considered not colliding.

HWall

A Hole Wall is the opposite shape to a Circular Wall. Objects falling outside its
radius are considered collided, while objects within the radius are not.

Diagram 2: Inheritance Diagram Diagram 3: Usage Diagram

Henry van der Beek – MSc Thesis 2006 13

LWall

A Linear Wall is defines a plane across the scene. It is defined by a position and a
normal. An object on the side of the plane behind the normal is considered to be
colliding.

Biped

Each Biped object represents a character in the crowd. The biped inherits from the
CWall class, giving it a circular collision area. Each object maintains information
about it current location and position in the animation sequences. This information
is then updated each frame.

Area

An Area is defined as a location which a biped could inhabit or avoid, eg. a
building or a passageway. This itself is a type of actor, so inherits from the Actor
class.

The abstract Area class has several important virtual methods.

With regards to collision testing, Area::intesects (whether the object is
partially within the area) and Area::contains (if the object is contained within
the area) are the key methods. These tests can be performed in either two or three
dimensions.

The bipeds’ area also defines their movement. There are several methods relating
to this such as Area::get_direction, Area::get_destination and
Area::get_next_area.

Another important role of the Area class is the spawning of Bipeds at scene
initiation. The two methods controlling this are Area::get_random_position
and Area::randomly_place_biped.

CPass

A Circular Passage contains two walls, an outer HWall, and an inner CWall.
Using these two boundaries, it can determine whether an object lies within it.

LPass

Like a CPass, Linear Passage has two walls. However, in this case, the two walls
are LWalls facing each other. An object is inside the LPass if it is inside neither
wall.

SRows

The Seating Rows are types of CPass with special properties. In other areas,
Bipeds can enter the next area simply by walking, as the areas overlap. However,

Henry van der Beek – MSc Thesis 2006 14

the SRows are a series of concentric CPasses, with every outer wall the inner wall
of the next row. Because of this, the Area::allow_climbing method returns
negative for all Areas apart from SRows. This allows the bipeds to check whether
it is possible to climb onto the next row up, but only in these areas.

SRows are also responsible maintaining a list of seats which have been allocated
to Biped within their boundaries.

Seat

A Seat object is a type of CWall. It exists as a target for the Biped to whom it has
been allocated, and a collision object for Bipeds requesting new seats. It has a
radius slightly larger than the biped requesting it, to allow the biped to step inside
it.

Tower

A Tower is a collision object representing a tower block building. It consists of
four or six LWalls. An object is only considered as colliding with the tower if it is
inside all of its walls.

Stall

A Stall is a type of area used in seating management. It inherits from CPass, but it
also has a sweep value, limiting its range. The bullring seating consists of several
stalls, and the sum of their sweeps in 360 degrees.

Bullring

The Bullring object represents all of the seats, walls and internal passageways of the
bullring. It has a circular hull, and a number of entrances even distributed around its
exterior. Each entrance is represented by an LPass called RTunnels[n] for
historical reasons. These LPasses all lead into one internal CPass called CTunnel.
This then has several more LPasses leading from it, called STunnels (see diagram
4). There are the same number of STunnels as RTunnels. All of the STunnels lead

(left) Diagram 4: Passages inside the bullring
(above) Diagram 5: Stalls in the bullring

Henry van der Beek – MSc Thesis 2006 15

into the first of the SRows, SRows[0]. The SRows are then numbered sequentially
upwards and outwards. Each STunnel also has two Stalls, one to the left and one to
the right (see Diagram 5). Each stall covers all of the SRows between each STunnel.

Outside

The Outside object contains all objects affecting the biped when they are outside
of the bullring. This consists of four towers and the hull of the bullring, which are
all applied as collision geometry.

5.3.3 Process

Initiation

First a scene object is set up, and then the Scene::Init method is run. This
performs the following tasks:

Environment Generation

First, the bullring area is created by creating a Bullring object. This reads in the
bullring_spec.txt file, which contains the up-to-date specifications for the shape
of the bullring. From this data, the various walls, passages, stalls and seating rows
are created.

Next, an Outside object is created to represent the outside area. The positions of
the towers are read in from the scene_locators.txt file, and once again, the
necessary walls are constructed to place these in the scene. A reference to the
bullring object is also passed to the outside object, as the bullring is a collision
object in the outside area,

Biped Generation

Bipeds can be generated in any of the areas. The number generated is set by the –b
flag on the command line, the default being one. The required biped density in
each area can also be set at the command line, using the –d flag (default is 0.1).
This is only used as a limiting value though; the density in any area will be limited
first by the total number of bipeds in the scene and no area will be forced to reach
a specific density.

A stack of Areas is created as the spawn areas. This can be adjusted for different
shots, but only at a coding level. For example, for an exterior shot, it may only be
necessary to spawn bipeds in the outside area.

Spawning is performed using the Scene::fill_area_to_density function.
When an area’s density reaches the threshold value, the area is pushed off the
stack, and spawning continues in the next area. The spawning function also takes
in a sweep_min and sweep_max values, to allow bipeds to only be generated in
certain areas. This is useful for interior shots, where it is not necessary to
completely fill the bullring as the camera can only see a small part of it.

Henry van der Beek – MSc Thesis 2006 16

The Scene::fill_area_to_density function also has the functionality to
change the distribution of the spawning of the bipeds, and supports linear,
quadratic, cubic and quartic distribution. This feature is useful in spawning bipeds
in the outside area; using a non-linear distribution will cause a denser population
around the bullring, and a sparser population further away. This looks more
natural and avoids a sharp line of bipeds at the edge of the spawning area.

When a biped is spawned, it is tested by the scene to see whether it collides with
any of the other bipeds. If this test fails more than 1000 times, the scene assumes
the area is full and rejects it, pushing it off the stack of spawn areas.

Bipeds are generated as stopped to begin with, and are told to wait for a random
number of frames in the range of the length of the walk cycle. This is so that their
steps are not all synchronised.

When bipeds are generated in the seating rows, this is a special case. To prevent
intensive demands on the number of seats (see later), the bipeds are generated as
already seated. This requires them to be generated in specific positions on the
seating rows, and this allows only a smaller number of bipeds to be generated. For
this reason, the biped densities in the seating rows are scaled down for spawning.

Runtime

Update

Destination

Each biped’s movement is defined by the area it is in. Each biped has an attribute
currentArea, which it asks for its destination. For example, if the biped asks
the outside area for its destination, the outside area will return the nearest
bullring entrance to that biped. Likewise if the biped is in the seating row
containing its seat, the seating row area will return the position of its seat as its
destination. The direction is then given as the vector between the biped and
its destination, normalised.

As well as storing its currentArea, each biped also has an attribute nextArea. If
the biped has entered its nextArea, the Biped::process_area_transition
method is called, which makes the currentArea the nextArea, and requests this
area for the subsequent area using the Area::get_next_area method.

Once again, when the biped enters the seating area, the situation is slightly
different. Their currentArea is the seating row which they are currently in, but
their nextArea checks the position of their seat. If it is in the same row that the
biped currently occupies, the nextArea is set to the biped’s seat. Otherwise, the
nextArea is set to the next seating row up.

Henry van der Beek – MSc Thesis 2006 17

Steps

To make the calculations less intensive, bipeds only perform a collision test when
they are about to take a new step, which is every 12 frames. At this point, they
propose a new step towards their direction, and send a request to the scene to
allow this step. This uses the Scene::allow_step method. The scene then tests
the new step against the biped’s area’s collision geometry and not only all the
other bipeds in the scene, but also the position of their next steps. This was to
simulate how people in a crowd are able to judge where other people are going,
and avoid stepping into their path.

If the next step is rejected, the biped traverses a list of other possible steps which
it can make. These are steps of varying angle and distance at 20 degree and
quarter step increments. These are sorted in order of distance towards the
destination and are part of the biped object, generated at runtime into two steps
vectors. The biped will chose the first possible step which it comes to, this being
the one which will take it closest to it destination. If all of the steps are rejected,
the biped will stop.

The steps vectors are split into two so that the biped will not readily take steps
which are at oblique angles to its destination. All of the steps taking the biped a
set distance towards its destination are stored in the possible_steps vector.
These steps are available every time a step is requested. All remaining steps,
taking the biped less than the threshold towards its destination, are stored in the
drastic_steps vector. These are only made available when the biped has been
stopped for more than 10 frames. This system prevents the bipeds from moving
around erratically if there is something in their path.

Animation

Each biped’s animation is dictated by the simulation, and is output in the form of
renderman code, with an attribute box for each biped, and a separate file for each
frame. Each biped’s code will look something like this:

 AttributeBegin
 Translate x ypos z
 Rotate angle 0 1 0
 Surface "rmanshader/Blinn_0"
 Procedural "DelayedReadArchive"

[animation_file] [-10 10 -10 10 -10 10]
 AttributeEnd

The DelayedReadArchive function references a rib file which was generated for
each possible biped pose (see the Section 5.1). The simulation applies an
animation file depending on the biped’s animation_state attribute and their
position within that state as defined by their sequence_counter attribute. For
example, if a biped is in a CLIMBING state, and the sequence_counter is on
38, we know that the animation file to be referenced is Climb.0002.rib, since the
Climb animation is 40 frames long.

Henry van der Beek – MSc Thesis 2006 18

At each update, the sequence_counter is decremented. When it reaches zero, the
biped requests a new state using the Biped::process_animation_transition
method. This then assigns a new animation state, and sets the sequence_counter
to the value of the duration of that state.

The state transitions roughly follow the animation sequence diagram (see Diagram
1), and in most cases, the animation frame is written on the same frame as it is
simulated.

However, when a biped moving its feet
together is going to have its next step
accepted or rejected, and in this case,
we do not know whether to apply the
“Stop” or “Begin” sequences. This
means that our animation sequence
diagram needs some adjustment for
writing out the animation (see Diagram
6).

In essence, a virtual animation state is
created called “Close”. During this
state, no animation is written, but at the
end the five frames leading up it are
written all at once. Though this makes
the bipeds seem to react to things
before they have happened, it is an
effective approximation of a person’s
judgement of the people walking in
their vicinity.

Due to this retrospective writing of
frames, the simulation needs to have 6
file streams open at any one time, one
for each of the pervious five frames,
and one for the current frame. This is
managed by the scene object. The
bipeds then write themselves to the rib
files for each frame using the
Scene::write_biped_to_file
method.

Seat Allocation

Seats are allocated to an actor when it enters the auditorium. Each passage leading
into the auditorium has two Stall attributes, left_stall and right_stall. If the
biped is on the left side of the passage entering the auditorium, it is allocated a
random seat in the left stall, and likewise for the other side.

Sometimes the bipeds get stuck in a position trying to get to their seat, particularly
if they have just entered the auditorium and there is someone sitting right next to

Diagram 6: Animation state transition diagram to
allow retrospective writing of frames.

Henry van der Beek – MSc Thesis 2006 19

the entrance. To prevent this, if biped are stopped for more than 50 frames, they
are allocated a new seat each frame until they start moving.

Draw

Each actor in the scene inherits the Actor::Draw method. This goes through each
of the object’s edges, faces and vertices and draws each one. For visualisation of
the simulation, it was found that using the edges was most effective so that the
user could see inside the bullring.

Write

The write part of the update cycle generates a text file called Sim.txt. This is a
version of the simulation which can be read in by maya. To minimise the amount
of reading, only bipeds changing direction or stopping/starting were written to the
file. This was achieved by having a scene.bipeds_to_key vector, and only
pushing bipeds which need to be keyframed onto it. At the end of each update,
these bipeds are written out, and the vector is emptied.

Picture 12: Simulation with most of the bipeds
seated. The black dots are seated bipeds, the blue
dots are bipeds which are climbing. The red areas
are seats which have not yet been reached.

Picture 13: An overhead view of the simulation.
Green lines show the line between the biped and its
destination. Notice bipeds outside the bullring are
all moving towards their closest entrance.

Picture 14: The square grid shows the radius in
which the bipeds are generated. In the background
you can see to collision geometry of the towers.

Picture 15: In this simulation, bipeds are evenly
distributed across all areas.

Henry van der Beek – MSc Thesis 2006 20

5.4 Rendering

5.4.1 Generate mtor ribs

Read in simulation

This was an optional part of the pipeline. Using the readSim_to_locators.mel
script, the positions of each biped are imported into the scene and applied to
locators. However, with large crowds, mel’s parsing of text files and writing data
to the scene was so slow that it was often ineffective to use this feature of the
project.

Passes

Render passes were set up in slim. The shots were done with two passes.

The first was a crowd beauty pass. All objects in the scene were shaded with the
Matte attribute turned on. This was applied through a RIBBox shader. The scene
lights were left one.

The second pass was an ambient occlusion pass. A shader was imported into slim,
and applied to all surfaces in the scene. For this pass, all of the lights were turned
off.

Mtor Render

Camera moves were applied, and the frames were then rendered out using mtor.

5.4.2 Append biped ribs

Joining ribs

In some cases in was necessary to join the ribs from two different simulations into
one shot. For example, in the seating shot, the bipeds in the auditorium and
outside were simulated in different batches. This was done using a simple python
script called join_ribs.

Create Final ribs

The final fibs are constructed by inserting the biped rib files into the mtor ribs.
The function was performed by the Crowd_Scene_Render python script, using
the bullring_FM.py (bullring file manager) module.

On activation, the bullring_FM module tests whether the biped files in has in its
buffer directory are up to date by comparing the md5sum value of its files and the
files in the simulation output directory. If the files are not up to date, it queries the
user to determine whether an update is required. If so, it copies the files across to
its buffer.

Henry van der Beek – MSc Thesis 2006 21

The bullring_FM module also allows an offset to be applied to the biped rib files.
This is so that biped files can be used from a simulation that has been running for
a few hundred frames can be used, so that the positions seem more natural. This is
activated by using the –bo flag in the Crowd_Scene_Render script.

Next, the bullring_FM module creates a .Final_Ribs/ directory in the project
area, and begins to generate the final ribs into this location. This process uses
simple head, grep and append (>>) command line options.

Upon generation, each biped rib is submitted for rendering, which is explained in
the next section. This is so that the whole list of ribs need not be traversed before
rendering can begin.

5.4.3 Render

Find free machines

If Crowd_Scene_Render is performing a distributed render, it activates the
ninfarm.py module, which constructs a list of available machines. This can be
done in two ways.

The default is to read the machine list from a file, stored in the ninfarm home
area. This is appropriate when the list has been recently updated, and when not
many people are moving in and out of the labs.

If the ninfarm is instructed to refresh the list, it scans through a list of all
available machines on the ground floor of Weymouth House. By default, it rejects
machines if people are logged in, but if it is run in force mode, it checks the CPU
usage of machines which people are logged in to, and allows the operator to force
these machines onto the list. This is appropriate if someone’s rendering has
finished for example.

Submit jobs

Each render job is submitted to the ninfarm using the
ninfarm.get_next_machine method. This uses the ninwho.py module, which is
used to check usage statistic of a machine.

The functionality of the ninwho module revolves around minimising the number
of ssh requests to a machine, saving time. Every time ninwho requests the usage
of a machine, it stores the outcome in its home area, along with the time of the
usage request. The module then offers features to extract different statistics from
this cached data.

Using the ninwho method, the ninfarm submits frames sequentially to available
machines. A frame is considered rendered when all instances of prman processes
have completed on that machine.

Henry van der Beek – MSc Thesis 2006 22

5.5 Compositing

Compositing work was done in Shake. The two passes were joined together using
an over node, and the background sky colour was put in. The frames were then
rendered out as the finished piece.

Picture 18: Bullring full of people.

Picture 17: Bipeds entering the bullring entrance.

Picture 19: Bipeds entering the auditorium.

Picture 16: Long shot of the scene.

Picture 20: Bipeds in the circular tunnel. Picture 21: Close up of the seating.

Henry van der Beek – MSc Thesis 2006 23

6. Further Work

6.1 Uneven Terrain
At the moment, my scene looks rather flat. To introduce a small level of
unevenness into the terrain would be quite easy, since you could simply use the
current animation cycles and tilt them to the normal of the terrain surface at that
point.

To introduce more rugged terrain would also be nice, but would require the
simulation to be run on a biped skeleton level (see below) as large increments in
terrain heights would require different deformations in the biped skin.

6.2 More Animation Cycles
To allow some diversity in the crowd, multiple animation cycles could be made.
The simulation would then randomly choose a character for each member of the
crowd, and apply those animations to that character.

This would be quite work intensive, but would easily fit into the current
framework and produce some nice results.

6.3 Simulate on Skeleton Level
When I first began working on this project, I entertained thoughts of running the
simulation on the level of controlling biped’s leg movements, this in turn
controlling their arm movements, and thus defining the movement of the whole
skeleton. However, the when the number of people in the scene became too much
for maya to handle, I lost the ability to bind the skin to the skeleton, save running
each character through maya, which would be very time consuming.

One way around this would be to use a script to generate several thousand rib files
for each possible postion. For example, if you wanted to simulation a turn, you
could simply generate the ribs for the sequence for each one degree increment,
resulting in 4320 ribs for a cycle of 12 frames, which would be quite practical as
they are quite small. The simulation would then pick the ribs appropriate to the
turn being applied. One could even experiment as to the maximum degree of
increment which was noticeable.

Another solution would be to bind the skin in the simulation. This would probably
be more efficient, but would require (for me personally) a whole new area to
research into the practical and mathematical aspects of binding a skin to a
skeleton.

Henry van der Beek – MSc Thesis 2006 24

6.4 Fuzzy Logic
One of the key strengths of Massive is the use of fuzzy logic.

While my simulation is based on a finite state machine, massive uses fuzzy logic,
allowing an actor to exist in any number of states to varying degrees, at any given
time. This in turn creates an infinite number of possible animations which a given
character can perform.

Once again this would require the simulation to be performed on skeleton level,
but would open up a whole new world of possibilities and realism.

Henry van der Beek – MSc Thesis 2006 25

7. Bibloigraphy

7.1 Academic Papers
● Reynolds, Craig W. Flocks, Herds, and Schools: A Distributed Behavioral
Model 1 Computer Graphics, 21(4), July 1987, pp. 2534.

7.2 Online Resources
[Encyclopedia] http://en.wikipedia.org
[Article on Craig Reynolds] www.generation5.org/content/1999/reynolds.asp
[Various articles about Renderman] http://www.fundza.com/

7.3 Software Packages
Maya 7.0 (Alias)
c++ (Free distribution)
Renderman (Pixar)

XSI (Softimage)
Behaviour (Softimage)

Henry van der Beek – MSc Thesis 2006 26

APPENDIX: Storyboard

Henry van der Beek – MSc Thesis 2006 27

