
ErgophobiaThe Silen
e Of Night
Masters ThesisMatt OsbondBen ChandlerHasan AtiehAli Derweesh

N.C.C.A Bournemouth UniversitySeptember 9, 2007

Abstra
tWith a shared desire to
reate a fun
tional video game, four students de
ided todo so for their MS
 Term 4 Proje
t. They were given the opportunity to
reatesu
h a pie
e in a professional working environment through entry into an inter-nation video games
ompetiton
alled 'Dare to be Digital'. Upon
learing the�rst stage, the team went to work for the 10 weeks in an industry developmentstudio. The result is 'The Silen
e of Night', a third person ninja game. Thegame had strong media
overage for the duration of the
ompetition and wonappraisal for it's use of interesting te
hnologies and it's artisti
 style.

Contents
1 Introdu
tion. 91.1 Do
ument Overview . 91.2 Introdu
tion . 91.3 Ar
hite
ture overview . 101.3.1 Modules. 101.3.2 API Layers . 101.3.3 Core Layer . 101.3.4 System Component Layer 111.3.5 Entity Layer . 111.3.6 Appli
ation Layer . 121.4 Entities and Entity Components 121.4.1 Entity Communi
ation . 121.4.2 S
ripting . 131.4.3 Entity Templates . 131.4.4 Serialization . 142 Dire
tory Stru
ture. 152.1 Bin . 152.2 Env . 152.2.1 Env/Pro�les . 152.2.2 Env/Text . 162.2.3 Env/S
reenshots . 162.2.4 Env/Con�g . 162.3 Proje
ts . 162.4 Pa
kages . 161

2.4.1 Pa
kages/Base . 162.4.2 Pa
kages/Referen
e . 172.4.3 Pa
kages/Tools . 172.5 Log . 172.6 Do
s . 172.7 The Development Framework . 172.7.1 The Team Members and Their Tasks 183 Proje
t Management, Level Design, Environment 203.1 Proje
t Management . 203.1.1 Outlining Produ
tion . 203.1.2 Management Methods . 213.1.3 S
rum vs Rigid Planning 223.2 Level Design . 243.2.1 Player Edu
ation . 243.2.2 S
ale of Assets / Spatial Awareness 253.2.3 Multiple Routes . 283.2.4 Rewarding Experien
e . 293.2.5 Obje
tives . 313.2.6 AI Agent Routes . 323.3 Environment . 333.3.1 Inspirations . 333.3.2 Polygonal Modelling . 353.3.3 Geometry Pipeline . 363.3.4 Texturing and Stylisation 373.3.5 Materials . 383.3.6 Lighting and Atmosphere 403.3.7 Visibility Management . 413.4 Sound . 433.4.1 Ambien
e . 433.4.2 Subtle Tou
hes . 433.4.3 Triggers . 43
2

4 Intera
tive Cutting 454.1 Introdu
tion . 454.2 Design . 464.3 Model Requirements . 464.4 Data Stru
tures . 474.5 Program Flow . 484.5.1 Interse
tion Testing . 484.5.2 Triangle Resolution . 494.5.3 New Obje
t Analysis . 504.5.4 New Surfa
e Triangulation 514.6 Game Integration . 524.7 Con
lusions . 554.8 Taking It Further . 564.9 Tables and Figures . 584.10 A
knowledgments . 635 The AI System 645.1 Introdu
tion . 645.2 Previous Work . 655.3 Theoreti
al Ba
kground . 675.4 The FSM Solution . 685.4.1 The FSM System . 705.4.1.1 The FSM Core. 705.4.1.2 The Senses/States Library. 755.4.2 The Proposed Behaviour 785.5 Dis
ussion . 805.6 Con
lusion . 826 Input And Chara
ter Control, Audio/Visual Programming, Game-play Engineering 846.1 The User Input To Chara
ter Control Pro
ess 846.1.1 Input Controller . 856.1.2 Chara
ter Controller . 866.1.3 Animation Controller . 866.2 Sound . 873

6.2.1 Ba
kground Musi
 . 876.2.2 3D Sound Sour
es . 876.3 3D Graphi
s . 886.3.1 Shaders . 886.3.1.1 Shaders and Materials Within Instin
t 896.3.2 Water Shader . 926.3.3 Sound Shader . 936.3.3.1 Initial Approa
h 936.3.3.2 Chosen Approa
h 956.3.4 Skydome . 976.3.5 2D Unlit Shaders . 976.4 2D Graphi
s . 976.4.1 HUD . 976.4.2 Menus and Loading/Ending S
reens 986.4.3 Pi
kup Noti�
ation . 996.5 Gameplay & S
ripting . 996.5.1 S
ore Manager . 996.5.2 Menu Transitions . 996.5.3 End S
reen Transition . 1006.5.4 Pi
kups . 1006.5.5 Footstep Toggling . 1016.5.6 Floorboards . 1016.6 Parti
le E�e
ts . 1026.6.1 Waterfall . 1026.6.2 Clouds . 1036.6.3 Tor
hes . 1046.7 Tools . 1056.7.1 Ray
asting Fun
tions . 1056.7.2 String Conversion Fun
tions 1066.7.3 Animation Splitting Tool 1066.7.4 Code Writing Tool . 1076.7.5 Pa
kage Syn
hronisation S
ripts 1074

7 Chara
ters and Animations 1087.1 Chara
ter Design . 1087.2 Texturing . 1097.3 Animation Cy
les . 1098 Feedba
k and Criti
al Analysis 1118.1 Feedba
k Sheet - Protoplay . 1118.2 Con
lusion . 112A S
heduling and Proje
t Management 113A.1 Initial S
hedule . 114A.2 Post-It Board . 115B S
reenshots 116C Design Do
ument 119

5

List of Figures3.1 S
heduling . 223.2 S
heduling [3℄ . 233.3 Player Learning [2℄ . 253.4 Resear
h: Max Payne [4℄ . 263.5 Ps
hologi
al Features of the Environment [6℄ 273.6 Environment Features . 283.7 Multiple Routes of Entry . 293.8 The Obje
tive . 323.9 A.I. Agent Routes . 333.10 Fable 2 S
reenshots . 343.11 In Game S
reenshots . 343.12 Low Polygon Models . 353.13 Silhouette Styling . 363.14 Geometry Pipeline . 363.15 Texture Pipeline . 383.16 Example Material Usage . 393.17 Material File Des
ription [6℄ . 393.18 Lighting Mixtures in the Menu 413.19 Example of Portals . 423.20 Trigger Volumes . 445.1 The FSM System Stru
ture . 705.2 The Class Diagram . 715.3 The States Transition Diagram 746.1 Flow Diagram Of Player Being Moved Forwards 856

6.2 Water Shader Cal
ulations . 926.3 Water Shader Applied To A Test S
ene 936.4 Preliminary Sound Shader S
reenshot 946.5 Light Attenuation Box and Fallo� Taken From [5℄ 956.6 Original Light Texture Compared To New Light Texture 966.7 Sound Shader S
reenshot . 966.8 The Waterfall Parti
le System . 1036.9 The Cloud Parti
le System Within The Game 1046.10 Freestanding Tor
h S
reenshot 1056.11 S
reenshot Of Animation Splitter 1067.1 Design Sket
h . 1087.2 Ninja Texture Map . 1097.3 Guard Animation Rig . 110A.1 The Team's S
hedule . 114A.2 The Team's Post-It Board . 115B.1 Early S
reenshots . 117B.2 S
reenshots Near Completion . 118

7

List of Tables1.1 Core Layer Servi
es . 114.1 Possible Situations When Cutting A Triangle With A Finite Plane. 584.2 Possible Situations When Cutting A Triangle With An In�nitePlane. 594.3 Extra Cases For Soft Bodies. 594.4 Triangulating A New Surfa
e. 604.5 Triangulating Con
entri
 Rings. 614.6 Triangulating Cuts From A Finite Plane. 625.1 A StateLogi
 Example . 725.2 The Guards State Transition Table 79

8

Chapter 1
Introdu
tion.
1.1 Do
ument OverviewA su

essful video game must have an almalgamation of talent, organisationand
reativity. The team was made up of a mixture of individuals who ea
hposess these traits, and therefore a �nal produ
t was realised. This do
umentis an outline of the produ
tion pro
ess, from an overview of the engine used todes
ription of the
ore te
hnologies that were developed. Ea
h member of theteam has written their own spe
ialist
hapters, as well as providing input to theremainder of the do
ument.1.2 Introdu
tionThe video games industry has been enjoying a
onsistent rise in popularity inre
ent years ([1℄), and this is re�e
ted by the number of su

essful student gamesproje
ts. Dare to be Digital was started in 2000 to give support to these studentsby providing not only the means but also the motivation. Until 2007 it was a
ompetition only open to S
ottish students, but this has now been
hanged toallow students from England and Ireland to parti
ipate.Team 'Ergophobia'
onsists of four MS
 Computer Animation students and oneBA Computer Animation and Visualisation Student. After su

essfully gettingthrough to the stage where development began, they moved to Ele
troni
 Arts'studio in Guildford for 10 weeks in order to
reate their game.'The Silen
e of Night' is a third person game based in feudal Japan, in whi
hthe player has to rea
h a target while avoiding dete
tion by enemeies throughthe use of the stealth. 9

The game will use two new te
hnologies: a unique sound visualisation systemand interea
tive geometry
utting.Various game engine were
onsidered for use in the proje
t, su
h as Ogre, Ren-derware and the more simplisti
 OpenGL. After mu
h resear
h the team de
idedon the usage of Instin
t, an engine developed by Instin
t Te
hnologies. This waste
hni
ally a beta release, as the engine itself is not available to pur
hase at thetime of writing.The remainder of the following two
hapters is, for the most part, taken fromthe Instin
t Studio do
umentation. [5℄[6℄1.3 Ar
hite
ture overviewThe Instin
t ar
hite
ture aims to provide the following features:
• Stable framework for rapidly evolving game software
• Highly integrated tools and runtime
• E�
ient use of hardware resour
es
• Multi-platform support (Win32/64 PC and Next-Gen
onsoles)1.3.1 Modules.The Instin
t API is
omposed of a number of
ode Modules. Ea
h Module isa set of
ode that provides a distin
t set of servi
es. Modules may depend onother Modules and may be platform dependent. The engine
an be extended bythe addition of new Modules at
ompile time or runtime. Modules developedby the Instin
t team are pre�xed with the letters "ie". Some examples: ieCore,ieGraphi
s, iePhysi
s.1.3.2 API LayersInstin
t is organized into a hierar
hy of layers.1.3.3 Core LayerThis layer provides the base fun
tionality for all Instin
t
ode. It provides thefollowing servi
es, all of whi
h are typi
ally implemented in the ieCore Module:10

Table 1.1: Core Layer Servi
esServi
e Des
riptionMemory management Optimized alternatives tostandard new and delete poolingstru
turesFile and resour
e management Binary & text reading andwriting XML, CSV and otherparsing fun
tionsModule management Loading and unloading Instin
tModulesLogging and error handlingHigh resolution timersCode pro�ling Timings and
ounters for fun
tion
alls, Memory usageS
ripting Command parsing and exe
utionSystem
omponent managementEntity management Constru
tion,
on�guration anddestru
tion of entities Entityevent management1.3.4 System Component LayerSystem
omponents are C++ obje
ts that typi
ally provide interfa
e-based a
-
ess to hardware or operating system fun
tions su
h as those provided by Di-re
tX or Windows. An instan
e of a system
omponent
an be given a uniquename. Su
h an obje
t is known as a Component Instan
e. Common
omponentinstan
es in
lude:
• File Manager
• Graphi
s Devi
e
• Sound Channel Manager
• Input
• Command Mapper
• Diagnosti
sSystem
omponents
an be s
ripted and
omponent instan
es may also be
on-�gured using the system
on�guration �le.1.3.5 Entity LayerEntities are data-driven obje
ts that are
omposed of smaller obje
ts
alledentity
omponents. Entities are s
riptable obje
ts that are used to de�ne the11

game world and may be edited using Instin
t Studio. Common examples in
ludelight, sound,
amera and player entities.Users
an spe
ify the
omposition of an entity using entity templates. Theseentity templates a
t as blueprints from whi
h entities may be
reated. Anentity
an only exist within an entity manager obje
t. Every entity must have aunique name within its entity manager. Instin
t allows multiple entity managersto exist at on
e but a typi
al game runs with a single entity manager.1.3.6 Appli
ation LayerInstin
t appli
ations are the programs that make use of the Instin
t API, su
hInstin
t Studio, 3D Studio Max Exporters and Instin
t games. Note: Modulesmay provide fun
tionality ranging a
ross multiple layers.1.4 Entities and Entity ComponentsThe game world is modelled in Instin
t as a set of obje
ts
alled Entities. Ea
hEntity has a unique name and exists within the
ontext of an Entity Manager.Instin
t
an support multiple a
tive Entity Managers but typi
ally a game onlyrequires one.Instin
t Entities are entirely
omposed of obje
ts
alled Entity Components.Entity Components
an be reused and
ombined in order to de�ne many di�erenttypes of Entities. For example, a
ra
kling tor
h entity might be de�ned usinglight, sound and mesh entity
omponents.Entities to be used for the purpose of level
onstru
tion are lo
ated within whatthe developers
all a s
ene �le. Instin
t breaks up the �le into two se
tions;primary entities and standard entities. The purpose of the primary entities is toprovide the 's
a�olding' of the level, while the standard ones are the 'bri
ks andmortar'. For example the physi
s simulation entity (typi
ally
alled 'priPhysi
s')is a primary entity, while all of the obje
ts that are simulated are standardentities.1.4.1 Entity Communi
ationInstin
t provides a number of me
hanisms for entity
ommuni
ation: C++ In-terfa
es dire
t a

ess to virtual C++ methods using standard interfa
e pointers.S
ripting Interfa
es via properties and
ommands (see below). Event Obje
tssending and re
eiving events. 12

1.4.2 S
riptingInstin
t provides a framework to allow C++ developers to expose s
riptableproperties and
ommands for entity
omponents with a minimum runtime over-head. Entities
an be manipulated from the
ommand line or s
ript �les usingan obje
t-oriented syntax: Copy CodeListing 1 S
ript ExamplePlayer.Health.MaxHealth 100Sound.Manager.StopAllSoundsEnemy12.Health.TakeDamage 2 10Instin
t provides a number of in-built property types in
luding boolean, integer,�oating point, string, ve
tor and quaternion. Developers
an also
reate theirown property types and register them with Instin
t.1.4.3 Entity TemplatesUsers
an de�ne the stru
ture of games entities using entity templates. Ea
hentity template
ontains a list of entity
omponents along with the default prop-erty values for entities
reated using that template. Entity Templates
an inheritstru
ture and default property values from other templates. For example, thefollow template de�nition des
ribes the Chair Entity and Lampshade entitiesmaking use of a Base Entity Template
alled SimpleObje
t:ÂCopy Code

13

Listing 2 Entity Template ExampleEntityTemplate{ _name = "SimpleObje
t"// Entity
omponents_
omponents = "RigidBody,Model,WorldPosition?}EntityTemplate{ _name = "Chair"// Parent templates_parents = �SimpleObje
t�// Default property values for this templateRigidBody.physi
sFile = �test/
hair.psx�Model.meshFile = �test/
hair.mesh�}EntityTemplate{ _name = "Lampshade"// Parent templates_parents = �SimpleObje
t�// Extra Entity
omponents not in my parents_
omponents = "Sound, Light�// Default property values for this templateSound.resour
e = �test/lampshade.wav�Light.type = �box�Light.extents = (2,2,1)}This data-driven approa
h for entity
reation allows for rapid prototyping andallows uses to
reate their own entity types without having to program in C++.1.4.4 SerializationInstin
t provides a framework for automati
 entity loading and saving throughentity
omponent properties. Developers of entity
omponents may also imple-ment their own
ustom loading and saving routines if desired.Instin
t Studio Integration Entities are automati
ally editable inside Instin
tStudio via exposed properties and
ommands. No extra
ode is ne
essary.
14

Chapter 2
Dire
tory Stru
ture.Here is a brief des
ription of the various �le folders used in Instin
t Studio.2.1 BinThe bin folder
ontains all
ompiled exe
utables and DLLs, in
luding
ompiled
lient
ode. The folder is further subdivided by platform &
ompiler. At the be-ginning of the proje
t, there were twoWin32
ompilers supported: Mi
rosoft Vi-sual C++ 2003 (bin/x86_v
7) and Mi
rosoft Visual C++ 2005 (bin/x86_v
8).This has
hanged over the
ourse of the proje
t and now only the latter hassupport from the developers.When using the debug
on�guration in Visual Studio, the �les will be
ompiledto the x86_v
8_debug folders. Similarly, using the retail
on�guration will
ompile the �les to the x86_v
8_retail folder and the release
on�guration
ompiles to the x86_v
8 folder.2.2 EnvThis folder
ontains a variety of data that Instin
t Studio uses to operate.2.2.1 Env/Pro�lesThis folder
ontains information about ea
h users
on�guration for Instin
t Stu-dio, su
h as window layout, user interfa
e
ustomizations and user preferen
es.

15

2.2.2 Env/TextThis folder
ontains xml �les used to des
ribe
olour syntax highlighting for thedi�erent types of text �les used in Instin
t Studio.2.2.3 Env/S
reenshotsThis folder is used to save out in-game s
reenshots. This
an be done using a
onsole
ommand, typi
ally bound to a short
ut key.2.2.4 Env/Con�gThis folder stores the
on�g �les used to laun
h studio and the runtime, these
an be overridden if required. These
on�g �les are used if no other
on�g isspe
i�ed. For example, when you run bin/x86_v
8/Studio.exe dire
tly it willautomati
ally use the
on�g in env/
on�g/Instin
tStudio.
fg2.3 Proje
tsA proje
t des
ribes the stru
ture of the game, whi
h is mostly a list of thepa
kages that the game uses and some
on�guration info. A

ording to theInstin
t do
umentation, it is re
ommended that any proje
ts
reated for thegame be stored in this folder.2.4 Pa
kagesPa
kages are the me
hanism used to organize assets in Instin
t Studio. Exam-ples of su
h asset
an be s
enes, templates, textures, models, audio �les, et
. Itis usual to arrange these assets in sub folders within a single pa
kage folder.Three pa
kages are provided by Instin
t as standard: Base Referen
e SDK2.4.1 Pa
kages/BaseThe Base Pa
kage
ontains essential
ontent required to run Instin
t Studio.This folder
ontains the publi
 in
ludes and
ompiled libs for Instin
t Studioso that one
an link with and extend the fun
tionality provided. Solution andproje
t �les for Mi
rosoft Visual Studio 2003/2005 are available in the buildfolder. 16

2.4.2 Pa
kages/Referen
eThe Referen
e Pa
kage demonstrates the suggested use of game fun
tionalityprovided by Instin
t Studio su
h as models, physi
s, et
. As new fun
tionalityis added to Instin
t Studio, the Referen
e pa
kage is updated to demonstrateea
h new feature. This means that the assets
ontained here are liable to
hangeas new versions of Instin
t Studio are released.A

ording to the do
umentation provided with Instin
t Studio, it is re
om-mended to
reate a separate pa
kage for the game and store it in the "pa
kages"folder as this is the only lo
ation where Instin
t Studio looks for them. Also,the
ode written for the user de�ned
omponents and appli
ations should bestored in the users pa
kage folder.2.4.3 Pa
kages/ToolsThis folder
ontains some useful tools whi
h
an use in
onjun
tion with Instin
tStudio, in
luding the 3D Studio Max Exporter Plugin and NormalBumpMap-Merger tools.2.5 LogThis folder
ontains log �les generated by Instin
t Studio. The logs
ontain astep by step list of
ommands exe
uted and any errors or warnings that aregenerated. This
an be useful when trying to diagnose problems with the game.Instin
t allows users to output to the log by using the LogString() fun
tion. The
ontents of the log �le
an also be seen in the
onsole window when runningInstin
t Studio.2.6 Do
sThis folder
ontains the do
umentation provided with Instin
t Studio. This
onsists of the User Guide whi
h provides help for
ontent
reators, and theProgramming Manual whi
h provides information for game programmers.2.7 The Development FrameworkIn a

ordan
e with the development pra
ti
es suggested by Instin
t, a sepa-rate pa
kage was
reated for ea
h team member and another for the game re-sulting in six pa
kages. These are MO_Pa
kage, AD_Pa
kage, BC_Pa
kage,17

SH_Pa
kage, HA_Pa
kage in addition to the Game_Pa
kage where the �rsttwo
apitals of the pa
kage name represents the initials of the owner of thespe
i�ed pa
kage. Also a proje
t
alled �Game_Proje
t� was
reated to bundletogether the six pa
kages and the rest of the standard pa
kages provided byinstin
t.All the pa
kages were kept in a shared folder where ea
h team member hadthe ability to upload his own pa
kage to that folder and download the otherpa
kages in
luding the game pa
kage. The Game_Pa
kage whi
h
ontained theGame_S
ene was updated by the level and environment designer.2.7.1 The Team Members and Their TasksThe roles of the team members were
learly de�ned with minor overlapping. Therest of this thesis will follow a similar approa
h where ea
h
hapter is writtenby a team member and represents his work on the game.Ea
h member had spe
i�
 responsibilities within the team:
• Matt Osbond:Team Lead / Produ
erEnvironment Design and ModellingSound Design
• Ben Chandler:Lead ProgrammerGraphi
s and Post-Pro
essingInput And Chara
ter ControllerAnimation BlendingShader Design
• Hasan Atieh:A.I. ProgrammingPhysi
s Implementation
• Ali Derweesh:Real-Time Cutting Me
hanismCon
ept Resear
h

18

• Sebastien Huart:Chara
ter Design and ModellingAnimation Cy
lesCon
ept and Graphi
s

19

Chapter 3
Proje
t Management, LevelDesign, EnvironmentBy Matt Osbond3.1 Proje
t Management3.1.1 Outlining Produ
tionThe preparatory elements of the proje
t pipeline were initially dis
ussed in greatdetail as a team. Having previously
reated a game in term 2, we were alreadyaware of the produ
tion pro
ess and all too familiar with the possible pitfallsof game development. It was important that these elements were taken into
onsideration when outlining the initial produ
tion s
hedule. The out
ome wasan overview of the entire produ
tion pro
ess that took into a

ount the following:

• Two weeks of diluted work�ow at the beginning of the proje
t to a

ountfor overlap of proje
ts. The main task for these weeks was for ea
h memberto get used to the game engine. We all had key roles that demanded usto have a good working knowledge of the Instin
t engine, and these twoweeks were used to traverse the learning
urve.
• One week at the end of the proje
t to allow for tweaking and polishing ofassets and
ode.
• Week by week breakdown of tasks on an individual basis. This allowedeveryone to see at a glan
e what the other members of the team weresupposed to be doing. 20

The �nal point is possibly the most important, as a key to su

ess in team-based proje
t management is
ommuni
ation. The ability for ea
h member toview the tasks of others was vital, as the inter-member dependen
ies were greatwithin this proje
t. For instan
e,
utting
ould not be tested until the
orre
tgeometries were
reated, or the
hara
ter
ontroller
ould not be started untilanimation
y
les were produ
ed. These dependen
ies were taken into a

ountduring
reation of this initial produ
tion outline.The �nal initial S
hedule of Produ
tion
an be found in Appendix A3.1.2 Management MethodsOutlining the produ
tion is the �rst step, from then it is imperative that theteam stays on top of the produ
tion. There are many methods of proje
t man-agement available to use, some were investigated as follows:
• Mi
rosoft Proje
t 2007 . This was the �rst option explored as it
amehighly re
ommended. It appeared to be a very
apable and �uid program(being able to intera
t with other pie
es of software, enabling fa
ilities su
has automati
ally emailing members who were falling behind) and in
ludedfeatures su
h as Gantt
harts, milestones and other important elements ofproje
t management. However, it seemed vast and upon further investi-gation appeared to have a learning
urve that rendered it useless for su
ha short proje
t.
• Zoho Proje
ts (proje
ts.zoho.
om). A web-based proje
t management toolthat was similar in fun
tionality to Mi
rosoft Proje
t, but with a far moreintuitive interfa
e and, being web-based, had the added ability to be a
-
essed from anywhere by every member of the team. This system wouldhave been perfe
t if our timeframe was longer (so it made setting it all upworthwhile) and if the team were dispersed a
ross multiple lo
ations. How-ever, with all of us within rea
hing distan
e of ea
h other and a windowof 8 weeks in whi
h to operate, it again seemed surplus to requirements.
• Post-it Notes. This system was adopted after observing how the profes-sionals within the game industry operate. Post-it notes would be
overingall available wall spa
e in an e�ort to write down every
on
eivable taskthe team had to do. After using it only a
ouple of days the bene�t wasalready noti
eable. The �uidity of produ
tion provided by this methodwas allowing the team to re-prioritise as ea
h member saw �t. The basi
prin
iple is that ea
h seperate task would be written on a post-it note,and a�xed to a board. This board was laid out as follows:21

Figure 3.1: S
heduling

(a) Produ
tion Planning Using Post-it Notes
See Appendix A for s
heduling and a photo of the post-it note board in a
tion.3.1.3 S
rum vs Rigid PlanningMaintaining
ontrol over the proje
t throughout the duration of the pro
essis just as important as the initial s
heduling. Within our team we adopted amethod of management known as 's
rum' [3℄. This is a vast system, intended todeal with larger proje
ts, so our use was toned down to a

ommodate our moremodest produ
tion. The idea is that the produ
tion units divide themselves intoteams of a handful of people, who meet every morning to dis
uss (and possiblyalter) what needs to be done. It operates by ea
h small team operating undertheir own
ommand in short periods of time known as 'sprints'. Ea
h team22

has a S
rum Leader, who attends meetings with other S
rum Leaders. Thisforms a hierar
hy of meetings, and allows for every member to be updated withoverall progress with only the leader attending more than one meeting. Onekey to s
rum is that during a 'sprint', their task
annot be
hanged by outsidein�uen
e (ex
ept of
ourse in ex
eptional
ir
umstan
es). The only deviationfrom their task should
ome from within the team.Figure 3.2: S
heduling [3℄

(a) S
rum Time Flow Organisation
In the meetings, ea
h member asks themselves three key questions:

• What have you done sin
e yesterday? (a

omplishments)
• What are you planning to do by tomorrow? (to be a

omplished)
• Do you have any problems preventing you from a

omplishing your goal?(risks) 23

This enables ea
h s
rum team to analyse what they've done, plan tasks for thenear future and foresee any obsta
les that may o

ur. Ea
h unit within s
rumhas the ability to
omplete their tasks with the highest degree of su

ess, dueto the fa
t they operate as a small team.Our team did not stri
tly adopt this method, we did however use a few elementsfrom it. The primary element was to a
knowledge the importan
e of dailymeetings. Using a '10 o'
lo
k daily' we were able to have an overview of allpro
esses going on that day, and the usage of the three step system enabledevery member to remain fo
used.The �uidity that s
rum provides is de�nitely bene�
ial, but it should not be usedas a repla
ement for a s
heduled produ
tion pro
ess. By using an amalgamationof the methods, the team remained fo
used right until the end.3.2 Level Design3.2.1 Player Edu
ationOne of the key fa
tors to bear in mind when designing a level (and more spe
if-i
ally the �rst level of a game) is the in
lusion of a system whereby the playeris taught various gameplay elements in a
ertain order. These
onsist primarilyof
ontrols, environment intera
tion and interfa
e.The key to a su

essful tuition interfa
e is progressive learning, something thatthe Mario series of games a

omplished to perfe
tion. Essentially it involvesavoiding tea
hing the player too mu
h at on
e (su
h as displaying all
ontrolson the loading s
reen, a method used in many demo version of games), insteadadopting a step-by-step pro
edure. For instan
e, in the example below theplayer has �rst
ome to an obsta
le and learns how to jump. Then they learnhow to jump over a pit, but are not punished for failing. Finally they are madeto jump over a pit and will die if theyre unsu

essful. This pro
ess is far moreintuitive for a player and allows the experien
e of playing the game to be moreenjoyable.

24

Figure 3.3: Player Learning [2℄
(a) Des
ription of Learning Atoms (b) Learning Out
omes For Ea
h Atom

This method was adopted in our game by presenting the player with di�erent as-pe
ts of gameplay periodi
ally throughout the �rst half of the game experien
e,as outlined below:Situation Learning Out
omesStart of game Intera
tion: Movement
ontrolsEnvironment elements Intera
tion: Some obje
ts are
uttableFirst asset emitting pulse Intera
tion: Pulse = importantDarkness Intera
tion: Pulse used for navigationGuard Intera
tion: Combat
ontrols3.2.2 S
ale of Assets / Spatial AwarenessIt is important to understand from square one of level design that the s
ale of theworld in relation to the
hara
ter
annot be equal to that of real life. Creatingbuildings that have doorways and
eilings to s
ale will, in the majority of
ases,immediately
reate a feeling of
laustrophobia. It is important to bear this inmind when designing the environment, and only trial and error in the beginningstages will get this s
ale perfe
t. The s
reenshot below is from Max Payne (2001Ro
kstar Games sr
). It shows that only a slight ups
aling of environment sizeis needed for a su

essful e�e
t.
25

Figure 3.4: Resear
h: Max Payne [4℄

(a) In this example, it is
lear to see the s
ale of the environment is slightly largerthan that of the
hara
ters
Su

essfully immersing the player in the digital world is the result of an amal-gamation of various elements, from intera
tion to sound. However, on
e theplayer is
omfortable within the environment, the level designer
an
reate theassets within the world to invoke a psy
hologi
al feeling or parti
ular movementupon the player. The entire world
an be manipulated to essentially for
e theplayer to a
t as the level designer wishes them to at a
ertain point.The texturing and lighting
an be altered to
reate a spe
i�
 mood, but thesewill be explored later in the following
hapter. The fo
us for now will be on thea
tual shape and size of geometry assets in the game.

26

Figure 3.5: Ps
hologi
al Features of the Environment [6℄

(a) Creates an illusion ofgrandeur but makes wallsappear weak. (b) Makes walls and obje
ts appear stru
-turally strong.
(
) Can make the player more
autious, as well as sometimesmaking them turn around. (d) Invokes
laustrophobi
feeling by de
reasing e�e
tive�oorspa
e.
These are just few of the examples whereby the assets in the world
an bemanipulated to invoke various emotive feelings upon the player. These wereadopted to some degree within the game, as demonstrated below.

27

Figure 3.6: Environment Features
(a) Sloping Walls: Various walls withinthe game are sloped to both invoke a
laus-trophobi
 feeling and give the impressionthe walls are more stru
turally sound. (b) Con�ned Spa
es: The
urved wallsof the basement area give the illusion ofbringing the
eiling
loser to the player.
3.2.3 Multiple RoutesOne important aspe
t of gameplay nowadays is giving as mu
h
ontrol as possi-ble to the player. A large part of the responsibility of ensuring this o

urs fallsupon the level designer. Games have for years in
luded multiple routes of game-play, in both environment and storyline, and the demand for this is be
omingheavier in more re
ent years as gamers expe
t more from the developers.With 'The Silen
e of Night' being a fairly short game, there was no ne
essity formultiple storylines. However, in
luding multiple 'physi
al' routes of gameplaywithin the level was important in terms of longetivity. Below is the basi
 layoutof the
ore elements of the level, with the 3 entry points de�ned.

28

Figure 3.7: Multiple Routes of Entry

(a) The level was designed to allow for multiple entry points into the targethouse. Presenting the player with more than one option maintains theirinterest.Ea
h entran
e has it's advantages and disadvantages, as outlined:Advantages DisadvantagesEntry Point 1 Large doorway, easy tosee guards The guards
an also seeyou easilyEntry Point 2 Guard in kit
hen hasba
k turned to rearentran
e No real disadvantageEntry Point 3 Pi
kups insidebasement No real disadvantage3.2.4 Rewarding Experien
eMaintaining a player's interest in a game is the next
hallenge the designers
ome up against. It is vital that the player's desire to
ontinue playing thegame is not quashed too early in the game. This
an be
aused by su
h thingsas the in
lusion of a di�
ult �rst level, an unintuitive
ontrol system or interfa
eor an unrewarding experien
e.Di�
ulty settings are mainly
reated through trial and error with the tweakingof settings, and the
ontrol system is a result of feedba
k
oupled with good29

ergonomi
s. However, rewarding the player from the outset within the game isnot only a superb method of maintaining interest, but also a very simple one toimplement.Games have used this method for years in order to engage more people in ashorter spa
e of time. A good genre for emphasising this point is that of ra
ing.In games su
h as Gran Turismo (S.C.E.E. 1997), the �rst ra
e a player en
oun-ters is always going to be simple. But by adapting the AI to make the speedand handling of the
ompetitor vehi
les remain around the player's abilities, itbe
omes almost impossible to lose. Therefore, within minutes of pi
king up thegame, the player is presented with an award, usually in this
ase a shiny newvehi
le to use in the next ra
e.This methodology was adopted within our game in a few di�erent �avours.Firstly, the player begins with a low-damage weapon. Dotted around the envi-ronment are an assortment of more powerful weapons, along with a
tual weaponampli�er power-ups. These enable the player to gain stronger in their atta
ksfrom an early stage. It would have even been possible to pla
e these items inwithout the fun
tionality being there, and most players wouldn't noti
e the la
kof di�eren
e, instead enjoying the 'pla
ebo' e�e
t of more powerful weapons.Se
ondly, there are pi
k-ups lo
ated in se
retive lo
ations around the level.These
ome in a few in
arnations: (Weapon Amp is listed again as the followinglist is exhaustive).Pi
k Up Des
riptionWeapon Ampli�er Ampli�es damage that
urrentweapon in�i
ts upon guardsHealth Pa
k Adds 25% of total health to theplayer's health statusArtefa
t Obje
t of value that the player
an'steal'With the game having a strong fo
us on stealth, the te
hniques used by theplayer to in�ltrate the house have an e�e
t on the out
ome. S
oring is based onthe way players 'deal' with the guards, with the following details being re
ordedby the s
oring me
hanism:
• If the player
ompletely avoids dete
tion by a guard
• If the player kills the guard
• If they do, was the player's presen
e a
knowledged by the guard prior tothe killing? 30

• Did the player not kill a guard, but the guard still saw them
• Or did the guard only hear the player?Lastly, at the end of the game, the tallies are
ollated and displayed to theplayer. The player is then presented with a s
ore, made up of a
ombination ofthese results. A stealthy mission, whereby no guard was alerted, will get you themost points, as well as a suitable reward. Likewise, you will re
eive an award ifevery guard was killed and every guard noti
ed you.Rewarding the player in this fashion, be it either positively or negatively, is some-thing that has been very su

essful, most notably in the game series 'Worms'.Awards su
h as 'Biggest Coward' or 'Most Useless'
an be just as entertainingto re
eive as 'Most Dangerous' or 'Best Player'.The award pro
ess is des
ribed in detail in the design do
ument (Chapter 9 -Appendi
es).3.2.5 Obje
tivesThe importan
e of giving a
lear
ut obje
tive to the player in terms what theyhave to do
annot be underestimated. There are of
ourse some games thatdo not always display this information, instead allowing the player to seek outan obje
tive and then follow it up (su
h as the 'Grand Theft Auto' series ofgames). However, this pro
ess still ends up with the player being presentedwith an obje
tive.A game is essentially an intera
tive story, and therefore must have a path downwhi
h the player
an traverse. With 'The Silen
e of Night' being a single missionprototype, the player is presented with the obje
tive during the loading s
reen.This displays not only a text-based obje
tive, but also a visual
lue as to thephysi
al lo
ation of the target.

31

Figure 3.8: The Obje
tive

(a) The loading s
reen is a good pla
e to have the obje
tive as it distra
tsthe player from the loading time.
By using this method, it not only gives the player a
lear obje
tive from themoment they pi
k up the
ontroller, but it also takes the attention away fromthe time the game takes to load. This method is used by many games, andproves very su

essful.The original intention was to have a strong narrative within the game, witha Japanese language voi
e-over being played while the English subtitles weredisplayed on the loading s
reen. This narrative, however proved to be far moretime
onsuming to implement than thought, so therefore was omitted from theprodu
tion at an early stage in the pro
ess.3.2.6 AI Agent RoutesOriginally, the AI was planned to simply engage the player when they got too
lose, but the system took on a far more
omplex design and therefore allowedfor a more
omprehensive implementation within the game. The level designwas semi-symbioti
 with the other strands of produ
tion, none more so that theAI. Elements of the world were altered during the
ourse of produ
tion to allowthe new features of the AI to be demonstrated.There were three main types of routes used by the AI in the game, stati
,
ir
ularand os
illating. A good example of the implementation of more than one AIfeature within the environment is the �rst �oor of the main house.32

Figure 3.9: A.I. Agent Routes

(a) The level design was developed in
oordination with other areas of pro-du
tion; here the �rst �oor was adjusted to a

ount for the more intelligentA.I. system.
In this diagram, the player enters the �oor from the stairs in the top left. Theroute of gameplay is up the se
ond set of stairs, the entran
e to whi
h is on thefar right of the diagram. An AI agent is on a
ir
ular route, patrolling aroundthe
entral
olumn in whi
h the stairs lie.With the AI having the ability to a
knowledge audio, a
reaking �oorboard waspla
ed in the dire
t path between the player's entran
e and their target, withthe intention of
reating a noise that the guard would pi
k up on.By pla
ing guards on de�ned routes between the player and their target, thegameplay is altered as the player has to use stealth (the game's fo
us point) toavoid dete
tion. Other guards within the level are on either os
illating or stati
routes, also sometimes pla
ed in areas of strategi
 importan
e.3.3 Environment3.3.1 InspirationsThe �rst step to
reating an interesting environment for a video game is toanalyse the styles that
an be used for the game in question. It is up to the33

reative team to
ome up with the visual styles, but in su
h a small team it isimportant that the styles were given the OK by all team members.The initial stage was to resear
h styles in existing media that
ould be adopted,either in their entirety, an adaptation or by simply using a
ertain style ormethod. After resear
hing games, �lm, television and 2D artwork, one game
ame up again and again with an artisti
 style that the environment designerfelt
ould be su

essfully transferred to our game.Fable 2 (Lionhead Studios) is due for release in 2008, but s
reenshots and art-work have been released in order whet the appetite of gamers. The settinghas a medieval styling, whi
h is akin to the setting of 'The Silen
e of Night'.By amalgamating the styling of Fable 2 with an oriental feel, the environmentgeometries take on their own styling.Figure 3.10: Fable 2 S
reenshots
(a) Fable 2 night s
ene (b) Note the absen
e of any straight edges

Figure 3.11: In Game S
reenshots
(a) Colours mixing in the night s
ene of thegame. (b) Straight edges were avoided at every op-portunity.34

3.3.2 Polygonal ModellingDespite the hardware we were supplied being top of the range with nVidiaGeFor
e 7600 graphi
s, it was still important to maintain optimisation as apriority during produ
tion, as we did not have enough of a timeframe to optimiseas a �nal stage. One of the key steps in in
reasing the frame rate of a real-time3D simulation is the lowering of the polygon
ount.To keep the poly
ount low the assets of the world were designed with minimumhigh detail areas (some areas required high detail and so were optimised usinglevel of detail - see se
tion 3.3.7).Figure 3.12: Low Polygon Models

(a) The models were as low on polygon
ount as possible in order to main-tain the level of optimisation required.
The example above shows an asset within the game that, apart from the peakof the roof,
ontains no noti
eable straight edges. This was a key
on
ept thatwas adhered to for the majority of the external geometries. It was importantfor the artisti
 styling of the pie
e to ensure that the look of all the world assetsmaintained the intended styling even when viewed as a silhouette. This is an35

old artisti
 tri
k that is just as appli
able in 3D
reation as it is in
onventionalart. Figure 3.13: Silhouette Styling

(a) With the styling being
learly visible as a silhouette, the textures andshading have little work to do in order to enhan
e the e�e
t.
3.3.3 Geometry PipelineThe geometry assets started out life as a 2D sket
h, and were translated into 3Dwithin Maya 8.5. However, the exporter supplied with Instin
t only worked fromwithin 3D Studio Max. This meant the pipeline was somewhat
umbersome:Figure 3.14: Geometry Pipeline

(a) The pipeline for the geometry
reation was not as streamlined as it
ould havebeen.
36

I
ondu
ted some resear
h into the possibility of
reating a .mesh exporter forMaya. Originally it seemed that this task would not be too daunting, as theenvironment required only stati
 geometries, omitting the need for the exportingof bones, animations or skin weights.The intention was to either
reate a MEL plugin that
ould export dire
tly fromthe program, or
reate a small utility that parsed an exported .obj �le. Seeingas the .obj parser would skip one step in the pipeline, whereas a MEL pluginwould skip two, I opted to fo
us on a
reating a small tool to add to the shelfwithin Maya.After resear
h into the
omplex �le stru
ture of a .mesh �le, it was
lear thatthe �le type was optimised for grpahi
s. Therefore I
on
luded that the time itwould take to
reate a tool
apable of su

essfully exporting both the geometryand the UV's into su
h an awkward �le system was not worth the sa
ri�
e oftime for su
h a small proje
t. It turned out the supplied exporter for 3DS Maxwasn't always su

essful at
reating a fun
tional �le, whi
h only reinfor
ed mythoughts about the �le type's
omplexities.In hindsight, I feel that the rapid veto of the plugin was a mistake, as it wasrare that ea
h geometry asset was 100%
orre
t on the �rst attempt at insertioninto the engine. This resulted in literally hundreds of meshes going through thepipeline (the �nal tally for the number of meshes in the s
ene stood at around170) and as su
h numerous hours were spent in the pro
ess of doing so.3.3.4 Texturing and StylisationWith the stylisation of the geometries already de
ided, the next step in
re-ating the desired artisti
 style is the manipulating of the textures in order toa
hieve an illustrative look. Textures used were photographs, so these had tobe signi�
antly altered in order to
reate the target aestheti
. The pro
ess oftaking the texture through from original sour
e to �nal .dds was the result ofweeks of trial and error with the aestheti
. The use of photographs as textureswithin the game was resulting in a horrendously unmat
hed feel, and thereforeexperiments were
arried out to amend this e�e
t.The �rst step was to use a handful of Photoshop �lters to instantly stylise thetextures. The result was a
ustom Photoshop ma
ro that en
ompassed elementsof the artisti
 �lters 'Poster Edges' and 'Water
olour', then slightly blurring theresult. This took the edge o� the realism of the photographs, while at the sametime remaining slightly more realisti
 than
artoony. Feedba
k from varioussour
es
on�rmed that this was a pleasing e�e
t.When the game s
ene rea
hed a point of near
ompletion in the �nal few weeks,37

the lighting was at a state that was almost the �nished arti
le. The vivid
oloursof the textures were �ghting against the blues of the moonlight and the orangesof the �re tor
hes
reating an e�e
t that was not only distra
ting but di�
ulton the eye. This had to be
hanged, and resear
h suggested that removingsome of the
olour from the textures would resolve the issue. Tests were
arriedout on some textures by desaturating them to about 60-70% of their originalintensities. It worked well, so another Photoshop automated s
ript was
reatedto go through the folder and apply a preset desaturation ma
ro to every di�usetexture.The resulting texture pipeline is shown below:Figure 3.15: Texture Pipeline
(a) The �ow of textures, from the sour
e �les to the �nal output.

3.3.5 MaterialsThe Instin
t engine supports a variety of graphi
s te
hnologies, in
luding theability to use a variety of maps for the materials. As well as the standard di�use,it also supports normal maps, spe
ular maps, alpha mask maps, glow maps, mip-maps and blend maps. These
an all be
ombined to
reate a single material,resulting in a very impressive e�e
t. Although unused within the game, it iste
hni
ally plausible to use every type of map in one
omplex mapping pro
ess,as outlined below:

38

Figure 3.16: Example Material Usage

(a) A �
tional s
enario whereby every type of texture map is used.
The materials within the engine are
reated on
e, and
an therefore be usedon multiple surfa
es without draining too many resour
es. A material �le is
reated by �rst spe
ifying the name and type of material, and then des
ribingwhat types of �les are used to
reate it.Figure 3.17: Material File Des
ription [6℄

(a) Des
ription of the �rst stage of de�ning a material �le, taken from theInstin
t Studio do
umentation.
The textures used to
reate the material are de�ned within the main body ofthe material
ode. The example below is a full material template for the redlanterns in the game. Note the di�eren
e between the �rst line in the examplebelow
ompared to the one in the above diagram. The following example hasan alpha pass.

39

Listing 3 Material ExampleMO_Pa
kage/materials/lanternRed : BaseDi�useSpe
ularAlphaTest{ �ags{sortType = litAlphaTestGlow} { di�use = MO_Pa
kage/textures/lanternRednormal = MO_Pa
kage/textures/lanternRedNRMspe
ular = MO_Pa
kage/textures/lanternRedSPECmap = MO_Pa
kage/textures/lanternRedFX}Pass SFX : BaseTextureColor {}}
The '�ags' se
tion of the
ode
ontains pie
es of information that the enginerequires to know before the material is
reated. In this
ase 'sortType = litAl-phaTestGlow' de�nes the sequen
e in whi
h the material needs to pro
ess thetextures (or maps) in order to get the desired result. 'lit' is the name of thedefault material properties (di�use, normal and spe
ular). This is followed byalpha and �nally the glow map.Within 'textureAliases' lies the paths of the various texture �les required forthe material. Aside from the usual three, the above example in
ludes 'map =MO_Pa
kage/textures/lanternRedFX'. 'map' refers to a texture that is used asan FX map, in this
ase a glow map. It de�nes whi
h areas of the lantern needto glow in a post-pro
ess.3.3.6 Lighting and AtmosphereCreating an atmosphere in any medium is the pro
ess of invoking a parti
ularmood or feeling upon the viewer / player. One of the most in�uential methodsof a
hieving this is to manipulate the lighting. Harsh shadows and dark
olourgive a
ompletely di�erent feeling to soft shadows and subtle tints of
olourwithin the light.The mix of blue moonlight and orange �aming tor
hes worked well in tests andso was used throughout the game (see �gure 3.3.1), as well as within the menus
ene �le.

40

Figure 3.18: Lighting Mixtures in the Menu

(a) A mix of blues and oranges work well in the menu s
ene �le.3.3.7 Visibility ManagementOne method of optimising a s
ene is to insert portals and break up all thegeometries into areas. This then uses a method of visibility
ulling that killsevery asset within a
ertain area if that parti
ular area leaves the viewing angleof the
hara
ter. By default, Instin
t supports visibility
ulling, ba
kfa
e
ullingand lighting
ulling (if the
hara
ter
annot see any area of a light's shadowvolume then the light is turned o�). However adopting portals breaks up theworld into more manageable areas and
ompletely dea
tivates all assets withinthese areas.Below is an example of how portals were initially used within the Instin
t engine.

41

Figure 3.19: Example of Portals

(a) Portals, although not implemented within the game, would have allowedfor a
leaner
ulling of thw world assets.
However, as Instin
t was still te
hni
ally a beta release, the engine developerswere unfortunately unable to get portals fun
tioning su

essfully in time. Thiswas not mu
h of a drawba
k for the team, given that the world we had designedwas rather
ompa
t. There was still a need for optimisation though, so the nextstep was to add L.O.D. to the more
omplex geometries.Level of detail (or L.O.D.) is natively supported by Instin
t, and so was imple-mented to a great degree, and in varying strengths. Complex geometries that
ould still be viewed from a distan
e (su
h as the windows, trees, ro
keries et
)were given a level of detail that enabled the player to a
knowledge no
hange inphysi
al appearan
e when the
hange o

urred. This is was to ensure �uidityin gameplay as well as for aestheti
 reasons. However,
omplex geometries thatwere only visible
lose up (su
h as the basement support stru
tures, the vi
tim,the sandbag ramp et
) were given a more drasti
 level of detailing. In the
ase ofthe basement supports, the geometry was
reated as one large entity of around1100 polygons. The se
ond level of detail was a 4 fa
ed shape that
overed thesame area as the supports. This
hange is drasti
 but enabled the use of moree�e
ts elsewhere in the s
ene.

42

3.4 Sound3.4.1 Ambien
eThe se
ond important area to
onsider when
reating atmosphere is the audio.This was
onsidered in great length, with the result being a s
ore made up ofthree di�erent looping audio tra
ks:
• Tra
k 1 - Ambient: To be played through the entire game at a
onstantvolume.
• Tra
k 2 - Tension: Will ki
k in when the A.I. Agents a
knowledge presen
eof player.
• Tra
k 3 - Fight: This is played when the player engages in
ombat.All three tra
ks are exa
tly 45 se
onds long and are designed to be played overthe top of ea
h other. This enables the musi
 manager to simply alter thevolumes of the se
ond two tra
ks to a

ount for the
urrent situation of theplayer.Given the la
k of serous knowledge of or
hestrating a s
ore, the three tra
kswere outsour
ed.3.4.2 Subtle Tou
hesTo give the player full immersion within the world, it was important to giveas mu
h audio input as possible. This in
luded the
reation of various typesof footsteps for use on gravel, wooden �oors and water. Environmental soundsare also important, and these were implemented in the form of tri
kling water,�res
ra
kling and the o

asional animal noise. These all
ombined to
reate agreater feeling of depth to the environment.3.4.3 TriggersIn order to fully manipulate the audio within the environment, triggers wereused that
ontrolled what sounds were used for various fun
tions. These triggervolumes surrounded areas that required a
hange in footstep sound, su
h as inthe doorway, as illustrated below:This enables the footsteps of the
hara
ter to be altered based upon the player'sphysi
al lo
ation within the s
ene. 43

Figure 3.20: Trigger Volumes

(a) Careful pla
ement of the trigger volumes enabled the player to intera
twith the environment in a more immersive way.

44

Chapter 4
Intera
tive CuttingBy Ali Derweesh4.1 Introdu
tionThe aim was to try to
reate a real-time geometry splitting system suitable foruse in games. Games are
ontinually advan
ing in realism and sophisti
ation,and there is a
ontinual sear
h for new game ideas and me
hani
s. While ge-ometry
utting systems exist in real-time appli
ations, these are mainly surgerysimulations; games would have a very di�erent set of requirements.In a surgery simulation what is important is a

ura
y of small
uts, usually insoft-bodies. Performan
e is not
riti
al. Some games may have similar require-ments, but it is more
ommon to need to perform large
uts on rigid bodies.Either way, performan
e is far more important. This system is intended toqui
kly deal with large
uts, typi
ally a single
ut would represent the path ofa moving blade over one game a
tion.In the game the system would be
alled on to
ut both simple and
omplexmodels and integrate with the physi
s engine. It would also give a better ideaof true performan
e in use.An OpenGL visualisation was used with the a
tual
utting system for devel-opment and demonstration purposes. The system is simple, possessing onlybasi

ontrols and no physi
s or texturing. However, polygon
olour is set usingvertex UV
oordinates, and normals are viewable.

45

4.2 DesignThe most important design
onsideration was performan
e. In surgi
al simula-tions typi
ally only a few triangles at most are
ut per frame, and frame-ratestutters o

urring if longer
uts are performed
an be forgiven. S
hemes relyingon the position of the
utting obje
t
an be used that avoid the need to
he
k alltriangles [16℄. In a game, an entire model
an be
ut a
ross in a single operation,and any triangle may be
ut. Slowdown is also less forgivable.Additionally,
utting soft bodies is a
tually simpler in some ways than
uttingrigid bodies, as physi
s simulations are already being applied per vertex. Thismeans that simply
hanging the verti
es and edges of the geometry is su�
ientto separate the resultant pie
es of the obje
t, it does not have to be dividedinto new obje
ts. However, when a rigid body is
ut extra pro
esses must beperformed to separate the new pie
es
reated.While initially the system was developed to use a semi-
ir
le as the
uttingplane, during development the de
ision was made to use an in�nite plane toperform the a
tual
ut. This was mu
h simpler to implement, an important
onsideration as the times
ale of the proje
t was limited. Resolving
ut trianglesand triangulating new surfa
es espe
ially would have required mu
h longer toimplement if a �nite
utting plane had been used. It was de
ided that usingan in�nite
utting plane would also work better for gameplay reasons. Workingout whether an obje
t should be
ut
ould be done externally, then an obje
t issimply disse
ted. This makes it simpler for the player to
ut through anythingthan needs to be
ut. In the game we made, sli
ing things
leanly in half provedto be very satisfying. Furthermore, using an in�nite plane made some operationsfaster, thus improving performan
e.4.3 Model RequirementsUsing the native geometry data format of the game engine
reated some limi-tations on the
urrent system. Presently the system only supports one trianglemesh per obje
t. The game engine uses one material per mesh: a material usesa texture map, a spe
ular map and a normal map. This means that the �nalsystem only works with one mesh and one material per
uttable obje
t. A por-tion of the main texture is therefore set aside for use in the new surfa
es
reatedduring a
ut.Sin
e the game engine relies on obje
ts being solid, rather than �at sheets,the
urrent
utting system was also designed with this assumption in mind.However it would not be hard to modify in order to a

ept non-solid meshes.46

It is even possible to automati
ally work out whether the obje
t is solid or hasholes, based on whether there are any edges that only
onne
t to one triangle.Most of these issues
an be over
ome through further development or the use ofa more appropriate data stru
ture. Some additional data is needed for spe
ial
ases, for example obje
ts that are atta
hed to the environment need to have avertex spe
i�ed as a �xed point. This is handled in-game.4.4 Data Stru
turesThe data format in use by the engine had the
orre
t stru
ture and mu
h of thene
essary data. While the parent Mesh
lass stored several mesh surfa
es, themain data stru
tures
onsist of:
• Mesh Surfa
e - Arrays of triangles, mesh verti
es and edges
• Triangle - Contains a fa
e normal, the indi
es of three verti
es and threeedges
• Mesh vertex - Contains vertex
oordinate, normal and UV
• Edge - Contains two indi
es to triangles and two vertex
oordinates orindi
es to two mesh verti
es
• Plane - The
utting plane. The basi
 data stored is a point on the planeand a normal to the planeThe game engine also stored vertex tangents and binormals, UVs were storedoutside of mesh verti
es but
orresponded to them and so did not need separateindi
es. Triangles did not store fa
e normals or k values, and edges did not storeindi
es to the original triangles, so these had to be stored separately.More advan
ed
utting shapes would inherit the plane and store extra data. Forexample a
ir
le would store the radius. A semi-
ir
le
an store an additionalve
tor to de�ne whi
h half of the
ir
le
uts. Using two additional ve
tors or ave
tor and an angle allows the use of a se
tor of variable size.Storing edges allows some optimisations as an edge is shared by two triangles,halving the time needed in some steps, and also allows the entire mesh to be
onne
ted. This is important for splitting the obje
t into multiple new obje
ts.One problem with storing ex
ess data to that of the engine defaults was that ithad to be stored on a per-obje
t basis rather than a per-mesh basis. As all ofthis data was
al
ulated, it
ould have been
al
ulated at the time of a
ut ratherthan stored. However to improve
ut performan
e it was de
ided to
al
ulate47

the data at load time and store it. This
ould easily be
hanged depending onthe requirements of a system.4.5 Program FlowThe �rst step is to �nd the interse
tions of the triangle mesh and the
uttingplane. After ea
h individual triangle is
he
ked, the results are
ompared to theset of possible s
enarios. Depending on the s
enario, new edges and verti
esare
reated and the old triangle is repla
ed by new ones. During this stage theedges along the
ut surfa
e are saved for use in the new surfa
e triangulationphase. After this has been done to the entire mesh, a sorting step takes pla
ein whi
h the triangles are sorted into
onne
ted meshes representing the pie
esof the obje
t
reated by the
ut. Finally the new surfa
es
an be triangulated.This takes pla
e on a per-obje
t basis. The
orre
t edges along the
ut fromthose saved earlier are
opied, sorted, and then organised into loops, ea
h looprepresents a polygonal new surfa
e that needs to be triangulated. New verti
eswith appropriate UVs and normals are
reated for the new surfa
e. The polygonis subdivided into smaller polygons in su

essive steps until triangles are found.4.5.1 Interse
tion TestingWith an in�nite plane only simple plane-edge interse
tions
an o

ur. When us-ing �nite planes, the shape di
tates the spe
i�
s of the interse
tions
al
ulations,but there are essentially two types of interse
tions: those between the edges ofthe triangle and the
utting plane, and those between the edges of the
uttingshape and the triangle plane. For example, if the
utting shape is a polygonthen the two
al
ulations are almost identi
al. A
ir
le would require di�erent
al
ulations for �nding the interse
tion of the
ir
le perimeter and the triangleplane. Some further
he
ks may be ne
essary when the
utting plane is parallelto a triangle, su
h as line-line interse
tion
al
ulations. Using inheritan
e, we
an program di�erent
utting shapes and use whi
hever is appropriate.For the purposes of this proje
t, initially a semi
ir
le was used. This was storedas a plane, a radius and a dire
tional ve
tor representing the a

eptable halfof the
ir
le. While all the interse
tion
al
ulations were fully programmed,the de
ision was made to use an in�nite plane and the semi
ir
le was dropped.Using an in�nite plane
ompletely removed the need to use any
al
ulationswhen the plane is parallel to the triangle. Only plane-edge
al
ulations wererequired.One optimisation that was done at this step was to store the results of
he
ks48

on triangle edges. Sin
e ea
h edge is shared by two triangles, this halves thenumber of
al
ulations required during testing. Fortunately the data stru
turesused by the game engine supported this optimisation.It is also ne
essary to initially transform the
utting plane in order to moveit into the obje
t
oordinate system. This is more
ompli
ated when a �nite
utting shape is used and non-uniform s
aling may o

ur. However the enginedid not support s
aling and an in�nite plan was being used, so it was not anissue for this proje
t. Simply transforming the plane origin and normal into theobje
t
oordinate system was su�
ient.4.5.2 Triangle ResolutionFor an in�nite plane, there are only 5 possibilities, of whi
h only 4 need to beresolved. For a �nite plane, the situation is more
omplex but it
omes down to11 main
ases that need to be resolved (see tables 4.1 and 4.2). Ea
h
ase
anbe resolved separately, with new triangles, verti
es and edges being saved to alist.When the
utting plane is exa
tly along a triangle, it is a slightly di�erent
asethat must be treated in a di�erent way. In fa
t if the
utting plane is �nitethere are many di�erent ways in whi
h the plane
an
ut a
ross the triangle.Fortunately ea
h s
enario does not have to be
onsidered separately (though itmay be more e�
ient to do so). If the
utting plane is in�nite there is onlyone s
enario and it is easy to solve. When this o

urs the triangle fa
e normalis used to determine whi
h side of the
ut the fa
e is on, so if a mesh has aninward-fa
ing triangle it will rea
t in
orre
tly to a
ut along that triangle.It is during this stage that the separation of parts of the mesh above and belowthe
ut �rst begins. This is done by dupli
ating edges along the
ut. Storage
onventions are used to separate those above and below the
ut. Triangles belowthe
ut always save referen
es to the �rst edge, and triangles above always savereferen
es to the se
ond edge (therefore the �rst edge is
onsidered below the
utand the se
ond is
onsidered above the
ut). This is important as
onne
tivity isfound using these referen
es - if a triangle referen
es the wrong edge the obje
twill not separate after the
ut. The a
tual separation takes pla
e during a latersorting step.When dealing with soft bodies and a �nite
utting plane,
ertain extra
on-siderations may need to be made. Be
ause the verti
es move independently,depending on how the system is being integrated, it may be ne
essary to havetwo
opies of every vertex on the
utting plane. This is be
ause an obje
t
anbe
ut without being split into new parts with a �nite plane. With a rigid body49

a vertex on the plane does not move separately, so only one vertex is needed,that is referen
ed by both sides. In
ontrast, in a soft body the
oordinates andnormals will need to
hange separately as the points are pulled apart.The problem with this is that if the edge of the plane interse
ts the edge of apolygon, it should have only one vertex. This means that
ases that
an be
ombined for a single solution with a rigid body or an in�nite plane must bedealt with di�erently in order to have only one point (see table 4.3).The points must be separate for a soft body as the
oordinates will
hange.However, if the
utting plane's edge interse
ts the triangle edge it must betreated as a separate
ase. If we treat it as the same
ase, then we get in
orre
tresults as the adja
ent triangle should have only one vertex. Therefore someextra
onsiderations are needed for soft bodies with �nite planes.4.5.3 New Obje
t AnalysisAfter all the triangles have been analysed and the new triangles
reated, the newparts
an be separated. Sin
e ea
h triangle stores referen
es to edges and ea
hedge stores referen
es to triangles, the
onne
tions
an be followed like a tree,with ea
h edge, triangle and vertex found being added to lists of
omponentsfor one resultant part. The fa
t that the edges along the
ut were dupli
atedfor the triangles above and below the
ut means that no triangles below the
utare
onne
ted to any above, so the
omponents of only one part will be addedto a list. This is repeated until all the triangles have been pla
ed into a numberof lists.Sin
e the arrays of verti
es and edges are
hanged during this pro
ess, the indi
esstored in the triangles and edges have to be
hanged. This is done during thesorting pro
ess. A ve
tor of new indi
es is
reated for verti
es, and another foredges. A �ag value signals that the vertex or edge has not been added to thenew lists, any other value represents the position of the vertex or edge in thenew list, i.e. the new index. As the
onne
tions are being followed through thetriangles and edges, every vertex or edge en
ountered is added to the new listsif the �ag value is found. Otherwise the new index overwrites the old one.The edge data stru
ture did not store the
onne
tions to the triangles, so thisinformation had to be stored separately. The
onne
tivity is easily found byrunning through the array of triangles and adding the index of ea
h triangle toea
h edge that it referen
es.
50

4.5.4 New Surfa
e TriangulationAfter the resulting parts have been found, the new surfa
es
an be triangulated.A simpli�ed Delaunay triangulator [18℄ is used. The
urrent system is imperfe
t,and further work is required, however it su

essfully �lls most of the hole mostof the time.Edges along the
utting plane are
opied to a list, then they
an be sorted into
onne
ted "rings". New verti
es must be
reated, with appropriate normals andUV
oordinates. In order to �nd the UV
oordinates, �rst the maximum andminimum values of the
oordinates on the
ut surfa
e are found. This is used to�nd a s
aling fa
tor. Using the smallest
oordinate values as the origin point,ea
h vertex
oordinate is
onverted to a 2D
oordinate along the plane. This iss
aled by the s
aling fa
tor into the desired range. Currently the range is 0 to0.03, as this region of the bottom left
orner of the obje
t texture was set asidefor the internal texture.Ea
h ring is triangulated separately. If the ring has three edges it is alreadya triangle and is saved. Otherwise an edge is
reated from the �rst vertex inthe ring to the third (see table 4.4). This edge is tested in two ways. First theangles of the new edge with the �rst and last edges are tested to see if it is insideor outside the ring. Then it is tested for interse
tions with all the other edges.If it fails either test the edge is dis
arded and a new edge is built from the �rstvertex to the next in the loop. If the edge passes, it is added to the list of edges.The pro
ess is repeated re
ursively on both new rings. If no a

eptable edge isfound the pro
ess is repeated from the next vertex in the loop, as sometimesan edge
annot be found from one vertex but
an from another. A dire
tional
onvention is used to ensure that the edges are fa
ing the
orre
t dire
tion;therefore the resulting triangles are
reated fa
ing in the
orre
t dire
tion.A
ountdown is used to avoid an in�nite loop. While theoreti
ally in a perfe
tsystem an in�nite loop should not o

ur as it should be possible to triangulateany polygon with these steps, a bug in this system meant a
ountdown wasne
essary. The system uses a single list of edges, and pointers to the �rst andlast edge of a ring, for e�
ien
y. Currently there are some situations that arenot handled
orre
tly, su
h as
on
entri
 rings.Ea
h ring is a polygon that needs to be triangulated to form a new surfa
e.The triangulator tries to
reate new edges between verti
es.This edge goes onthe wrong side of the �rst edge, and therefore is reje
ted.This edge interse
tsanother edge and therefore is reje
ted.When an edge is found to be a

eptable,the polygon is subdivided into two new polygons and the fun
tion is
alledre
ursively on ea
h one. This edge is added to the obje
ts list of edges.In fa
ta new edge is added twi
e to the list that represents the polygon as it is part51

of both polygons. This is a separate list from the obje
t edge list. While onlyone list is used, iterators mark the �rst and last edge of ea
h polygon.When atriangle is found it
an be added to the obje
t triangle list.In this polygon, theoriginal �rst point
annot form an edge to any other points. Therefore the listis rotated but removing the �rst edge and adding it at the end of the segment ofthe list. There is now a new �rst vertex, and the fun
tion is
alled re
ursivelyagain.Eventually the entire polygon is triangulated.The main
ompli
ation that
an arise is if two rings are in fa
t inside ea
hother (see table 4.5). This would be a very useful situation to be able to han-dle, as it would allow hollow obje
ts su
h as boxes or hollow bamboo to be
ut.Unfortunately the obvious way of
he
king whether any rings are
on
entri
is very ine�
ient as it involves
he
king a vertex from one ea
h ring againstall the edges of all other rings. On
e
on
entri
ity is found it
ould be solvedby
onne
ting two verti
es from the two rings.In essen
e this would work like asingle polygon of unusual shape, and
ould be solved in the normal way.Howeverthis would not be enough, as it is possible to have many
on
entri
 rings. Thepossibility of su
h situations makes analysis of
on
entri
 rings di�
ult andslow, whi
h is why it was not
onsidered in this proje
t. Any
on
entri
 ringsthat arise would simple ea
h be triangulated as a simple polygon.A �nite
utting plane, however, introdu
es a new
ompli
ation (see table 4.6).It is possible to have in
omplete loops. This is a situation that is not
onsideredby typi
al Delaunay triangulators.This means that the program has to jointhem together to
reate full loops. In theory this is possible by joining the endpoints together to
reate a loop.However there is no guarantee that there willbe exa
tly two loops, there may even be an odd number of loops.Using the fa
enormal of the triangle would be ne
essary to resolve this issue, but even thenthe solution is
omplex. Sin
e it is possible for an obje
t to be
ut but notsplit, a triangulator for a �nite
utting plane would need to be re-written totriangulate the same fa
e twi
e for one obje
t.4.6 Game IntegrationIt was ne
essary to build the system around the native geometry data formatsused in the game engine. The engine allowed user made entity
omponents, twoof whi
h were used to integrate the
utting system. One was added to any itemthat
ould be
ut; another represented the blade and was added to the player
ontrolled
hara
ter. The �rst referen
ed the geometry mesh and stored all theadditional data needed to perform a
ut. The se
ond was basi
ally a wrapperfor the
utting plane. Additional data was stored in both
lasses for gameplay52

reasons.The game engine was not designed to allow geometry to be modi�ed, thereforeit proved ne
essary to save the new meshes to �le and load them again. This
aused performan
e issues, as the �nal game would pause for a brief moment(on the system we were using it was approximately a split se
ond) when a
omplex mesh was
ut. Interestingly, in an OpenGL development environmentthe system would hesitate for a signi�
antly longer period of time, suggestingthat the game engines memory management system was
at
hing the �le andreading ba
k from memory, speeding up the pro
ess.The in-game mesh wrapper
lass took
are of loading the �les and
reatingnew obje
ts. The type of new obje
t
ould be
hanged, allowing obje
ts withdi�erent physi
s or game properties to be
reated. For example, when
uttinga shoot of bamboo, one pie
e would remain stu
k to the �oor and immovablewhile the other would fall to the ground as a dynami
 physi
s obje
t. Thedynami
 part was also
lassed as a swappable weapon, meaning the user
ouldswap it with his
urrent weapon.This was done using entity templates. An entity template
ould be written,des
ribing the
omponents and default properties of an entity. This template
ould then be spe
i�ed for with the parts
reated by the
ut. Geometry andphysi
s data would be set based on the results of the
ut. Presently the massis divided evenly a
ross the new pie
es. Given more development time a moreadvan
ed system
ould be written to use an estimate of the obje
t size to assignmass more realisti
ally.As mentioned in the previous example, di�erent parts
ould be given di�erentproperties. However, this was limited. An obje
t
ould have a vertex spe
i�edas a �xed point. Whi
h ever resulting pie
e or pie
es of the obje
t
ontainedthis point would be set a �xed physi
s obje
ts, meaning that they didn't movebut did intera
t with other moving obje
ts. The remaining pie
es would use thespe
i�ed entity template.A parti
le system
an be
reated when an obje
t is
ut. The parti
le systemmust be
reated as an entity template. After a spe
i�ed period of time it isdeleted. One system is
reated per pie
e after the
ut, in the
enter of the
ut surfa
e and parented to the pie
e to follow it as it moves. This was usedfor blood when enemy
hara
ters were
ut, and wood
hips and sawdust whenwooden obje
ts were
ut. Other possible e�e
ts in
lude sparks for metal obje
ts.Wood
hips and sawdust only appeared for an instant, kno
ked o� by the sword,while blood lasted longer.The main short
oming was that the system would disappear quite suddenly.This was not an issue with the sawdust as the entire parti
le limit was
reated53

in the �rst instant, then the system was destroyed before the parti
le lifetimeexpired and more
ould be
reated. However, with the longer-lasting bloodparti
le system, the
ut-o� was very noti
eable and unpleasant. This
ouldnot be solved without a more advan
ed parti
le generation system than thatprovided by the engine.It was found that the physi
s engine
ould not
orre
tly deal with a physi
s entitybeing parented to a moving entity. Be
ause of this enemy
hara
ters weaponswere not physi
s obje
ts. However, this meant that when enemy
hara
terswere killed their swords, separate obje
ts parented to a bone in the modelshand, would remain �oating in mid-air as the original obje
t was destroyed. Inorder to solve this problem the sword had to be destroyed and repla
ed with anew dynami
 physi
s entity. This led to the addition of a new feature, in whi
han external obje
t
ould be spe
i�ed to be destroyed and repla
ed with a newobje
t of a di�erent type. While limited, there
ould be some other possibleuses for this feature.The weapon
omponent stored the length of the blade, the weapon damage, andthe for
e applied during a
ut. The length was used for determining when anobje
t had been
ut. The damage was for
ombat. The for
e was used whenapplying for
e to the pie
es left after a
ut. The user
ould pi
k up di�erentweapons with di�erent attributes.Be
ause the weapons
ould not be physi
s obje
ts, this had to be done byswapping all the weapons attributes with the values stored in the players weapon
omponent, and by swapping the geometry mesh name of the player weaponwith the new one. Unfortunately this is imperfe
t in that the weapons mayhave signi�
antly di�erent sizes or shapes, meaning that the free weapon mayend up with a mismat
hed physi
s shape. Additionally it limits the system, forexample it prevents the use of weapons with light sour
es or atta
hed parti
lesystems su
h as a �aming brand.As mentioned previously, when
utting
omplex models the game would freezefor a brief moment. Only the enemy
hara
ter models were
omplex enough to
ause this. Therefore a tri
k was used to redu
e the e�e
ts. When the programdete
ted the
ut, but before it was a
tually performed, a blood-splatter sprite ispla
ed along the path of the
ut through the
hara
ter. This is rendered, thenthe
ut is performed, then the sprite is removed. Therefore, during the momentof hesitation, the position of the
ut is highlighted with a blood splatter throughthe
hara
ter. This
reated a dramati
 e�e
t that in
reased the impa
t of the
ut on the player, similar to deliberate pauses used by some games during high-power moves. In fa
t some play-testers expressed the opinion that it workedeven better than if there was no hesitation.54

During development
on
epts for several possible puzzles based on the systemwere
onsidered. The simplest use would be to
ut through obsta
les su
h astree bran
hes and doors in order to pass. This
ould be extended to in
ludewalls that look similar to normal, non-
uttable walls ex
ept for a small yetre
ognizable distinguishing feature. This would allow the alert player to
utthrough to hidden areas and be rewarded for his diligen
e. Cutting standingobje
ts su
h as thin trees in the
orre
t angle
ould
reate bridges or rampsto
ross dit
hes or
limb up walls. Smaller obje
ts would make useful steps toa

ess higher ground. Cutting a rope or
hain
ould drop hanging obje
ts. Cuta box at the right angle and a ramp is
reated. It
an also be used for otherthings, for example a rope bridge
an be
ut at the right moment to drop anenemy into a ravine.4.7 Con
lusionsThe system proved very viable for use on simple models, meaning it would workwell as a game me
hani
. For example, it
an be used to
ut environmentalobje
ts in order to solve puzzles. This alone
ould be used to good e�e
t.Cutting models as
omplex as
hara
ters, however, is less feasible. There isroom for improvement in the system that may bring speeds to usable levels.The need to save the mesh to �le and read it in again was a major sour
e ofslowdown. Interse
tion testing
ould be sped up using trees. The triangulationof new surfa
es was not optimised, a more e�
ient system
ould have a signif-i
ant impa
t. It may even be possible to perform some operations on a GPU.Therefore on powerful hardware, with a more e�
ient purpose-built engine itshould be feasible.Despite the problems with
hara
ter
utting in the
urrent system, feedba
kfrom play-testers was generally positive. People found it enjoyable,
ombat inthe game was made more entertaining by the greater impa
t and realism of akill.The re
ent trend of more versatile
ontrol systems would work very well withthis system. The Nintendo Wii
ontroller and Nintendo DS tou
h-s
reen areworth mentioning at this point. The DS already has a surgery game
alledTrauma Centre, in whi
h the stylus is used as various medi
al instrumentsin
luding a s
alpel. The Wii has games in whi
h the user
ontrols a sword andother weapons using the
ontroller, su
h as Samurai Warriors: Katana by Koei.These would work very well with the
utting system.Additionally, on modern multi-
ore systems there is more likely to be sparepro
essing power available, making the system more feasible. All these fa
tors55

make the
utting system a realisti
 and promising prospe
t for future games.4.8 Taking It FurtherThe system
ould be made more sophisti
ated by using more realisti

uttingplanes. Using a semi
ir
le or a quad
ould work. One possible
hange is to usea single line to
ut. When the line is moved by a minimum amount, the oldand new positions
an be used as opposite sides of a quad (or if the positionsinterse
t, sides of two triangles) whi
h is used as the
utting obje
t. While usinga �nite plane means there are far more possible interse
tion
ases to deal with,the biggest issue is
reating the new surfa
e. Using anything other than anin�nite plane
reates
ompli
ations as the edges may not form
omplete loops.Using di�erent data stru
tures
ould speed up the basi
 pro
esses. For example,arrays of addresses rather than a
tual obje
ts may save time in fun
tions wherelarge arrays need to be re-sized. Instead of building an entirely new list oftriangles, the old ve
tor
an be modi�ed and new triangles added to a separate,smaller list (sin
e most triangles aren't
ut, there is no reason to have to addthese to a new list then
opy them ba
k later).Sin
e only a small number of the triangles will normally interse
t the
ut, usingtrees su
h as AABB trees to
he
k simple interse
tions with the plane wouldlikely speed up the pro
ess of
al
ulating the interse
tions [19℄. However, re-
al
ulating the trees for the new meshes may
ost more time than is saved, itwould require experimentation to �nd out if there is an overall bene�t or not.This means that trees would be ideal for
omplex meshes that would only be
ut on
e, as they would not need to be re
al
ulated. Alternately, some form oftree may be needed anyway, for example for shadowing; e�
ient design
ouldtake advantage of this.Textures
ould be linked to triangles in a di�erent way (e.g. ea
h triangle has areferen
e to its texture, then they
an be sorted when building vertex lists), thenmultiple textures
an be used for one mesh, allowing for far better texturing ofnew surfa
es. What's more, it may be possible to use 3D shaders with a modelfor far more
onvin
ing internal texturing after a
ut. Alternately some form ofmaterial-based pro
edural texture generation
ould be used.With a more advan
ed "
onne
tivity" system it
ould be used for models withmultiple meshes, or maintain skeletal data e.g. for rag-doll physi
s. This wouldtake some work to �nd the best way to do it for ea
h appli
ation. For example,for multiple meshes verti
es that are "shared" by more than one mesh
an bemarked or referen
ed in a list. New verti
es
reated between two marked verti
eswould also be marked or added to the list. In a later stage, after all the new56

meshes have been sorted into new obje
ts the marked verti
es
ould be
he
kedto �nd whi
h of the new meshes are
onne
ted through them.In theory, in the development of a full game integrating with other systems,like Natural Motions euphoria; an in-game te
hnology that
reates intelligentrea
tive behavior of non-playable
hara
ters [20℄. For example a
hara
ter hasa limb
ut o� and tries to keep �ghting, perhaps pi
king up a fallen weapon inhis other hand.The triangulation of the new surfa
es
an be a rather expensive operation. Cur-rently triangulation is performed separately for ea
h new part, however realisti-
ally the shapes of new surfa
es are identi
al above and below
uts, so it shouldbe possible to devise a s
heme where the same surfa
e is only triangulated on
ethen
opied rather than being triangulated above and below the
ut. Further-more, it should be possible to optimise some operations in the triangulationphase.

57

4.9 Tables and FiguresTable 4.1: Possible Situations When Cutting A Triangle With A Finite Plane.

58

Table 4.2: Possible Situations When Cutting A Triangle With An In�nite Plane.

Table 4.3: Extra Cases For Soft Bodies.

59

Table 4.4: Triangulating A New Surfa
e.

60

Table 4.5: Triangulating Con
entri
 Rings.

61

Table 4.6: Triangulating Cuts From A Finite Plane.

62

4.10 A
knowledgmentsI would like to thank:
• Jon Ma
ey, obviously.
• Bournemouth University.
• All of Ergophobia, for being so great and espe
ially for putting up withme for so long.
• Ben Chandler for helping with the maths.
• EA studios for all the help and guidan
e.
• Dare to be Digital, for the great opportunity.
• All my friends and family for all their support.

63

Chapter 5
The AI SystemBy Hasan Atieh.A
knowledgementFirst of all I thank God.I would like to take this opportunity to thank Jonathan Ma
ey at the NCCA,Simon Pi
k at Ele
troni
 Arts, the kind people at Instin
t Te
hnologies andHaytham Mustafa for their e�orts in providing guidan
e and motoring throughout the developing the AI system.Also a spe
ial thanks goes to my parents for their support.5.1 Introdu
tionAs the game development has be
ome a main stream industry in re
ent years, allaspe
ts of game development have been witnessing
onsiderable advan
ements.And game Arti�
ial Intelligen
e, or AI, has re
ently been re
eiving in
reasedawareness and attention amongst game developers and players alike. This hasbeen helped parti
ularly by the introdu
tion of powerful
onsoles and
omputerswith in
reased pro
essing power, espe
ially by transferring the pro
essing ofgraphi
s from the CPU to the GPU whi
h freed up CPU
y
les for the AIprogrammers to utilise.In this
hapter, the two main tasks
arried out by the AI programmer will bedis
ussed. The �rst task des
ribed is the development and implementation of arelatively industry-
ompliant Finite State Ma
hine (FSM) system for the gameAI. The developed system needs to make it fairly easy to add new states andtransition
onditions and also to allow non-programmers to
hange and design64

the behaviours of a non-player
hara
ter (NPC) in the game. Moreover, it needsto make it possible for the game designers to
hange various properties of theagents in order to personalise the di�erent agents that share the same behaviour.The se
ond task is to design a behaviour model for the agents in the gamein a way that would serve the stealth gameplay elements of the game. Thisalso in
ludes writing the senses and the states libraries suitable for this task.The aim of this work is to suggest a behaviour that would
onvey a sense ofintelligen
e to the agents inhibiting the game world utilising the developed FSMsystem. Again, the designed behaviour should handle the intera
tions with theplayer to emphasise the stealthy nature of the game and most importantly in away whi
h makes it fun to play against.Other tasks and
ontributions in
luding Subtitles tool in addition to debuggingand optimisation are not dis
ussed.The work
arried out on the AI of the game is an amalgamation between a FSMsystem suggested by Simon Pi
k, who is a senior AI programmer at Ele
troni
Arts - UK and the FSM system des
ribed in Matt Bu
kland's book "Program-ming Game AI By Example" (2005). The implementation was extended toin
lude the ability to
hange the FSM of the agents during runtime whi
h isknown as a hierar
hi
al FSM.Unlike the
ase in a
onventional a
ademi
 resear
h, the work
arried out on thegame in general took on a development approa
h rather than a resear
h one;the di�eren
e being that in development, a problem must be iterated over andover until a solution is found, whereas the resear
h method involves analysing ate
hnique and possibly
on
luding that it does not solve the problem at hand.5.2 Previous WorkThe FSM stru
ture is probably the most established AI te
hnique used in videogames so far. Almost every game will have a representation of FSM. One ofthe most obvious implementations of FSMs in games would be the 1980 Pa
-Man game. A ghost in Pa
-Man
an be either in the
hase state, the evadestate, the dead state or the wander state and the transitions between statesare triggered by di�erent
onditions. For example, eating the power pill is the
ondition that triggers the transition from the
hase to the evade state, thewander state is triggered after the player dies. While the ghosts had the samea
tions for some states like the evade state, they had di�erent, more personalisedimplementations of other states. For instan
e, in the
ase of the red ghost, thea
tions of the
hase state were to
hase the player dire
tly while the blue ghostin the same state would simply wander randomly. (Bu
kland, 2005)[15℄.65

Many other games have implemented the FSM te
hnique. Players in sports sim-ulations su
h as the so

er game FIFA2002 are implemented as state ma
hines.The NPCs in RTSs (real-time strategy games) su
h as War
raft, make use of�nite state ma
hines. Car ra
ing games fall in the same
ategory too (Bu
kland2005)[15℄. Brian S
hwab's (2004)[13℄ dis
usses in his book "AI Game EngineProgramming" major game genres and the AI te
hniques used in them. Notsurprisingly, FSM appeared in most the genres he dis
ussed ex
ept for �ightsimulators.The Quake and Quake II games showed higher potential of the FSM. It is sin
eID Software released the sour
e
ode to the those two proje
ts, that people havenoti
ed that the movement, o�ensive, and defensive strategies of the bots were
ontrolled by a simple FSM. The use of FSM in these games was extended to
ontrol the behaviour of entities other than the bots of the game. For example,the ro
ket had a FSM whi
h
ontained states like spawn, �y, explode, et
.(S
hwab 2004)[13℄.FSMs are not the only te
hnique used in de
ision making for NPCs. Fuzzy Logi
has also be used in many areas of game AI. In the
ase of 3rd person shooters, it
an be
ombined with FSM to form a Fuzzy State Ma
hine or FuSM adding anelement of non-linearity to the whole behaviour thus making it less predi
table(Watt & Poli
arpo 2001)[9℄. Among the reasons for not implementing a FuSM,is the small time of player-guard intera
tion.Arti�
ial Neural Networks (ANNs)
an also be used as an NPC de
ision makingte
hnique. The network
an have several inputs representing the fa
ts uponwhi
h the de
ision is to be based. Examples of su
h inputs
an be the healthof the agent, the weapon it has and the distan
e to the player. The output
anbe to
hase, evade or patrol. ANNs was not used in this proje
t due to theirinherently non-deterministi
 nature. The produ
ed behaviour would have beenhard to test, debug and tweak. However, if time had allowed, neural networksmight have been implemented to
ontrol whi
h FSM an agent needs to use atany given time in the game.The Sims o�ered a new approa
h to
ontrolling NPC behaviour. It provideda novel
ombination of A-Life and fuzzy logi
 to
ontrol the behaviours of theagents. The idea behind whi
h is what the game designer Will Wright refers toas "Smart Terrain". A

ording to him, the rule based approa
hes to AI are veryin�exible. In Smart Terrains, the a
tions a
hara
ter performs when intera
tingwith an obje
t is embedded in the obje
t itself rather than the
hara
ter. Thisallowed for the introdu
tion of new obje
ts to the environment, making surethat the
hara
ters would be able to intera
t with them. This explains themany expansions and add ons that have appeared after the laun
h of the game.66

(Wood
o
k 2007)[14℄Although this kind of approa
h
an be useful for this type of game (The Silen
eof Night), it is beyond its requirements espe
ially after
onsidering the shorttime of player-guard intera
tion. Also, the agents are not required to have thatlevel of intera
tion with the environment whi
h makes the use of this methodunne
essarily
ompli
ated.Other AI te
hniques
an be applied to
ontrol lower-level NPC behaviours. Anexample of whi
h would be the use of Potential Fun
tions for
hasing/evadingmovement and obsta
le avoidan
e. It
an also be used for swarming and �o
k-ing. The basi
 theory behind it is to apply positive or negative for
e to anentity proportional to the squared distan
e between it and the other entity ofinterest (Bourg & Seemann 2004)[8℄. This te
hnique is
lassi�ed as a low-levelAI be
ause it a
ts dire
tly on the
oordinates of an entity. For example It
anhelp an agent avoid obsta
les while moving from point A to point B but it doesnot initiate the de
ision to move in the �rst pla
e.5.3 Theoreti
al Ba
kgroundHistori
ally, FSMs were �rst proposed and used by mathemati
ians in repre-senting and solving problems. Perhaps among the earliest referen
es to �nitestate ma
hines would be the Turning ma
hine whi
h Alan Turing talked aboutin his 1936 paper "On Computable Numbers". (Bu
klands 2005)[15℄.In mathemati
s, a FSM (also known as Cellular Automaton) is usually repre-sented with a quadruple of sets, these are:
• A set I
alled the input alphabet.
• A set S of states that the automaton
an be in.
• A designated state S0, the initial state.
• A next state fun
tion N : S × I = S, that assigns a next state to ea
hordered pair
onsisting of a
urrent state and a
urrent input.(Luger 2002)[7℄Some books add a �fth set F of �nal states whi
h is a (possibly empty) subsetof S to the representation of the FSM.Here is a more des
riptive de�nition of FSM provided by Bu
kland:A �nite state ma
hine is a devi
e, or a model of a devi
e, whi
hhas a �nite number of states it
an be in at any given time and67

an operate on input to either make transitions from one state toanother or to
ause an output or a
tion to take pla
e. A �nite statema
hine
an only be in one state at any moment in time. (Bu
kland2005)[15℄Many types of FSMs exist and
an be
lassi�ed a

ording to di�erent fa
tors.For example a FSM
an be
lassi�ed as a deterministi
 FSM if for every state, apossible input would mat
h only one state transition. On the other hand, in thenon-deterministi
 FSM, a possible input for a given state would result in one ormore than one state transition. Other
lassi�
ations exist a

ording to wherean output is generated as in the Moore and Mealy ma
hines. (Bla
k 2006)[10℄.Implementations of FSMs in games is hard to
lassify under a spe
i�
 type andin many
ases a FSM
an �t under more than one. However, a more games-related
lassi�
ation of FSMs
an be found in Martin Brownlow's book "GameProgramming Golden Rules" (2004)[11℄. He spe
i�es two kinds of FSMs; theseare Expli
it vs. Impli
it.The di�eren
e is that in the
ase of expli
it FSMs, the FSM does not need toknow about the obje
t it is maintaining the state for. It a
ts like a bla
k boxand has events as its inputs that it uses for
hanging the states. An extensionon the
on
ept at the opposite end is an impli
it FSM. Implementing expli
itFSMs have many advantages over impli
it ones; the sour
e
ode be
omes smallerand easier to maintain, the behaviour of game obje
ts
an be altered qui
klyand easily without re
ompiling
ode and the designers are now free to experi-ment with obje
t behaviours without bothering the programmers. (Brownlow2004)[11℄.The FSM system developed for this proje
t
an be
lassi�ed as a deterministi
expli
it FSM.5.4 The FSM SolutionMany fa
tors
ontributed to the de
ision of implementing a FSM solution for thegame AI. Among these, is the power and e�e
tiveness of FSM in modelling NPCbehaviour. Given the requirements of the guard's behaviour of the game, FSMhas the potential to meet these requirements to a high standard if properly used.It is true that other less-deterministi
 AI te
hniques
an also provide a very goodillusion of intelligent NPC behaviour but implementing su
h te
hniques impliestaking higher risk due to their inherent non-deterministi
 nature and also dueto the limited development time frame available on hand.Other reasons for using FSMs
an be attributed to the
hara
teristi
s of this68

te
hnique. These in
lude their simpli
ity, ease of debugging, little
omputationaloverhead and �exibility. (Bu
kland 2005)[15℄.Initially, the implementation of the FSM started by implementing the FSM ex-plained in Bu
kland's book. The output of that FSM was in the form of plaintext printing to the
onsole ea
h state exe
ution and transition. Fundamental
hanges were done afterwards on that implementation in order to re�e
t Si-mon's approa
h to FSMs whi
h mainly implied moving the rules a�e
ting thestate transition from inside the states to the agents running the states. Afterthat,
hanges took pla
e in the dire
tion of integrating it into Instin
t whi
h in-
luded developing senses and states to produ
e a basi
 NPC behaviour. Finally,work was
arried out on designing and �ne-tuning the behaviour of the guardswhi
h also went in parallel with adding more senses and states to extend theirbehaviour.This se
tion is divided into two subse
tions, the �rst one deals with the devel-opment of the FSM engine. This in
ludes the development of the
ore systemand the senses and states that plug into the FSM. The se
ond se
tion deals withdesigning the behaviour of the NPCs that inhibits the game world. Figure 5.1shows an over-all stru
ture of the FSM system.

69

Figure 5.1: The FSM System Stru
ture

The over-all stru
ture of the FSM system in the game.
5.4.1 The FSM System5.4.1.1 The FSM Core.At its heart, the developed FSM system has four main
lasses or types of
lassesthat
onstru
t the
ore of the system. These are the senses
lasses, the states
lasses, the Sense State Map entity
omponent (SSMap) in addition to theAgent entity
omponent that drives the overall thinking pro
ess. Of
oursethere are many other
lasses implemented but their main purpose is to addmore �exibility, abstra
tion and organisation to the whole FSM system. Thissubse
tion (The FSM Core) will fo
us on dis
ussing the main
lasses in detailswhile the other
lasses will be dis
ussed whenever the
ontext requires but inless details. Figure 5.2 shows the over-all
lasses digram of the implementedFSM system with the four main
lasses having a darker ba
kground. Note thatonly one Sense
lass and another State
lass are shown as examples to avoid70

ridi
ulously in
reasing the size of the graph.Figure 5.2: The Class Diagram

An over-all look at the
lasses that
onstru
t the FSM system. The
ore
lasses are
oloured in pink.
The Senses ClassesThe senses inherit the abstra
t Sense
lass template. Moreover, they are allsingle tone
lasses whi
h means that only one instan
e exists of any given senseand is therefore shared between all the agents that use that sense. All senseinstan
es have a publi
 method
alled Che
kSense that a

epts a pointer to anagent and returns a boolean. By passing a pointer to the agent for whi
h thesense is
alled, the Che
kSense performs the
he
king a

ording to that spe
i�
71

agent. For example, SenseZeroHealth will
all CurrHealth method of the Agentpointer to get its
urrent health.In order to make it easier to retrieve and
he
k senses, a SenseManager whi
h isalso a single tone
lass, is
reated to hold a std::ve
tor of all the senses availableto an agent.The States ClassesA state
lass is very mu
h similar to the sense
lass. It inherits an abstra
t State
lass template and is also represented as a single tone. Instead of a Che
kSensemethod, a State
lass has three publi
 methods. These are Enter method,Exe
ute method and Exit method all of whi
h a

epts a pointer to an Agent.As the names suggest, these three methods are
alled on various times a

ordingto the life span of the state.The Sense-State Map (SSMap)The SSMap is a
tually the entity
omponent that de
lares the CSSMap
lasswhi
h is short for Sense-State Map and not to be
onfused with Cas
ade StyleSheet.What makes this
lass an important one is the fa
t that it holds a std::ve
torof a stru
ture
alled StateLogi
. This ve
tor represents the transition table ofthe FSM. Table 5.1 shows an example of this ve
tor with two entries.Table 5.1: A StateLogi
 ExampleFirst entry StatePatrol SensePlayerDead DoNothingSenseSeePlayer StateAlertSenseHearPlayer StateTimedAlertSenseFellowAgents StateAlertSe
ond entry StateTimedAlert SensePlayerNear StateFightSenseTimedAlertTooLong StateDefaultSenseSeePlayer StateAlertAn example of a StateLogi
 ve
tor with two entries.The StateLogi
 stru
ture is basi
ally the representation of the logi
 that needsto be followed when the agent is in a
ertain state. That state is indi
ated byan std::string member of the StateLogi
 stru
ture. In the example above, it isStatePatrol for the �rst entry and StateTimedAlert for the se
ond.However the a
tual logi
 of the state is represented using a std::ve
tor of anotherstru
ture
alled the SenseRea
tPair stru
ture. This is a mu
h simpler stru
ture72

and it holds two std::string members one representing a sense to be
he
ked andthe other representing the rea
tion if the sense evaluates to true.To add a layer of separation between a suggested behaviour and the systemwhi
h runs it, the behaviour of an agent was provided to the SSMap
ompo-nent via an external XML �le whi
h is parsed into the StateLogi
 ve
tor uponinitialisation. See lesting 4.Listing 4 An Example of the state-logi
 XML<?xml version=�1.0� en
oding=�utf-8�?><SSMap><state name=�StateAtta
k�><pair sense=�SenseAtta
kDone� rea
t=�StateFight� /></state><state name=�StateRe
oil�><pair sense=�SenseAgentZeroHealth� rea
t=�StateGotCut� /><pair sense=�SenseSe
Atta
ked� rea
t=�StateFaint� /><pair sense=�Default� rea
t=�StateFight� /></state></SSMap>The Agent.Now that enough tra
tion has been built explaining the previous
lasses and
omponents, it is possible to dis
uss the Agent entity
omponent. This entity
omponent gains its importan
e from the fa
t that it serves as the
entral pointwhere all the other
lasses
ome together. Just like the SSMap, the Agententity
omponent de
lares the CAgent
lass whi
h de�nes member variablesand methods to drive the FSM. Among these variables are four pointers tostates; these are for the
urrent state, the previous state, the global state whi
his exe
uted along side the
urrent state, and the default state whi
h de�nes themain job of the Agent in the game be it patrolling or guarding or anything else.The most important method of the CAgent
lass is the HA_Update methodwhi
h is
alled
onsistently at a �xed time intervals. Listing 5 shows a simpli�edversion of the pseudo
ode for this method whi
h
an also be thought of as thepseudo
ode for the
ore FSM system.
73

Listing 5 A Simpli�ed Pseudo Code for the HA_Update Method.Exe
ute
urrent stateExe
ute global stateLoop over the StateLogi
 list of the AgentIf name of a state in StateLogi
 list == name of the
urrent stateor if name of a state in StateLogi
 list == "StateGlobal" then:Loop over the SenseRea
tPairs list of that StateLogi
 entryIf this Agent
he
k sense in SenseRea
tPair then:handle rea
t in SenseRea
tPair and break from the inner loopend ifend loopend ifend loopThe way this algorithm works is that for the state that mat
hes the
urrentstate's name, the senses in the list of sense-state pairs are
he
ked in order untila sense evaluates to true. At that point the rea
tion that is paired with thatsense is handled by a spe
i�
 method of the agent and the algorithm breaksfrom the inner loop but
arries on with the outer loop. The reason why theouter loop needs to
arry on is to guarantee that the logi
 of the global state isexe
uted. See �gure 5.3.Figure 5.3: The States Transition Diagram

A diagram showing part of the state transitions.74

In the SenseRea
tPair, the Sense string
an be a name of a valid sense whi
h
anbe su�xed with "not_" to inverse the value returned by the Che
kSense fun
-tion. The other
hoi
e for sense is simply using the string "Default" whi
h willalways validate to true when passed in the Che
kSense fun
tion. The "Default"
an have the e�e
t of the else keyword when used in the last SenseRea
tPair ina StateLogi
 entry or it
an be used to serve as a debugging option, for examplefor
ing a state
hange. Howerver, valid values for the Rea
t part in the SenseRe-a
tPair are "StatePrevious", "StateDefault" and "DoNothing" in addition to astate name. Note that "StatePrevious" and "StateDefault" serves as a memoryof the agent. "DoNothing"
an be used to keep the agent in its CurrentState oras a another debugging option.Any entity - in
luding the player
hara
ter - thet needs to utilise the FSM,must have the Agent
omponent among its list of
omponents. In the
ase ofthe player
hara
ter, it's Agent
omponent runs a simple FSM that
he
ks to seeif the agent's health has dropped to zero. If so, then it will rea
t by going intothe dead state whi
h plays the dying animation and turns o� the
omponents ofthe agent. This
ould have been used to add a bored state to the player whenthe player remains idle for a long time but was given a low priority for obviousreasons. Among its properties, the Agent
omponent has a property that holdsthe name of the AIManager in the game whi
h is also an entity
omponent.The Agent will register to the AIManager upon initialisation if the name of anAIManager is provided.5.4.1.2 The Senses/States Library.After having built the
ore of the AI FSM system, there needs to be a numberof senses and states
lasses that it
an operate on. For that reason, a group ofsenses and states was developed. In addition to the importan
e of making whatwe had an a
tual game, the implemented senses and states had to emphasisea
ertain gameplay style of the game whi
h is the stealth style. As a result,almost every intera
tion with the player, required the guards senses to be awareof environment elements like the level of light or the noise the player was making.Also, other senses were developed like testing if a guard knew about the playerbefore getting hit by it in addition to other senses of whi
h results were re�e
tedin the s
ore manager. In all, 27 senses and 18 states were developed whi
h were
ombined to propose an intelligent behaviour for the guards and introdu
e thegameplay elements of the game. The rest of this subse
tion (The Senses/StatesLibrary) will explain only one sense and another state
lass. These are the75

SenseFellowAgents and StateAlert and are provided just as an example. Forthe rest of the
lasses please refer to the a

ompanying CD.SenseFellowAgentsAs mentioned before all the senses
lasses has a Che
kSense method whi
ha

epts a pointer to a CAgent
lass and returns a boolean of whether the senseevaluates to true or false. Most of the senses depend on other external entity
omponents or even other senses to be able to
he
k for that spe
i�
 sense. Anexample of whi
h
an be found in the SenseFellowAgents
lass whi
h dependson the AIManager
omponent in testing the state of fellow agents. Rememberthat the AIManagre knows about the agents in the game sin
e they register toit upon initialization. This sense will return true if a near by fellow agent is inan alert state or a similarly tensed state. Listing 6 shows the pseudo
ode forthe Che
kSense method of the SenseFellowAgents
lass.Listing 6 The Pseudo Code for the SenseFellowAgentsGet a referen
e to the AIManagerGet a pointer of the agents list from the AIManagerLoop over the agents listFellowAgent = Agents list [i℄If the FellowAgent is the player
hara
ter or the same agent then:ContinueTest the state of the FellowAgentIf state name != "StateDead"&& state name != "StateAlert"&& state name != "StateTimedAlert"&& state name != "StateFlee"&& state name != "StateFight"&& state name != "StateFaint" then:Return falseChe
k the distan
e between the agent and the FellowAgentIf distan
e is
lose enough then:Return trueElseReturn falseAgain, a sense
an rely on other senses to
he
k its value. For example theSensePriAtta
ked will
all the Che
kSense for "SensePlayerFa
ingAgent" andfor "SenseInPlayerRange" in addition to testing if the player is performing theatta
k animation. The design of the system lends itself smoothly to this kindof implementation whi
h is made possible by passing a pointer of the agent tothe Che
kSense method of the sense in addition to making sure the senses are
he
ked through a member method for the agent.76

This adheres to
ode re-usability by making simple senses and
ombining themtogether in order to
onstru
t more
ompli
ated ones.StateAlertThe states
lasses have three main publi
 methods that
an be used to spe
ifyhow the agent will behave while in that state. These are the Enter, Exe
uteand Exit. While this is not always the
ase, sometimes an agent does not needto perform tasks in all three methods of the state. Nevertheless, the threemethods are
alled automati
ally in various pla
es in the
ode. The
alling forthe Exe
ute method has been shown in Listing 5. Listing 7 shows the pseudo
ode for the ChangeState method of the agent whi
h is where the Enter andExit methods for a state are
alled.Listing 7 The Pseudo Code for the Agents ChangeState MethodIf NextStateName != StateCurrent -> Name then:StateNext = StateMngr -> GetState(NextStateName)StatePrevious = StateCurrentStateCurrent = StateNextStatePrevious -> ExitStateCurrent -> EnterReturn trueElseReturn falseEnd ifThe AlertState, however, needs to make
hanges either on the Agent or onother
omponents when entered or exited and while exe
uting by an agent. Seelistings 8, 9 and 10.Listing 8 The Pseudo Code for the Enter Method of the AlertStateGet a referen
e to the agentInputControllerGet a referen
e to the agentSoldierSet the animations in the agentInputController to false (walk, run, strafe, atta
k,et
)Set the �ght stan
e of the agentSoldier to trueCall the agentSoldier CreatVo
als methodDisplay the subtitles of the
reated vo
alGet a refenen
e to the ambient sound manager
hange ambient musi
 to that of the suspense tra
kGet a referen
e to the s
ore managerIn
rease the number of agents alerted in the s
ore managerListing 9 The Pseudo Code for the Exe
ute Method of the AlertStateTurn the guard in pla
e to fa
e the player77

Listing 10 The Pseudo Code for the Exit Method of the AlertStateGet a referen
e to the agentSoldierSet the �ght stan
e of the agentSoldier to falseGet a refenen
e to the ambient sound manager
hange ambient musi
 to that of the suspense tra
k5.4.2 The Proposed BehaviourOf
ourse developing an FSM system is simply half of the work that needed tobe done on the agents AI. The other half was to design the behaviour of theguards utilizing the developed FSM. This task is
ru
ial not only to push thegame in the 3rd person stealth dire
tion, but also to make it 'a game' ratherthan just a simulation of a
hara
ter running around.Naturally this task is more of a soft skill; i.e. the behaviour of NPCs needs tofeel right rather than ne
essarily be right. A

ording to Simon Pi
k, it is generalpra
ti
e to assign the task of tweaking and �ne tuning of the NPC behaviour tothe designers. Doing so leads to better more engaging AI behaviour. (Personal
ommuni
ation, 06 Sep. 2007)[12℄.The work done on designing the NPC behaviour did not a

urately adhere tothis
ode of pra
ti
e mainly be
ause of the relatively small s
ale of the proje
teither time wise or team-size wise. Also, sin
e the development of the FSMsystem was roughly going in parallel with the design of the behaviour, it was
onvenient to keep iterating on both to build the basi
 behaviour. Instead,the behaviour was mainly designed by the AI programmer with
onsiderable
ontributions and suggestions from all the other team members.The designed behaviour of the guards is shown in table 5.2. It is fairly easy toread through it however, StateFlee might need some explanation. The �ee stateis entered if the health of the guard goes beneath a
ertain level whi
h is a resultof re
eiving damage by the player. This is being tested in the SenseLowHealth ofthe StateFight. While in the �ee state, the guard runs in the opposite dire
tionof the player and performs three tests; if the player is dead it will return toits default state, if the player is far it will go into the alert state, and if, while�eeing, an obsta
le is fa
ed it will go into a desperate state ma
hine. This laststate is a
tually a separate FSM and sets the StateMa
hine
omponent of theguard to point to the desperate SSMap
omponent in the s
ene. The maindi�eren
e between the two FSMs is that the guard will not
ontinue �eeingwhile in the desperate FSM sin
e it is theoreti
ally trapped. Instead, the guardwill go into the alert state fa
ing the player and will only
hase the player ifthe player's
hara
ter turned its ba
k to it. This approa
h resulted in moreintelligent behaviour on behalf of the guards espe
ially preventing them from78

running into walls.Table 5.2: The Guards State Transition TableCurrent State Sense Rea
tStateIdle SensePlayerDead DoNothingSenseSeePlayer StateAlertSenseHearPlayer StateTimedAlertSenseFellowAgents StateAlertStatePatrol SensePlayerDead DoNothingSenseSeePlayer StateAlertSenseHearPlayer StateTimedAlertSenseFellowAgents StateAlertStateTimedAlert SensePlayerNear StateFightSenseTimedAlertTooLong StateDefaultSenseSeePlayer StateAlertStateAlert SensePlayerNear StateFightSenseAgentAstray StateTimedAlertnot_SenseSeePlayer StateTimedAlertSenseSeePlayer StateHuntStateHunt SensePlayerDead StateDefaultnot_SenseSeePlayer StateTimedAlertSenseAgentAstray StateFightSensePlayerFar StateAlertSensePlayerNear StateFightStateFight SensePlayerDead StateDefaultSenseAgentLowHealth StateFleeSensePlayerIdle StateAtta
kSensePlayerFar StateAlertnot_SensePlayerNear StateHuntSenseAgentThreatened StateBlo
kStateFlee SensePlayerDead StateDefaultSensePlayerFar StateAlertSenseObsta
le StateDesperateSMStateAtta
k SenseAtta
kDone StateFightStateBlo
k SensePlayerIdle StateFightStateRe
oil SenseAgentZeroHealth StateGotCutSenseSe
Atta
ked StateFaintDefault StateFightStateFaint SenseFaintTooLong StateDefaultStateDeadStateGotCutStateGlobal SenseAgentZeroHealth StateDeadSensePoun
ed StateGotCutSenseSe
Atta
ked StateFaintSensePriAtta
ked StateRe
oilThis table shows the state transition table of the proposed behaviour of theguards.79

It
an be noti
ed from table 5.2 that the StateDead and StateGotCut does nothave any sense-rea
t pairs to them for obvious reasons. Also sensing that theplayer is dead in most of the states aside from the StateIdle and StatePatrol, will
ause the guard to swit
h to its default state while the same sense in StateIdleand StatePatrol will prevent the guards from testing the rest of the sense-rea
tpairs.5.5 Dis
ussionA

ording to S. Pi
k, the way the industry approa
hes game AI, is that the AIprogrammer develops the system so that it allows the game designers to
hangethe behaviour of the AI entities externally without having to refer to the AIprogrammer for ea
h
hange. The reason being that the game designers need totest and tweak many times in order to get the right feeling of the game AI. Thiskind of approa
h
an be very bene�
ial espe
ially in saving the time of boththe AI programmers and the game designers. Moreover, the
ompiling time ingeneral will be substantially de
reased as well (personal
ommuni
ation, 06 Sep.2007)[12℄. Of
ourse in order to a
hieve su
h a level of �exibility, the systemmust have a
lean obje
t-oriented design in the �rst pla
e.The developed FSM is relatively
ompliant with the industry's approa
hes togame AI and relies heavily on the use of s
ripting in AI. Among the areasthat
an be improved, is the use of a proper XML parser for parsing the statetransition XML table. The
urrently implemented parser is a
tually a textpro
essor developed in
ollaboration with Ali Derweesh. It sear
hes the XMLfor
ertain strings and patterns in order to populate the StateLogi
 list and withno error handling. This approa
h was adequate for the s
ope of this proje
tbe
ause in most of the
ases only one person was working on the AI behaviourwhi
h made it easy to spot any errors. However, in larger proje
ts, a graphi
albespoke AI-editing tool with XML
an be more user friendly and less prone toerrors (S. Pi
k, personal
ommuni
ation, 06 Sep. 2007)[12℄Throughout the game, many of the player-guard's intera
tions were handledthrough the AI. It is not the sword's
ollision with the agent's mesh that triggersthe mesh
utting, it is the guard's AI testing if its in the player's range, thedire
tion of the player and the animation of the player. Although this has helpedin providing a rapid solution, along with avoiding the overhead of having thephysi
s testing for
ollisions, it had its own problems and the fo
us here is onthe SenseAtta
k. The problem was that the atta
k animation of the player's80

hara
ter starts by pulling the sword to the ba
k and then swinging it. Nowtesting if the player is in the atta
k animation would return true from the �rstframe to the last one. This resulted in the guards getting
ut as the player hitsthe atta
k button before the sward rea
hed the guard. In an attempt to solvethis problem, the normalized timing of the animation was tested to roughlyspe
ify the time when the sward would naturally
ollide with the guards mesh.For example after 40% of the animation time has elapsed. Unfortunately thissolution did not work be
ause the time values returned was in
orre
t for the�rst frame whi
h made this approa
h useless. As an alternative, the developersde
ided to try to solve this in the
utting algorithm rather than in the AI. Thenew solution was to perform a short delay in the
utting
omponent beforepreforming the a
tual
utting. The results of this last solution looked morerealisti
, however, this approa
h would be hard to work with if there were manydi�erent atta
k animations with di�erent timings.One very important feature the game
ould de�nitely bene�t from is the im-plementation of a path �nding algorithm. Although Instin
t engine implementsone, it is in
omplete and is provided as an example. The e�e
t of having a path�nding feature
an help make the guards look more intelligent and perhapsmore
hallenging to the player. It would allow the guards to
hase the playerfor longer distan
es and most importantly avoid running in walls and obsta
les.In an attempt to work around this problem, the guards were able to sense howfar away they were from their initial position. Guards would stop
hasing ifthey're astray so that the
han
e of walking into obsta
les is minimized afterthey return to their default state. The astray threshold of a guard was madea

essible from within instin
t studio for
onvenien
e and guards outdoors weregiven higher values
ompared to those indoors.Turning to the NPCs behaviour, in a three-day event
alled Protoplay (12-14August 2007), the developers had the
han
e to exhibit the game and wat
hpeople of the publi
 playing the game and breaking it on some o

asions. Doingso helped the developers put the theory to the test and pra
ti
ally identify whatworked and what did not.Among the
omments some of the people had about the game AI behaviour, isthat the guards did not pose a real
hallenge to the player. Wat
hing peopleplaying the game, it was noti
ed that in most of the
ases, when a guard killedthe player
hara
ter, it was when the person
ontrolling it did not know the
ontrols very well. The
ombat AI
ould have possibly been improved by utiliz-ing the blo
k state in the behaviour of the guards whi
h is
urrently availableonly for the player
hara
ter. Of
ourse that would also require more senses tobe developed to help the AI guard identifying when an atta
k is imminent.81

Also observing people playing the game, when the guard runs away from theplayer, players did not leave the guard and got on with the game. On the
ontrary, they
hased the guard and made sure it was dead before they moved on.As a result, the behaviour of the guards trying to poun
e the player was neverexperien
ed by people who played the game making it an in
reased overhead.That stresses the fa
t that designing a NPC behaviour whi
h 'feels' right is asoft skill that requires experien
e.5.6 Con
lusionThis
hapter has shown how e�
ient FSMs
an be used in modelling NPCsbehaviour. By no means
an the work done on the AI be
onsidered
ompleteand it
an bene�t from a number of features namely a good path �nding andperhaps upgrading it to be a FuSM.In general, the AI system served its purpose. It helped emphasising the stealthgameplay elements of the game and people enjoyed sneaking up to guards andeither
ut them in half or stun them, an experien
e whi
h was also stressed bythe on-s
reen feedba
ks.The developed FSM has the following features:
• It is relatively easy and straight forward to add new senses and states tothe system.
• It is easy for non-programmers to deploy new added senses and states inthe behaviours of agents and also to
hange and tweak the behaviours ofthe agents.
• It allows for
hanging the whole behaviour of an agent during the runningof the game
• It makes it possible to personalise the agents so that no two agents areidenti
al.
• It -to a
ertain extent- adheres the industry pra
ti
es by modelling thebehaviour of an agent using the widely used XML �les.In
on
lusion, games development is quite a
hallenging �eld and game AIrequires skill-sets of di�erent ba
kgrounds. Programming a game AI engineevolves a lot of problem solving in addition to resear
h and design. In order forgame AI engines to be most e�
ient it needs to enable the game designers to82

rapidly iterate and test behaviours of NPCs. Designing a NPC behaviour how-ever requires an artisti
 ba
kground and experien
e as well. (Pi
k, S. personal
ommuni
ation, 06 Sep. 2007)[12℄.

83

Chapter 6
Input And Chara
ter Control,Audio/Visual Programming,Gameplay EngineeringBy Ben Chandler6.1 The User Input To Chara
ter Control Pro-
essControl of the
hara
ter is broken down into several stages. The �rst stageis re
eiving the input from the keyboard, mouse or gamepad. This input ishandled by the input
ontroller
omponent whi
h de
ides how a given inpute�e
ts the game. For example when in game pressing 'up' on the
ontrollerwill
ause the
hara
ter to run forwards, whereas pressing start will
ause themain menu to appear. The input
ontroller
an in�uen
e more than just theplayer, it e�e
ts the whole s
ene and as su
h there is only one su
h
omponentper game s
ene (level). In the
ase of a
hara
ter input the input
ontrollersets one or more state �ags in the
hara
ter
ontroller depending what hasbeen pressed. For example if 'a' is pressed then the 'jump' �ag is set in the
hara
ter
ontroller to indi
ate the
hara
ter is jumping. The third and �nalstage in the
ontrol pro
ess is the animation
ontroller. The animation
ontrollerre
eives input from the
hara
ter
ontroller when it must
hange animation. Forexample, with the aforementioned jump state
hange, the jump �ag set in the
hara
ter
ontroller would be passed on to the animation
ontroller by settingit's own 'jump laun
h animation' �ag. At this point the animation
ontroller84

takes
harge on the
hara
ter and will transition through the laun
hing, air, andlanding jump animations. With that said it is still possible for the
hara
ter
ontroller to query the animation
ontroller to �nd out what state it's in, thisproves useful for things su
h as timing atta
ks.Figure 6.1: Flow Diagram Of Player Being Moved Forwards

A �nal note before dis
ussing the
ontrollers in depth is that the a
tual imple-mentation of the player's
ontroller
omponents and the AI's
ontroller
ompo-nents is di�erent. Initially they were using the same
omponents, however asthe proje
t progressed there were various things that we wanted to do with theplayer
hara
ter that meant using it's own version of the
ontrollers. In additionto that the implementation of these
omponents are in a modi�ed version of theieExample.dll �le rather than in BC_Components.dll. This is be
ause it wasmu
h faster to build upon the existing player
ontroller than build another froms
rat
h.With the above brief summary out of the way I will now des
ribe some of thespe
i�
s of the
ontrollers.6.1.1 Input ControllerThe input
ontroller itself was largely an extension of what was already suppliedwith the engine. That is to say, largely it
ame down to more
ontrols needing85

to be mapped however I still had to implement some small
hanges su
h as theability to invert the
amera
ontrols should the player prefer it. For the playersinput
ontroller I also the ability to turn on and o� the sound shader.6.1.2 Chara
ter ControllerThe
hara
ter
ontroller required a lot of new and in many pla
es repla
ed
odeover what existed previously due to the large number of possible states thatthe
hara
ter
ould be in. In addition to this many non-
ontrol related
hangeswere made, su
h as syn
ing footstep sounds to the animations. I also suppliedsome helper fun
tions here for use by the AI, for example getting the amountof light falling on the player or the amount of noise the player is making as wellas the more simple fun
tions su
h as determining how far through an atta
kthe player is. The other task that the
hara
ter
ontroller is responsible for isthat a
tual physi
al movement of the player within the world. Little had to beadded in this area, although neither jumping nor sneaking were present in thesupplied version of the
ontroller and as su
h they had to be implemented byhand.6.1.3 Animation ControllerThe animation
ontroller, mu
h like the
hara
ter
ontroller, required not onlyan extension of what had been done before, but in many pla
es, a rewriting ofthe
ode. It's biggest short
oming for what we required was that it
onsideredthe
hara
ter to have animations blended and applied to the whole
hara
ter andwould not take into a

ount things like jumping and atta
king without a messyblend between the two animations over the whole body. To
ombat this it wasne
essary to write a tool to split the animations into separate �les for di�erentportions of the body so that we
ould, for example, atta
k with the upper bodywhile running forwards. Without having to have every possible
ombinationof a
tions as an animation. The splitter takes a full body animation, su
has running, and splits it above and below the hips, in both upper and loweranimations the hip bone is present for the purpose of smooth blending a
rossupper and lower body se
tions.In order to use this te
hnique mu
h of the animation
ontroller had to be rewrit-ten in order to take advantage of the separated animations and blend upper andlower body separately. The upper and lower body states are managed by theanimation
ontroller itself and not, as one may expe
t, the
hara
ter
ontroller.This is be
ause from the point of view of the
hara
ter, the
hara
ter onlyneeds to know that they are running and atta
king, not that their lower body86

is running and upper body is swinging a sword. Te
hni
ally this tidies up the
ode, sin
e when the AI is
ontrolling a
hara
ter for example, it
an tell the
hara
ter to run without having to tell it's upper body and lower body both torun, whi
h would involve all of the subsequent '
an I run?' type state
he
k onthe animations. One way to look at it would be the
hara
ter
ontroller tellsthe animation
ontroller what it would 'like to do', the animation
ontrollerthen sets the animations
orre
tly. For example the
hara
ter
ontroller wouldpass on that it wants to run and atta
k, the animation
ontroller would realisethat that required the lower body to run, while the upper body performed theatta
k, none of whi
h is worried about by the
hara
ter
ontroller.6.2 Sound6.2.1 Ba
kground Musi
The manager the ba
kground musi
 transitions the Ambient Sound Manager
omponent was
reated. When making the ambient sound manager, I used2D sounds as build into the engine for the musi
 tra
ks and atta
hed themto my own manager. The manager
ontrols them and mixed them based on�ags, for example 'player seen' and 'player atta
ked'. These �ags are in turn
ontrolled by the AI. The blending into and out of tra
ks itself is logarithmi
as opposed to linear. This means that it is per
eived volume (loudness) thatis linear (roughly), rather than a
tual volume. This is to
ounterbalan
e thenon-linear volume of a sound that the human ear hears and gives a smoothertransition. Te
hni
ally this is not quite true sin
e human hearing also varieswith frequen
y, that is to say, it is likely that a 1000Hz sound at 1dB will havea di�erent per
ieved intensity to a 2000Hz sound at 1dB, despite them bothhaving the same loudness. However for the puropose of the game this level ofa

ura
y was unne
essary.6.2.2 3D Sound Sour
es3D sound sour
es within the game are normally part of a larger entity. Inalmost all
ases they have a sound shader light and
ontroller atta
hed to bevisualisable. Before diving into the topi
 of shaders and the
reation of thesound shader I will �rst dis
uss one very important property of the 3D soundsour
e
omponent provided and that is the 'destroyOnFinish' property. Thismeans that when sounds su
h as footsteps are
reated they
an be automati
allydestroyed if this �ag is set, thereby making managing memory for su
h obje
tstrivial. This also allows automati
 destru
tion of any obje
ts atta
hed to the87

sound whi
h means that a lifetime is not needed to be spe
i�ed for the shadersin
e it is (optionally) destroyed when the sound is.6.3 3D Graphi
s6.3.1 ShadersLooking at the visual side of things, I will begin with a qui
k introdu
tionto the shader system. Shaders in Instin
t are written using either HLSL orassembly language, both of whi
h I learnt for the purpose of understanding theexisting shaders that were build into the engine. By way of strengthening myunderstanding I began by writing a simple water shader in HLSL. On
e it wasworking I then went on to try and ta
kle (what I thought would be) the hardertask of writing the sound shader.Listing 11 Example Of An Assembly Language ShaderpixelShader BaseLightDi�use_1.1{ ps_1_1def
1, 1, 1, 1, 1tex t0 ; light proje
tedtex t1 ; di�usetex t2 ; normaltex t3 ; L (
ube normal map)dp3_sat r1, t3_bx2, t2_bx2 ; N . Lmul r1, r1, t1 ; ... * di�usemul r1, r1,
0 ; ... * light
olormul_x2 t0,
1, t0 ; light proje
tion x2mul r0, r1, t0 ; ... * light proje
tion}

88

Listing 12 Example Of A Similar HLSL ShaderpixelShader{ #in
lude "base/materials/BaseHLSL.material"// Constantssampler2D lightProje
tionMap : register(s0);sampler2D lightFallo�Map : register(s1);sampler2D di�useMap : register(s2);sampler2D normalMap : register(s3);sampler2D spe
ularMap : register(s4);�oat4 lightColor;�oat spe
ularPower;COLOR main(in BASE_LIGHT_PS In){ COLOR
;�oat3 light_map = tex2Dproj(lightProje
tionMap, In.lightProje
tionUV)* 2.0f;�oat3 fallo�_map = tex2Dproj(lightFallo�Map, In.lightFallo�UV);�oat3 di�use = tex2D(di�useMap, In.di�useUV);�oat3 normal = tex2D(normalMap, In.normalUV) * 2.0f - 1.0f;�oat3 L = normalize(In.L);�oat3 bump =
lamp(dot(normal, L), 0.0f, 1.0f);�oat3 V = normalize(In.V);�oat3 H = normalize(L + V);�oat3 spe
ular =
lamp(dot(normal, H), 0.0f, 1.0f);spe
ular = pow(spe
ular, spe
ularPower.x) * 2.0f;spe
ular = spe
ular * tex2D(spe
ularMap, In.spe
ularUV);
.
olor.rgb = (bump * di�use + spe
ular) * light_map * fallo�_map *lightColor;
.
olor.a = 1.0f;return
;}}6.3.1.1 Shaders and Materials Within Instin
tThe shader system within Instin
t is intimately related to the material system,as tou
hed upon in 3.3.5, used to
reate materials to texture s
ene meshes with.Indeed shaders are lo
ated at a deeper level of the inheritan
e provided formaterial �les. If parent material �les were tra
ed su�
iently far ba
k eventuallya shader would be en
ountered. However the inheritan
e hides mu
h of this andwhen de�ning a material su
h as in �gure 3.17 the existen
e of the shader isalmost hidden other than for saying whi
h parent material to use.Going into more depth now, material �les essentially
omprise of the followingstru
ture [5℄ 89

Listing 13 Material File Stru
tureBaseMaterialName{ States{ Blending, depth and
ulling options for the surfa
e are de�ned here}pass 0{ Class{ Shader language and required hardware spe
i�ed for pass here}Texture TexName1{ Texture �ags set, for example number of frames for TexName1}Texture TexName2{ Texture �ags set, for example number of frames for TexName2}...VertexDe
laration{ Vertex shader inputs are de�ned here, for example position}VertexShaderConstants{ De�ne vertex shader
onstants here}VertexShader{ De�ne vertex shader here}PixelShaderConstants{ De�ne pixel shader
onstants here}PixelShader{ De�ne pixel shader here}}Pass 1{ ...}...} 90

With the above material de�ned we
an now override it and give the shader anew texture, as was shown in the referen
e given immediately above, using thefollowing material de�nition.Listing 14 Overridden Material ExampleNewMaterialName : BaseMaterialName{ TextureAliases{ Here we
an now override the default textures by adding for example:TexName1 = NewTextureName}}It is also possible to do more
ompli
ated inheritan
e within Instin
t, for exam-ple a state
ould be overridden in the following way.Listing 15 Overridden State ExampleNewMaterialName2 : BaseMaterialName{ States{
ullMode = none}}This would serve the purpose of turning o� ba
k fa
e
ulling on any surfa
e towhi
h the material was applied. In addition to overriding material elements inthis fashion, it is also possible to de�ne
ommonly used elements outside of amaterial and parent the material's element to it. For exampleListing 16 Externally De�ned Material ElementsStates CommonState{
ullMode = none}NewMaterialName3 : BaseMaterialName{ States : CommonState {}}NewMaterialName4 : BaseMaterialName2{ States : CommonState {}} 91

Of
ourse this is not just restri
ted to states, in fa
t it is possible to use mostpie
es of a material in this way. Elements all the way from the shaders up tothe passes
an be inherited and overridden in this fashion whi
h gives a greatdeal of
ode reuseability.6.3.2 Water ShaderThe water shader is
al
ulated by using the in
ident eye ray, per fragment, to
al
ulate the re�e
tion and refra
tion rays based upon the surfa
e's normal mapat that point. The re�e
tion ray is used for an environment map lookup (the skybox) and the refra
tion ray traverses a �xed distan
e under the surfa
e beforedoing a 2D texture lookup for the lake/river bed.Figure 6.2: Water Shader Cal
ulations

The �nal pixel
olour is then
al
ulated by blending the two ray
ontributionstaking into a

ount the Fresnel term. The shader was also
apable ofa

epting animated and s
rolling textures. For example in the river anon-animated version is used whi
h s
rolls, in the lake and pond an animatednon-s
rolling version is used.
92

Figure 6.3: Water Shader Applied To A Test S
ene

6.3.3 Sound ShaderThe problem of representing sound through vision has many di�erent approa
hesthat
ould be used. When implementing the sound visualisation I found thatsome would be more
onvenient to apply than others due to the ar
hite
ture ofthe game engine.6.3.3.1 Initial Approa
hWhen starting out the initial approa
h was to
reate a shader that would be ap-plied to every surfa
e, the result of whi
h would be the intensity of the in
oming'light' from the sound sour
e. Formally, if
x is the point in spa
e being lit
xl is the position of the sound sour
e 'lighting' x

t is the time sin
e the sound's
reation time
I is the intensity of the in
ident light at x from an individual sound sour
ethen the distan
e between them is d = |x − xl|It is at this point that I diverge from the traditional di�use lighting model inthat I
al
ulate the intensity of in
ident light in the following manner:93

Firstly de�ne T (d) as the time taken for the sound to travel a distan
e d,typi
ally this will be linear.ThenIf the sound has rea
hed the point, i.e. t > T (d)

I = f(t − T (d)), where f(t) is the intensity of the sound'swaveform at time t after
reationElse
I = 0On
e the sound has played out the sound sour
e (and with it the light sour
e)is destroyed. As su
h the waveform, due to it being �nite in duration,
aneither be represented in it's 'mathemati
al' form in the shader(e.g.,f(t)= sin(t)

t+1), or in order to save
omputation
an be pre-
al
ulated andused as a 1D texture lookup. The approa
h
an be generalised by the use ofenvironment maps to take into a

ount periodi
 waveforms.In it's favour this approa
h is highly
ustomisable and (fairly) a

uratelyrepresents the 'feel' of the wave being emitted (e.g. A spike in intensity of thesound will show up visually). Unfortunately this approa
h is very hard toimplement given the time
onstraints based on the ar
hite
ture of the engine[6℄. While I did get a version of this working with only a single sound sour
e,generalising it to many sour
es would have proved too time
onsuming toimplementing and in all likelihood too expensive
omputationally.Figure 6.4: Preliminary Sound Shader S
reenshot

94

6.3.3.2 Chosen Approa
hThe �nal approa
h we de
ided upon is a
ompromise between artisti

ontrol-lability and ease of implementation. It relies on the built-in fun
tionality of theengine's default light sour
es, to whi
h I atta
h a
omponent to
ontrol themas I wish. The built-in 'box' light sour
es a

ept an attenuation texture whi
his used to spe
ify the intensity in the horizontal plane based upon the distan
efrom the light sour
e position. They also make use of a fallo� texture whi
h isused for the verti
al fallo�. In the
ase of spotlights these textures are handleddi�erently but sin
e these are not used in-game I will not dis
uss them here.The box light itself is de�ned by a point together with a box spe
ifying how farit
an e�e
t over whi
h the textures are s
aled in their respe
tive fa
es. Thelighting intensity is then
al
ulated for a point within the box by looking up theintensity in both the attenuation and fallo� textures (by proje
ting the pointinto the plane and line respe
tively). These looked up values are then multipliedto give the �nal intensity. For
lari�
ation see �gure 6.5 below.Figure 6.5: Light Attenuation Box and Fallo� Taken From [5℄

I modify this for the sound shader by �rstly
hanging the texture for a halotype texture
95

Figure 6.6: Original Light Texture Compared To New Light Texture

(a) Original Attenuation Texture (b) Modi�ed Attenuation TextureThe new
omponent then takes
are of the rest by
al
ulating how long thesound sour
e has been 'alive' for and s
aling the attenuation box, as well asintensity of the light sour
e by linearly interpolating the values based on theage between start and end times for the sound. This is not stri
tly
orre
t inthe sense that sound waves do not physi
ally behave like this, but visually itgives an a

eptable e�e
t without too mu
h of an impa
t to the hardwareunlike some of the previous te
hniques. The �nal e�e
t in-game is as below in�gure 6.7. Figure 6.7: Sound Shader S
reenshot

96

6.3.4 SkydomeThe skydome was
reated using the skylab in Bry
e 5. I rendered out thesky from six di�erent dire
tions in order to form an environment map whi
hwas then put together in Photoshop. On
e
onstru
ted I exported it using theNvidia DXT exporter. On
e it was in DXT format I wrote a shader to applythe texture as an environment map onto the skydome mesh.6.3.5 2D Unlit ShadersFor some surfa
es su
h as loading s
reens, overlays and the HUD lighting wasnot important. For these
ases a
olle
tion of shaders was written to deal withseveral of the spe
i�

ases and di�erent blend modes required. For example theHUD ba
kground required 8-bit transparen
ies, whereas other overlays required1-bit while some required no transparan
y at all.6.4 2D Graphi
s2D graphi
s in the game were handled by
reating a quad based upon the aspe
tratio of the s
reen. The quad's transform was then parented to the
urrent
amera and it's transform set so that it was a �xed distan
e away. Parentingit meant that it would remain �xed in front of the
amera during gameplay. Itwas using this te
hnique that all 2D graphi
s were drawn to the s
reen.6.4.1 HUDIn the
ase of the HUD, a template was made
onsisting of several pie
es. Belowis an outline of the template [Listing 17℄:

97

Listing 17 HUD Entity TemplateEntityTemplate{ _name = "BC_Pa
kage/HUD"_des
ription = "HUD Entity"_
omponents = "Transform:Transform,HealthTransform:Transform,LightTransform:Transform,SoundTransform:Transform,HUDManager:HUDManager,Mesh1HealthBar:Mesh,Mesh2BG:Mesh,Mesh3LightBar:Mesh,Mesh4SoundBar:Mesh"Mesh1HealthBar.MeshFilename= "MO_Pa
kage/models/HUDquadhealth.mesh"Mesh1HealthBar.SmmFilename = "MO_Pa
kage/models/HUDquadhealth1.smm"Mesh1HealthBar.TransformName= "�this.HealthTransform"HealthTransform.ParentTransform = "�this.Transform"...}Ea
h HUD element, for example the health bar, has a mesh and a transformasso
iated with it to
ontrol it's position on s
reen. The health level, lightlevel and sound level bars are all parented to the ba
kground transform, whi
hin turn is parented to the
amera. Additionally there is the HUDManager
omponent whi
h
ontrols how the transforms are updated. Ea
h frame ita
quires, for example, the
urrent health of the player and updates therespe
tive transform in the entity.6.4.2 Menus and Loading/Ending S
reensThe main menu is a
heived using a 3D rendered s
ene for the ba
kground. The�ashing text that appears on the start menu (saying �press A�) was a
heivedby using a HUD entity. While the full fun
tionality of the entity type was notneeded, for the text, it su�
ed to set the ba
kground transform and mesh up.The other transforms were then set to be o� the s
reen and as su
h only the textremained. The �ashing text that appears was a
heived by putting an animatedtexture on the quad used for text.The loading and ending s
reens we a
heived by swapping the HUDba
kground (the sprite that 'held' the status bars) with the respe
tive s
reenba
kground. Additionally the other elements were moved o� s
reen all ofwhi
h was a
heived via a
olle
tion of s
ripts.98

6.4.3 Pi
kup Noti�
ationPi
kup noti�
ations refer to the text that �ashes up on the s
reen during game-play to inform the player of events su
h as a 'stealth kill' or 'artifa
t
olle
ted'.The implementation was similar to that of the HUD entity, however due to theway in whi
h animated textures work in the engine it was not suitable to simplyapply an animated texture to the s
reen quad. This is be
ause there was noway of telling it when the animation should start so if attempted this way thestart frame of the animation would not ne
essarily be the one intended. To getaround this materials were made for ea
h frame separately and a Pi
kUpNoti�er
omponent was written in order to swap over these materials and eventually killthe text on
e it had been displayed.6.5 Gameplay & S
riptingInstin
t supports Lua s
ripting whi
h we used for many of the s
ripted gameplayelements sin
e often it is qui
ker to add and modify than the equivalent fun
-tionality in a pie
e of
ode. The other invaluable
omponent supplied is that ofthe 'trigger blo
k'. Trigger blo
ks de�ne a box in spa
e su
h that when a par-ti
ular obje
t or sele
tion of obje
ts passes through them they trigger a s
riptto be run. Linking the trigger blo
ks to the s
ripts allows for various gameplayte
hniques to be implemented, for example, menu/end s
reen transitions, obje
tpi
kups and powerups. I provide more detail and examples below.6.5.1 S
ore ManagerOne
omponent that had to be written from s
rat
h was the s
ore manager.The s
ore manager was a simple devi
e whi
h (unsurprisingly) kept tra
k ofthe various elements used to produ
e the s
ore. For example, had the playerbeen seen by guards, had they been heard, number of guards killed, et
. Thesevarious variables were updated mainly by the
hara
ter
ontroller & AI duringthe
ourse of the game. The �nal s
ore is then
al
ulated by a fun
tion builtinto the
lass whi
h outputs a �le detailing the players performan
e during thelevel whi
h is displayed upon
ompletion of the level.6.5.2 Menu TransitionsThe menu transitions work di�erently depending of where in the game the tran-sition is o

uring. If the player is in the main menu or loading s
reen then dueto la
k of a player, there is no player input
ontroller. However the engine
omes99

with what is
alled a
ommand mapper. This takes input from the keyboard,mouse or gamepad and
an be used to perform s
ene transitions by mappingthe appropriate input to a s
ript
all to
hange s
ene.In game, things work a little di�erently. Rather than use the
omand mapperfor input, the player input
ontroller is used instead. In essen
e there is littledi�eren
e between what a
tually happens to
hange s
ene. A s
ript is
alled inboth
ases, however in the
ase of the player input
ontroller, it is
alled fromwithin the
ode. In the
ase of the
ommand mapper, it is a s
ript
allinganother s
ript.6.5.3 End S
reen TransitionUnline the menu transitions, the end s
reen displaying is an automated pro
esswhenever the player gets within range of their mission target. The end s
reenis a
tivated by a trigger blo
k around the destination that the player had toget to. This then runs a s
ript telling the HUD manager to put the 'missionsu

ess' s
reen over the ba
kground as well as
alling a fun
tion in the s
oremanager to output the statisti
s of the players performan
e to a �le. This �lewas then read in and displayed on the s
reen.6.5.4 Pi
kupsThe pi
kups are derived from a base pi
kup template the important lines ofwhi
h are listed below [Listing 18℄Listing 18 Base Pi
kup TemplateEntityTemplate{ _name = "BC_Pa
kage/Pi
kUpBase"_des
ription = "A base template for pi
kups."_parents = "example/sele
tor/TriggerVolume"_
omponents = "TriggerCondition:VolumeTriggerCondition,Trigger:Trigger,Transform:Transform,Shape:BoxShape,Pi
kUpMesh:Mesh"Trigger.s
riptFile = "BC_Pa
kage/s
ripts/Pi
kUpTrigger.lua"...}For illustrative purposes I also give an example of how the health pi
kup inheritsthis [Listing 19℄ 100

Listing 19 Health Pi
kup TemplateEntityTemplate{ ._name = "BC_Pa
kage/Pi
kUpHealth"._des
ription = "A health pi
kup."._parents = "BC_Pa
kage/Pi
kUpBase"._
omponents = "Pi
kUpHealth:Pi
kUpHealth"._
ompleteEntity = yes.Pi
kUpMesh.meshFileName = "MO_Pa
kage/models/sele
torHealth.mesh".Pi
kUpMesh.smmFileName = "MO_Pa
kage/models/sele
torHealth.smm"}The pi
kups, mu
h like the end s
reen transition, ea
h use a trigger blo
k aspart of a pi
kup template in order to dete
t for proximity of the player. Whenthe player triggers the blo
k, a s
ript is run, whi
h in turn runs a member fun
-tion of the pi
kup entity
omponent within the entity. This member fun
tionperforms the pi
kup-spe
i�
 fun
tionality, for example adding health, followedby spawning of any feedba
k entities and �nally destroying itself.6.5.5 Footstep TogglingIn order to
hange the footstep sounds over various surfa
es trigger blo
ks wereon
e again employed. This time the
hara
ter
ontroller had a member variableadded whi
h
ontained the name of the template that would be used to
reatethe footstep entity. When the animation triggered the footstep entity to be
reated it would use this template for it. Similarly a template was spe
i�edfor the parti
le system to use for any dust or splashing parti
les to
reate ona footstep. Ea
h of these variables was
hanged by a s
ript
alled when theplayer entered/left an area (trigger blo
k). For example going from a stone�oor indoors to grass outdoors
hanged the footstep sound template from astone sounding footstep to a grass one. It should be noted that these footsteptemplates aren't just sound sour
es, the templates also
ontain a sound shaderlight sour
e and a sound shader
ontroller for managing the sound shader light.6.5.6 FloorboardsThe
reaky �oorboard was simply
reated using a trigger volume whi
h
alleda s
ript to
reate a
reak sound. Like the footsteps it also had a light sour
eand sound shader manager as part of the entity. The entity itself
ound be usedfor a more general group of e�e
ts in whi
h the player triggers a sound, it isnot spe
i�
 to the
reaking sound. It
ould even be used for fairly
ompli
ated101

e�e
ts su
h a water dripping on the �oor, whi
h if you stand underneath it itstops. Sadly due to time
onstraints this did not get into the demo in time.6.6 Parti
le E�e
tsInstin
t supports a very powerful parti
le e�e
ts system with many spe
ifyableproperties. The properties that
an be spe
i�ed fall under three main
ategories.These are
• Emitter
• Behaviours
• Graphi
sThe emitter se
tion allows the designer make
hoi
es about the shape and ex-tents of the obje
t that the parti
les are emitted from as well as the rate atwhi
h they are emitted. The behaviours se
tion
ontrols parameters su
h as thefor
es to be applied as well as any
olour transitions that should o

ur over theparti
le's life. In the graphi
s se
tion one
an
hange the orientation of parti-
les with respe
t to the
amera as well as any material properties they wish tospe
ify beyond the simple transitions spe
i�ed in the behaviours se
tion.Parti
le e�e
ts were used extensively in the game, some of the uses of whi
h Idetail below.6.6.1 WaterfallThe waterfall parti
le system was used in the garden at the beginning of thelevel where the stream from the mountains �ows into the pond. It uses twoparti
le systems in order to
reate the e�e
t, one for the falling water dropletsfrom the top of the fall and one for the mist generated at the bottom of the fall.Ea
h of these systems has a di�erent sprite asso
iated with it as visible in thes
reenshot below.The emitter volume for ea
h system was a long thin box alligned with the edgeof the waterfall. One at the top and one at the bottom. In the
ase of thedroplets they were given no initial for
es and left to simply fall under gravity.With the mist gravity was ignored and the initial for
es were random upto a
ertain maximum for
e.

102

Figure 6.8: The Waterfall Parti
le System

6.6.2 CloudsThe
loud parti
le system, as one would expe
t, is positioned in the sky. Ad-ditionally however it is used for the puropse of mist over the lake. The emittervolumes for these are, as with the waterfall, long thin boxes. The
olud emitteris positioned just behind the mountain, the other under the jetty. The systemitself is the simplest used in the game and
onsists of only one sprite. Due tothe slow nature of the
loud movement it was possible to use very few parti
lesto
over the sky provided they were su�
iently large and had quite a long life-time. In-game there are approximately 150 parti
les used at any one time onthe
louds and another 150 for the mist. The way in whi
h the
louds work isby additively blending the sprite over the top of the skydome ba
kground usinga very low alpha value.

103

Figure 6.9: The Cloud Parti
le System Within The Game

6.6.3 Tor
hesThe �aming tor
hes have di�erent implementations depending on whi
h tor
htype it is. In the
ase of wall tor
hes 6 parti
le types were used, in the
ase ofthe freestanding tor
hes 7 types were used. The tor
hes are the most expensiveparti
le systems in the game ea
h one
oming in at around 400-800 parti
les.In the
ase of the freestanding tor
hes an additional e�e
t I added was to applyrefra
tion when looking through the �ame to what was behind, as if the heatwas making the tor
h's ba
kground shimmer. This was a
heived by
reating asingle billboarded quad within the �ames and applying a refra
tion shader ontoit whi
h refra
ted the framebu�er.

104

Figure 6.10: Freestanding Tor
h S
reenshot

6.7 ToolsDuring the
ourse of making the game I wrote several helper fun
tions, s
riptsand appli
ations just to make the pro
ess �ow more smoothly. The fun
tionsthemselves were added to BC_Components.dll and the header was supplied tothe other pa
kages for use in external
ode.6.7.1 Ray
asting Fun
tionsOne set of fun
tions that proved useful was the ability to perform ray
asts whi
hI mainly used to determine the
orre
t position for the
amera so that it didnot go behind walls. Instin
t supports ray
asts as part of the build in physi
s,however these fun
tions made it simply one line to perform various ray queries,rather than numerous preparatory ones. One thing we had to be
areful of wasthe use of the various physi
s obje
ts be
ause due to the ray
ast being a physi
squery it
ollided with the
ollision mesh for an obje
t whi
h in many
ases wasnot it's a
tual mesh. More problemati
ally the trigger volumes used for manythings as dis
ussed in 6.5
ounted as as
ollidable geometry. Therefore walkingthrough a door for example whi
h had a trigger volume to
hange footsteptemplate
ould for
e the
amera forwards sin
e it
ouldn't 'see' the player due105

to the volume being in the way. This issue was got around by the use of '
ollisionmasks' whi
h allow the designer to sele
t whi
h types of items the ray
an
ollidewith.6.7.2 String Conversion Fun
tionsInstin
t has it's own string format, but often we would want to use STL strings,for example. Therefore I wrote various
onversion fun
tions both to and fromtheir format and STL.6.7.3 Animation Splitting ToolIn order to use the animations with our
ustomised animation system, the an-imations needed splitting �rst. I
reated a GUI driven tool written in VisualBasi
 for use by the artists to split up the animations from Instin
t's own formatinto two animations, still in the
orre
t format for Instin
t, but separated intoupper and lower body �les. This was a
heived by supplying the tool with two�les, ea
h listing the bone names that would be sear
hed for and kept, one forthe upper body and one for the lower body.Figure 6.11: S
reenshot Of Animation Splitter

106

6.7.4 Code Writing ToolDuring the writing of the
hara
ter
ontroller it be
ame ne
essary to write atool to automate some of the repetitive
ode writing. The reason for this wasdue to the large number of animations that needed to be set. In terms of settingand getting anamations there were 96 fun
tions to write, ea
h fun
tion beingapproximately 25 lines long. While it would have been possible by hand thefun
tions themselves were not trivial to write and various uses of the fun
tionswere required in the
ode. For example the de�nition and de
larations for thefun
tions were in the same �le, however the fun
tions needed de�ning in the
lass, so a seperate list of prede
lared fun
tions had to be written to go there.Additionally interfa
e fun
tions had to be written so that the various s
riptingpro
esses within Instin
t
ould fun
tion. This meant that animations alone raninto literally hundreds of fun
tions. For that reason I implemented a methodof automating the
ode writing whereby the user
ould spe
ify a template forthe
ode, together with what varied from fun
tion to fun
tion. The tool
ouldbe run and
ode was output, based on this template and the inputs for thevariables, for example fun
tion name.6.7.5 Pa
kage Syn
hronisation S
riptsI wrote the s
ripts we used to syn
hronise our work over the network. They
onsisted of s
ripts to upload a newer version of our own work to a
entral server,as well as download the latest (uploaded) version of everyone else's work. Thes
ripts were simple bat
h �les that relied on using the
ommand prompt (
md)
ommands.

107

Chapter 7Chara
ters and AnimationsBy Seb Huart / Matt Osbond7.1 Chara
ter DesignThe enemy
hara
ters were based on sket
hes of Imperial Guards from the Edoperiod of Japanese rule. This gave the
hara
ters a more stylisti
 feel, withelements su
h a large sword, baggy trousers and tied ba
k hair
ombining togive an artisti
 look. Figure 7.1: Design Sket
h

(a) All major assets in the game began as a2D design sket
h. 108

7.2 TexturingIt was important to allow the textures of the
hara
ters to be
onsiderably highresolution. This was espe
ially the
ase with the main
hara
ter (the ninja) asit would be permanently within the players view, not to mention
lose up.Figure 7.2: Ninja Texture Map

(a) The texture map was
reated from one alrge UV output.
7.3 Animation Cy
lesThe
ompli
ated nature of the movements involved with a stealth game meantthat the rigs for the
hara
ters had to be versatile. The
y
les were
reated109

as a small loopable animation
lip that were then belnded together using the
hara
ter
ontroller. Figure 7.3: Guard Animation Rig

(a) The rig was developed to allow for a greater freedomof movement.

110

Chapter 8
Feedba
k and Criti
alAnalysis
8.1 Feedba
k Sheet - ProtoplayAt the �nale of the Protoplay event, the teams were presented with a sheet offeedba
k. This was a
ollated list of responses from the judges in the
ompeti-tion:

• Should have spent more time re�ning fewer features
• Looked somewhat un�nished
• Gameplay simple but not parti
ularly unique
• Lot of potential with further development
• Sound dete
tion visually interesting
• Disse
tion te
hni
ally impressive
• Ni
e
hara
ter pro�les. Clear to see what was happening in game world
• Seemed to be trapped within graphi
 styles
• Ni
e ideas - good job of exe
uting di�
ult plan
• Te
hnology good but let down by being typi
al ninja game
• Ambitious proje
t but don't think they fo
ussed on what they wanted todo very well 111

• Left me with unmat
hed expe
tations
• Good ba
kgrounds, sonar ni
e but not di�erent enough, story well thoughtout
• Publi
 vote - bottom third of tableThe general
onsensus is that there is nothing wrong with the game, it's justthat it was a) not polished enough, and b) not original enough.These are two valid points, but unfortunately it is too late to do mu
h aboutthe se
ond one. However, we were given the opportunity to fo
us on polishingthe game, and as su
h have done so for submission.8.2 Con
lusionThe game presented us with numerous
hallenges along the way, from smallhurdles su
h as textures not mapping
orre
tly to game breaking engine troubles.The ability of the team to over
ome ea
h of these
hallenges is a testamentto both their determination and their team spirit. Communi
ation amongstmembers was
riti
al to su

ess.The �nal produ
t is of a standard that many judges and professionals
on�rmedwas
loser to industry level than any other produ
tion at the event; on oneo

asion a senior member of a respe
ted
ompany mentioned that if they wereto ask their programmers to develop the features of the game within the sametime frame then they would struggle to do so. The main drawba
ks seemedto be, as aforementioned, the unoriginal idea and the la
k of polishing. Theseelements, in fairness, were not our primary area of fo
us (impressive visualsand te
hnology were), but knowing that a simple element su
h as last minuteiteration let us down is a lesson we will all take away with us.Although it is of
ourse disappointing that we did not make it through to the�nal round, the experien
e of working within a professional environment atindustry level is invaluable. Likewise, su

essfully seeing an entire produ
tionthrough from
on
ept to realisation is valuable to us all in terms of experien
eand employability. The �nal game is of a quality that surpasses any expe
tationsthat were held at the beginning of the produ
tion. This is due partly to thepressure that was pla
ed on us via the submission of the proje
t for not onlythe
ompetition, but also our dissertation. However, the main fa
tor is that theprodu
tion was a steep learning
urve for us, as we all left at the end with a fargreater knowledge of not only our subje
t areas but also the game produ
tionindustry in general. 112

Appendix A
S
heduling and Proje
tManagement

113

A.1 Initial S
heduleFigure A.1: The Team's S
hedule

114

A.2 Post-It BoardFigure A.2: The Team's Post-It Board

115

Appendix B
S
reenshots

116

Figure B.1: Early S
reenshots

117

Figure B.2: S
reenshots Near Completion

118

Appendix C
Design Do
umentThis page is intentionally left blank.The Design Do
ument is lo
ated at page 124

119

Bibliography[1℄ Szalai, G. 2007. Video game industry growth still strong [on-line℄. California, The Hollywood Reporter. Available fromhttp://www.hollywoodreporter.
om/hr/
ontent_display/business/news/e3if5f9e6af1f789e8
28399b0253e7b78d[2℄ Cook, D. 2007. The Chemistry of Game Design [online℄. California, Gama-sutra. Available from http://www.gamasutra.
om/view/feature/1524/the_
hemistry_of_game_design.php?print=1[3℄ S
rum Methodology: http://www.
ontrol
haos.
om/ andhttp://www.softhouse.se/Uploades/S
rum_eng_webb.pdf[4℄ Pi
ture Referen
e: http://www.ro
kstargames.
om/maxpayne/main.html[5℄ Instin
t Engine Do
umentation: lo
ated within the Instin
t 'do
s' folder[6℄ Instin
t Engine Pa
kage Referen
e: lo
ated within the Instin
t 'do
s' folder[7℄ LUGER. G.F. 2002. Arti�
ial Intelligen
e stru
tures and strategies for
om-plex problem solving. Pearson Edu
ation Ltd: Harlow, England UK[8℄ BOURG. D. M. and SEEMANN. G., 2004. AI for Game Developers.O'Reilly Media, In
.: USA.[9℄ WATT. A. and POLICARPO F. 2001. 3D Games , Real-time Renderingand Software Te
hnology. Pearson Edu
ation Ltd: Harlow, England, UK[10℄ Bla
k. P. E., "�nite state ma
hine", in Di
tionary of Algorithms and DataStru
tures [online℄, Paul E. Bla
k, ed., U.S. National Institute of Standardsand Te
hnology. 24 February 2006. (a

essed 31 August 2007) Availablefrom: http://www.nist.gov/dads/HTML/�niteStateMa
hine.html[11℄ BROWNLOW. M., 2004. Game Programming Golden Rules. [on-line℄. Charles River Media., VA: books24x7.
om. Available from:http://library.books24x7.
om/book/id_10420/120

viewer.asp?bookid=10420&
hunkid=0164695988 [A

essed 8 September.07℄[12℄ Pi
k, S., (____�europ.ea.
om) 6 Sep 2004. RE: Please Advi
e. e-mail toAtieh, H. (has981�hotmail.
om)[13℄ SCHWAB. B., 2004. AI Game Engine Programming. [on-line℄. Charles River Media., VA: ebrary.
om. Available from:http://site.ebrary.
om/lib/bournemouth/Top?id=10074871&layout=home[A

essed 30 August 07℄[14℄ Wood
o
k, S. M., 2007. Game AI Resour
es: State Ma
hines & Agents.Available from: http://www.gameai.
om/ [A

essed 8 September 2007℄.[15℄ BUCKLAND. M., 2005. Programming Game AI By Ex-ample. [online℄. Wordware Publishing, VA: books24x7.
om.Available from: http://library.books24x7.
om/book/id_9482/viewer.asp?bookid=9482&
hunkid=0722540724 [A

essed 9 Septem-ber 07℄[16℄ BIELSER, D., MAIWALD, V. Intera
tive
uts through 3-dimensional softtissue, Computer Graphi
s Forum 18(3): C31-C38, 1999.[17℄ BRUYNS, C., MONTGOMERY, K. Generalized Intera
tions Using VirtualTools Within the Spring Framework: Cutting, Medi
ine Meets Virtual Re-ality (MMVR02), Newport Bea
h, CA, January 23-26, 2001.[18℄ SHEWCHUK, J. Engineering a 2D Quality Mesh Generator and DelaunayTriangulator, 1st workshop on applied
omputational geometry, Asso
ia-tion of Computing Ma
hinery, Philadelphia, pp 124-133.[19℄ VAN DEN BERGEN, G. 1998. E�
ient
ollision dete
tion of
omplex de-formable models using AABB trees. Journal of Graphi
 Tools 2 (4) 1-13[20℄ http://www.naturalmotion.
om

121

Index3D Studio Max, 36AABB trees, 56AI, Pla
ing In The Environment, 32Arti�
ial Neural Network, 66Autodesk Maya, 36Bry
e, 97Chara
ter Control, 73, 86Chara
ter Design, 108Cutting, Design, 46Cutting, Integrating Into Instin
t, 52Cutting, Testing for Interse
tions, 48Dare to be Digital, 9Deterministi
 FSM, 68Dynami
 Link Library, 15, 85, 105Entity Component, 12Entity Manager, 12Entity Template, 13Ergophobia, 18Expli
it FSM, 68Fable 2, 34Finite State Ma
hine, 64�73, 75, 78,80, 82Footstep Triggers, 43Fresnel, 92Fuzzy Logi
, 66Gameplay Obje
tives, 31Gameplay Options, 28hardware, 10, 11, 35, 55

HUD Control, 98Impli
it FSM, 68Instin
t API, 10Instin
t Ar
hite
ture, 10Instin
t Con�guration, 15Instin
t Exporter, 36Layer, API, 10Layer, Appli
ation, 12Layer, Core, 10Layer, Entity, 11Layer, System Component, 11Level Design, 24Lighting, 40Lua, 99Materials, 38Mi
rosoft Visual C++ 2005, 15Modules, 10Non-deterministi
 FSM, 68Non-Player Chara
ter, 65�69, 78, 81�83Nvidia DXT, 97Optimisation, LOD, 42Pa
kages, Base, 16Pa
kages, Developer, 17Pa
kages, Referen
e, 17Pa
kages, Tools, 17Parti
le Systems, 102Photoshop, 37, 97Pi
kup, Artefa
t, 30122

Pi
kup, Health Pa
k, 30Pi
kup, Weapon Ampli�er, 30Player, Rewarding, 29Polygon Count, 35Portal Areas, 41Portals, 41Potential Fun
tions, 67Primary Entities, 12Proje
t Management, 20Protoplay, 81, 111Ray
asting, 105S
ene File, 12S
ripting, 13S
rum, 22Shaders, 88Skydome, 97Smart Terrain, 66Sound Design, 43Sound Shader, 93�95STL strings, 106Texturing, 37Visual Basi
, 106Water Shader, 92Zoho Proje
ts, 21

123

