ERGOPHOBIA

THE SILENCE OF NIGHT

MASTERS THESIS

MATT OSBOND
BEN CHANDLER
HASAN ATIEH

ALI DERWEESH

N.C.C.A BOURNEMOUTH UNIVERSITY

September 9, 2007

Abstract

With a shared desire to create a functional video game, four students decided to
do so for their MSc Term 4 Project. They were given the opportunity to create
such a piece in a professional working environment through entry into an inter-
nation video games competiton called 'Dare to be Digital’. Upon clearing the
first stage, the team went to work for the 10 weeks in an industry development
studio. The result is "The Silence of Night’, a third person ninja game. The
game had strong media coverage for the duration of the competition and won

appraisal for it’s use of interesting technologies and it’s artistic style.

Contents

1 Introduction. 9
1.1 Document Overview 9
1.2 Introduction 9
1.3 Architecture overview Lo 10

1.3.1 Modules. 10
1.3.2 APILayers, 10
1.3.3 CoreLayer 10
1.3.4 System Component Layer 11
1.3.5 Entity Layer 11
1.3.6 Application Layer 12
1.4 Entities and Entity Components 12
1.4.1 Entity Communication 12
1.4.2 Scripting Lo 13
1.4.3 Entity Templates 13
1.4.4 Serialization00 Lo 14

2 Directory Structure. 15
2.1 Bin ... 15
2.2 Env ..o e 15

221 Env/Profiles 15
222 Env/Text 16
2.2.3 Env/Screenshots 16
224 Env/Config 16
2.3 Projects 16
24 Packages 16

2.4.1 Packages/Base L. 16

2.4.2 Packages/Reference 17
2.4.3 Packages/Tools L. 17
25 Log 17
2.6 Docs ... 17
2.7 The Development Framework 17
2.7.1 The Team Members and Their Tasks 18
Project Management, Level Design, Environment 20
3.1 Project Management L. 20
3.1.1 Outlining Production 20
3.1.2 Management Methods 21
3.1.3 Scrum vs Rigid Planning 22
3.2 Level Design 24
3.2.1 Player Education 24
3.2.2 Scale of Assets / Spatial Awareness 25
3.2.3 Multiple Routes oL 28
3.2.4 Rewarding Experience L. 29
3.2.5 Objectives 31
3.2.6 Al Agent Routes 32
3.3 Environment L0 o 33
3.3.1 Imspirations 33
3.3.2 Polygonal Modelling 35
3.3.3 Geometry Pipeline 36
3.3.4 Texturing and Stylisation, 37
3.3.5 Materials Lo 38
3.3.6 Lighting and Atmosphere 40
3.3.7 Visibility Management oL 41
3.4 Sound 43
3.4.1 Ambience 43
3.4.2 Subtle Touches 43
343 Triggerso 43

4 Interactive Cutting 45

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10

5 The
5.1
5.2
5.3
5.4

9.5
5.6

Introduction L Lo 45
Design 46
Model Requirements oL 46
Data Structures 47
Program Flowo 48
4.5.1 Intersection Testing 48
4.5.2 Triangle Resolution 49
4.5.3 New Object Analysis 50
4.5.4 New Surface Triangulation 51
Game Integration oo 52
Conclusions 55
Taking It Furthero oo 56
Tables and Figures o oo 58
Acknowledgments o 63
AT System 64
Introduction 64
Previous Work 65
Theoretical Background 67
The FSM Solution 68
54.1 The FSM System 70

54.1.1 The FSM Core. 70

5.4.1.2 The Senses/States Library. 75
5.4.2 The Proposed Behaviour. 78
Discussiono L 80
Conclusion 82

6 Input And Character Control, Audio/Visual Programming, Game-

play Engineering 84
6.1 The User Input To Character Control Process 84
6.1.1 Input Controller 85
6.1.2 Character Controller 86
6.1.3 Animation Controller 86
6.2 Sound 87

6.3

6.4

6.5

6.6

6.7

6.2.1 Background Musico Lo 87

6.2.2 3D Sound Sources 87
3D Graphics 88
6.3.1 Shaders 88

6.3.1.1 Shaders and Materials Within Instinct 89
6.3.2 Water Shader 92
6.3.3 Sound Shader L 93

6.3.3.1 Initial Approach 93

6.3.3.2 Chosen Approach 95
6.3.4 Skydome 97
6.3.5 2D Unlit Shaders 97
2D Graphics 97
6.4.1 HUD 97
6.4.2 Menus and Loading/Ending Screens 98
6.4.3 Pickup Notification 99
Gameplay & Scriptingo 99
6.5.1 Score Manager 99
6.5.2 Menu Transitionso 0L 99
6.5.3 End Screen Transition 100
6.5.4 Pickups L 100
6.5.5 Footstep Toggling 101
6.5.6 Floorboards L. 101
Particle Effects oo 102
6.6.1 Waterfall 102
6.6.2 Clouds. 103
6.6.3 Torches 104
Tools 105
6.7.1 Raycasting Functions 105
6.7.2 String Conversion Functions 106
6.7.3 Animation Splitting Tool 106
6.7.4 Code Writing Tool 107
6.7.5 Package Synchronisation Scripts 107

Characters and Animations

7.1 Character Design
7.2 Texturing

7.3 Animation Cycles

Feedback and Critical Analysis

8.1 Feedback Sheet - Protoplay

82 Conclusion

Scheduling and Project Management

A.1 Initial Schedule
A2 Post-It Board

Screenshots

Design Document

108
108
109
109

111
111
112

113
114
115

116

119

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

5.1
5.2
5.3

6.1

Scheduling 22
Scheduling [3] 23
Player Learning [2] L 25
Research: Max Payne [4], 26
Pschological Features of the Environment [6] 27
Environment Features 28
Multiple Routes of Entry o oo 29
The Objective 32
AL Agent Routes 33
Fable 2 Screenshots 34
In Game Screenshots oL oo 34
Low Polygon Models 35
Silhouette Stylingo 36
Geometry Pipeline o oo 36
Texture Pipeline 38
Example Material Usage 39
Material File Description [6] 39
Lighting Mixtures in the Menu 41
Example of Portals 42
Trigger Volumes o 44
The FSM System Structure 70
The Class Diagram 71
The States Transition Diagram 74
Flow Diagram Of Player Being Moved Forwards 85

6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

7.1
7.2
7.3

Al
A2

B.1
B.2

Water Shader Calculations. 92

Water Shader Applied To A Test Scene 93
Preliminary Sound Shader Screenshot 94
Light Attenuation Box and Falloff Taken From [5] 95
Original Light Texture Compared To New Light Texture 96
Sound Shader Screenshot 96
The Waterfall Particle System 103
The Cloud Particle System Within The Game 104
Freestanding Torch Screenshot 105
Screenshot Of Animation Splitter 106
Design Sketch o 108
Ninja Texture Map oo 109
Guard Animation Rig 110
The Team’s Schedule 114
The Team’s Post-It Board 115
Early Screenshots oo 117
Screenshots Near Completion 118

List of Tables

1.1

4.1
4.2

4.3
4.4
4.5
4.6

5.1
5.2

Core Layer Services. 11

Possible Situations When Cutting A Triangle With A Finite Plane. 58
Possible Situations When Cutting A Triangle With An Infinite

Plane. 59
Extra Cases For Soft Bodies. 59
Triangulating A New Surface. 60
Triangulating Concentric Rings. 61
Triangulating Cuts From A Finite Plane. 62
A StateLogic Example oL oo 72
The Guards State Transition Table 79

Chapter 1

Introduction.

1.1 Document Overview

A successful video game must have an almalgamation of talent, organisation
and creativity. The team was made up of a mixture of individuals who each
posess these traits, and therefore a final product was realised. This document
is an outline of the production process, from an overview of the engine used to
description of the core technologies that were developed. Each member of the
team has written their own specialist chapters, as well as providing input to the

remainder of the document.

1.2 Introduction

The video games industry has been enjoying a consistent rise in popularity in
recent years ([1]), and this is reflected by the number of successful student games
projects. Dare to be Digital was started in 2000 to give support to these students
by providing not only the means but also the motivation. Until 2007 it was a
competition only open to Scottish students, but this has now been changed to

allow students from England and Ireland to participate.

Team "Ergophobia’ consists of four MSc Computer Animation students and one
BA Computer Animation and Visualisation Student. After successfully getting
through to the stage where development began, they moved to Electronic Arts’

studio in Guildford for 10 weeks in order to create their game.

"The Silence of Night’ is a third person game based in feudal Japan, in which
the player has to reach a target while avoiding detection by enemeies through
the use of the stealth.

The game will use two new technologies: a unique sound visualisation system

and intereactive geometry cutting.

Various game engine were considered for use in the project, such as Ogre, Ren-
derware and the more simplistic OpenGL. After much research the team decided
on the usage of Instinct, an engine developed by Instinct Technologies. This was
technically a beta release, as the engine itself is not available to purchase at the

time of writing.

The remainder of the following two chapters is, for the most part, taken from
the Instinct Studio documentation. [5][6]

1.3 Architecture overview
The Instinct architecture aims to provide the following features:

e Stable framework for rapidly evolving game software
e Highly integrated tools and runtime
e Efficient use of hardware resources

e Multi-platform support (Win32/64 PC and Next-Gen consoles)

1.3.1 Modules.

The Instinct API is composed of a number of code Modules. Each Module is
a set of code that provides a distinct set of services. Modules may depend on
other Modules and may be platform dependent. The engine can be extended by
the addition of new Modules at compile time or runtime. Modules developed

by the Instinct team are prefixed with the letters "ie". Some examples: ieCore,

ieGraphics, iePhysics.

1.3.2 API Layers

Instinct is organized into a hierarchy of layers.

1.3.3 Core Layer

This layer provides the base functionality for all Instinct code. It provides the

following services, all of which are typically implemented in the ieCore Module:

10

Table 1.1: Core Layer Services

| Service | Description
Memory management Optimized alternatives to
standard new and delete pooling
structures
File and resource management Binary & text reading and

writing XML, CSV and other
parsing functions

Module management Loading and unloading Instinct
Modules

Logging and error handling

High resolution timers

Code profiling Timings and counters for function
calls, Memory usage

Scripting Command parsing and execution

System component management

Entity management Construction, configuration and

destruction of entities Entity
event management

1.3.4 System Component Layer

System components are C++ objects that typically provide interface-based ac-
cess to hardware or operating system functions such as those provided by Di-
rectX or Windows. An instance of a system component can be given a unique
name. Such an object is known as a Component Instance. Common component

instances include:

e File Manager

Graphics Device

Sound Channel Manager

Input

Command Mapper

Diagnostics

System components can be scripted and component instances may also be con-

figured using the system configuration file.

1.3.5 Entity Layer

Entities are data-driven objects that are composed of smaller objects called

entity components. Entities are scriptable objects that are used to define the

11

game world and may be edited using Instinct Studio. Common examples include

light, sound, camera and player entities.

Users can specify the composition of an entity using entity templates. These
entity templates act as blueprints from which entities may be created. An
entity can only exist within an entity manager object. Every entity must have a
unique name within its entity manager. Instinct allows multiple entity managers

to exist at once but a typical game runs with a single entity manager.

1.3.6 Application Layer

Instinct applications are the programs that make use of the Instinct API, such
Instinct Studio, 3D Studio Max Exporters and Instinct games. Note: Modules

may provide functionality ranging across multiple layers.

1.4 Entities and Entity Components

The game world is modelled in Instinct as a set of objects called Entities. Each
Entity has a unique name and exists within the context of an Entity Manager.
Instinct can support multiple active Entity Managers but typically a game only

requires one.

Instinct Entities are entirely composed of objects called Entity Components.
Entity Components can be reused and combined in order to define many different
types of Entities. For example, a crackling torch entity might be defined using

light, sound and mesh entity components.

Entities to be used for the purpose of level construction are located within what
the developers call a scene file. Instinct breaks up the file into two sections;
primary entities and standard entities. The purpose of the primary entities is to
provide the ’scaffolding’ of the level, while the standard ones are the 'bricks and
mortar’. For example the physics simulation entity (typically called *priPhysics’)
is a primary entity, while all of the objects that are simulated are standard

entities.

1.4.1 Entity Communication

Instinct provides a number of mechanisms for entity communication: C++ In-
terfaces direct access to virtual C++ methods using standard interface pointers.
Scripting Interfaces via properties and commands (see below). Event Objects

sending and receiving events.

12

1.4.2 Scripting

Instinct provides a framework to allow C++ developers to expose scriptable
properties and commands for entity components with a minimum runtime over-
head. Entities can be manipulated from the command line or script files using

an object-oriented syntax: Copy Code

Listing 1 Script Example
Player.Health.MaxHealth 100
Sound.Manager.StopAllSounds
Enemy12.Health.TakeDamage 2 10

Instinct provides a number of in-built property types including boolean, integer,
floating point, string, vector and quaternion. Developers can also create their

own property types and register them with Instinct.

1.4.3 Entity Templates

Users can define the structure of games entities using entity templates. Each
entity template contains a list of entity components along with the default prop-
erty values for entities created using that template. Entity Templates can inherit
structure and default property values from other templates. For example, the
follow template definition describes the Chair Entity and Lampshade entities
making use of a Base Entity Template called SimpleObject:A

Copy Code

13

Listing 2 Entity Template Example

EntityTemplate
{
_name — "SimpleObject"
// Entity components
__components = "RigidBody,Model, WorldPosition?

}

EntityTemplate

{
_name = "Chair"
// Parent templates
__parents = “SimpleObject”
// Default property values for this template
RigidBody.physicsFile — “test/chair.psx”
Model.meshFile = “test/chair.mesh”

}

EntityTemplate

{
_name — "Lampshade"
// Parent templates
__parents = “SimpleObject”
// Extra Entity components not in my parents
~ components = "Sound, Light”
// Default property values for this template
Sound.resource = “test/lampshade.wav”
Light.type = “box”
Light.extents = (2,2,1)

This data-driven approach for entity creation allows for rapid prototyping and

allows uses to create their own entity types without having to program in C++.

1.4.4 Serialization

Instinct provides a framework for automatic entity loading and saving through
entity component properties. Developers of entity components may also imple-

ment their own custom loading and saving routines if desired.

Instinct Studio Integration Entities are automatically editable inside Instinct

Studio via exposed properties and commands. No extra code is necessary.

14

Chapter 2

Directory Structure.

Here is a brief description of the various file folders used in Instinct Studio.

2.1 Bin

The bin folder contains all compiled executables and DLLs, including compiled
client code. The folder is further subdivided by platform & compiler. At the be-
ginning of the project, there were two Win32 compilers supported: Microsoft Vi-
sual C++ 2003 (bin/x86 vc7) and Microsoft Visual C++ 2005 (bin/x86 vc8).
This has changed over the course of the project and now only the latter has
support from the developers.

When using the debug configuration in Visual Studio, the files will be compiled
to the x86 vc8 debug folders. Similarly, using the retail configuration will
compile the files to the x86 vc8 retail folder and the release configuration

compiles to the x86 _vc8 folder.

2.2 Env

This folder contains a variety of data that Instinct Studio uses to operate.

2.2.1 Env/Profiles

This folder contains information about each users configuration for Instinct Stu-

dio, such as window layout, user interface customizations and user preferences.

15

2.2.2 Env/Text

This folder contains xml files used to describe colour syntax highlighting for the

different types of text files used in Instinct Studio.

2.2.3 Env/Screenshots

This folder is used to save out in-game screenshots. This can be done using a

console command, typically bound to a shortcut key.

2.2.4 Env/Config

This folder stores the config files used to launch studio and the runtime, these
can be overridden if required. These config files are used if no other config is
specified. For example, when you run bin/x86 vc8/Studio.exe directly it will

automatically use the config in env/config/InstinctStudio.cfg

2.3 Projects

A project describes the structure of the game, which is mostly a list of the
packages that the game uses and some configuration info. According to the
Instinct documentation, it is recommended that any projects created for the

game be stored in this folder.

2.4 Packages

Packages are the mechanism used to organize assets in Instinct Studio. Exam-
ples of such asset can be scenes, templates, textures, models, audio files, etc. It

is usual to arrange these assets in sub folders within a single package folder.

Three packages are provided by Instinct as standard: Base Reference SDK

2.4.1 Packages/Base

The Base Package contains essential content required to run Instinct Studio.

This folder contains the public includes and compiled libs for Instinct Studio
so that one can link with and extend the functionality provided. Solution and
project files for Microsoft Visual Studio 2003/2005 are available in the build
folder.

16

2.4.2 Packages/Reference

The Reference Package demonstrates the suggested use of game functionality
provided by Instinct Studio such as models, physics, etc. As new functionality
is added to Instinct Studio, the Reference package is updated to demonstrate
each new feature. This means that the assets contained here are liable to change

as new versions of Instinct Studio are released.

According to the documentation provided with Instinct Studio, it is recom-
mended to create a separate package for the game and store it in the "packages"
folder as this is the only location where Instinct Studio looks for them. Also,
the code written for the user defined components and applications should be

stored in the users package folder.

2.4.3 Packages/Tools

This folder contains some useful tools which can use in conjunction with Instinct
Studio, including the 3D Studio Max Exporter Plugin and NormalBumpMap-
Merger tools.

2.5 Log

This folder contains log files generated by Instinct Studio. The logs contain a
step by step list of commands executed and any errors or warnings that are
generated. This can be useful when trying to diagnose problems with the game.
Instinct allows users to output to the log by using the LogString() function. The
contents of the log file can also be seen in the console window when running
Instinct Studio.

2.6 Docs

This folder contains the documentation provided with Instinct Studio. This
consists of the User Guide which provides help for content creators, and the

Programming Manual which provides information for game programmers.

2.7 The Development Framework
In accordance with the development practices suggested by Instinct, a sepa-
rate package was created for each team member and another for the game re-

sulting in six packages. These are MO _Package, AD _Package, BC _Package,

17

SH Package, HA Package in addition to the Game Package where the first
two capitals of the package name represents the initials of the owner of the
specified package. Also a project called “Game_Project” was created to bundle
together the six packages and the rest of the standard packages provided by

instinct.

All the packages were kept in a shared folder where each team member had
the ability to upload his own package to that folder and download the other
packages including the game package. The Game Package which contained the

Game__Scene was updated by the level and environment designer.

2.7.1 The Team Members and Their Tasks

The roles of the team members were clearly defined with minor overlapping. The
rest, of this thesis will follow a similar approach where each chapter is written

by a team member and represents his work on the game.

Each member had specific responsibilities within the team:

e Matt Osbond:
Team Lead / Producer
Environment Design and Modelling

Sound Design

e Ben Chandler:
Lead Programmer
Graphics and Post-Processing
Input And Character Controller
Animation Blending

Shader Design

e Hasan Atieh:
AL Programming

Physics Implementation

e Ali Derweesh:
Real-Time Cutting Mechanism

Concept Research

18

e Sebastien Huart:
Character Design and Modelling
Animation Cycles

Concept and Graphics

19

Chapter 3

Project Management, Level

Design, Environment

By Matt Osbond
3.1 Project Management

3.1.1 Outlining Production

The preparatory elements of the project pipeline were initially discussed in great
detail as a team. Having previously created a game in term 2, we were already
aware of the production process and all too familiar with the possible pitfalls
of game development. It was important that these elements were taken into
consideration when outlining the initial production schedule. The outcome was

an overview of the entire production process that took into account the following:

e Two weeks of diluted workflow at the beginning of the project to account
for overlap of projects. The main task for these weeks was for each member
to get used to the game engine. We all had key roles that demanded us
to have a good working knowledge of the Instinct engine, and these two

weeks were used to traverse the learning curve.

e One week at the end of the project to allow for tweaking and polishing of

assets and code.

e Week by week breakdown of tasks on an individual basis. This allowed
everyone to see at a glance what the other members of the team were

supposed to be doing.

20

The final point is possibly the most important, as a key to success in team-
based project management is communication. The ability for each member to
view the tasks of others was vital, as the inter-member dependencies were great
within this project. For instance, cutting could not be tested until the correct
geometries were created, or the character controller could not be started until
animation cycles were produced. These dependencies were taken into account

during creation of this initial production outline.

The final initial Schedule of Production can be found in Appendix A

3.1.2 Management Methods

Outlining the production is the first step, from then it is imperative that the
team stays on top of the production. There are many methods of project man-

agement available to use, some were investigated as follows:

e Microsoft Project 2007 . This was the first option explored as it came
highly recommended. It appeared to be a very capable and fluid program
(being able to interact with other pieces of software, enabling facilities such
as automatically emailing members who were falling behind) and included
features such as Gantt charts, milestones and other important elements of
project management. However, it seemed vast and upon further investi-
gation appeared to have a learning curve that rendered it useless for such

a short project.

e Zoho Projects (projects.zoho.com). A web-based project management tool
that was similar in functionality to Microsoft Project, but with a far more
intuitive interface and, being web-based, had the added ability to be ac-
cessed from anywhere by every member of the team. This system would
have been perfect if our timeframe was longer (so it made setting it all up
worthwhile) and if the team were dispersed across multiple locations. How-
ever, with all of us within reaching distance of each other and a window

of 8 weeks in which to operate, it again seemed surplus to requirements.

e Post-it Notes. This system was adopted after observing how the profes-
sionals within the game industry operate. Post-it notes would be covering
all available wall space in an effort to write down every conceivable task
the team had to do. After using it only a couple of days the benefit was
already noticeable. The fluidity of production provided by this method
was allowing the team to re-prioritise as each member saw fit. The basic
principle is that each seperate task would be written on a post-it note,

and affixed to a board. This board was laid out as follows:

21

Figure 3.1: Scheduling

Task Area

Physics - Environment ° Cutting etc_....._.

Importance
g

(a) Production Planning Using Post-it Notes

See Appendix A for scheduling and a photo of the post-it note board in action.

3.1.3 Scrum vs Rigid Planning

Maintaining control over the project throughout the duration of the process
is just as important as the initial scheduling. Within our team we adopted a
method of management known as ’scrum’ [3]. This is a vast system, intended to
deal with larger projects, so our use was toned down to accommodate our more
modest production. The idea is that the production units divide themselves into
teams of a handful of people, who meet every morning to discuss (and possibly
alter) what needs to be done. It operates by each small team operating under

their own command in short periods of time known as ’sprints’. Each team

22

has a Scrum Leader, who attends meetings with other Scrum Leaders. This
forms a hierarchy of meetings, and allows for every member to be updated with
overall progress with only the leader attending more than one meeting. One
key to scrum is that during a ’sprint’, their task cannot be changed by outside
influence (except of course in exceptional circumstances). The only deviation

from their task should come from within the team.

Figure 3.2: Scheduling [3]

(a) Scrum Time Flow Organisation

In the meetings, each member asks themselves three key questions:

e What have you done since yesterday? (accomplishments)
e What are you planning to do by tomorrow? (to be accomplished)
e Do you have any problems preventing you from accomplishing your goal?

(risks)

23

This enables each scrum team to analyse what they’ve done, plan tasks for the
near future and foresee any obstacles that may occur. Each unit within scrum
has the ability to complete their tasks with the highest degree of success, due

to the fact they operate as a small team.

Our team did not strictly adopt this method, we did however use a few elements
from it. The primary element was to acknowledge the importance of daily
meetings. Using a 10 o’clock daily’ we were able to have an overview of all
processes going on that day, and the usage of the three step system enabled

every member to remain focused.

The fluidity that scrum provides is definitely beneficial, but it should not be used
as a replacement for a scheduled production process. By using an amalgamation

of the methods, the team remained focused right until the end.

3.2 Level Design

3.2.1 Player Education

One of the key factors to bear in mind when designing a level (and more specif-
ically the first level of a game) is the inclusion of a system whereby the player
is taught various gameplay elements in a certain order. These consist primarily

of controls, environment interaction and interface.

The key to a successful tuition interface is progressive learning, something that
the Mario series of games accomplished to perfection. Essentially it involves
avoiding teaching the player too much at once (such as displaying all controls
on the loading screen, a method used in many demo version of games), instead
adopting a step-by-step procedure. For instance, in the example below the
player has first come to an obstacle and learns how to jump. Then they learn
how to jump over a pit, but are not punished for failing. Finally they are made
to jump over a pit and will die if theyre unsuccessful. This process is far more
intuitive for a player and allows the experience of playing the game to be more

enjoyable.

24

Figure 3.3: Player Learning [2]

Title of Atom
. Press a button

. Player action
IE?-:} Jump and collide

83 simulation

@ Feedback @ Animation on screen
"Model updated" L tn’. "I can jump!"
(a) Description of Learning Atoms (b) Learning Outcomes For Each Atom

This method was adopted in our game by presenting the player with different as-
pects of gameplay periodically throughout the first half of the game experience,

as outlined below:

Situation Learning Outcomes
Start of game Interaction: Movement controls
Environment elements Interaction: Some objects are cuttable

First asset emitting pulse | Interaction: Pulse = important

Darkness Interaction: Pulse used for navigation

Guard Interaction: Combat controls

3.2.2 Scale of Assets / Spatial Awareness

It is important to understand from square one of level design that the scale of the
world in relation to the character cannot be equal to that of real life. Creating
buildings that have doorways and ceilings to scale will, in the majority of cases,
immediately create a feeling of claustrophobia. It is important to bear this in
mind when designing the environment, and only trial and error in the beginning
stages will get this scale perfect. The screenshot below is from Max Payne (2001
Rockstar Games src). It shows that only a slight upscaling of environment size

is needed for a successful effect.

25

Figure 3.4: Research: Max Payne [4]

Corridor Slightly Wider Door Frame Higher

r

(a) In this example, it is clear to see the scale of the environment is slightly larger
than that of the characters

Successfully immersing the player in the digital world is the result of an amal-
gamation of various elements, from interaction to sound. However, once the
player is comfortable within the environment, the level designer can create the
assets within the world to invoke a psychological feeling or particular movement
upon the player. The entire world can be manipulated to essentially force the

player to act as the level designer wishes them to at a certain point.

The texturing and lighting can be altered to create a specific mood, but these
will be explored later in the following chapter. The focus for now will be on the

actual shape and size of geometry assets in the game.

26

Figure 3.5: Pschological Features of the Environment [6]

(a) Creates an illusion of (b) Makes walls and objects appear struc-
grandeur but makes walls turally strong.
appear weak.

(c) Can make the player more (d) TInvokes claustrophobic
cautious, as well as sometimes feeling by decreasing effective
making them turn around. floorspace.

These are just few of the examples whereby the assets in the world can be
manipulated to invoke various emotive feelings upon the player. These were

adopted to some degree within the game, as demonstrated below.

27

Figure 3.6: Environment Features

(a) Sloping Walls: Various walls within (b) Confined Spaces: The curved walls
the game are sloped to both invoke a claus- of the basement area give the illusion of
trophobic feeling and give the impression bringing the ceiling closer to the player.
the walls are more structurally sound.

3.2.3 Multiple Routes

One important aspect of gameplay nowadays is giving as much control as possi-
ble to the player. A large part of the responsibility of ensuring this occurs falls
upon the level designer. Games have for years included multiple routes of game-
play, in both environment and storyline, and the demand for this is becoming
heavier in more recent years as gamers expect more from the developers.

With "The Silence of Night’ being a fairly short game, there was no necessity for
multiple storylines. However, including multiple ’physical’ routes of gameplay
within the level was important in terms of longetivity. Below is the basic layout

of the core elements of the level, with the 3 entry points defined.

28

Figure 3.7: Multiple Routes of Entry

Out-House
Yy Entry Point 1: Main Entrance

Entry Point 2: Rear Entrance

S I 2. Entry Point 3: Underground Passage

Main House

X

(a) The level was designed to allow for multiple entry points into the target
house. Presenting the player with more than one option maintains their
interest.

Each entrance has it’s advantages and disadvantages, as outlined:

Advantages Disadvantages

Entry Point 1 Large doorway, easy to | The guards can also see

see guards you easily
Entry Point 2 Guard in kitchen has No real disadvantage
back turned to rear
entrance
Entry Point 3 Pickups inside No real disadvantage
basement,

3.2.4 Rewarding Experience

Maintaining a player’s interest in a game is the next challenge the designers
come up against. It is vital that the player’s desire to continue playing the
game is not quashed too early in the game. This can be caused by such things
as the inclusion of a difficult first level, an unintuitive control system or interface
or an unrewarding experience.

Difficulty settings are mainly created through trial and error with the tweaking

of settings, and the control system is a result of feedback coupled with good

29

ergonomics. However, rewarding the player from the outset within the game is
not only a superb method of maintaining interest, but also a very simple one to

implement.

Games have used this method for years in order to engage more people in a
shorter space of time. A good genre for emphasising this point is that of racing.
In games such as Gran Turismo (S.C.E.E. 1997), the first race a player encoun-
ters is always going to be simple. But by adapting the AI to make the speed
and handling of the competitor vehicles remain around the player’s abilities, it
becomes almost impossible to lose. Therefore, within minutes of picking up the
game, the player is presented with an award, usually in this case a shiny new

vehicle to use in the next race.
This methodology was adopted within our game in a few different flavours.

Firstly, the player begins with a low-damage weapon. Dotted around the envi-
ronment are an assortment of more powerful weapons, along with actual weapon
amplifier power-ups. These enable the player to gain stronger in their attacks
from an early stage. It would have even been possible to place these items in
without the functionality being there, and most players wouldn’t notice the lack

of difference, instead enjoying the ’placebo’ effect of more powerful weapons.

Secondly, there are pick-ups located in secretive locations around the level.
These come in a few incarnations: (Weapon Amp is listed again as the following

list is exhaustive).

Pick Up | Description

Weapon Amplifier Amplifies damage that current
weapon inflicts upon guards
Health Pack Adds 25% of total health to the
player’s health status

Artefact Object of value that the player can

‘steal’

With the game having a strong focus on stealth, the techniques used by the
player to infiltrate the house have an effect on the outcome. Scoring is based on
the way players 'deal’ with the guards, with the following details being recorded

by the scoring mechanism:

e If the player completely avoids detection by a guard
e If the player kills the guard
e If they do, was the player’s presence acknowledged by the guard prior to

the killing?

30

e Did the player not kill a guard, but the guard still saw them

e Or did the guard only hear the player?

Lastly, at the end of the game, the tallies are collated and displayed to the
player. The player is then presented with a score, made up of a combination of
these results. A stealthy mission, whereby no guard was alerted, will get you the
most points, as well as a suitable reward. Likewise, you will receive an award if

every guard was killed and every guard noticed you.

Rewarding the player in this fashion, be it either positively or negatively, is some-
thing that has been very successful, most notably in the game series "Worms’.
Awards such as 'Biggest Coward’ or ’Most Useless’ can be just as entertaining

to receive as 'Most Dangerous’ or 'Best Player’.

The award process is described in detail in the design document (Chapter 9 -

Appendices).

3.2.5 Objectives

The importance of giving a clear cut objective to the player in terms what they
have to do cannot be underestimated. There are of course some games that
do not always display this information, instead allowing the player to seek out
an objective and then follow it up (such as the ’Grand Theft Auto’ series of
games). However, this process still ends up with the player being presented

with an objective.

A game is essentially an interactive story, and therefore must have a path down
which the player can traverse. With 'The Silence of Night’ being a single mission
prototype, the player is presented with the objective during the loading screen.
This displays not only a text-based objective, but also a visual clue as to the

physical location of the target.

31

Figure 3.8: The Objective

Objective:

- Infiltrate the House
to the top floowr
& Lkill the Witnhess

Tip

Sneak up on guards and score more points with a stealth kil

(a) The loading screen is a good place to have the objective as it distracts
the player from the loading time.

By using this method, it not only gives the player a clear objective from the
moment, they pick up the controller, but it also takes the attention away from
the time the game takes to load. This method is used by many games, and

proves very successful.

The original intention was to have a strong narrative within the game, with
a Japanese language voice-over being played while the English subtitles were
displayed on the loading screen. This narrative, however proved to be far more
time consuming to implement than thought, so therefore was omitted from the

production at an early stage in the process.

3.2.6 AI Agent Routes

Originally, the AT was planned to simply engage the player when they got too
close, but the system took on a far more complex design and therefore allowed
for a more comprehensive implementation within the game. The level design
was semi-symbiotic with the other strands of production, none more so that the
AT Elements of the world were altered during the course of production to allow

the new features of the AI to be demonstrated.

There were three main types of routes used by the Al in the game, static, circular
and oscillating. A good example of the implementation of more than one Al

feature within the environment is the first floor of the main house.

32

Figure 3.9: A.I. Agent Routes

Example A.I. Agent Route

Stairs from first floor Main House - First Floor

Creaky Flporboard \‘1 é‘l{ I
. = :

(a) The level design was developed in coordination with other areas of pro-
duction; here the first floor was adjusted to account for the more intelligent
AL system.

In this diagram, the player enters the floor from the stairs in the top left. The
route of gameplay is up the second set of stairs, the entrance to which is on the
far right of the diagram. An AT agent is on a circular route, patrolling around

the central column in which the stairs lie.

With the AT having the ability to acknowledge audio, a creaking floorboard was
placed in the direct path between the player’s entrance and their target, with

the intention of creating a noise that the guard would pick up on.

By placing guards on defined routes between the player and their target, the
gameplay is altered as the player has to use stealth (the game’s focus point) to
avoid detection. Other guards within the level are on either oscillating or static

routes, also sometimes placed in areas of strategic importance.

3.3 Environment

3.3.1 Inspirations

The first step to creating an interesting environment for a video game is to

analyse the styles that can be used for the game in question. It is up to the

33

creative team to come up with the visual styles, but in such a small team it is

important that the styles were given the OK by all team members.

The initial stage was to research styles in existing media that could be adopted,
either in their entirety, an adaptation or by simply using a certain style or
method. After researching games, film, television and 2D artwork, one game
came up again and again with an artistic style that the environment designer

felt could be successfully transferred to our game.

Fable 2 (Lionhead Studios) is due for release in 2008, but screenshots and art-
work have been released in order whet the appetite of gamers. The setting
has a medieval styling, which is akin to the setting of "The Silence of Night’.
By amalgamating the styling of Fable 2 with an oriental feel, the environment

geometries take on their own styling.

Figure 3.10: Fable 2 Screenshots

(a) Fable 2 night scene (b) Note the absence of any straight edges

Figure 3.11: In Game Screenshots

(a) Colours mixing in the night scene of the (b) Straight edges were avoided at every op-
game. portunity.

34

3.3.2 Polygonal Modelling

Despite the hardware we were supplied being top of the range with nVidia
GeForce 7600 graphics, it was still important to maintain optimisation as a
priority during production, as we did not have enough of a timeframe to optimise
as a final stage. One of the key steps in increasing the frame rate of a real-time
3D simulation is the lowering of the polygon count.

To keep the poly count low the assets of the world were designed with minimum
high detail areas (some areas required high detail and so were optimised using

level of detail - see section 3.3.7).

Figure 3.12: Low Polygon Models

(a) The models were as low on polygon count as possible in order to main-
tain the level of optimisation required.

The example above shows an asset within the game that, apart from the peak
of the roof, contains no noticeable straight edges. This was a key concept that
was adhered to for the majority of the external geometries. It was important
for the artistic styling of the piece to ensure that the look of all the world assets

maintained the intended styling even when viewed as a silhouette. This is an

35

old artistic trick that is just as applicable in 3D creation as it is in conventional

art.

Figure 3.13: Silhouette Styling

(a) With the styling being clearly visible as a silhouette, the textures and
shading have little work to do in order to enhance the effect.

3.3.3 Geometry Pipeline

The geometry assets started out life as a 2D sketch, and were translated into 3D
within Maya 8.5. However, the exporter supplied with Instinct only worked from

within 3D Studio Max. This meant the pipeline was somewhat cumbersome:
Figure 3.14: Geometry Pipeline

3D Asset .
Concept Art — creation in — Exportto fbx — Import into __ Exportfo _ Add asset
Maya 8.5 3DS Max .mesh file to Instinct

a) The plpPllI’lP for the eometry creation was not as streamlined as it could have
g
been.

36

I conducted some research into the possibility of creating a .mesh exporter for
Maya. Originally it seemed that this task would not be too daunting, as the
environment required only static geometries, omitting the need for the exporting

of bones, animations or skin weights.

The intention was to either create a MEL plugin that could export directly from
the program, or create a small utility that parsed an exported .obj file. Seeing
as the .obj parser would skip one step in the pipeline, whereas a MEL plugin
would skip two, I opted to focus on a creating a small tool to add to the shelf

within Maya.

After research into the complex file structure of a .mesh file, it was clear that
the file type was optimised for grpahics. Therefore I concluded that the time it
would take to create a tool capable of successfully exporting both the geometry
and the UV’s into such an awkward file system was not worth the sacrifice of
time for such a small project. It turned out the supplied exporter for 3DS Max
wasn’t always successful at creating a functional file, which only reinforced my

thoughts about the file type’s complexities.
In hindsight, T feel that the rapid veto of the plugin was a mistake, as it was

rare that each geometry asset was 100% correct on the first attempt at insertion
into the engine. This resulted in literally hundreds of meshes going through the
pipeline (the final tally for the number of meshes in the scene stood at around

170) and as such numerous hours were spent in the process of doing so.

3.3.4 Texturing and Stylisation

With the stylisation of the geometries already decided, the next step in cre-
ating the desired artistic style is the manipulating of the textures in order to
achieve an illustrative look. Textures used were photographs, so these had to
be significantly altered in order to create the target aesthetic. The process of
taking the texture through from original source to final .dds was the result of
weeks of trial and error with the aesthetic. The use of photographs as textures
within the game was resulting in a horrendously unmatched feel, and therefore

experiments were carried out to amend this effect.

The first step was to use a handful of Photoshop filters to instantly stylise the
textures. The result was a custom Photoshop macro that encompassed elements
of the artistic filters "Poster Edges’ and "Watercolour’, then slightly blurring the
result. This took the edge off the realism of the photographs, while at the same
time remaining slightly more realistic than cartoony. Feedback from various

sources confirmed that this was a pleasing effect.

When the game scene reached a point of near completion in the final few weeks,

37

the lighting was at a state that was almost the finished article. The vivid colours
of the textures were fighting against the blues of the moonlight and the oranges
of the fire torches creating an effect that was not only distracting but difficult
on the eye. This had to be changed, and research suggested that removing
some of the colour from the textures would resolve the issue. Tests were carried
out on some textures by desaturating them to about 60-70% of their original
intensities. It worked well, so another Photoshop automated script was created
to go through the folder and apply a preset desaturation macro to every diffuse

texture.

The resulting texture pipeline is shown below:

Figure 3.15: Texture Pipeline

- Basic .
Original __ - - Photoshop _ Slight ___ oo Export

i i DDS
Textures Croatcd Filters Blurring as

(a) The flow of textures, from the source files to the final output.

3.3.5 Materials

The Instinct engine supports a variety of graphics technologies, including the
ability to use a variety of maps for the materials. As well as the standard diffuse,
it also supports normal maps, specular maps, alpha mask maps, glow maps, mip-
maps and blend maps. These can all be combined to create a single material,
resulting in a very impressive effect. Although unused within the game, it is
technically plausible to use every type of map in one complex mapping process,

as outlined below:

38

Figure 3.16: Example Material Usage

Diffuse Map

Normal Map

Mip-Mapping |
Stage

Shader

Blend Map

Glow Map
Alpha Mask

(a) A fictional scenario whereby every type of texture map is used.

The materials within the engine are created once, and can therefore be used
on multiple surfaces without draining too many resources. A material file is
created by first specifying the name and type of material, and then describing

what types of files are used to create it.

Figure 3.17: Material File Description [6]

Colon Used to Declars & Parent Material

User Defined Material Name

reference/textures/walls/concreteMain : BaseDiffuseSpecular

Parent Matenal Name

(a) Description of the first stage of defining a material file, taken from the
Instinct Studio documentation.

The textures used to create the material are defined within the main body of
the material code. The example below is a full material template for the red
lanterns in the game. Note the difference between the first line in the example
below compared to the one in the above diagram. The following example has

an alpha pass.

39

Listing 3 Material Example
MO Package/materials/lanternRed : BaseDiffuseSpecularAlphaTest

{
flags

{

sort Type — litAlphaTestGlow

}
{

diffuse = MO _ Package/textures/lanternRed

normal = MO _ Package/textures/lanternRedNRM
specular — MO _Package/textures/lanternRedSPEC
map — MO _Package/textures/lanternRedFX

}
Pass SFX : BaseTextureColor {}

The 'flags’ section of the code contains pieces of information that the engine
requires to know before the material is created. In this case ’sortType = litAl-
phaTestGlow’ defines the sequence in which the material needs to process the
textures (or maps) in order to get the desired result. ’lit’ is the name of the
default material properties (diffuse, normal and specular). This is followed by

alpha and finally the glow map.

Within ’textureAliases’ lies the paths of the various texture files required for
the material. Aside from the usual three, the above example includes ‘map =
MO Package/textures/lanternRedFX’. 'map’ refers to a texture that is used as
an FX map, in this case a glow map. It defines which areas of the lantern need

to glow in a post-process.

3.3.6 Lighting and Atmosphere

Creating an atmosphere in any medium is the process of invoking a particular
mood or feeling upon the viewer / player. One of the most influential methods
of achieving this is to manipulate the lighting. Harsh shadows and dark colour
give a completely different feeling to soft shadows and subtle tints of colour
within the light.

The mix of blue moonlight and orange flaming torches worked well in tests and
so was used throughout the game (see figure 3.3.1), as well as within the menu

scene file.

40

Figure 3.18: Lighting Mixtures in the Menu

(a) A mix of blues and oranges work well in the menu scene file.

3.3.7 Visibility Management

One method of optimising a scene is to insert portals and break up all the
geometries into areas. This then uses a method of visibility culling that kills
every asset within a certain area if that particular area leaves the viewing angle
of the character. By default, Instinct supports visibility culling, backface culling
and lighting culling (if the character cannot see any area of a light’s shadow
volume then the light is turned off). However adopting portals breaks up the
world into more manageable areas and completely deactivates all assets within

these areas.

Below is an example of how portals were initially used within the Instinct engine.

41

Figure 3.19: Example of Portals
Rear Door ortal Brush 1

N

Line of Sight

- ~€&——Portal Area

-Portal Brush 2

(a) Portals, although not implemented within the game, would have allowed
for a cleaner culling of thw world assets.

However, as Instinct was still technically a beta release, the engine developers
were unfortunately unable to get portals functioning successfully in time. This
was not much of a drawback for the team, given that the world we had designed
was rather compact. There was still a need for optimisation though, so the next

step was to add L.O.D. to the more complex geometries.

Level of detail (or L.0.D.) is natively supported by Instinct, and so was imple-
mented to a great degree, and in varying strengths. Complex geometries that
could still be viewed from a distance (such as the windows, trees, rockeries etc)
were given a level of detail that enabled the player to acknowledge no change in
physical appearance when the change occurred. This is was to ensure fluidity
in gameplay as well as for aesthetic reasons. However, complex geometries that
were only visible close up (such as the basement support structures, the victim,
the sandbag ramp etc) were given a more drastic level of detailing. In the case of
the basement supports, the geometry was created as one large entity of around
1100 polygons. The second level of detail was a 4 faced shape that covered the
same area as the supports. This change is drastic but enabled the use of more

effects elsewhere in the scene.

42

3.4 Sound

3.4.1 Ambience

The second important area to consider when creating atmosphere is the audio.
This was considered in great length, with the result being a score made up of

three different looping audio tracks:

e Track 1 - Ambient: To be played through the entire game at a constant

volume.

e Track 2 - Tension: Will kick in when the A.I. Agents acknowledge presence
of player.

e Track 3 - Fight: This is played when the player engages in combat.

All three tracks are exactly 45 seconds long and are designed to be played over
the top of each other. This enables the music manager to simply alter the
volumes of the second two tracks to account for the current situation of the
player.

Given the lack of serous knowledge of orchestrating a score, the three tracks

were outsourced.

3.4.2 Subtle Touches

To give the player full immersion within the world, it was important to give
as much audio input as possible. This included the creation of various types
of footsteps for use on gravel, wooden floors and water. Environmental sounds
are also important, and these were implemented in the form of trickling water,
fires crackling and the occasional animal noise. These all combined to create a

greater feeling of depth to the environment.

3.4.3 Triggers

In order to fully manipulate the audio within the environment, triggers were
used that controlled what sounds were used for various functions. These trigger
volumes surrounded areas that required a change in footstep sound, such as in

the doorway, as illustrated below:

This enables the footsteps of the character to be altered based upon the player’s

physical location within the scene.

43

Figure 3.20: Trigger Volumes

Wooden Interior

Trigger Volume:
‘wooden foootstep on exit’

— A
—

Trigger Volume:
‘grass foootstep on exit’

Grass Exterior

(a) Careful placement of the trigger volumes enabled the player to interact
with the environment in a more immersive way.

44

Chapter 4

Interactive Cutting

By Ali Derweesh

4.1 Introduction

The aim was to try to create a real-time geometry splitting system suitable for
use in games. Games are continually advancing in realism and sophistication,
and there is a continual search for new game ideas and mechanics. While ge-
ometry cutting systems exist in real-time applications, these are mainly surgery

simulations; games would have a very different set of requirements.

In a surgery simulation what is important is accuracy of small cuts, usually in
soft-bodies. Performance is not critical. Some games may have similar require-
ments, but it is more common to need to perform large cuts on rigid bodies.
Either way, performance is far more important. This system is intended to
quickly deal with large cuts, typically a single cut would represent the path of

a moving blade over one game action.

In the game the system would be called on to cut both simple and complex
models and integrate with the physics engine. It would also give a better idea

of true performance in use.

An OpenGL visualisation was used with the actual cutting system for devel-
opment and demonstration purposes. The system is simple, possessing only
basic controls and no physics or texturing. However, polygon colour is set using

vertex UV coordinates, and normals are viewable.

45

4.2 Design

The most important design consideration was performance. In surgical simula-
tions typically only a few triangles at most are cut per frame, and frame-rate
stutters occurring if longer cuts are performed can be forgiven. Schemes relying
on the position of the cutting object can be used that avoid the need to check all
triangles [16]. In a game, an entire model can be cut across in a single operation,

and any triangle may be cut. Slowdown is also less forgivable.

Additionally, cutting soft bodies is actually simpler in some ways than cutting
rigid bodies, as physics simulations are already being applied per vertex. This
means that simply changing the vertices and edges of the geometry is sufficient
to separate the resultant pieces of the object, it does not have to be divided
into new objects. However, when a rigid body is cut extra processes must be

performed to separate the new pieces created.

While initially the system was developed to use a semi-circle as the cutting
plane, during development the decision was made to use an infinite plane to
perform the actual cut. This was much simpler to implement, an important
consideration as the timescale of the project was limited. Resolving cut triangles
and triangulating new surfaces especially would have required much longer to
implement if a finite cutting plane had been used. It was decided that using
an infinite cutting plane would also work better for gameplay reasons. Working
out whether an object should be cut could be done externally, then an object is
simply dissected. This makes it simpler for the player to cut through anything
than needs to be cut. In the game we made, slicing things cleanly in half proved
to be very satisfying. Furthermore, using an infinite plane made some operations

faster, thus improving performance.

4.3 Model Requirements

Using the native geometry data format of the game engine created some limi-
tations on the current system. Presently the system only supports one triangle
mesh per object. The game engine uses one material per mesh: a material uses
a texture map, a specular map and a normal map. This means that the final
system only works with one mesh and one material per cuttable object. A por-
tion of the main texture is therefore set aside for use in the new surfaces created

during a cut.

Since the game engine relies on objects being solid, rather than flat sheets,
the current cutting system was also designed with this assumption in mind.

However it would not be hard to modify in order to accept non-solid meshes.

46

It is even possible to automatically work out whether the object is solid or has

holes, based on whether there are any edges that only connect to one triangle.

Most of these issues can be overcome through further development or the use of
a more appropriate data structure. Some additional data is needed for special
cases, for example objects that are attached to the environment need to have a

vertex specified as a fixed point. This is handled in-game.

4.4 Data Structures

The data format in use by the engine had the correct structure and much of the
necessary data. While the parent Mesh class stored several mesh surfaces, the

main data structures consist of:

e Mesh Surface - Arrays of triangles, mesh vertices and edges

e Triangle - Contains a face normal, the indices of three vertices and three

edges
e Mesh vertex - Contains vertex coordinate, normal and UV

e Edge - Contains two indices to triangles and two vertex coordinates or

indices to two mesh vertices

e Plane - The cutting plane. The basic data stored is a point on the plane

and a normal to the plane

The game engine also stored vertex tangents and binormals, UVs were stored
outside of mesh vertices but corresponded to them and so did not need separate
indices. Triangles did not store face normals or k values, and edges did not store

indices to the original triangles, so these had to be stored separately.

More advanced cutting shapes would inherit the plane and store extra data. For
example a circle would store the radius. A semi-circle can store an additional
vector to define which half of the circle cuts. Using two additional vectors or a

vector and an angle allows the use of a sector of variable size.

Storing edges allows some optimisations as an edge is shared by two triangles,
halving the time needed in some steps, and also allows the entire mesh to be

connected. This is important for splitting the object into multiple new objects.

One problem with storing excess data to that of the engine defaults was that it
had to be stored on a per-object basis rather than a per-mesh basis. As all of
this data was calculated, it could have been calculated at the time of a cut rather

than stored. However to improve cut performance it was decided to calculate

47

the data at load time and store it. This could easily be changed depending on

the requirements of a system.

4.5 Program Flow

The first step is to find the intersections of the triangle mesh and the cutting
plane. After each individual triangle is checked, the results are compared to the
set of possible scenarios. Depending on the scenario, new edges and vertices
are created and the old triangle is replaced by new ones. During this stage the
edges along the cut surface are saved for use in the new surface triangulation
phase. After this has been done to the entire mesh, a sorting step takes place
in which the triangles are sorted into connected meshes representing the pieces
of the object created by the cut. Finally the new surfaces can be triangulated.
This takes place on a per-object basis. The correct edges along the cut from
those saved earlier are copied, sorted, and then organised into loops, each loop
represents a polygonal new surface that needs to be triangulated. New vertices
with appropriate UVs and normals are created for the new surface. The polygon

is subdivided into smaller polygons in successive steps until triangles are found.

4.5.1 Intersection Testing

With an infinite plane only simple plane-edge intersections can occur. When us-
ing finite planes, the shape dictates the specifics of the intersections calculations,
but there are essentially two types of intersections: those between the edges of
the triangle and the cutting plane, and those between the edges of the cutting
shape and the triangle plane. For example, if the cutting shape is a polygon
then the two calculations are almost identical. A circle would require different
calculations for finding the intersection of the circle perimeter and the triangle
plane. Some further checks may be necessary when the cutting plane is parallel
to a triangle, such as line-line intersection calculations. Using inheritance, we

can program different cutting shapes and use whichever is appropriate.

For the purposes of this project, initially a semicircle was used. This was stored
as a plane, a radius and a directional vector representing the acceptable half
of the circle. While all the intersection calculations were fully programmed,
the decision was made to use an infinite plane and the semicircle was dropped.
Using an infinite plane completely removed the need to use any calculations
when the plane is parallel to the triangle. Only plane-edge calculations were

required.

One optimisation that was done at this step was to store the results of checks

48

on triangle edges. Since each edge is shared by two triangles, this halves the
number of calculations required during testing. Fortunately the data structures

used by the game engine supported this optimisation.

It is also necessary to initially transform the cutting plane in order to move
it into the object coordinate system. This is more complicated when a finite
cutting shape is used and non-uniform scaling may occur. However the engine
did not support scaling and an infinite plan was being used, so it was not an
issue for this project. Simply transforming the plane origin and normal into the

object coordinate system was sufficient.

4.5.2 Triangle Resolution

For an infinite plane, there are only 5 possibilities, of which only 4 need to be
resolved. For a finite plane, the situation is more complex but it comes down to
11 main cases that need to be resolved (see tables 4.1 and 4.2). Each case can
be resolved separately, with new triangles, vertices and edges being saved to a
list.

When the cutting plane is exactly along a triangle, it is a slightly different case
that must be treated in a different way. In fact if the cutting plane is finite
there are many different ways in which the plane can cut across the triangle.
Fortunately each scenario does not have to be considered separately (though it
may be more efficient to do so). If the cutting plane is infinite there is only
one scenario and it is easy to solve. When this occurs the triangle face normal
is used to determine which side of the cut the face is on, so if a mesh has an

inward-facing triangle it will react incorrectly to a cut along that triangle.

It is during this stage that the separation of parts of the mesh above and below
the cut first begins. This is done by duplicating edges along the cut. Storage
conventions are used to separate those above and below the cut. Triangles below
the cut always save references to the first edge, and triangles above always save
references to the second edge (therefore the first edge is considered below the cut
and the second is considered above the cut). This is important as connectivity is
found using these references - if a triangle references the wrong edge the object
will not separate after the cut. The actual separation takes place during a later

sorting step.

When dealing with soft bodies and a finite cutting plane, certain extra con-
siderations may need to be made. Because the vertices move independently,
depending on how the system is being integrated, it may be necessary to have
two copies of every vertex on the cutting plane. This is because an object can

be cut without being split into new parts with a finite plane. With a rigid body

49

a vertex on the plane does not move separately, so only one vertex is needed,
that is referenced by both sides. In contrast, in a soft body the coordinates and

normals will need to change separately as the points are pulled apart.

The problem with this is that if the edge of the plane intersects the edge of a
polygon, it should have only one vertex. This means that cases that can be
combined for a single solution with a rigid body or an infinite plane must be

dealt with differently in order to have only one point (see table 4.3).

The points must be separate for a soft body as the coordinates will change.
However, if the cutting plane’s edge intersects the triangle edge it must be
treated as a separate case. If we treat it as the same case, then we get incorrect
results as the adjacent triangle should have only one vertex. Therefore some

extra considerations are needed for soft bodies with finite planes.

4.5.3 New Object Analysis

After all the triangles have been analysed and the new triangles created, the new
parts can be separated. Since each triangle stores references to edges and each
edge stores references to triangles, the connections can be followed like a tree,
with each edge, triangle and vertex found being added to lists of components
for one resultant part. The fact that the edges along the cut were duplicated
for the triangles above and below the cut means that no triangles below the cut
are connected to any above, so the components of only one part will be added
to a list. This is repeated until all the triangles have been placed into a number

of lists.

Since the arrays of vertices and edges are changed during this process, the indices
stored in the triangles and edges have to be changed. This is done during the
sorting process. A vector of new indices is created for vertices, and another for
edges. A flag value signals that the vertex or edge has not been added to the
new lists, any other value represents the position of the vertex or edge in the
new list, i.e. the new index. As the connections are being followed through the
triangles and edges, every vertex or edge encountered is added to the new lists

if the flag value is found. Otherwise the new index overwrites the old one.

The edge data structure did not store the connections to the triangles, so this
information had to be stored separately. The connectivity is easily found by
running through the array of triangles and adding the index of each triangle to

each edge that it references.

50

4.5.4 New Surface Triangulation

After the resulting parts have been found, the new surfaces can be triangulated.
A simplified Delaunay triangulator [18] is used. The current system is imperfect,
and further work is required, however it successfully fills most of the hole most

of the time.

Edges along the cutting plane are copied to a list, then they can be sorted into
connected "rings". New vertices must be created, with appropriate normals and
UV coordinates. In order to find the UV coordinates, first the maximum and
minimum values of the coordinates on the cut surface are found. This is used to
find a scaling factor. Using the smallest coordinate values as the origin point,
each vertex coordinate is converted to a 2D coordinate along the plane. This is
scaled by the scaling factor into the desired range. Currently the range is 0 to
0.03, as this region of the bottom left corner of the object texture was set aside

for the internal texture.

Each ring is triangulated separately. If the ring has three edges it is already
a triangle and is saved. Otherwise an edge is created from the first vertex in
the ring to the third (see table 4.4). This edge is tested in two ways. First the
angles of the new edge with the first and last edges are tested to see if it is inside
or outside the ring. Then it is tested for intersections with all the other edges.
If it fails either test the edge is discarded and a new edge is built from the first
vertex to the next in the loop. If the edge passes, it is added to the list of edges.
The process is repeated recursively on both new rings. If no acceptable edge is
found the process is repeated from the next vertex in the loop, as sometimes
an edge cannot be found from one vertex but can from another. A directional
convention is used to ensure that the edges are facing the correct direction;

therefore the resulting triangles are created facing in the correct direction.

A countdown is used to avoid an infinite loop. While theoretically in a perfect
system an infinite loop should not occur as it should be possible to triangulate
any polygon with these steps, a bug in this system meant a countdown was
necessary. The system uses a single list of edges, and pointers to the first and
last edge of a ring, for efficiency. Currently there are some situations that are

not handled correctly, such as concentric rings.

Each ring is a polygon that needs to be triangulated to form a new surface.
The triangulator tries to create new edges between vertices.This edge goes on
the wrong side of the first edge, and therefore is rejected.This edge intersects
another edge and therefore is rejected.When an edge is found to be acceptable,
the polygon is subdivided into two new polygons and the function is called
recursively on each one. This edge is added to the objects list of edges.In fact

a new edge is added twice to the list that represents the polygon as it is part

o1

of both polygons. This is a separate list from the object edge list. While only
one list is used, iterators mark the first and last edge of each polygon.When a
triangle is found it can be added to the object triangle list.In this polygon, the
original first point cannot form an edge to any other points. Therefore the list
is rotated but removing the first edge and adding it at the end of the segment of
the list. There is now a new first vertex, and the function is called recursively

again.Eventually the entire polygon is triangulated.

The main complication that can arise is if two rings are in fact inside each
other (see table 4.5). This would be a very useful situation to be able to han-
dle, as it would allow hollow objects such as boxes or hollow bamboo to be
cut.Unfortunately the obvious way of checking whether any rings are concentric
is very inefficient as it involves checking a vertex from one each ring against
all the edges of all other rings. Once concentricity is found it could be solved
by connecting two vertices from the two rings.In essence this would work like a
single polygon of unusual shape, and could be solved in the normal way. However
this would not be enough, as it is possible to have many concentric rings. The
possibility of such situations makes analysis of concentric rings difficult and
slow, which is why it was not considered in this project. Any concentric rings

that arise would simple each be triangulated as a simple polygon.

A finite cutting plane, however, introduces a new complication (see table 4.6).
It is possible to have incomplete loops. This is a situation that is not considered
by typical Delaunay triangulators.This means that the program has to join
them together to create full loops. In theory this is possible by joining the end
points together to create a loop.However there is no guarantee that there will
be exactly two loops, there may even be an odd number of loops.Using the face
normal of the triangle would be necessary to resolve this issue, but even then
the solution is complex. Since it is possible for an object to be cut but not
split, a triangulator for a finite cutting plane would need to be re-written to

triangulate the same face twice for one object.

4.6 Game Integration

It was necessary to build the system around the native geometry data formats
used in the game engine. The engine allowed user made entity components, two
of which were used to integrate the cutting system. One was added to any item
that could be cut; another represented the blade and was added to the player
controlled character. The first referenced the geometry mesh and stored all the
additional data needed to perform a cut. The second was basically a wrapper

for the cutting plane. Additional data was stored in both classes for gameplay

592

reasons.

The game engine was not designed to allow geometry to be modified, therefore
it proved necessary to save the new meshes to file and load them again. This
caused performance issues, as the final game would pause for a brief moment
(on the system we were using it was approximately a split second) when a
complex mesh was cut. Interestingly, in an OpenGL development environment
the system would hesitate for a significantly longer period of time, suggesting
that the game engines memory management system was catching the file and

reading back from memory, speeding up the process.

The in-game mesh wrapper class took care of loading the files and creating
new objects. The type of new object could be changed, allowing objects with
different physics or game properties to be created. For example, when cutting
a shoot of bamboo, one piece would remain stuck to the floor and immovable
while the other would fall to the ground as a dynamic physics object. The
dynamic part was also classed as a swappable weapon, meaning the user could

swap it with his current weapon.

This was done using entity templates. An entity template could be written,
describing the components and default properties of an entity. This template
could then be specified for with the parts created by the cut. Geometry and
physics data would be set based on the results of the cut. Presently the mass
is divided evenly across the new pieces. Given more development time a more
advanced system could be written to use an estimate of the object size to assign

mass more realistically.

As mentioned in the previous example, different parts could be given different
properties. However, this was limited. An object could have a vertex specified
as a fixed point. Which ever resulting piece or pieces of the object contained
this point would be set a fixed physics objects, meaning that they didn’t move
but did interact with other moving objects. The remaining pieces would use the

specified entity template.

A particle system can be created when an object is cut. The particle system
must be created as an entity template. After a specified period of time it is
deleted. One system is created per piece after the cut, in the center of the
cut surface and parented to the piece to follow it as it moves. This was used
for blood when enemy characters were cut, and wood chips and sawdust when
wooden objects were cut. Other possible effects include sparks for metal objects.
Wood chips and sawdust only appeared for an instant, knocked off by the sword,
while blood lasted longer.

The main shortcoming was that the system would disappear quite suddenly.

This was not an issue with the sawdust as the entire particle limit was created

53

in the first instant, then the system was destroyed before the particle lifetime
expired and more could be created. However, with the longer-lasting blood
particle system, the cut-off was very noticeable and unpleasant. This could
not be solved without a more advanced particle generation system than that

provided by the engine.

It was found that the physics engine could not correctly deal with a physics entity
being parented to a moving entity. Because of this enemy characters weapons
were not physics objects. However, this meant that when enemy characters
were killed their swords, separate objects parented to a bone in the models
hand, would remain floating in mid-air as the original object was destroyed. In
order to solve this problem the sword had to be destroyed and replaced with a
new dynamic physics entity. This led to the addition of a new feature, in which
an external object could be specified to be destroyed and replaced with a new
object of a different type. While limited, there could be some other possible

uses for this feature.

The weapon component stored the length of the blade, the weapon damage, and
the force applied during a cut. The length was used for determining when an
object had been cut. The damage was for combat. The force was used when
applying force to the pieces left after a cut. The user could pick up different

weapons with different attributes.

Because the weapons could not be physics objects, this had to be done by
swapping all the weapons attributes with the values stored in the players weapon
component, and by swapping the geometry mesh name of the player weapon
with the new one. Unfortunately this is imperfect in that the weapons may
have significantly different sizes or shapes, meaning that the free weapon may
end up with a mismatched physics shape. Additionally it limits the system, for
example it prevents the use of weapons with light sources or attached particle

systems such as a flaming brand.

As mentioned previously, when cutting complex models the game would freeze
for a brief moment. Only the enemy character models were complex enough to
cause this. Therefore a trick was used to reduce the effects. When the program
detected the cut, but before it was actually performed, a blood-splatter sprite is
placed along the path of the cut through the character. This is rendered, then
the cut is performed, then the sprite is removed. Therefore, during the moment
of hesitation, the position of the cut is highlighted with a blood splatter through
the character. This created a dramatic effect that increased the impact of the
cut on the player, similar to deliberate pauses used by some games during high-
power moves. In fact some play-testers expressed the opinion that it worked

even better than if there was no hesitation.

54

During development concepts for several possible puzzles based on the system
were considered. The simplest use would be to cut through obstacles such as
tree branches and doors in order to pass. This could be extended to include
walls that look similar to normal, non-cuttable walls except for a small yet
recognizable distinguishing feature. This would allow the alert player to cut
through to hidden areas and be rewarded for his diligence. Cutting standing
objects such as thin trees in the correct angle could create bridges or ramps
to cross ditches or climb up walls. Smaller objects would make useful steps to
access higher ground. Cutting a rope or chain could drop hanging objects. Cut
a box at the right angle and a ramp is created. It can also be used for other
things, for example a rope bridge can be cut at the right moment to drop an

enemy into a ravine.

4.7 Conclusions

The system proved very viable for use on simple models, meaning it would work
well as a game mechanic. For example, it can be used to cut environmental

objects in order to solve puzzles. This alone could be used to good effect.

Cutting models as complex as characters, however, is less feasible. There is
room for improvement in the system that may bring speeds to usable levels.
The need to save the mesh to file and read it in again was a major source of
slowdown. Intersection testing could be sped up using trees. The triangulation
of new surfaces was not optimised, a more efficient system could have a signif-
icant impact. It may even be possible to perform some operations on a GPU.
Therefore on powerful hardware, with a more efficient purpose-built engine it
should be feasible.

Despite the problems with character cutting in the current system, feedback
from play-testers was generally positive. People found it enjoyable, combat in
the game was made more entertaining by the greater impact and realism of a
kill.

The recent trend of more versatile control systems would work very well with
this system. The Nintendo Wii controller and Nintendo DS touch-screen are
worth mentioning at this point. The DS already has a surgery game called
Trauma Centre, in which the stylus is used as various medical instruments
including a scalpel. The Wii has games in which the user controls a sword and
other weapons using the controller, such as Samurai Warriors: Katana by Koei.

These would work very well with the cutting system.

Additionally, on modern multi-core systems there is more likely to be spare

processing power available, making the system more feasible. All these factors

35

make the cutting system a realistic and promising prospect for future games.

4.8 Taking It Further

The system could be made more sophisticated by using more realistic cutting
planes. Using a semicircle or a quad could work. One possible change is to use
a single line to cut. When the line is moved by a minimum amount, the old
and new positions can be used as opposite sides of a quad (or if the positions
intersect, sides of two triangles) which is used as the cutting object. While using
a finite plane means there are far more possible intersection cases to deal with,
the biggest issue is creating the new surface. Using anything other than an

infinite plane creates complications as the edges may not form complete loops.

Using different data structures could speed up the basic processes. For example,
arrays of addresses rather than actual objects may save time in functions where
large arrays need to be re-sized. Instead of building an entirely new list of
triangles, the old vector can be modified and new triangles added to a separate,
smaller list (since most triangles aren’t cut, there is no reason to have to add

these to a new list then copy them back later).

Since only a small number of the triangles will normally intersect the cut, using
trees such as AABB trees to check simple intersections with the plane would
likely speed up the process of calculating the intersections [19]. However, re-
calculating the trees for the new meshes may cost more time than is saved, it
would require experimentation to find out if there is an overall benefit or not.
This means that trees would be ideal for complex meshes that would only be
cut once, as they would not need to be recalculated. Alternately, some form of
tree may be needed anyway, for example for shadowing; efficient design could

take advantage of this.

Textures could be linked to triangles in a different way (e.g. each triangle has a
reference to its texture, then they can be sorted when building vertex lists), then
multiple textures can be used for one mesh, allowing for far better texturing of
new surfaces. What’s more, it may be possible to use 3D shaders with a model
for far more convincing internal texturing after a cut. Alternately some form of

material-based procedural texture generation could be used.

With a more advanced "connectivity" system it could be used for models with
multiple meshes, or maintain skeletal data e.g. for rag-doll physics. This would
take some work to find the best way to do it for each application. For example,
for multiple meshes vertices that are "shared" by more than one mesh can be
marked or referenced in a list. New vertices created between two marked vertices

would also be marked or added to the list. In a later stage, after all the new

56

meshes have been sorted into new objects the marked vertices could be checked

to find which of the new meshes are connected through them.

In theory, in the development of a full game integrating with other systems,
like Natural Motions euphoria; an in-game technology that creates intelligent
reactive behavior of non-playable characters [20]. For example a character has
a limb cut off and tries to keep fighting, perhaps picking up a fallen weapon in
his other hand.

The triangulation of the new surfaces can be a rather expensive operation. Cur-
rently triangulation is performed separately for each new part, however realisti-
cally the shapes of new surfaces are identical above and below cuts, so it should
be possible to devise a scheme where the same surface is only triangulated once
then copied rather than being triangulated above and below the cut. Further-
more, it should be possible to optimise some operations in the triangulation

phase.

57

4.9 Tables and Figures

Table 4.1: Possible Situations When Cutting A Triangle With A Finite Plane.

Case (finite plane) Solution

Nothing needs to be
done.

Edge along cut 15
duplicated.

There 18 a “hole™ or
slit m the centre.

7 Ro""1 Ifthe entire triangle 1s inside the cut All edges may be
i Ai area then the triangle 1s not divided. duplicated to keep
T it on the right side.

All vertices are
joined to a new
central vertex.

>
>
b Dl g oI g e

ARG Many possible scenarios, this 1s an
é/_\il example of a complex case.

58

Table 4.2: Possible Situations When Cutting A Triangle With An Infinite Plane.

Case (mfinite plane) Solution

---------- Nothing needs to be
Edge along cut is

A A duplicated.

It All edges may be

i AE /A\ duplicated to keep 1t

i i ———" on the right side.

Table 4.3: Extra Cases For Soft Bodies.
Result

The pomts must be separate for a sott body as the
coordmates will change.

However, if the cutting plane’s edge intersects the
triangle edge 1t must be treated as a separate case.

results as the adjacent triangle should have only one
vertex.

Therefore some extra considerations are needed for
sott bodies with tinite planes.

il
/ X
g If we treat 1t as the same case, then we get mcorrect

39

Table 4.4: Triangulating A New Surface.

Each ring is a polygon that needs to be
triangulated to form a new surface. The
triangulator tries to create new edges
between vertices

This edge goes on the wrong side of the
edge, and therefore is rejected

Tlus edge mitersects another edge and
therefore 1s rejected.

When an edge 1s found to be acceptable,
the polygon 1s subdivided mto two new
polygons and the function 1s called
recirsively on each one. This edge is
added to the object’s list of edges.

In tact a new edge 1s added twice to the

list that represents the polygon as it is

part of both polygons. This 1s a separate
list from the object edge list. While only
one list 15 used. iterators mark the first
and last edge of each polygon.

When a tiangle 1s found 1t can be added
to the object triangle list

AN INIX

In this polygon, the original first pomt
cannot form an edge to aiy other pouats.
Therefore the list 1s “rotated™ but
removing the first ecdge and adding it at
the end of the segment of the list. There 13
now a new first vertex, and the function

1s called recursively agam.

Eventually the entire polygon 1s
triangulated

60

Table 4.5: Triangulating Concentric Rings.

The main complication that can arise 1s if
two rings are in fact mside each other.
This would be a very useful situation to
be able to handle, as it would allow
hollow objects such as boxes or hollow
bamboo to be cut.

Unfortunately the obvious way of
checking whether any rings are
concentric 1s very metficient as 1t
mvolves checking a vertex from one each
ring agamst all the edges of all other
rings. Once concentricity is found it
could be solved by connecting two
vertices from the two rimgs.

In essence this would work like a smgle
polygon of unusual shape, and could be
solved m the normal way.

However this would not be enough, as 1t
1s possible to have many concentric rings.
The possibility ot such situations malkes
analysis of concentric rings ditficult and
slow, which 1s why 1t was not considered
i this project. Any concentric rings that
arise would simple each be triangulated
as a sunple polygon.

61

Table 4.6: Triangulating Cuts From A Finite Plane.

A fmite cutting plane, however,
mtroduces a new complication. It is
possible to have mcomplete loops. This 1s
a situation that s not considered by
typical Delaunay triangulators.

This means that the program has to join
them together to create tull loops. In
theory tlis 1s possible by jomng the end
points together to create a loop.

However there 1s no guarantee that there
will be exactly two loops, there may even
be an odd number of loops.

Using the face normal of the triangle
would be necessary to resolve tlus 1ssue,
but even then the solution 1s complex.
Since 1t 1s possible for an object to be cut
but not split, a triangulator for a tinite
cutting plane would need to be re-written
to triangulate the same face twice for one
object.

62

4.10 Acknowledgments
I would like to thank:

e Jon Macey, obviously.
e Bournemouth University.

e All of Ergophobia, for being so great and especially for putting up with

me for so long.
e Ben Chandler for helping with the maths.
e EA studios for all the help and guidance.
e Dare to be Digital, for the great opportunity.

e All my friends and family for all their support.

63

Chapter 5

The AI System

By Hasan Atieh.

Acknowledgement

First of all I thank God.

I would like to take this opportunity to thank Jonathan Macey at the NCCA,
Simon Pick at Electronic Arts, the kind people at Instinct Technologies and
Haytham Mustafa for their efforts in providing guidance and motoring through

out the developing the Al system.

Also a special thanks goes to my parents for their support.

5.1 Introduction

As the game development has become a main stream industry in recent years, all
aspects of game development have been witnessing considerable advancements.
And game Artificial Intelligence, or Al, has recently been receiving increased
awareness and attention amongst game developers and players alike. This has
been helped particularly by the introduction of powerful consoles and computers
with increased processing power, especially by transferring the processing of
graphics from the CPU to the GPU which freed up CPU cycles for the Al

programmers to utilise.

In this chapter, the two main tasks carried out by the AI programmer will be
discussed. The first task described is the development and implementation of a
relatively industry-compliant Finite State Machine (FSM) system for the game
AT The developed system needs to make it fairly easy to add new states and

transition conditions and also to allow non-programmers to change and design

64

the behaviours of a non-player character (NPC) in the game. Moreover, it needs
to make it possible for the game designers to change various properties of the

agents in order to personalise the different agents that share the same behaviour.

The second task is to design a behaviour model for the agents in the game
in a way that would serve the stealth gameplay elements of the game. This
also includes writing the senses and the states libraries suitable for this task.
The aim of this work is to suggest a behaviour that would convey a sense of
intelligence to the agents inhibiting the game world utilising the developed FSM
system. Again, the designed behaviour should handle the interactions with the
player to emphasise the stealthy nature of the game and most importantly in a

way which makes it fun to play against.

Other tasks and contributions including Subtitles tool in addition to debugging

and optimisation are not discussed.

The work carried out on the Al of the game is an amalgamation between a FSM
system suggested by Simon Pick, who is a senior AI programmer at Electronic
Arts - UK and the FSM system described in Matt Buckland’s book "Program-
ming Game Al By Example" (2005). The implementation was extended to
include the ability to change the FSM of the agents during runtime which is

known as a hierarchical FSM.

Unlike the case in a conventional academic research, the work carried out on the
game in general took on a development approach rather than a research one;
the difference being that in development, a problem must be iterated over and
over until a solution is found, whereas the research method involves analysing a

technique and possibly concluding that it does not solve the problem at hand.

5.2 Previous Work

The FSM structure is probably the most established Al technique used in video
games so far. Almost every game will have a representation of FSM. One of
the most obvious implementations of FSMs in games would be the 1980 Pac-
Man game. A ghost in Pac-Man can be either in the chase state, the evade
state, the dead state or the wander state and the transitions between states
are triggered by different conditions. For example, eating the power pill is the
condition that triggers the transition from the chase to the evade state, the
wander state is triggered after the player dies. While the ghosts had the same
actions for some states like the evade state, they had different, more personalised
implementations of other states. For instance, in the case of the red ghost, the
actions of the chase state were to chase the player directly while the blue ghost

in the same state would simply wander randomly. (Buckland, 2005)[15].

65

Many other games have implemented the FSM technique. Players in sports sim-
ulations such as the soccer game FIFA2002 are implemented as state machines.
The NPCs in RTSs (real-time strategy games) such as Warcraft, make use of
finite state machines. Car racing games fall in the same category too (Buckland
2005)[15]. Brian Schwab’s (2004)[13] discusses in his book "AI Game Engine
Programming" major game genres and the AI techniques used in them. Not
surprisingly, FSM appeared in most the genres he discussed except for flight

simulators.

The Quake and Quake II games showed higher potential of the FSM. It is since
ID Software released the source code to the those two projects, that people have
noticed that the movement, offensive, and defensive strategies of the bots were
controlled by a simple FSM. The use of FSM in these games was extended to
control the behaviour of entities other than the bots of the game. For example,
the rocket had a FSM which contained states like spawn, fly, explode, etc.
(Schwab 2004)[13].

FSMs are not the only technique used in decision making for NPCs. Fuzzy Logic
has also be used in many areas of game Al In the case of 3rd person shooters, it
can be combined with FSM to form a Fuzzy State Machine or FuSM adding an
element of non-linearity to the whole behaviour thus making it less predictable
(Watt & Policarpo 2001)[9]. Among the reasons for not implementing a FuSM,

is the small time of player-guard interaction.

Artificial Neural Networks (ANNs) can also be used as an NPC decision making
technique. The network can have several inputs representing the facts upon
which the decision is to be based. Examples of such inputs can be the health
of the agent, the weapon it has and the distance to the player. The output can
be to chase, evade or patrol. ANNs was not used in this project due to their
inherently non-deterministic nature. The produced behaviour would have been
hard to test, debug and tweak. However, if time had allowed, neural networks
might have been implemented to control which FSM an agent needs to use at

any given time in the game.

The Sims offered a new approach to controlling NPC behaviour. It provided
a novel combination of A-Life and fuzzy logic to control the behaviours of the
agents. The idea behind which is what the game designer Will Wright refers to
as "Smart Terrain". According to him, the rule based approaches to Al are very
inflexible. In Smart Terrains, the actions a character performs when interacting
with an object is embedded in the object itself rather than the character. This
allowed for the introduction of new objects to the environment, making sure
that the characters would be able to interact with them. This explains the

many expansions and add ons that have appeared after the launch of the game.

66

(Woodcock 2007)[14]
Although this kind of approach can be useful for this type of game (The Silence

of Night), it is beyond its requirements especially after considering the short
time of player-guard interaction. Also, the agents are not required to have that
level of interaction with the environment which makes the use of this method

unnecessarily complicated.

Other Al techniques can be applied to control lower-level NPC behaviours. An
example of which would be the use of Potential Functions for chasing/evading
movement and obstacle avoidance. It can also be used for swarming and flock-
ing. The basic theory behind it is to apply positive or negative force to an
entity proportional to the squared distance between it and the other entity of
interest (Bourg & Seemann 2004)[8]. This technique is classified as a low-level
AT because it acts directly on the coordinates of an entity. For example It can
help an agent avoid obstacles while moving from point A to point B but it does

not initiate the decision to move in the first place.

5.3 Theoretical Background

Historically, FSMs were first proposed and used by mathematicians in repre-
senting and solving problems. Perhaps among the earliest references to finite
state machines would be the Turning machine which Alan Turing talked about
in his 1936 paper "On Computable Numbers". (Bucklands 2005)[15].

In mathematics, a FSM (also known as Cellular Automaton) is usually repre-

sented with a quadruple of sets, these are:

A set I called the input alphabet.

A set S of states that the automaton can be in.

e A designated state Sy, the initial state.

e A next state function N : S x I = S, that assigns a next state to each

ordered pair consisting of a current state and a current input.

(Luger 2002)[7]

Some books add a fifth set F' of final states which is a (possibly empty) subset
of S to the representation of the FSM.

Here is a more descriptive definition of FSM provided by Buckland:

A finite state machine is a device, or a model of a device, which

has a finite number of states it can be in at any given time and

67

can operate on input to either make transitions from one state to
another or to cause an output or action to take place. A finite state
machine can only be in one state at any moment in time. (Buckland
2005)[15]

Many types of FSMs exist and can be classified according to different factors.
For example a FSM can be classified as a deterministic FSM if for every state, a
possible input would match only one state transition. On the other hand, in the
non-deterministic FSM, a possible input for a given state would result in one or
more than one state transition. Other classifications exist according to where
an output is generated as in the Moore and Mealy machines. (Black 2006)[10].
Implementations of FSMs in games is hard to classify under a specific type and
in many cases a FSM can fit under more than one. However, a more games-
related classification of FSMs can be found in Martin Brownlow’s book "Game
Programming Golden Rules" (2004)[11]. He specifies two kinds of FSMs; these

are Explicit vs. Implicit.

The difference is that in the case of explicit FSMs, the FSM does not need to
know about the object it is maintaining the state for. It acts like a black box
and has events as its inputs that it uses for changing the states. An extension
on the concept at the opposite end is an implicit FSM. Implementing explicit
FSMs have many advantages over implicit ones; the source code becomes smaller
and easier to maintain, the behaviour of game objects can be altered quickly
and easily without recompiling code and the designers are now free to experi-
ment with object behaviours without bothering the programmers. (Brownlow
2004)[11].

The FSM system developed for this project can be classified as a deterministic
explicit FSM.

5.4 The FSM Solution

Many factors contributed to the decision of implementing a FSM solution for the
game Al. Among these, is the power and effectiveness of FSM in modelling NPC
behaviour. Given the requirements of the guard’s behaviour of the game, FSM
has the potential to meet these requirements to a high standard if properly used.
It is true that other less-deterministic Al techniques can also provide a very good
illusion of intelligent NPC behaviour but implementing such techniques implies
taking higher risk due to their inherent non-deterministic nature and also due

to the limited development time frame available on hand.

Other reasons for using FSMs can be attributed to the characteristics of this

68

technique. These include their simplicity, ease of debugging, little computational
overhead and flexibility. (Buckland 2005)[15].

Initially, the implementation of the FSM started by implementing the FSM ex-
plained in Buckland’s book. The output of that FSM was in the form of plain
text printing to the console each state execution and transition. Fundamental
changes were done afterwards on that implementation in order to reflect Si-
mon’s approach to FSMs which mainly implied moving the rules affecting the
state transition from inside the states to the agents running the states. After
that, changes took place in the direction of integrating it into Instinct which in-
cluded developing senses and states to produce a basic NPC behaviour. Finally,
work was carried out on designing and fine-tuning the behaviour of the guards
which also went in parallel with adding more senses and states to extend their

behaviour.

This section is divided into two subsections, the first one deals with the devel-
opment of the FSM engine. This includes the development of the core system
and the senses and states that plug into the FSM. The second section deals with
designing the behaviour of the NPCs that inhibits the game world. Figure 5.1

shows an over-all structure of the FSM system.

69

Figure 5.1: The FSM System Structure

MPCs behaviour

The FSM engine

Sense-State library

The F5M core

The over-all structure of the FSM system in the game.

5.4.1 The FSM System
5.4.1.1 The FSM Core.

At its heart, the developed FSM system has four main classes or types of classes
that construct the core of the system. These are the senses classes, the states
classes, the Sense State Map entity component (SSMap) in addition to the
Agent entity component that drives the overall thinking process. Of course
there are many other classes implemented but their main purpose is to add
more flexibility, abstraction and organisation to the whole FSM system. This
subsection (The FSM Core) will focus on discussing the main classes in details
while the other classes will be discussed whenever the context requires but in
less details. Figure 5.2 shows the over-all classes digram of the implemented
FSM system with the four main classes having a darker background. Note that

only one Sense class and another State class are shown as examples to avoid

70

ridiculously increasing the size of the graph.

Figure 5.2: The Class Diagram

enseReactPair

AlErtivy

Sense ; String

React : String

<<interfaces=
|Al_Manager

£
' A
|

e =H Statelogic ==interfaces= CAl_Manager
! |Agent
| Name : 5tring b
: Pairs : List B
! £
' * | 7
| 1
: ==interfaces== i ChAgent
1 I5tatebdachine
1
1
1
I T T
| T ' '
| |=<=interface== |- - ! !
| I5SMap = CStateMachine R R
: SenseManager StateManager
1
1
1
I Lr
: S I I i

CE5Map - | 1 1

54 AV AV y
SenseseePlayer OtherSensing Classes Stateflert Other State Classes

v_v

Sense

v

v

Srare

An over-all look at the classes that construct the FSM system. The core
classes are coloured in pink.

The Senses Classes

The senses inherit the abstract Sense class template. Moreover, they are all

single tone classes which means that only one instance exists of any given sense

and is therefore shared between all the agents that use that sense. All sense

instances have a public method called CheckSense that accepts a pointer to an

agent and returns a boolean. By passing a pointer to the agent for which the

sense is called, the CheckSense performs the checking according to that specific

71

agent. For example, SenseZeroHealth will call CurrHealth method of the Agent

pointer to get its current health.

In order to make it easier to retrieve and check senses, a SenseManager which is
also a single tone class, is created to hold a std::vector of all the senses available

to an agent.

The States Classes

A state class is very much similar to the sense class. It inherits an abstract State
class template and is also represented as a single tone. Instead of a CheckSense
method, a State class has three public methods. These are Enter method,
Execute method and Exit method all of which accepts a pointer to an Agent.
As the names suggest, these three methods are called on various times according

to the life span of the state.

The Sense-State Map (SSMap)

The SSMap is actually the entity component that declares the CSSMap class
which is short for Sense-State Map and not to be confused with Cascade Style
Sheet.

What makes this class an important one is the fact that it holds a std:vector
of a structure called StateLogic. This vector represents the transition table of

the FSM. Table 5.1 shows an example of this vector with two entries.

Table 5.1: A StateLogic Example

First entry StatePatrol SensePlayerDead DoNothing
SenseSeePlayer StateAlert
SenseHearPlayer StateTimedAlert
SenseFellow Agents StateAlert
Second entry | StateTimedAlert SensePlayerNear StateFight
SenseTimedAlertTooLong StateDefault
SenseSeePlayer StateAlert

An example of a StateLogic vector with two entries.

The StateLogic structure is basically the representation of the logic that needs
to be followed when the agent is in a certain state. That state is indicated by
an std::string member of the StateLogic structure. In the example above, it is
StatePatrol for the first entry and StateTimedAlert for the second.

However the actual logic of the state is represented using a std::vector of another

structure called the SenseReactPair structure. This is a much simpler structure

72

and it holds two std::string members one representing a sense to be checked and

the other representing the reaction if the sense evaluates to true.

To add a layer of separation between a suggested behaviour and the system
which runs it, the behaviour of an agent was provided to the SSMap compo-
nent via an external XML file which is parsed into the StateLogic vector upon

initialisation. See lesting 4.

Listing 4 An Example of the state-logic XML
<?xml version="1.0" encoding="utf-8"7>
<SSMap >
<state name="StateAttack”>
< pair sense—"SenseAttackDone” react—"StateFight” />
< /[state>
<state name="StateRecoil”>
<pair sense="SenseAgentZeroHealth” react="StateGotCut” />
< pair sense="SenseSecAttacked” react="StateFaint” />
<pair sense—"Default” react—"StateFight” />
< [state>
< /SSMap>

The Agent.

Now that enough traction has been built explaining the previous classes and
components, it is possible to discuss the Agent entity component. This entity
component gains its importance from the fact that it serves as the central point
where all the other classes come together. Just like the SSMap, the Agent
entity component declares the CAgent class which defines member variables
and methods to drive the FSM. Among these variables are four pointers to
states; these are for the current state, the previous state, the global state which
is executed along side the current state, and the default state which defines the
main job of the Agent in the game be it patrolling or guarding or anything else.
The most important method of the CAgent class is the HA Update method
which is called consistently at a fixed time intervals. Listing 5 shows a simplified
version of the pseudo code for this method which can also be thought of as the

pseudo code for the core FSM system.

73

Listing 5 A Simplified Pseudo Code for the HA _Update Method.
Execute current state

Execute global state

Loop over the StateLogic list of the Agent

If name of a state in StateLogic list == name of the current state
or if name of a state in StateLogic list == "StateGlobal" then:
Loop over the SenseReactPairs list of that StateLogic entry

If this Agent check sense in SenseReactPair then:

handle react in SenseReactPair and break from the inner loop
end if

end loop

end if

end loop

The way this algorithm works is that for the state that matches the current
state’s name, the senses in the list of sense-state pairs are checked in order until
a sense evaluates to true. At that point the reaction that is paired with that
sense is handled by a specific method of the agent and the algorithm breaks
from the inner loop but carries on with the outer loop. The reason why the
outer loop needs to carry on is to guarantee that the logic of the global state is

executed. See figure 5.3.

Figure 5.3: The States Transition Diagram

StatePatrol

SensePlayerDead B
SenseSeePlayer B

By

SensePIaverNearﬁ
/\ 1 [stateFight l

Statedlert

SenseAgentAslr

SenseHearPlayer

N

SensefellowAgents
StateTimedAlert

-,

SensePIayerNeaH
SenseTlmedA\enTooLongBI

-

SenseseePlayer bI
“

Niot_SenseSeePlaye A
[SenseSeePlayer B

StateFaint

StateRecoil

A diagram showing part of the state transitions.

Statedilobal

sensezZeroHealth
sensePounced™

StateHunt

SensePrlmaryAttatka

N

74

In the SenseReactPair, the Sense string can be a name of a valid sense which can
be suffixed with "not " to inverse the value returned by the CheckSense func-
tion. The other choice for sense is simply using the string "Default" which will
always validate to true when passed in the CheckSense function. The "Default"
can have the effect of the else keyword when used in the last SenseReactPair in
a StateLogic entry or it can be used to serve as a debugging option, for example
forcing a state change. Howerver, valid values for the React part in the SenseRe-
actPair are "StatePrevious", "StateDefault" and "DoNothing" in addition to a
state name. Note that "StatePrevious" and "StateDefault" serves as a memory
of the agent. "DoNothing" can be used to keep the agent in its CurrentState or

as a another debugging option.

Any entity - including the player character - thet needs to utilise the FSM,
must have the Agent component among its list of components. In the case of
the player character, it’s Agent component runs a simple FSM that checks to see
if the agent’s health has dropped to zero. If so, then it will react by going into
the dead state which plays the dying animation and turns off the components of
the agent. This could have been used to add a bored state to the player when
the player remains idle for a long time but was given a low priority for obvious
reasons. Among its properties, the Agent component has a property that holds
the name of the AIManager in the game which is also an entity component.
The Agent will register to the AIManager upon initialisation if the name of an

AlManager is provided.

5.4.1.2 The Senses/States Library.

After having built the core of the Al FSM system, there needs to be a number
of senses and states classes that it can operate on. For that reason, a group of
senses and states was developed. In addition to the importance of making what
we had an actual game, the implemented senses and states had to emphasise
a certain gameplay style of the game which is the stealth style. As a result,
almost every interaction with the player, required the guards senses to be aware
of environment elements like the level of light or the noise the player was making.
Also, other senses were developed like testing if a guard knew about the player
before getting hit by it in addition to other senses of which results were reflected
in the score manager. In all, 27 senses and 18 states were developed which were
combined to propose an intelligent behaviour for the guards and introduce the
gameplay elements of the game. The rest of this subsection (The Senses/States

Library) will explain only one sense and another state class. These are the

75

SenseFellowAgents and StateAlert and are provided just as an example. For

the rest of the classes please refer to the accompanying CD.

SenseFellow Agents

As mentioned before all the senses classes has a CheckSense method which
accepts a pointer to a CAgent class and returns a boolean of whether the sense
evaluates to true or false. Most of the senses depend on other external entity
components or even other senses to be able to check for that specific sense. An
example of which can be found in the SenseFellowAgents class which depends
on the AIManager component in testing the state of fellow agents. Remember
that the AIManagre knows about the agents in the game since they register to
it upon initialization. This sense will return true if a near by fellow agent is in
an alert state or a similarly tensed state. Listing 6 shows the pseudo code for
the CheckSense method of the SenseFellowAgents class.

Listing 6 The Pseudo Code for the SenseFellowAgents
Get a reference to the AIManager

Get a pointer of the agents list from the AIManager

Loop over the agents list

FellowAgent = Agents list [i]

If the FellowAgent is the player character or the same agent then:
Continue

Test the state of the FellowAgent

If state name != "StateDead"

&& state name != "StateAlert"

&& state name != "StateTimedAlert"

&& state name != "StateFlee"

&& state name != "StateFight"

&& state name != "StateFaint" then:

Return false

Check the distance between the agent and the FellowAgent
If distance is close enough then:

Return true

Else

Return false

Again, a sense can rely on other senses to check its value. For example the
SensePriAttacked will call the CheckSense for "SensePlayerFacingAgent" and
for "SenselnPlayerRange" in addition to testing if the player is performing the
attack animation. The design of the system lends itself smoothly to this kind
of implementation which is made possible by passing a pointer of the agent to
the CheckSense method of the sense in addition to making sure the senses are

checked through a member method for the agent.

76

This adheres to code re-usability by making simple senses and combining them

together in order to construct more complicated ones.

StateAlert

The states classes have three main public methods that can be used to specify
how the agent will behave while in that state. These are the Enter, Execute
and Exit. While this is not always the case, sometimes an agent does not need
to perform tasks in all three methods of the state. Nevertheless, the three
methods are called automatically in various places in the code. The calling for
the Execute method has been shown in Listing 5. Listing 7 shows the pseudo
code for the ChangeState method of the agent which is where the Enter and

Exit methods for a state are called.

Listing 7 The Pseudo Code for the Agents ChangeState Method
If NextStateName !— StateCurrent -> Name then:
StateNext = StateMngr -> GetState(NextStateName)
StatePrevious = StateCurrent

StateCurrent — StateNext,

StatePrevious -> Exit

StateCurrent -> Enter

Return true

Else

Return false

End if

The AlertState, however, needs to make changes either on the Agent or on
other components when entered or exited and while executing by an agent. See
listings 8, 9 and 10.

Listing 8 The Pseudo Code for the Enter Method of the AlertState
Get a reference to the agentInputController

Get a reference to the agentSoldier

Set the animations in the agentInputController to false (walk, run, strafe, attack,
etc)

Set the fight stance of the agentSoldier to true

Call the agentSoldier CreatVocals method

Display the subtitles of the created vocal

Get a refenence to the ambient sound manager

change ambient music to that of the suspense track

Get a reference to the score manager

Increase the number of agents alerted in the score manager

Listing 9 The Pseudo Code for the Execute Method of the AlertState
Turn the guard in place to face the player

77

Listing 10 The Pseudo Code for the Exit Method of the AlertState
Get a reference to the agentSoldier

Set the fight stance of the agentSoldier to false

Get a refenence to the ambient sound manager

change ambient music to that of the suspense track

5.4.2 The Proposed Behaviour

Of course developing an FSM system is simply half of the work that needed to
be done on the agents AI. The other half was to design the behaviour of the
guards utilizing the developed FSM. This task is crucial not only to push the
game in the 3rd person stealth direction, but also to make it ’a game’ rather

than just a simulation of a character running around.

Naturally this task is more of a soft skill; i.e. the behaviour of NPCs needs to
feel right rather than necessarily be right. According to Simon Pick, it is general
practice to assign the task of tweaking and fine tuning of the NPC behaviour to
the designers. Doing so leads to better more engaging AI behaviour. (Personal
communication, 06 Sep. 2007)[12].

The work done on designing the NPC behaviour did not accurately adhere to
this code of practice mainly because of the relatively small scale of the project
either time wise or team-size wise. Also, since the development of the FSM
system was roughly going in parallel with the design of the behaviour, it was
convenient to keep iterating on both to build the basic behaviour. Instead,
the behaviour was mainly designed by the AI programmer with considerable

contributions and suggestions from all the other team members.

The designed behaviour of the guards is shown in table 5.2. It is fairly easy to
read through it however, StateFlee might need some explanation. The flee state
is entered if the health of the guard goes beneath a certain level which is a result
of receiving damage by the player. This is being tested in the SenseLowHealth of
the StateFight. While in the flee state, the guard runs in the opposite direction
of the player and performs three tests; if the player is dead it will return to
its default state, if the player is far it will go into the alert state, and if, while
fleeing, an obstacle is faced it will go into a desperate state machine. This last
state is actually a separate FSM and sets the StateMachine component of the
guard to point to the desperate SSMap component in the scene. The main
difference between the two FSMs is that the guard will not continue fleeing
while in the desperate FSM since it is theoretically trapped. Instead, the guard
will go into the alert state facing the player and will only chase the player if
the player’s character turned its back to it. This approach resulted in more

intelligent behaviour on behalf of the guards especially preventing them from

78

running into walls.

Table 5.2: The Guards State Transition Table

| Current State Sense React
Stateldle SensePlayerDead DoNothing
SenseSeePlayer StateAlert
SenseHearPlayer StateTimedAlert
SenseFellow Agents StateAlert
StatePatrol SensePlayerDead DoNothing
SenseSeePlayer StateAlert
SenseHearPlayer StateTimedAlert
SenseFellow Agents StateAlert
StateTimedAlert SensePlayerNear StateFight
SenseTimedAlertTooLong StateDefault
SenseSeePlayer StateAlert
StateAlert SensePlayerNear StateFight
SenseAgent Astray StateTimedAlert
not_ SenseSeePlayer StateTimedAlert
SenseSeePlayer StateHunt
StateHunt SensePlayerDead StateDefault
not_ SenseSeePlayer StateTimedAlert
SenseAgent Astray StateFight
SensePlayerFar StateAlert
SensePlayerNear StateFight
StateFight SensePlayerDead StateDefault
SenseAgentLowHealth StateFlee
SensePlayerldle StateAttack
SensePlayerFar StateAlert
not__SensePlayerNear StateHunt
SenseAgent Threatened StateBlock
StateFlee SensePlayerDead StateDefault
SensePlayerFar StateAlert
SenseObstacle StateDesperateSM
StateAttack SenseAttackDone StateFight
StateBlock SensePlayerlIdle StateFight
StateRecoil SenseAgentZeroHealth StateGotCut
SenseSecAttacked StateFaint
Default StateFight
StateFaint SenseFaintTooLong StateDefault
StateDead
StateGotCut
StateGlobal SenseAgentZeroHealth StateDead
SensePounced StateGotCut
SenseSecAttacked StateFaint
SensePriAttacked StateRecoil

This table shows the state transition table of the proposed behaviour of the

guards.

79

It can be noticed from table 5.2 that the StateDead and StateGotCut does not
have any sense-react pairs to them for obvious reasons. Also sensing that the
player is dead in most of the states aside from the Stateldle and StatePatrol, will
cause the guard to switch to its default state while the same sense in Stateldle
and StatePatrol will prevent the guards from testing the rest of the sense-react

pairs.

5.5 Discussion

According to S. Pick, the way the industry approaches game Al, is that the Al
programmer develops the system so that it allows the game designers to change
the behaviour of the AI entities externally without having to refer to the Al
programmer for each change. The reason being that the game designers need to
test and tweak many times in order to get the right feeling of the game AI. This
kind of approach can be very beneficial especially in saving the time of both
the AT programmers and the game designers. Moreover, the compiling time in
general will be substantially decreased as well (personal communication, 06 Sep.
2007)[12]. Of course in order to achieve such a level of flexibility, the system

must have a clean object-oriented design in the first place.

The developed FSM is relatively compliant with the industry’s approaches to
game Al and relies heavily on the use of scripting in AI. Among the areas
that can be improved, is the use of a proper XML parser for parsing the state
transition XML table. The currently implemented parser is actually a text
processor developed in collaboration with Ali Derweesh. It searches the XML
for certain strings and patterns in order to populate the StateLogic list and with
no error handling. This approach was adequate for the scope of this project
because in most of the cases only one person was working on the Al behaviour
which made it easy to spot any errors. However, in larger projects, a graphical
bespoke Al-editing tool with XML can be more user friendly and less prone to
errors (S. Pick, personal communication, 06 Sep. 2007)[12]

Throughout the game, many of the player-guard’s interactions were handled
through the Al It is not the sword’s collision with the agent’s mesh that triggers
the mesh cutting, it is the guard’s Al testing if its in the player’s range, the
direction of the player and the animation of the player. Although this has helped
in providing a rapid solution, along with avoiding the overhead of having the
physics testing for collisions, it had its own problems and the focus here is on

the SenseAttack. The problem was that the attack animation of the player’s

80

character starts by pulling the sword to the back and then swinging it. Now
testing if the player is in the attack animation would return true from the first
frame to the last one. This resulted in the guards getting cut as the player hits
the attack button before the sward reached the guard. In an attempt to solve
this problem, the normalized timing of the animation was tested to roughly
specify the time when the sward would naturally collide with the guards mesh.
For example after 40% of the animation time has elapsed. Unfortunately this
solution did not work because the time values returned was incorrect for the
first frame which made this approach useless. As an alternative, the developers
decided to try to solve this in the cutting algorithm rather than in the AI. The
new solution was to perform a short delay in the cutting component before
preforming the actual cutting. The results of this last solution looked more
realistic, however, this approach would be hard to work with if there were many

different attack animations with different timings.

One very important feature the game could definitely benefit from is the im-
plementation of a path finding algorithm. Although Instinct engine implements
one, it is incomplete and is provided as an example. The effect of having a path
finding feature can help make the guards look more intelligent and perhaps
more challenging to the player. It would allow the guards to chase the player
for longer distances and most importantly avoid running in walls and obstacles.
In an attempt to work around this problem, the guards were able to sense how
far away they were from their initial position. Guards would stop chasing if
they’re astray so that the chance of walking into obstacles is minimized after
they return to their default state. The astray threshold of a guard was made
accessible from within instinct studio for convenience and guards outdoors were

given higher values compared to those indoors.

Turning to the NPCs behaviour, in a three-day event called Protoplay (12-14
August 2007), the developers had the chance to exhibit the game and watch
people of the public playing the game and breaking it on some occasions. Doing
so helped the developers put the theory to the test and practically identify what

worked and what did not.

Among the comments some of the people had about the game AI behaviour, is
that the guards did not pose a real challenge to the player. Watching people
playing the game, it was noticed that in most of the cases, when a guard killed
the player character, it was when the person controlling it did not know the
controls very well. The combat Al could have possibly been improved by utiliz-
ing the block state in the behaviour of the guards which is currently available
only for the player character. Of course that would also require more senses to

be developed to help the Al guard identifying when an attack is imminent.

81

Also observing people playing the game, when the guard runs away from the
player, players did not leave the guard and got on with the game. On the
contrary, they chased the guard and made sure it was dead before they moved on.
As a result, the behaviour of the guards trying to pounce the player was never
experienced by people who played the game making it an increased overhead.
That stresses the fact that designing a NPC behaviour which ’feels’ right is a

soft skill that requires experience.

5.6 Conclusion

This chapter has shown how efficient FSMs can be used in modelling NPCs
behaviour. By no means can the work done on the AI be considered complete
and it can benefit from a number of features namely a good path finding and

perhaps upgrading it to be a FuSM.
In general, the AI system served its purpose. It helped emphasising the stealth

gameplay elements of the game and people enjoyed sneaking up to guards and
either cut them in half or stun them, an experience which was also stressed by

the on-screen feedbacks.

The developed FSM has the following features:

e It is relatively easy and straight forward to add new senses and states to

the system.

e It is easy for non-programmers to deploy new added senses and states in
the behaviours of agents and also to change and tweak the behaviours of

the agents.

e It allows for changing the whole behaviour of an agent during the running

of the game

e It makes it possible to personalise the agents so that no two agents are

identical.

e It -to a certain extent- adheres the industry practices by modelling the

behaviour of an agent using the widely used XML files.

In conclusion, games development is quite a challenging field and game AI
requires skill-sets of different backgrounds. Programming a game Al engine
evolves a lot of problem solving in addition to research and design. In order for

game Al engines to be most efficient it needs to enable the game designers to

82

rapidly iterate and test behaviours of NPCs. Designing a NPC behaviour how-
ever requires an artistic background and experience as well. (Pick, S. personal
communication, 06 Sep. 2007)[12].

83

Chapter 6

Input And Character Control,
Audio/Visual Programming,

Gameplay Engineering

By Ben Chandler

6.1 The User Input To Character Control Pro-

Cess

Control of the character is broken down into several stages. The first stage
is receiving the input from the keyboard, mouse or gamepad. This input is
handled by the input controller component which decides how a given input
effects the game. For example when in game pressing 'up’ on the controller
will cause the character to run forwards, whereas pressing start will cause the
main menu to appear. The input controller can influence more than just the
player, it effects the whole scene and as such there is only one such component
per game scene (level). In the case of a character input the input controller
sets one or more state flags in the character controller depending what has
been pressed. For example if ’a’ is pressed then the ’jump’ flag is set in the
character controller to indicate the character is jumping. The third and final
stage in the control process is the animation controller. The animation controller
receives input from the character controller when it must change animation. For
example, with the aforementioned jump state change, the jump flag set in the
character controller would be passed on to the animation controller by setting

it’s own ’jump launch animation’ flag. At this point the animation controller

84

takes charge on the character and will transition through the launching, air, and
landing jump animations. With that said it is still possible for the character
controller to query the animation controller to find out what state it’s in, this

proves useful for things such as timing attacks.

Figure 6.1: Flow Diagram Of Player Being Moved Forwards
'Up' Pressed

¥

Input Controller

Set'Move Forwards' Flag

¥

Character Controller

Set'Jog Forwards' Lower Animation
Set 'Jog Forwards' Upper Animation

¥

Animation Controller

A final note before discussing the controllers in depth is that the actual imple-
mentation of the player’s controller components and the AI’s controller compo-
nents is different. Initially they were using the same components, however as
the project progressed there were various things that we wanted to do with the
player character that meant using it’s own version of the controllers. In addition
to that the implementation of these components are in a modified version of the
ieExample.dll file rather than in BC Components.dll. This is because it was
much faster to build upon the existing player controller than build another from

scratch.

With the above brief summary out of the way I will now describe some of the

specifics of the controllers.

6.1.1 Input Controller

The input controller itself was largely an extension of what was already supplied

with the engine. That is to say, largely it came down to more controls needing

85

to be mapped however I still had to implement some small changes such as the
ability to invert the camera controls should the player prefer it. For the players

input controller I also the ability to turn on and off the sound shader.

6.1.2 Character Controller

The character controller required a lot of new and in many places replaced code
over what existed previously due to the large number of possible states that
the character could be in. In addition to this many non-control related changes
were made, such as syncing footstep sounds to the animations. I also supplied
some helper functions here for use by the AI, for example getting the amount
of light falling on the player or the amount of noise the player is making as well
as the more simple functions such as determining how far through an attack
the player is. The other task that the character controller is responsible for is
that actual physical movement of the player within the world. Little had to be
added in this area, although neither jumping nor sneaking were present in the
supplied version of the controller and as such they had to be implemented by
hand.

6.1.3 Animation Controller

The animation controller, much like the character controller, required not only
an extension of what had been done before, but in many places, a rewriting of
the code. It’s biggest shortcoming for what we required was that it considered
the character to have animations blended and applied to the whole character and
would not take into account things like jumping and attacking without a messy
blend between the two animations over the whole body. To combat this it was
necessary to write a tool to split the animations into separate files for different
portions of the body so that we could, for example, attack with the upper body
while running forwards. Without having to have every possible combination
of actions as an animation. The splitter takes a full body animation, such
as running, and splits it above and below the hips, in both upper and lower
animations the hip bone is present for the purpose of smooth blending across

upper and lower body sections.

In order to use this technique much of the animation controller had to be rewrit-
ten in order to take advantage of the separated animations and blend upper and
lower body separately. The upper and lower body states are managed by the
animation controller itself and not, as one may expect, the character controller.
This is because from the point of view of the character, the character only

needs to know that they are running and attacking, not that their lower body

86

is running and upper body is swinging a sword. Technically this tidies up the
code, since when the Al is controlling a character for example, it can tell the
character to run without having to tell it’s upper body and lower body both to
run, which would involve all of the subsequent ’can I run?’ type state check on
the animations. One way to look at it would be the character controller tells
the animation controller what it would ’like to do’, the animation controller
then sets the animations correctly. For example the character controller would
pass on that it wants to run and attack, the animation controller would realise
that that required the lower body to run, while the upper body performed the

attack, none of which is worried about by the character controller.

6.2 Sound

6.2.1 Background Music

The manager the background music transitions the Ambient Sound Manager
component was created. When making the ambient sound manager, I used
2D sounds as build into the engine for the music tracks and attached them
to my own manager. The manager controls them and mixed them based on
flags, for example 'player seen’ and ’'player attacked’. These flags are in turn
controlled by the AI. The blending into and out of tracks itself is logarithmic
as opposed to linear. This means that it is perceived volume (loudness) that
is linear (roughly), rather than actual volume. This is to counterbalance the
non-linear volume of a sound that the human ear hears and gives a smoother
transition. Technically this is not quite true since human hearing also varies
with frequency, that is to say, it is likely that a 1000Hz sound at 1dB will have
a different percieved intensity to a 2000Hz sound at 1dB, despite them both
having the same loudness. However for the puropose of the game this level of

accuracCy was unnecessary.

6.2.2 3D Sound Sources

3D sound sources within the game are normally part of a larger entity. In
almost all cases they have a sound shader light and controller attached to be
visualisable. Before diving into the topic of shaders and the creation of the
sound shader I will first discuss one very important property of the 3D sound
source component provided and that is the ’destroyOnFinish’ property. This
means that when sounds such as footsteps are created they can be automatically
destroyed if this flag is set, thereby making managing memory for such objects

trivial. This also allows automatic destruction of any objects attached to the

87

sound which means that a lifetime is not needed to be specified for the shader

since it is (optionally) destroyed when the sound is.

6.3 3D Graphics

6.3.1 Shaders

Looking at the visual side of things, I will begin with a quick introduction
to the shader system. Shaders in Instinct are written using either HLSL or
assembly language, both of which I learnt for the purpose of understanding the
existing shaders that were build into the engine. By way of strengthening my
understanding I began by writing a simple water shader in HLSL. Once it was
working I then went on to try and tackle (what I thought would be) the harder

task of writing the sound shader.

Listing 11 Example Of An Assembly Language Shader
pixelShader BaseLightDiffuse 1.1

{

ps_1 1

defcl, 1,1, 1,1

tex t0 ; light projected

tex t1 ; diffuse

tex t2 ; normal

tex t3 ; L (cube normal map)
dp3_satrl, t3 _bx2,t2 bx2;N.L
mul rl, rl, t1; ... * diffuse

mul r1, r1, c0 ; ... * light color

mul x2 t0, c1, t0 ; light projection x2
mul 10, r1, t0 ; ... * light projection

88

Listing 12 Example Of A Similar HLSL Shader
pixelShader

{

#include "base/materials/BaseHLSL.material"
// Constants

sampler2D lightProjectionMap : register(s0);
sampler2D lightFalloffMap : register(s1);
sampler2D diffuseMap : register(s2);
sampler2D normalMap : register(s3);
sampler2D specularMap : register(s4);

float4 lightColor;

float specularPower;

COLOR main(in BASE LIGHT PS In)

COLOR ¢;

float3 light _map = tex2Dproj(lightProjectionMap, In.lightProjectionUV)
*2.0f;

float3 falloff map = tex2Dproj(lightFalloffMap, In.lightFalloffUV);

float3d diffuse — tex2D(diffuseMap, In.diffuseUV);

float3 normal — tex2D(normalMap, In.normalUV) * 2.0f - 1.0f;

float3 L — normalize(In.L);

float3 bump = clamp(dot(normal, L), 0.0f, 1.0f);

float3 V = normalize(In.V);

float3 H = normalize(L + V);

float3 specular — clamp(dot(normal, H), 0.0f, 1.0f);

specular — pow(specular, specularPower.x) * 2.0f;

specular = specular * tex2D(specularMap, In.specularUV);

c.color.rgb = (bump * diffuse + specular) * light map * falloff map *

lightColor;

c.color.a — 1.0f;

return c;

}
}

6.3.1.1 Shaders and Materials Within Instinct

The shader system within Instinct is intimately related to the material system,
as touched upon in 3.3.5, used to create materials to texture scene meshes with.
Indeed shaders are located at a deeper level of the inheritance provided for
material files. If parent material files were traced sufficiently far back eventually
a shader would be encountered. However the inheritance hides much of this and
when defining a material such as in figure 3.17 the existence of the shader is

almost hidden other than for saying which parent material to use.

Going into more depth now, material files essentially comprise of the following

structure [5]

89

Listing 13 Material File Structure

BaseMaterialName

{

States

{
}

Blending, depth and culling options for the surface are defined here

pass 0

{

}

Class
{

Shader language and required hardware specified for pass here

}

Texture TexNamel

{

Texture flags set, for example number of frames for TexNamel

}

Texture TexName2

{

Texture flags set, for example number of frames for TexName2

}

VertexDeclaration

{

Vertex shader inputs are defined here, for example position

}

VertexShaderConstants

{

Define vertex shader constants here

}
VertexShader

{

Define vertex shader here

PixelShaderConstants

{

Define pixel shader constants here

}
PixelShader

{

Define pixel shader here

}

Pass 1

{
}

90

With the above material defined we can now override it and give the shader a
new texture, as was shown in the reference given immediately above, using the

following material definition.

Listing 14 Overridden Material Example

NewMaterialName : BaseMaterialName

{

TextureAliases

{

Here we can now override the default textures by adding for example:
TexNamel = NewTextureName

It is also possible to do more complicated inheritance within Instinct, for exam-

ple a state could be overridden in the following way.

Listing 15 Overridden State Example
NewMaterialName2 : BaseMaterialName

{

States

{
}

cullMode = none

}

This would serve the purpose of turning off back face culling on any surface to
which the material was applied. In addition to overriding material elements in
this fashion, it is also possible to define commonly used elements outside of a

material and parent the material’s element to it. For example

Listing 16 Externally Defined Material Elements
States CommonState

{
}

NewMaterialName3 : BaseMaterialName

{
}
NewMaterialName4 : BaseMaterialName2

{
}

cullMode — none

States : CommonState {}

States : CommonState {}

91

Of course this is not just restricted to states, in fact it is possible to use most
pieces of a material in this way. Elements all the way from the shaders up to
the passes can be inherited and overridden in this fashion which gives a great

deal of code reuseability.

6.3.2 Water Shader

The water shader is calculated by using the incident eye ray, per fragment, to
calculate the reflection and refraction rays based upon the surface’s normal map
at that point. The reflection ray is used for an environment map lookup (the sky
box) and the refraction ray traverses a fixed distance under the surface before

doing a 2D texture lookup for the lake/river bed.

Figure 6.2: Water Shader Calculations

Reflected Ray Incident Ray

Water Surface

Refracted Ray

Lake/River Bed

The final pixel colour is then calculated by blending the two ray contributions
taking into account the Fresnel term. The shader was also capable of
accepting animated and scrolling textures. For example in the river a
non-animated version is used which scrolls, in the lake and pond an animated

non-scrolling version is used.

92

Figure 6.3: Water Shader Applied To A Test Scene

6.3.3 Sound Shader

The problem of representing sound through vision has many different approaches
that could be used. When implementing the sound visualisation I found that
some would be more convenient to apply than others due to the architecture of

the game engine.

6.3.3.1 Initial Approach

When starting out the initial approach was to create a shader that would be ap-
plied to every surface, the result of which would be the intensity of the incoming

light’ from the sound source. Formally, if

x is the point in space being lit

x; is the position of the sound source ’lighting’ x

t is the time since the sound’s creation time

I is the intensity of the incident light at x from an individual sound source

then the distance between them is d = |z — x|

It is at this point that I diverge from the traditional diffuse lighting model in

that I calculate the intensity of incident light in the following manner:

93

Firstly define T'(d) as the time taken for the sound to travel a distance d,
typically this will be linear.

Then
If the sound has reached the point, i.e. t > T(d)

I=f(t—T(d)), where f(t) is the intensity of the sound’s

waveform at time ¢ after creation

Once the sound has played out the sound source (and with it the light source)
is destroyed. As such the waveform, due to it being finite in duration, can

either be represented in it’s 'mathematical’ form in the shader

(e.g.,f(t):sii(lt)), or in order to save computation can be pre-calculated and
used as a 1D texture lookup. The approach can be generalised by the use of

environment, maps to take into account periodic waveforms.

In it’s favour this approach is highly customisable and (fairly) accurately
represents the ’feel’ of the wave being emitted (e.g. A spike in intensity of the
sound will show up visually). Unfortunately this approach is very hard to
implement given the time constraints based on the architecture of the engine
[6]. While I did get a version of this working with only a single sound source,
generalising it to many sources would have proved too time consuming to

implementing and in all likelihood too expensive computationally.

Figure 6.4: Preliminary Sound Shader Screenshot

Camera x

_Light 14

94

6.3.3.2 Chosen Approach

The final approach we decided upon is a compromise between artistic control-
lability and ease of implementation. It relies on the built-in functionality of the
engine’s default light sources, to which I attach a component to control them
as I wish. The built-in 'box’ light sources accept an attenuation texture which
is used to specify the intensity in the horizontal plane based upon the distance
from the light source position. They also make use of a falloff texture which is
used for the vertical falloff. In the case of spotlights these textures are handled
differently but since these are not used in-game I will not discuss them here.
The box light itself is defined by a point together with a box specifying how far
it can effect over which the textures are scaled in their respective faces. The
lighting intensity is then calculated for a point within the box by looking up the
intensity in both the attenuation and falloff textures (by projecting the point
into the plane and line respectively). These looked up values are then multiplied

to give the final intensity. For clarification see figure 6.5 below.

I modify this for the sound shader by firstly changing the texture for a halo
type texture

95

Figure 6.6: Original Light Texture Compared To New Light Texture

(a) Original Attenuation Texture (b) Modified Attenuation Texture

The new component then takes care of the rest by calculating how long the
sound source has been ’alive’ for and scaling the attenuation box, as well as
intensity of the light source by linearly interpolating the values based on the
age between start and end times for the sound. This is not strictly correct in
the sense that sound waves do not physically behave like this, but visually it
gives an acceptable effect without too much of an impact to the hardware
unlike some of the previous techniques. The final effect in-game is as below in
figure 6.7.

Figure 6.7: Sound Shader Screenshot

96

6.3.4 Skydome

The skydome was created using the skylab in Bryce 5. I rendered out the
sky from six different directions in order to form an environment map which
was then put together in Photoshop. Once constructed I exported it using the
Nvidia DXT exporter. Once it was in DXT format I wrote a shader to apply

the texture as an environment map onto the skydome mesh.

6.3.5 2D Unlit Shaders

For some surfaces such as loading screens, overlays and the HUD lighting was
not important. For these cases a collection of shaders was written to deal with
several of the specific cases and different blend modes required. For example the
HUD background required 8-bit transparencies, whereas other overlays required

1-bit while some required no transparancy at all.

6.4 2D Graphics

2D graphics in the game were handled by creating a quad based upon the aspect
ratio of the screen. The quad’s transform was then parented to the current
camera and it’s transform set so that it was a fixed distance away. Parenting
it meant that it would remain fixed in front of the camera during gameplay. It

was using this technique that all 2D graphics were drawn to the screen.

6.4.1 HUD

In the case of the HUD, a template was made consisting of several pieces. Below

is an outline of the template [Listing 17]:

97

Listing 17 HUD Entity Template
EntityTemplate

{

_name — "BC_Package/HUD"
_description = "HUD Entity"
__components = "Transform:Transform,

HealthTransform:Transform,

Light Transform:Transform,

SoundTransform:Transform,

HUDManager:HUDManager,

Mesh1HealthBar:Mesh,

Mesh2BG:Mesh,

Mesh3LightBar:Mesh,

Mesh4SoundBar:Mesh"
Mesh1HealthBar.MeshFilename — "MO _Package/models/HUDquadhealth.mesh"
Mesh1HealthBar.SmmFilename = "MO _ Package/models/HUDquadhealthl.smm"
Mesh1HealthBar. TransformName= "@this.HealthTransform"
HealthTransform.Parent Transform = "@this. Transform"

Each HUD element, for example the health bar, has a mesh and a transform
associated with it to control it’s position on screen. The health level, light
level and sound level bars are all parented to the background transform, which
in turn is parented to the camera. Additionally there is the HUDManager
component which controls how the transforms are updated. Each frame it
acquires, for example, the current health of the player and updates the

respective transform in the entity.

6.4.2 Menus and Loading/Ending Screens

The main menu is acheived using a 3D rendered scene for the background. The
flashing text that appears on the start menu (saying “press A”) was acheived
by using a HUD entity. While the full functionality of the entity type was not
needed, for the text, it sufficed to set the background transform and mesh up.
The other transforms were then set to be off the screen and as such only the text
remained. The flashing text that appears was acheived by putting an animated

texture on the quad used for text.

The loading and ending screens we acheived by swapping the HUD
background (the sprite that "held’ the status bars) with the respective screen
background. Additionally the other elements were moved off screen all of

which was acheived via a collection of scripts.

98

6.4.3 Pickup Notification

Pickup notifications refer to the text that flashes up on the screen during game-
play to inform the player of events such as a ’stealth kill” or ’artifact collected’.
The implementation was similar to that of the HUD entity, however due to the
way in which animated textures work in the engine it was not suitable to simply
apply an animated texture to the screen quad. This is because there was no
way of telling it when the animation should start so if attempted this way the
start frame of the animation would not necessarily be the one intended. To get
around this materials were made for each frame separately and a PickUpNotifier
component was written in order to swap over these materials and eventually kill

the text once it had been displayed.

6.5 Gameplay & Scripting

Instinct supports Lua scripting which we used for many of the scripted gameplay
elements since often it is quicker to add and modify than the equivalent func-
tionality in a piece of code. The other invaluable component supplied is that of
the ’trigger block’. Trigger blocks define a box in space such that when a par-
ticular object or selection of objects passes through them they trigger a script
to be run. Linking the trigger blocks to the scripts allows for various gameplay
techniques to be implemented, for example, menu/end screen transitions, object

pickups and powerups. I provide more detail and examples below.

6.5.1 Score Manager

One component that had to be written from scratch was the score manager.
The score manager was a simple device which (unsurprisingly) kept track of
the various elements used to produce the score. For example, had the player
been seen by guards, had they been heard, number of guards killed, etc. These
various variables were updated mainly by the character controller & AI during
the course of the game. The final score is then calculated by a function built
into the class which outputs a file detailing the players performance during the

level which is displayed upon completion of the level.

6.5.2 Menu Transitions

The menu transitions work differently depending of where in the game the tran-
sition is occuring. If the player is in the main menu or loading screen then due

to lack of a player, there is no player input controller. However the engine comes

99

with what is called a command mapper. This takes input from the keyboard,
mouse or gamepad and can be used to perform scene transitions by mapping

the appropriate input to a script call to change scene.

In game, things work a little differently. Rather than use the comand mapper
for input, the player input controller is used instead. In essence there is little
difference between what actually happens to change scene. A script is called in
both cases, however in the case of the player input controller, it is called from
within the code. In the case of the command mapper, it is a script calling

another script.

6.5.3 End Screen Transition

Unline the menu transitions, the end screen displaying is an automated process
whenever the player gets within range of their mission target. The end screen
is activated by a trigger block around the destination that the player had to
get to. This then runs a script telling the HUD manager to put the 'mission
success’ screen over the background as well as calling a function in the score
manager to output the statistics of the players performance to a file. This file

was then read in and displayed on the screen.

6.5.4 Pickups

The pickups are derived from a base pickup template the important lines of
which are listed below [Listing 18]

Listing 18 Base Pickup Template
EntityTemplate

{

name = "BC Package/PickUpBase"
_description = "A base template for pickups.”
_ parents — "example/selector/Trigger Volume"
~ components = "TriggerCondition:VolumeTriggerCondition,
Trigger:Trigger,
Transform:Transform,
Shape:BoxShape,
PickUpMesh:Mesh"
Trigger.scriptFile — "BC Package/scripts/PickUpTrigger.lua"

For illustrative purposes I also give an example of how the health pickup inherits
this [Listing 19|

100

Listing 19 Health Pickup Template
EntityTemplate

{

._name — "BC_Package/PickUpHealth"

._description — "A health pickup."

._parents = "BC_ Package/PickUpBase"

._components = "PickUpHealth:PickUpHealth"

._completeEntity — yes

PickUpMesh.meshFileName — "MO Package/models/selectorHealth.mesh"
PickUpMesh.smmFileName — "MO Package/models/selectorHealth.smm"

}

The pickups, much like the end screen transition, each use a trigger block as
part of a pickup template in order to detect for proximity of the player. When
the player triggers the block, a script is run, which in turn runs a member func-
tion of the pickup entity component within the entity. This member function
performs the pickup-specific functionality, for example adding health, followed

by spawning of any feedback entities and finally destroying itself.

6.5.5 Footstep Toggling

In order to change the footstep sounds over various surfaces trigger blocks were
once again employed. This time the character controller had a member variable
added which contained the name of the template that would be used to create
the footstep entity. When the animation triggered the footstep entity to be
created it would use this template for it. Similarly a template was specified
for the particle system to use for any dust or splashing particles to create on
a footstep. Each of these variables was changed by a script called when the
player entered/left an area (trigger block). For example going from a stone
floor indoors to grass outdoors changed the footstep sound template from a
stone sounding footstep to a grass one. It should be noted that these footstep
templates aren’t just sound sources, the templates also contain a sound shader

light source and a sound shader controller for managing the sound shader light.

6.5.6 Floorboards

The creaky floorboard was simply created using a trigger volume which called
a script to create a creak sound. Like the footsteps it also had a light source
and sound shader manager as part of the entity. The entity itself cound be used
for a more general group of effects in which the player triggers a sound, it is

not specific to the creaking sound. It could even be used for fairly complicated

101

effects such a water dripping on the floor, which if you stand underneath it it

stops. Sadly due to time constraints this did not get into the demo in time.

6.6 Particle Effects

Instinct supports a very powerful particle effects system with many specifyable
properties. The properties that can be specified fall under three main categories.

These are

e Emitter
e Behaviours

e Graphics

The emitter section allows the designer make choices about the shape and ex-
tents of the object that the particles are emitted from as well as the rate at
which they are emitted. The behaviours section controls parameters such as the
forces to be applied as well as any colour transitions that should occur over the
particle’s life. In the graphics section one can change the orientation of parti-
cles with respect to the camera as well as any material properties they wish to

specify beyond the simple transitions specified in the behaviours section.

Particle effects were used extensively in the game, some of the uses of which I

detail below.

6.6.1 Waterfall

The waterfall particle system was used in the garden at the beginning of the
level where the stream from the mountains flows into the pond. It uses two
particle systems in order to create the effect, one for the falling water droplets
from the top of the fall and one for the mist generated at the bottom of the fall.
Each of these systems has a different sprite associated with it as visible in the

screenshot below.

The emitter volume for each system was a long thin box alligned with the edge
of the waterfall. One at the top and one at the bottom. In the case of the
droplets they were given no initial forces and left to simply fall under gravity.
With the mist gravity was ignored and the initial forces were random upto a

certain maximum force.

102

Figure 6.8: The Waterfall Particle System

6.6.2 Clouds

The cloud particle system, as one would expect, is positioned in the sky. Ad-
ditionally however it is used for the puropse of mist over the lake. The emitter
volumes for these are, as with the waterfall, long thin boxes. The colud emitter
is positioned just behind the mountain, the other under the jetty. The system
itself is the simplest used in the game and consists of only one sprite. Due to
the slow nature of the cloud movement it was possible to use very few particles
to cover the sky provided they were sufficiently large and had quite a long life-
time. In-game there are approximately 150 particles used at any one time on
the clouds and another 150 for the mist. The way in which the clouds work is
by additively blending the sprite over the top of the skydome background using

a very low alpha value.

103

Figure 6.9: The Cloud Particle System Within The Game

6.6.3 Torches

The flaming torches have different implementations depending on which torch
type it is. In the case of wall torches 6 particle types were used, in the case of
the freestanding torches 7 types were used. The torches are the most expensive
particle systems in the game each one coming in at around 400-800 particles.
In the case of the freestanding torches an additional effect I added was to apply
refraction when looking through the flame to what was behind, as if the heat
was making the torch’s background shimmer. This was acheived by creating a
single billboarded quad within the flames and applying a refraction shader onto

it which refracted the framebuffer.

104

Figure 6.10: Freestanding Torch Screenshot

6.7 Tools

During the course of making the game I wrote several helper functions, scripts
and applications just to make the process flow more smoothly. The functions
themselves were added to BC _Components.dll and the header was supplied to

the other packages for use in external code.

6.7.1 Raycasting Functions

One set of functions that proved useful was the ability to perform raycasts which
I mainly used to determine the correct position for the camera so that it did
not go behind walls. Instinct supports raycasts as part of the build in physics,
however these functions made it simply one line to perform various ray queries,
rather than numerous preparatory ones. One thing we had to be careful of was
the use of the various physics objects because due to the raycast being a physics
query it collided with the collision mesh for an object which in many cases was
not it’s actual mesh. More problematically the trigger volumes used for many
things as discussed in 6.5 counted as as collidable geometry. Therefore walking
through a door for example which had a trigger volume to change footstep

template could force the camera forwards since it couldn’t ’see’ the player due

105

to the volume being in the way. This issue was got around by the use of "collision
masks’ which allow the designer to select which types of items the ray can collide
with.

6.7.2 String Conversion Functions

Instinct has it’s own string format, but often we would want to use STL strings,
for example. Therefore I wrote various conversion functions both to and from
their format and STL.

6.7.3 Animation Splitting Tool

In order to use the animations with our customised animation system, the an-
imations needed splitting first. I created a GUI driven tool written in Visual
Basic for use by the artists to split up the animations from Instinct’s own format
into two animations, still in the correct format for Instinct, but separated into
upper and lower body files. This was acheived by supplying the tool with two
files, each listing the bone names that would be searched for and kept, one for

the upper body and one for the lower body.

Figure 6.11: Screenshot Of Animation Splitter

Animation Splitter

Input File

Output Files
Lower Animation File Prefis E sport Export

Lower Bonesz File Path |E:\F'mgram FilezhnstinctStudiotf1.7. 27044 pack agestB C_F'ac:kage\tcl

Upper Animation File Prefis Export

Upper Bones File Path |C:\F'mgram Files\InstinctStudiov. 1. 2704%packageshB C_F'ackage'\tcl

Log

106

6.7.4 Code Writing Tool

During the writing of the character controller it became necessary to write a
tool to automate some of the repetitive code writing. The reason for this was
due to the large number of animations that needed to be set. In terms of setting
and getting anamations there were 96 functions to write, each function being
approximately 25 lines long. While it would have been possible by hand the
functions themselves were not trivial to write and various uses of the functions
were required in the code. For example the definition and declarations for the
functions were in the same file, however the functions needed defining in the
class, so a seperate list of predeclared functions had to be written to go there.
Additionally interface functions had to be written so that the various scripting
processes within Instinct could function. This meant that animations alone ran
into literally hundreds of functions. For that reason I implemented a method
of automating the code writing whereby the user could specify a template for
the code, together with what varied from function to function. The tool could
be run and code was output, based on this template and the inputs for the

variables, for example function name.

6.7.5 Package Synchronisation Scripts

I wrote the scripts we used to synchronise our work over the network. They
consisted of scripts to upload a newer version of our own work to a central server,
as well as download the latest (uploaded) version of everyone else’s work. The
scripts were simple batch files that relied on using the command prompt (cmd)

commands.

107

Chapter 7

Characters and Animations

By Seb Huart / Matt Osbond

7.1 Character Design

The enemy characters were based on sketches of Imperial Guards from the Edo
period of Japanese rule. This gave the characters a more stylistic feel, with
elements such a large sword, baggy trousers and tied back hair combining to

give an artistic look.

Figure 7.1: Design Sketch

(a) All major assets in the game began as a
2D design sketch.

108

7.2 Texturing

It was important to allow the textures of the characters to be considerably high
resolution. This was especially the case with the main character (the ninja) as

it would be permanently within the players view, not to mention close up.

Figure 7.2: Ninja Texture Map

(a) The texture map was created from one alrge UV output.

7.3 Animation Cycles

The complicated nature of the movements involved with a stealth game meant

that the rigs for the characters had to be versatile. The cycles were created

109

as a small loopable animation clip that were then belnded together using the

character controller.

Figure 7.3: Guard Animation Rig

(a) The rig was developed to allow for a greater freedom
of movement.

110

Chapter 8

Feedback and Critical
Analysis

8.1 Feedback Sheet - Protoplay

At the finale of the Protoplay event, the teams were presented with a sheet of
feedback. This was a collated list of responses from the judges in the competi-

tion:

e Should have spent more time refining fewer features

e Looked somewhat unfinished

e Gameplay simple but not particularly unique

e Lot of potential with further development

e Sound detection visually interesting

e Dissection technically impressive

e Nice character profiles. Clear to see what was happening in game world
e Seemed to be trapped within graphic styles

e Nice ideas - good job of executing difficult plan

e Technology good but let down by being typical ninja game

e Ambitious project but don’t think they focussed on what they wanted to

do very well

111

e Left me with unmatched expectations

e Good backgrounds, sonar nice but not different enough, story well thought

out

e Public vote - bottom third of table

The general consensus is that there is nothing wrong with the game, it’s just

that it was a) not polished enough, and b) not original enough.

These are two valid points, but unfortunately it is too late to do much about
the second one. However, we were given the opportunity to focus on polishing

the game, and as such have done so for submission.

8.2 Conclusion

The game presented us with numerous challenges along the way, from small
hurdles such as textures not mapping correctly to game breaking engine troubles.
The ability of the team to overcome each of these challenges is a testament
to both their determination and their team spirit. Communication amongst

members was critical to success.

The final product is of a standard that many judges and professionals confirmed
was closer to industry level than any other production at the event; on one
occasion a senior member of a respected company mentioned that if they were
to ask their programmers to develop the features of the game within the same
time frame then they would struggle to do so. The main drawbacks seemed
to be, as aforementioned, the unoriginal idea and the lack of polishing. These
elements, in fairness, were not our primary area of focus (impressive visuals
and technology were), but knowing that a simple element such as last minute

iteration let us down is a lesson we will all take away with us.

Although it is of course disappointing that we did not make it through to the
final round, the experience of working within a professional environment at
industry level is invaluable. Likewise, successfully seeing an entire production
through from concept to realisation is valuable to us all in terms of experience
and employability. The final game is of a quality that surpasses any expectations
that were held at the beginning of the production. This is due partly to the
pressure that was placed on us via the submission of the project for not only
the competition, but also our dissertation. However, the main factor is that the
production was a steep learning curve for us, as we all left at the end with a far
greater knowledge of not only our subject areas but also the game production

industry in general.

112

Appendix A

Scheduling and Project

Management

113

Initial Schedule

N |

Figure A.1: The Team’s Schedule

Ergophobia — Production Schedule

Week Number Week Dares Individual Roles
Hasan Ben Al Seb Matt
Orientation and Instinct Learn inner workings of Examine Instinct Engine Begin character designs and Set-up .mesh pipeline, load
1 06= - 10® Tune practising instinct and scrpting concepts geometries mto Instinet
Practising Instnct in Assist in pipeline for custom | Expeniment with Instinct entifies Finalise character designs Textures loading, environment
2 11% - 17% Tune general / VS8 components content concepts, audio decisions
Work on mtegrating physics| Work on creating a 'player’ Implement custom data fypes Begin modelling characters. | Begin modelling of environment,
3 185 - 24% Tune into the game component for the engine animation cycle tests script for voice talent
Work on mtegrating Al into | Create custom components and Begin programming cufting Set-up animations for use in Story and level design.
4 25% 14 Tuly the game work with shaders system, detection algorithm Instnct, modelling guard environment modelling
Work on integrating Al into | Continue on player component Curting scenario analysis. Contnuing animation and start | External environment modelling.
3 24 _ g Tulv the game Interface with Instinct. textuning. modelling guard audio mtegration
Work on integrating AL/ Continue work on shaders, Begin creating new polygons. | Starf boss modelling, animation| Props for scene, internal and
6 o _ 15% July starting with physics implement sound shader switch Normals, UVs, materials. cycles continued. texturing external. Audio..
Work on infegrating physics | Work on interface for character Sorting of new data, joining Animation. comic start, Texture painting and UV
7 16% - 224 Tyl into the game state changes surfaces, creating new abjects. texturing mapping
Work on integrating physics Finalise 211 above stuff Creation of new surfaces. New Animation, get everything Texturing and texture
3 237 2202 Tuly into the game collision geo, bones & physics. finished by now optimisation
Testing, debuggng and | Debug. fiveak. optimise. test. . Finishing up Relaxing maybe? I hope so Texture and shaders switching
] 30% - 5% Augnst opliusng
Testing. debugoing and Debug to perfection! Fimshing up and debugging Debugging animation ;P Final brush up of aesthetics
10 6% - 12% August optimising

13% - 19" August

DARE PROTOPLAY

114

A.2

Post-1t Board

Figure A.2: The Team’s Post-It Board

115

Appendix B

Screenshots

116

117

118

Appendix C

Design Document

This page is intentionally left blank.
The Design Document is located at page 124

119

Bibliography

1]

2]

3]

4]
1]
[6]
7]

18]

19]

[10]

[11]

Szalai, G. 2007. Video game industry growth still strong [on-
line]. California, The Hollywood Reporter. Available from
http://www.hollywoodreporter.com /hr/content _display/business/
news/e3if5{9e6af1f789e8¢28399b0253e7b78d

Cook, D. 2007. The Chemistry of Game Design [online|. California, Gama-
sutra. Available from http://www.gamasutra.com/view /feature/1524/

the chemistry of game design.php?print=1

Scrum Methodology: http://www.controlchaos.com/ and
http://www.softhouse.se/Uploades/Scrum eng webb.pdf

Picture Reference: http://www.rockstargames.com/maxpayne/main.html
Instinct Engine Documentation: located within the Instinct 'docs’ folder
Instinct Engine Package Reference: located within the Instinct docs’ folder

LUGER. G.F. 2002. Artificial Intelligence structures and strategies for com-
plex problem solving. Pearson Education Ltd: Harlow, England UK

BOURG. D. M. and SEEMANN. G., 2004. AI for Game Developers.
O’Reilly Media, Inc.: USA.

WATT. A. and POLICARPO F. 2001. 3D Games , Real-time Rendering
and Software Technology. Pearson Education Ltd: Harlow, England, UK

Black. P. E., "finite state machine", in Dictionary of Algorithms and Data
Structures [online|, Paul E. Black, ed., U.S. National Institute of Standards
and Technology. 24 February 2006. (accessed 31 August 2007) Available
from: http://www.nist.gov/dads/HTML/finiteStateMachine.html

BROWNLOW. M., 2004. Game Programming Golden Rules. [on-
line]. Charles River Media., VA: books24x7.com. Available from:
http://library.books24x7.com/book/id 10420/

120

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

viewer.asp?bookid=10420&chunkid=0164695988 [Accessed 8 September.
07]

Pick, S., (_ @europ.ea.com) 6 Sep 2004. RE: Please Advice. e-mail to
Atieh, H. (has981@hotmail.com)

SCHWAB. B., 2004. AI Game Engine Programming. [on-
line]. Charles River Media., VA: ebrary.com. Available from:
http:/ /site.ebrary.com/lib/bournemouth /Top?id=10074871&layout=home
[Accessed 30 August 07]

Woodcock, S. M., 2007. Game AI Resources: State Machines & Agents.
Available from: http://www.gameai.com/ [Accessed 8 September 2007].

BUCKLAND. M., 2005. Programming Game Al By Ex-
ample. [online]. =~ Wordware Publishing, VA: books24x7.com.
Available from: http://library.books24x7.com/book/id 9482/
viewer.asp?bookid—9482&chunkid—0722540724 [Accessed 9 Septem-
ber 07]

BIELSER, D., MAIWALD, V. Interactive cuts through 3-dimensional soft
tissue, Computer Graphics Forum 18(3): C31-C38, 1999.

BRUYNS, C., MONTGOMERY, K. Generalized Interactions Using Virtual
Tools Within the Spring Framework: Cutting, Medicine Meets Virtual Re-
ality (MMVRO02), Newport Beach, CA, January 23-26, 2001.

SHEWCHUK, J. Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator, 1st workshop on applied computational geometry, Associa-

tion of Computing Machinery, Philadelphia, pp 124-133.

VAN DEN BERGEN, G. 1998. Efficient collision detection of complex de-
formable models using AABB trees. Journal of Graphic Tools 2 (4) 1-13

http://www.naturalmotion.com

121

Index

3D Studio Max, 36

AABB trees, 56

AT, Placing In The Environment, 32
Artificial Neural Network, 66
Autodesk Maya, 36

Bryce, 97

Character Control, 73, 86

Character Design, 108

Cutting, Design, 46

Cutting, Integrating Into Instinct, 52
Cutting, Testing for Intersections, 48

Dare to be Digital, 9
Deterministic FSM, 68
Dynamic Link Library, 15, 85, 105

Entity Component, 12
Entity Manager, 12
Entity Template, 13
Ergophobia, 18
Explicit FSM, 68

Fable 2, 34

Finite State Machine, 64 73, 75, 78,
80, 82

Footstep Triggers, 43

Fresnel, 92

Fuzzy Logic, 66

Gameplay Objectives, 31
Gameplay Options, 28

hardware, 10, 11, 35, 55

HUD Control, 98

Implicit FSM, 68

Instinct API, 10

Instinct Architecture, 10
Instinct Configuration, 15

Instinct Exporter, 36

Layer, API, 10

Layer, Application, 12

Layer, Core, 10

Layer, Entity, 11

Layer, System Component, 11
Level Design, 24

Lighting, 40

Lua, 99

Materials, 38
Microsoft Visual C++ 2005, 15
Modules, 10

Non-deterministic FSM, 68

Non-Player Character, 65-69, 78, 81—
83

Nvidia DXT, 97

Optimisation, LOD, 42

Packages, Base, 16
Packages, Developer, 17
Packages, Reference, 17
Packages, Tools, 17
Particle Systems, 102
Photoshop, 37, 97
Pickup, Artefact, 30

122

Pickup, Health Pack, 30

Pickup, Weapon Amplifier, 30

Player, Rewarding, 29
Polygon Count, 35
Portal Areas, 41
Portals, 41

Potential Functions, 67
Primary Entities, 12
Project Management, 20
Protoplay, 81, 111

Raycasting, 105

Scene File, 12
Scripting, 13

Scrum, 22

Shaders, 88
Skydome, 97

Smart Terrain, 66
Sound Design, 43
Sound Shader, 93-95
STL strings, 106

Texturing, 37
Visual Basic, 106
Water Shader, 92

Zoho Projects, 21

123

