
Maths for CG
Lecture 1 Basic Numbers and Image Manipulation

http://nccastaff.bournemouth.ac.uk/jmacey/MathsForCG/index.html

Monday, 15 October 12

http://nccastaff.bournemouth.ac.uk/jmacey/MathsForCG/index.html
http://nccastaff.bournemouth.ac.uk/jmacey/MathsForCG/index.html

Basic Curriculum
• Basic Maths

• Trigonometry (lines, triangles, circles)

• 3D Maths

• Vectors, Matrices, Affine Transforms

• How Animation Systems work

• The Computer Image, The Animation Pipeline (how XSI, Maya, Houdini, Shake etc really work)

• Some Basic Computer Principles, How the computer Actually works

• Rendering

• How a renderer actually produces and image, Lighting Models, Shading Models.

• And a whole lot more besides.

2

Monday, 15 October 12

Why do I need Maths?
• What this video featuring some of our ex students

Monday, 15 October 12

http://www.dneg.com/dneg_flies_the_flag_for_science_and_maths_417.html
http://www.dneg.com/dneg_flies_the_flag_for_science_and_maths_417.html

Using Python as a Calculator
• To demonstrate some of the principles of Maths for CG we will be

using the python console as a calculator

• This will allow you to get a feel for how computers process
numbers and is advantageous when beginning to create scripts.

Monday, 15 October 12

• A number is an abstract entity used originally to describe quantity.

• i.e. 80 Students etc

• The most familiar numbers are the natural numbers {0, 1, 2, ...} or {1, 2, 3, ...},
used for counting, and denoted by N or

• This set is infinite but countable by definition.

• To be unambiguous about whether zero is included or not, sometimes an
index "0" is added in the former case, and a superscript "*" is added in the
latter case:

Numbers

N

No = {0, 1, 2, ...}N� = {1, 2,}

Monday, 15 October 12

Integers

• The integers consist of the positive natural numbers (1, 2, 3, -), their
negatives (-1, -2, -3, ...) and the number zero.

• The set of all integers is usually denoted in mathematics by Z or ,
which stands for Zahlen (German for "numbers").

• They are also known as the whole numbers, although that term is
also used to refer only to the positive integers (with or without
zero).

Z

Monday, 15 October 12

Integers in Computers
• Most programming languages have an integer data type

• They are usually used for counting and index values

1 An integer is usually in the range -32,768 to 32,767
.

2
3 //C++ / C
4 int a=1;
5
6 // Maya Mel
7 int $a=1
8
9 // Python

10 a=1
11

Monday, 15 October 12

• The number line is a diagram that helps visualise numbers and their
relationships to each other.

• The numbers corresponding to the points on the line are called the
co-ordinates of the points.

• The distance between to consecutive integers is called a unit and is
the same for any two consecutive integers.

• The point with co-ordinate 0 is called the origin.

Number Lines
Origin

0-1-2-3-4 1 2 3 4

Monday, 15 October 12

Rational Numbers

• In mathematics, a rational number (or informally fraction) is a ratio
or quotient of two integers

• It is usually written as the vulgar fraction or a/b, where b is not
zero.

• Each rational number can be written in infinitely many forms, for
example

a

b

3
6

=
2
4

=
1
2

Monday, 15 October 12

0-1-2-3-4 1 2 3 4

1/2 !2 "-5/4

Real Numbers

• For every rational number there is a point on the number line

• For example the number corresponds to a point halfway between 0 and 1 on
the number line.

• and corresponds to a point one and one quarter units to the left of 0.

• Since there is a correspondence between the numbers and points on the
number line the points are often referred to as numbers

• The set of points that corresponds to all points on a number line are called the
set of Real Numbers.

1
2

�5
4

Monday, 15 October 12

Real Numbers

• Real numbers may be rational or irrational; algebraic or
transcendental; and positive, negative, or zero.

• Real numbers measure continuous quantities.

• They may in theory be expressed by decimal fractions that have an
infinite sequence of digits to the right of the decimal point;

• Measurements in the physical sciences are almost always conceived as
approximations to real numbers.

Monday, 15 October 12

Real Numbers

• Computers can only approximate most real numbers with rational
numbers; these approximations are known as floating point
numbers or fixed-point numbers.

• Computer algebra systems are able to treat some real numbers
exactly by storing an algebraic description (such as "sqrt(2)") rather
than their decimal approximation.

• Mathematicians use the symbol R or alternatively to represent
these numbers

R

Monday, 15 October 12

floating point data types

• Real numbers are represented using floating point data types.

• Most computer systems have several ways of representing them

• The different representations are dependent upon the number of
bit the operating system use (32 vs 64)

• In most languages we have two sizes for our real data types.

Monday, 15 October 12

real data types
1 // A float is usually in the range +/- 3.4 e +/- 30 (˜7 Digits)
2
3 // C++ / C
4 float a=2.5;
5
6 // Mel
7 float $a=2.5;
8
9 // Python

10
11 a=2.5

Monday, 15 October 12

Symbols
• Mathematicians use all sorts of symbols to substitute for natural language

expressions.

• Here are some examples

< less than
> greater than
⇥ less than or equal to
⇤ greater than or equal to
⌅ approximately equal
� equivalent to
⇧= not equal to

1 # less than
2 a<b
3 # greater than
4 a>b
5 # less than or equal to
6 a<=b
7 # greater than or equal to
8 a>=b
9 # Not equal

10 a!=b
11 # equality
12 a==b

Monday, 15 October 12

Boolean Values
• Boolean values are used to hold truth values.

•Typically in a computer these values are stored
as

• 1 == true

• 0 == false

• Some modern languages actually use the values
true and false to make the code more readable.

•We use boolean values to store the results of
comparisons

1 #!/usr/bin/python
2
3 a=1
4 b=1
5
6 print a<b
7 print a>b
8 print a<=b
9 print a>=b

10 print a!=b
11 print a==b

1 False
2 False
3 True
4 True
5 False
6 True

Monday, 15 October 12

Comparing Floating point values
• floating point data values are not accurate and comparing them may

lead to strange problems (especially in Python)

• Consider the following python example

1 #!/usr/bin/python
2 # declare a to be equal to 0.2+0.1 (should be 0.3)
3 a=(0.2+0.1)
4 # declare b as 0.3 directly
5 b=0.3
6
7
8 print "testing equality"
9

10 if(a == b) :
11 print a,b," are the same"
12 else :
13 print a,b," are different"

Monday, 15 October 12

Better Comparison
• Usually with floating point values we compare to see if we are close

• To do this we use an error margin (usually called epsilon)
1 #!/usr/bin/python
2
3
4 def FCompare(a,b) :
5 epsilon = 0.0000000000001
6 return (((a)-epsilon)<(b) and ((a)+epsilon)>(b))
7
8 # declare a to be equal to 0.2+0.1 (should be 0.3)
9 a=(0.2+0.1)

10 # declare b as 0.3 directly
11 b=0.3
12
13
14 print "testing equality"
15
16 if(FCompare(a,b)) :
17 print a,b," are the same"
18 else :
19 print a,b," are different"

Monday, 15 October 12

Tuples
• In mathematics and computer science, a tuple is an ordered list of elements.

• We use tuples to represent a number of things in computer graphics

• For example

• Colour

• [1.0,0.0,0.0,1.0] R,G,B,A

• Position

• [2.5,3.4,2.0,1.0] X,Y,Z,W

Monday, 15 October 12

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science

Operations on Tuples
• A tuple provides a simple way of combining related data together in

an ordered set

• We can access the individual elements using an integer index as
follows

>>> tuple=[1.0,0.3,2.3,1.0]
>>> print tuple[0]
1.0
>>> print tuple[3]
1.0
>>> print tuple[2]
2.3
>>>

Monday, 15 October 12

Piecewise Operations
• It is not uncommon to execute piecewise operations on tuple data

• For example we may wish to scale all the elements

• Or add two tuples together

[0.5,1.0,0.2,1.0]*2 = [1.0,2.0,0.4,2.0]
[0.5,1.0,0.2,1.0]+[0.3,1.0,0.8,2.0] =
[0.8,2.0,1.0,3.0]

Monday, 15 October 12

Representing Colour
• We can represent colour using many different methods, however

the most common in CGI is the RGB or RGBA tuple

• Typically we represent colour as intensity values where

• 0.0 is no intensity

• 1.0 is full intensity

• We then combine these together into a tuple to represent colour

[1.0,0.0,0.0] = Red channel full intensity
[1.0,1.0,1.0,1.0] = White with full opacity

Monday, 15 October 12

2D Images

• Typical 2D images are a collection of tuples where each tuple
represents a single pixel

• This simple bitmapped format is the easiest to store and manipulate

• There is a 1-1 relationship between the pixel value and the data
stored

• There is no attempt at image compression or saving space

Monday, 15 October 12

3196 Width

2634 H
eight

0.37 0.1980.003

Red Green Blue

Each Pixel channel is a range from 0.0-1.0
(float)

Each pixel has 3 channels (RGB)

Therefore we have
(3196*2634)*3*sizeof(float) bytes

101019168 bytes of data

pixel

Monday, 15 October 12

Piecewise Image Operations
• In the previous example we can see that the image is

represented in a 2 dimensional grid or table

•We can access the elements using integer cartesian co-
ordinates to grab a pixel at the row and column

•Typically we represent the top left corner as having a co-
ordinate or 0,0

•The bottom left as [width,height]

•We can write an algorithm to apply some sort of operation
on a per pixel basis

Monday, 15 October 12

Basic Per Pixel Op

Load Image
for y in 0 to Image Height :
for x in 0 to Image Width
GetPixel at x,y
..... [do something]

Write out Image

Monday, 15 October 12

Greyscale Algorithms (Cook 2009)

• Lightness method

•max(r,g,b)+min(r,g,b)/2.0

•Average method

• (r+g+b)/3

• Luminosity

• 0.21*r+0.71*g+0.07*b

Load Image
for y in 0 to Image Height :
for x in 0 to Image Width
RGB=GetPixel at x,y
grey=(R+G+B)/3.0
Write grey to Pixel at x,y

Monday, 15 October 12

Lightness Average LuminosityOriginal

Monday, 15 October 12

Look Up Table (LUT)

•An alternative approach to processing image data is to use a
lookup table or LUT

•This is a simple graph that maps the input to output values

•This ranges from 0-1 on the input and 0-1 on the output

•The default graph would look like this

Monday, 15 October 12

Default LUT

Images from Brinkmann 2003
Monday, 15 October 12

Brightness (or Exposure or Gain)

• If we take each pixel and multiply it by a single value (as
shown in the earlier slides)

•We could implement a brightness option

• For example a brightness of 2.0 can be expressed as follows

I = input Image
O = output Image
O= I x 2.0

Monday, 15 October 12

Brightness (or Exposure or Gain)

x2.0Input output

Images from Brinkmann 2003
Monday, 15 October 12

RGB Multiply
• In the previous example we multiply each of the tuple values

by 2.0

•Usually we would create a LUT for each of the individual
channels and apply different values to each channel

• In the following example we will apply

Or=Ir * 0.1
Og=Ig * 1.25
Ob=Ib

Monday, 15 October 12

RGB Multiply

Images from Brinkmann 2003
Monday, 15 October 12

Non-Linear LUT
• In the previous examples all of the graphs have been linear

(straight lines)

• In many cases we actually want to use a curve or non-linear
LUT

•A simple example of this is gamma correction

•This can be expressed using the equation

O=I1/Gamma

Monday, 15 October 12

Gamma Correction

Images from Brinkmann 2003
Monday, 15 October 12

Gamma Correction

•Gamma correction works well because if you examine the
graph you will see

•When you raise 0 to any power it remains 0 (03 = 0)

•When you raise 1 to any power it remains 1 (13 = 0)

Monday, 15 October 12

Simple Contrast

Images from Brinkmann 2003
Monday, 15 October 12

Smooth Contrast

Images from Brinkmann 2003
Monday, 15 October 12

Alpha Compositing
• alpha compositing is the process of combining an image with a

background to create the appearance of partial transparency.

• In order to correctly combine these image elements, it is
necessary to keep an associated matte for each element.

•This matte contains the coverage information - the shape of the
geometry being drawn

•This allows us to distinguish between parts of the image where the
geometry was actually drawn and other parts of the image which
are empty.

Monday, 15 October 12

The Alpha Channel

•To store this matte information, the concept of an alpha
channel was introduced by A. R. Smith (1970s)

• Porter and Duff then expanded this to give us the basic
algebra of Compositing in the paper "Compositing Digital
Images" in 1984.

Monday, 15 October 12

The Alpha Channel
“A separate component is needed to retain the matte information, the extent of
coverage of an element at a pixel.
In a full colour rendering of an element, the RGB components retain only the
colour. In order to place the element over an arbitrary background, a mixing factor
is required at every pixel to control the linear interpolation of foreground and
background colours.
In general, there is no way to encode this component as part of the colour
information.
For anti-aliasing purposes, this mixing factor needs to be of comparable resolution
to the colour channels.
Let us call this an alpha channel, and let us treat an alpha of 0 to indicate no
coverage, 1 to mean full coverage, with fractions corresponding to partial coverage.”

Porter & Duff 84

Monday, 15 October 12

Alpha Channel
• In a 2D image element which stores a colour for each pixel, an additional value is

stored in the alpha channel containing a value ranging from 0 to 1.

• 0 means that the pixel does not have any coverage information; i.e. there was no
colour contribution from any geometry because the geometry did not overlap
this pixel.

• 1 means that the pixel is fully opaque because the geometry completely
overlapped the pixel.

• It is important to distinguish between the following

black = (0,0,0,1)

clear = (0,0,0,0)

Monday, 15 October 12

Pre multiplied alpha
“What is the meaning of the quadruple (r,g,b,a) at a pixel?
How do we express that a pixel is half covered by a full red object?
One obvious suggestion is to assign (1,0,0,.5) to that pixel: the .5 indicates the
coverage and the (1,0,0) is the colour.
There are a few reasons to dismiss this proposal, the most severe being that all
compositing operations will involve multiplying the 1 in the red channel by
the .5 in the alpha channel to compute the red contribution of this object at this
pixel.
The desire to avoid this multiplication points us to a better solution, storing the
pre-multiplied value in the colour component, so that (.5,0,0,.5) will indicate a full
red object half covering a pixel”.

Porter & Duff 84

Monday, 15 October 12

Pre multiplied alpha

• If an alpha channel is used in an image, it is common to also multiply
the colour by the alpha value, in order to save on additional
multiplication during the Compositing process.

•This is usually referred to as pre-multiplied alpha.

•Thus, assuming that the pixel colour is expressed using RGB triples,

• a pixel value of (0.0, 0.5, 0.0, 0.5) implies a pixel which is fully green
and has 50% coverage.

Monday, 15 October 12

Compositing Algebra

• Porter and Duff proposed a number
of basic operations, which are
performed on a per pixel, per RGB
channel basis

•Most of these operations pre-
suppose that the RGB channels have
already been pre-multiplied by the
alpha value

Monday, 15 October 12

Monday, 15 October 12

A over B
•The basic over operator is similar to the painters algorithm

where the A element is placed over the B element.

• For each Pixel we do the following

Co = Ca + Cb ⇥ (1� �a)
�o = �a + �b ⇥ (1� �a)

Monday, 15 October 12

Other Functions

Function Use Maths

Atop Add e�ects to foreground Co = Ca ⇥ �b + (Cb ⇥ (1� �a))

ADD Add mattes together Co = Ca + Cb

DIV Co = Ca ÷ Cb

Mult Mask Elements Co = Ca ⇥ Cb

Inside Mask Elements Co = Ca ⇥ �b

Sub Subtract Co = Ca � Cb

outside Mask Elements Co = Ca ⇥ (1� �b)

xor Co = Ca ⇥ (1� �b) + Cb ⇥ (1� �a)

Monday, 15 October 12

Unary operators

•To assist in dissolving and colour balancing Porter and Duff
also suggested the following operations

darken(A, ⇤) � (⇤rA, ⇤gA, ⇤bA, �A)
dissolve(A, ⇥) � (⇥rA, ⇥gA, ⇥bA, ⇥�A)

Normally 0 � ⇥, � � 1 although none of the theory requires it

As � varies from 1 to 0, the element will change from normal to complete blackness.
If � > 1 the element will be brightened.
As � goes from 1 to 0 the element will gradually fade from view

Monday, 15 October 12

Luminescent objects
• Luminescent objects, which add colour information without

obscuring the background, can be handled with the introduction of a
opaqueness factor �, 0 � � � 1

opaque(A, ⇥) � (rA, gA, bA, ⇥�A)

As � varies from 1 to 0, the element will change from normal coverage over the background to no obscuration.

Monday, 15 October 12

The Plus Operator
•The expression A plus B holds no notion of precedence in any

area covered by both pictures; the components are simply added.

•This allows us to dissolve from one picture to another by
specifying

• In terms of the binary operators above, plus allows both pictures
to survive in the subpixel area AB.

dissolve(A, �) plus dissolve(B, 1� �)

Monday, 15 October 12

References

• John. D. Cook (2009). Three algorithms for converting color to grayscale. Aug 24
2009. The Endeavour [online]. [Accessed 27 September 2010]. sAvailable from:
<http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-
grayscale/>.

• Thomas Porter and Tom Duff, Compositing Digital Images, Computer Graphics,
18(3), July 1984,

• http://en.wikipedia.org/wiki/Alpha_transparency

• Brinkmann R, “The art and Science of Digital Compositing” 2nd Edition 2008
Morgan Kaufmann.

Monday, 15 October 12

http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
http://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
http://en.wikipedia.org/wiki/Alpha_transparency
http://en.wikipedia.org/wiki/Alpha_transparency

