Some Basic (pre) Algebra maths

The Identity Element

- This special element is know as the identity element for the addition operator

$$
\begin{aligned}
& x+0=x \\
& 0+x=x \\
& 5+0=5
\end{aligned}
$$

I's are special too

- When we add 0 it does nothing
- The same is true with I for multiplication, this is know as the multiplication identity element

$$
\begin{aligned}
& 1 x=x \\
& 1(3)=3
\end{aligned}
$$

The inverse operation

- The "inverse" of addition is subtraction.
- You can think of subtraction as $A+(-1) B$

$$
\begin{aligned}
& (x+y)-y=x \\
& (3+6)-6=3
\end{aligned}
$$

Associative rule

- The Associative rule says that the order of operation are not important as long as the operands do not change
- Operands are the variables in this case

$$
\begin{aligned}
(x+y)+z & =x+(y+z) \\
(2+3)+1 & =2+(3+1) \\
5+1 & =2+4 \\
6 & =6
\end{aligned}
$$

Commutativity

- Commutativity allows us to change the order of operations without changing the end result.

$$
\begin{aligned}
& 2 \times 4=4 \times 2 \\
& x y=y x \\
& x \times y \equiv x y \\
& 2 \cdot 4=4 \cdot 2 \\
& \text { 三 } \\
& 2 * 4=4 * 2 \\
& 8=8
\end{aligned}
$$

Inverse Operation

- The inverse of multiplication is division

$$
\begin{aligned}
& \frac{x y}{y}=x ; y \neq 0 \\
& \frac{2 \cdot 4}{2}=\frac{2 \cdot 4}{2}=4
\end{aligned}
$$

Associative Multiplication

- Like addition multiplication is also associative

$$
\begin{gathered}
(x y) z=x(y z) \\
(3 \cdot 4) 2=3(4 \cdot 2) \\
(12) 2=3(8) \\
24
\end{gathered}
$$

Distributive Multiplication

- This property is useful in algebra when we need to factor things
- It is also used in Matrix manipulation and boolean logic

$$
\begin{gathered}
(x+y) z=x z+y z \\
(7+3) 2=7 \cdot 2+3 \cdot 2 \\
10 \cdot 2=14+6 \\
20=20
\end{gathered}
$$

Associative Division

- There is a similar rule for division

$$
\begin{gathered}
a\left(\frac{b}{c}\right)=\frac{a b}{c} \\
6\left(\frac{5}{2}\right)=\frac{6 \cdot 5}{2} \quad \equiv \quad \begin{array}{c}
\frac{5}{2}=2.5 \\
\frac{30}{2}=15
\end{array} \quad 2.5 \times 6=15
\end{gathered}
$$

Convert decimals to fractions

- This may seem complex but it's actually fairly simple
I. Write down the decimal and divide it by one (decimal /I)

2. Multiply top and bottom of fraction by 10 for each number after the decimal point
3. Simplify the new fraction

Example

0.325

$\frac{0.325}{1} \cdot \frac{1000}{1000} \leftarrow \begin{gathered}3 \text { decimal } \\ \text { places so } * 1000\end{gathered}$
$\frac{325}{1000} \quad \frac{13}{40} \longleftarrow$ Simplify

Greatest Common Factor

- AKA Greatest Common Divisor
- In the previous example to simplify we need to find the greatest common factor of the numerator and denominator
- In this case it is fairly intuitive if we know about numbers and especially 5

$$
\frac{325}{1000}>\frac{325}{5}>\frac{1000}{5} \nearrow \frac{\frac{65}{200}}{\frac{65}{5}}>\frac{200}{5} \nearrow{ }^{\frac{13}{40}}
$$

We could also have noticed that both are multiples of 25 (another number trick)

$$
\frac{\frac{325}{25}}{\frac{1000}{25}}=\frac{13}{40}
$$

Some python

- Python is a strongly typed language.
- This means that the python interpreter keeps track of all of the data types
- When using maths we have two types
- integers (number without decimal points)
- floating point numbers

A simple python script

declare some variables
which python to use
print out values

reading values in

- Python uses a function called raw_input to read values from the shell
- These values are always character values (even when we press the numbers)
- If we wish to read numbers in we need to convert the text to a numeric value
- This is shown in the next example

```
#!/usr/bin/python
a=int(raw_input("enter_an_int_value_>"))
b=float(raw_input("enter_a_float_value>"))
print a,b
```

- int ([value]) will attempt to convert the value into an integer
- float ([value]) will attempt to convert the value into a float

Arithmetic expressions

- Most programs are algorithmic in nature which means we have to do some maths
- The table below shows the available arithmetic operators

Operator	Meaning	Examples
+	addition	$5+2$ is 7 $5.0+2.0$ is 7.0
-	subtraction	$5-2$ is 3
$5.0-2.0$ is 3.0		

The / Operator

- When applied to two positive integers the division operator computes the integral part of the result dividing its first operand by its second
- For example

$$
\begin{aligned}
& 7.0 / 2.0 \text { is } 3.5 \\
& 7 / 2 \text { is } 3 \\
& 299.0 / 100.0 \text { is } 2.99 \text { (float value) } \\
& 299 / 100 \text { is } 2 \text { (integer value) }
\end{aligned}
$$

- If the / Operator is used with a negative and positive integer, the results vary from one implementation to another
- For this reason you should avoid division by -ve integers

The \% (modulus) Operator

- The remainder operator (\%) returns the integer remainder of the result of dividing the first operand with the second
- For example the value of $7 \% 2$ is I
- The magnitude of $m \% n$ must always be lest than the division n

$$
\begin{array}{cc}
7 / 2 & 299 / 100 \\
\downarrow & \downarrow \\
7 \div 2=3 & 299 \div 100=2 \\
3 * 2=6 & 2 * 100=200 \\
\frac{6}{7-6} \leftarrow 7 \% 2=1 & \frac{200}{299-200}=299 \% 100=99
\end{array}
$$

Expressions with Multiple Operators

- There are rules as to how expressions are evaluated
- Parentheses Rule :All expressions in parentheses must be evaluated separately. Nested parenthesised expressions must be evaluated from the inside out, with the innermost expression evaluated first.
- Operator precedence rule : Operators in the same expression are evaluated in the following order.

$$
\begin{array}{ll}
\text { unary }+,- & \text { first } \\
*, ~ /, ~ \% & \text { next } \\
\text { binary }+,- & \text { last }
\end{array}
$$

Expressions with Multiple Operators

- Associativity Rule : Unary operators in the same subexpression and at the same precedence levels (such as + and -) are evaluated right to left.
- Binary operators in the same sub-expression and the same precedence level (such as + and -) are evaluated left to right.
- To help avoid problems with the order of evaluation it is best to use parenthesis

```
x * y * z + a / b -c * d;
can be written
(x * y * z) + (a / b) - (c * d);
```


Mathematical Formulas as Python expressions

Mathematical Formula Python Expression

$$
\begin{gathered}
b^{2}-4 a c \\
a+b-c \\
\frac{a+b}{c+d} \\
\frac{1}{1+x^{2}} \\
a \times-(b+c)
\end{gathered}
$$

$$
\begin{gathered}
b^{*} b-4 * a * c \\
a+b-c \\
(a+b) /(c+d) \\
1 /(1+x * x) \\
a^{*}-(b+c)
\end{gathered}
$$

```
#!/usr/bin/python
a=float(raw_input("enter_a_>"))
b=float(raw_input("enter_b
c=float(raw_input("enter_c>>"))
d=float(raw_input("enter_d_>"))
x=float(raw_input("enter_x
answer=b*b-4*a*c
print answer
answer=a+b-c
print answer
answer=(a+b)/(c+d)
print answer
answer=1.0/(1+x*x)
print answer
answer=a*-(b+c)
print answer
```


Law of Indices

- The Law of Indices can be expressed as

$$
\begin{aligned}
& a^{m} \times a^{n}=a^{m+n} \\
& a^{m} \div a^{n}=a^{m-n} \\
& \left(a^{m}\right)^{n}=a^{m n}
\end{aligned}
$$

- Examples

$$
\begin{aligned}
& 2^{3} \times 2^{2}=8 \times 4=32=2^{5} \\
& 2^{4} \div 2^{2}=16 \div 4=4=2^{2} \\
& \left(2^{2}\right)^{3}=64=2^{6}
\end{aligned}
$$

The pow function

```
#!/usr/bin/python
a=float(raw_input("enter_an_int_values>"))
b=float (raw_input("enter_a_float_value>"))
print "a^b_=_", pow(a,b)
```


Indices.py

- We can also do powers in python using the ${ }^{* *}$ syntax
- $a^{* *}$ b means a^{b}

```
#!/usr/bin/python
a=int(raw_input("Enter_a_value_for_as>"))
```



```
n=int(raw_input("Enter_a_value_for_n_>>"))
print "for`values, a=%d_and_m=%d_n=%d" % (a,m,n)
print "Multiplication"
print "a^m** a^n_=", a**m * a**n
print "sumbof_indicess= ",m+n
print "a^(m+n)==",a** (m+n)
print "Division_"
print "a^m_/ a a^n_= =", a**m / a**n
print "difference,of_indices_=",m-n
print "a^(m+n) = = ", a** (m-n)
print "Powers""
print "(a^m)^n_=", (a**m)**n
print "a^m*n_== ",a** (m*n)
```


Law of Indices

- From the previous examples, it is evident that

$$
\begin{aligned}
& a^{0}=1 \\
& \mathrm{a}^{-p}=\frac{1}{a^{p}} \\
& a^{\frac{p}{q}}=\sqrt[q]{a^{p}}
\end{aligned}
$$

Indices2.py

[jmacey@neuromancer:Lecture2]\$./Indices2.py Enter a value for $a>2$
Enter a value for $p>4$
$a^{\wedge} 0=1$
$a^{\wedge}-p=0.0625$
$1 / a^{\wedge} p=0.0625$

Roots

- Most programming languages have a function to find the square root (usually sqrt)
- However higher roots are no implemented.
- We can use the law of indices shown previously to calculate higher roots

```
#!/usr/bin/python
import math
a=int(raw_input("enter_a_value"))
print math.sqrt(a)
```


Roots.py

```
#!/usr/bin/python
from math import *
a=int(raw_input("Enter_aьvalue_for_a_>>"))
# here we loop in the range 1 to 10 as the range
# function returns the values range(s,e-1)
for n in range(1,11) :
```


>>> 2**10
1024
>>> $32 * * 2$
1024
>>> 4**5 1024
>> [
[jmacey@neuromancer:Lecture2]\$./Roots.py
Enter a value for $a>1024$
the 1 root of $1024=1024.0$
the 2 root of $1024=32.0$
the 3 root of $1024=10.0793683992$
the 4 root of $1024=5.65685424949$
the 5 root of $1024=4.0$
the 6 root of $1024=3.17480210394$
the 7 root of $1024=2.69180038526$
the 8 root of $1024=2.37841423001$
the 9 root of $1024=2.16011947778$
the 10 root of $1024=2.0$

Logarithms

- Two people are associated with logarithms:
- John Napier (I550-I6I7) and Joost Bürgi (I552-I632).
- Logarithms exploit the addition and subtraction of indices and are always associated with a base
- For Example, if

$$
\begin{aligned}
& \mathrm{a}^{x}=n \\
& \log _{a} n=x \\
& \text { Where a is the base. }
\end{aligned}
$$

Logarithms

$$
\begin{aligned}
& 10^{2}=100 \\
& \log _{10} 100=2
\end{aligned}
$$

- It can be said " 10 has been raised to the power 2 to equal 100"
- The log operation finds the power of the base for a given number

Logarithms

- Multiplication's can be translated into an addition using logs
- We then add the numbers and convert back

$$
36 \times 24=864
$$

$$
\log _{10} 36+\log _{10} 24=\log _{10} 864
$$

$$
1.5563025007+1.38021124171=2.963651374248
$$

- The two bases used in calculators and computer software are 10 and $2.718281846 \ldots$,., the second value is know as the transcendental number e
- Logs to the base 10 are written as log
- Logs to the base e are written as In

Logs.py

```
#!/usr/bin/python
from math import *
a=int(raw_input("Enter,a_value for, (a,> "))
b=int(raw_input("Enter_a_vvalue_for_b
```



```
log10a=log10(a)
log10b=log10(b)
lna=log(a)
lnb=log(b)
print "log10(a)
```



```
print "AntivLogsu"
c=log10a+log10b
print "log}10
print "%f
c=lna+lnb
print "Natural_log
```



```
    [jmacey@neuromancer:Lecture2]$./Logs.py
*ing the answer is }533211
log10(a) + log10(b) = 3.091315 + 3.635584 = 6.72689942601
log(a) + log(b) = 7.118016 + 8.371242 = 15.4892583404
Anti Logs
log}1
6.726899 = 10^6.726899 = 5332114.0
Natural log (e)
15.489258= exp(15.489258)=5332114.0
```


Logarithms

$$
\begin{aligned}
& \log (a b)=\log a+\log b \\
& \log \left(\frac{a}{b}\right)=\log a-\log b \\
& \log \left(a^{n}\right)=n \log a \\
& \log (\sqrt[n]{a})=\frac{1}{n} \log a
\end{aligned}
$$

References

- Mathref http://happymaau.com/projects/math-ref/
- http://python.org/
- "Essential Mathematics for Computer Graphics fast" John VinceSpringer-Verlag London
- http://en.wikipedia.org/wiki/Johannes_Kepler

