
Vectors

Friday, 2 November 12

Scalars

•We often employ a single number to represent quantities that we
use in our daily lives such as weight, height etc.

•The magnitude of this number depends on our age and whether
we use metric or imperial units.

• Such quantities are called scalars.

• In computer graphics scalar quantities include height, width,
depth, brightness, number of frames, etc.

Friday, 2 November 12

Vectors
•There are some things that require more than one number to

represent them: wind, force, velocity and sound.

•These cannot be represented accurately by a single number.

• For example, wind has a magnitude and a direction.

•The force we use to lift an object also has a value and a direction.

•The velocity of a moving object is measured in terms of its speed
(Km per hour) and a direction such as north west.

• Sound, too, has intensity and a direction.

•These quantities are called vectors.
Friday, 2 November 12

Vector Example

Friday, 2 November 12

Gravity and Wind

Friday, 2 November 12

Vectors in scripting

•Most programming languages have no direct support for Vectors and
Matrices.

•Usually we either write our own system or use a 3rd party one.

•As Vectors and Matrices are fundamental to 3D graphics most graphics
package API give use their own system for doing mathematics with
them.

•Additionally to this the numpy system (http://www.scipy.org/) gives us
the ability to create Vectors (array()) and matrices (matrix())

Friday, 2 November 12

http://www.scipy.org
http://www.scipy.org

Introduction to Vectors

• All points and vectors we use are defined relative to some co-ordinate system

• Each system has an origin and some axis emanating from

• a) shows a 2D system whilst b) shows a right handed system and c) a left handed system

• In a right handed system, if you rotate your right hand around the Z axis by sweeping from
the positive x-axis around to the positive y-axis your thumb points along the positive z axis.

• Right handed systems are used for setting up model views

• Left handed are used for setting up cameras

� �

Friday, 2 November 12

Simple Vectors

• Vector arithmetic provides a unified way to express geometric ideas algebraically

• In graphics we use 2,3 and 4 dimensional vectors however most operations are
applicable to all kinds of vectors

• Viewed geometrically, vectors are objects having length and direction

• They represent various physical entities such as force, displacement, and velocity

• They are often drawn as arrows of a certain length pointing in a certain direction.

• A good analogy is to think of a vector as a displacement from one point to
another

Friday, 2 November 12

More Vectors

• Fig a) shows in a 2D co-ordinate system two points P=(1,3) and Q=(4,1)

• The displacement from P to Q is a vector v having components (3,-2), calculated by
subtracting the co-ordinates of the points individually.

• Because a vector is a displacement, it has a size and a direction, but no inherent
location.

• Fig b) shows the corresponding situation in 3 dimensions : v is the vector from point
P to point Q.

Friday, 2 November 12

Vectors
• The difference between two points is a vector v=Q-P

• Turning this around, we also say that a point Q is formed by displacing point P by
vector v; we say the v “offsets” P to form Q

• Algebraically, Q is then the sum: Q=P+v also the sum of a point and a vector is a point
P+v=Q

• Vectors can be represented as a list of components, i.e. an n-dimensional vector is
given by an n-tuple

• For now we will be using 2D and 3D vectors such as and
however later we will represent these as a column matrix as shown below

w = [w1 w2 . . . wn]

r = [3.4� 7.78] t = [33 142.7 89.1]

r =
�

3.4
�7.78

⇥
and t =

⇤

⇧
33

142.7
89.1

⌅

⌃

Friday, 2 November 12

Operations With Vectors
•Vectors permit two fundamental operations;

•Addition

•Multiplication with Scalars

•The following example assumes a and b are two vectors, and s is a
scalar

If a=
�

2 5 6
⇥

and b =
�
�2 7 1

⇥

we can form two vectors :-

a + b =
�

0 12 7
⇥

and 6a =
�

12 30 36
⇥

Friday, 2 November 12

Vectors and Scalars
•A scalar is a single number e.g. 7

• A vector is a group of e.g. [4,5,3]

• Scalar and Vector addition

• Scalar product and scalar product (dot product) of two
vectors

2 + 5 = 7 and [2 3 5] + [2 7 2] = [4 10 7]

7⇥ 8 = 56 and [1 2 3] · [2 4 6] = [1⇥ 2 + 2⇥ 4 + 3⇥ 6] = 28

Friday, 2 November 12

VectorScalar.py 1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z...n >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11
12
13 Vector=inputVector()
14 s=float(raw_input("enter a scalar >"))
15 print Vector ," * ", s, "= ",Vector * s

Friday, 2 November 12

VectorMultiplication.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11
12 Vector1=inputVector()
13 Vector2=inputVector()
14
15 print Vector1 ," . ", Vector2 , "= ",dot(Vector1,Vector2)

Friday, 2 November 12

Vector Addition

•A) shows both vectors starting at the same point, and forming two
sides of a parallelogram.

•The sum of the vectors is then a diagonal of this parallelogram.

• B) shows the vector b starting at the head of a and draw the sum as
emanating from the tail of a to the head of b

a

b

a+b

a

b

a+b

Friday, 2 November 12

VectorAddition.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 Vector1=inputVector()
12 Vector2=inputVector()
13
14 print Vector1 ," + ", Vector2 , "= ",Vector1+Vector2

Friday, 2 November 12

Vector Scaling

•The above figure shows the effect of multiplying (scaling)
a vector a by a scalar s=2.5

•This now makes the vector a 2.5 times as long.

•When s is negative the direction of sa is opposite of a

•This is shown above with s=-1

a

2.5a

-a

Friday, 2 November 12

Vector Subtraction

• Subtraction follows easily once adding and scaling have been established

• For example a-c is simply a+(-c)

•The above diagram shows this geometrically

c

a a-c

-c

a a-c

c

a

For the vectors a=
�

1 �1
⇥

and c =
�

2 1
⇥

The value of a-c=
�
�1 �2

⇥

as
a+(-c)=

�
1 �1

⇥
+

�
�2 �1

⇥
=

�
�1 �2

⇥

Friday, 2 November 12

VectorSubtraction.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 Vector1=inputVector()
12 Vector2=inputVector()
13
14 print Vector1 ," - ", Vector2 , "= ",Vector1-Vector2
15 print Vector1 ," + -", Vector2, "= ",Vector1+(-Vector2)

Friday, 2 November 12

Linear Combinations of Vectors
•To form a linear combination of two vectors v and w (having the same

dimensions) we scale each of them by same scalars, say a and b and add
the weighted versions to form the new vector av+bw

• For example the linear combination 2[3 4 -1]+6[-1 0 2] forms the
vector [0 8 10]

•Two special types types of linear combinations, “affine” and “convex”
combinations, are particularly important in graphics.

DEFINITION : A linear combination of the m vectors v1,v2,,vm is a vector of the form

w=a1v1 + a2v2 + + amvm

where a1, a2.....am are scalars

Friday, 2 November 12

LinearCombination.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 Vector1=inputVector()
12 a=float(raw_input("Enter Scalar a >"))
13 Vector2=inputVector()
14 b=float(raw_input("Enter Scalar b >"))
15
16 print a,"*",Vector1 ," + ",b,"*",Vector2 , "= ",a*Vector1+b*Vector2

Friday, 2 November 12

Affine Geometry

• In geometry, affine geometry is geometry not involving any notions
of origin, length or angle, but with the notion of subtraction of
points giving a vector.

• It occupies a place intermediate between Euclidean geometry and
projective geometry.

Friday, 2 November 12

Affine Combinations of Vectors
• A linear combination of vectors is an affine combination if the

coefficients add up to unity.

• Thus the linear combination in combination in the previous equation is
affine if

• For example 3a+2b-4c is an affine combination of a,b,c but 3a+b-4c is
not

•The combination of two vectors a and b are often forced to sum to unity
by writing one vector as some scalar t and the other as (1-t), as in

a1, a2......am

a1 + a2 + + am = 1

(1-t)a+(t)b
Friday, 2 November 12

Convex Combinations of Vectors

•A convex combination arises as a further restriction on an affine
combination.

•Not only must the coefficients of the linear combinations sum to unity, but
each coefficient must also be non-negative, thus the linear combination of
the previous equation is convex if

a1 + a2 + + am = 1
and
ai � 0, for i = 1, ...m

Friday, 2 November 12

Convex Combinations of Vectors

•As a consequence, all ai must lie between 0 and 1

•Accordingly 0.3a+0.7b is a convex combination but 1.8a-0.8b is not

•The set of coefficients is sometimes said to form a
partition of unity, suggesting that a unit amount of “material” is
partitioned into pieces.

a1, a2......am

Friday, 2 November 12

Magnitude of a Vector
• If a vector w is represented by the n-tuple

�
w1 w2 . . . wn

⇥
how may

it’s magnitude (equivalently, its length and size) be computed?

• We denote the magnitude by |w| and define it as the distance from the
tail to the head of the vector.

• Using the Pythagorean theorem we obtain

|w| =
⇤

w2
1 + w2

2 + + w2
n

• For example the magnitude of w =
�

4 �2
⇥

is
⌅

42 +�22 =
⌅

20

• A vector of zero length is denoted as 0

• Note that if w is the vector from point A to point B , then |w| will be
the distance from A to B

Friday, 2 November 12

Magnitude.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z...n >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 def Magnitude(Vector) :
12 sum =0
13 for v in Vector[:] :
14 sum +=v*v
15 return sqrt(sum)
16
17 Vector=inputVector()
18
19 print "Length of " ,Vector, "= ",linalg.norm(Vector)
20 print "Length of " ,Vector, "= ",Magnitude(Vector)

Friday, 2 November 12

Unit Vectors

• It is often useful to scale a vector so that the result has unity length.

• This type of scaling is called normalizing a vector, and the result is know
as a unit vector

• For example the normalized version of a vector a is denoted as â

• And is formed by scaling a with the value 1/ |a| or â = a
|a|

• We will use normalized vectors for many calculations in Graphics, such as
rotations, normals to a surface and some lighting calculations.

Friday, 2 November 12

Normalize.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z...n >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 def Magnitude(Vector) :
12 sum =0
13 for v in Vector[:] :
14 sum +=v*v
15 return sqrt(sum)
16
17 def Normalize(Vector) :
18 return Vector / Magnitude(Vector)
19
20 Vector=inputVector()
21
22 print "Normalized version of " ,Vector, "= ",Vector/linalg.norm(Vector)
23 print "Normalized version of " ,Vector, "= ",Normalize(Vector)

Friday, 2 November 12

The Dot Product
• The dot product of two vectors is simple to define and compute

• For a two dimensional vector
ˆ

a1 a2

˜
and

ˆ
b1 b2

˜
, it is simply the scalar

whose value is a1b1 + a2b2

• Thus to calculate the dot product we multiply the corresponding components
of the two vectors and add the the results

• For example for two vectors
ˆ

3 4
˜

and
ˆ

1 6
˜

the dot product = 27

• And
ˆ

2 3
˜

and
ˆ

9 �6
˜

=0

• The generalized version of the dot product is shown below

The dot product d of two n dimensional vectors v =
ˆ

v1 v2 . . . vn

˜
and w =ˆ

w1 w2 . . . wn

˜
is denoted as v • w and has the value

d = v • w =
n�

i=1

viwi

Friday, 2 November 12

Properties of the Dot Product
• The dot product exhibits four major properties as follows

1. Symmetry: a • b = b • a

2. Linearity: (a + c) • b = a • b + c • b

3. Homogeneity: (sa) • b = s(a • b)

4. |b|2 = b • b

• The dot product is commutative that means the order in which the
vectors are combined does not matter.

• The final expression asserts that taking the dot product of a vector with
itself yields the square of the length of the vector. This is usually
expressed in the following form|b| =

⇤
b • b

Friday, 2 November 12

DotProduct.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z...n >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 def Magnitude(Vector) :
12 sum =0
13 for v in Vector[:] :
14 sum +=v*v
15 return sqrt(sum)
16
17
18 Vector1=inputVector()
19 Vector2=inputVector()
20 Vector3=inputVector()
21 s=float(raw_input("Enter a Scalar >"))
22
23 print "Symmetry"
24 print Vector1,".",Vector2,"=",dot(Vector1,Vector2)
25 print Vector2,".",Vector1,"=",dot(Vector2,Vector1)
26 print "Linearity "
27 print "(",Vector1,"+",Vector3,").",Vector2,"=",dot((Vector1+Vector3),Vector2)
28 print "(",Vector1,".",Vector3,")+(",Vector2,".",Vector3,")=",dot(Vector1,Vector2)+dot(Vector3

,Vector2)
29 print "Homogeneity"
30 print "(",s,"*",Vector1,").",Vector2," = ",dot(s*Vector1,Vector2)
31 print s,"*(",Vector1,".",Vector2,")= ",s*dot(Vector1,Vector2)
32 print "Magnitude Squared"
33 mag=Magnitude(Vector1)
34 print "Magnitude(",Vector1,")=",mag*mag,"=",Vector1,".",Vector2,"=",dot(Vector1,Vector1)

Friday, 2 November 12

The angle between two vectors
• The most important application of the dot product is in finding the angle be-

tween two vectors or between intersecting lines.

• The figure shows the vectors b and c which lie at angles �b and �c relative to
the x axis.

From basic trigonometry we get b = (|b| cos�b, |b| sin�b) and c = (|c| cos�c, |c| sin�c)

Thus the dot product of b and c is
b • c = |b| |c| cos�ccos�b + |b| |c| sin�bsin�c = |b| |c| cos(�c � �b),

b•c = |b| |c| cos(�),
where � is the angle from b to c.
Hence, b • c varies as the cosine of the angle from b to c.

so for any two vectors b and c,

Friday, 2 November 12

Normalised Vector angles
• To obtain a more compact form the normalized vectors are usually used

• Therefore both sides are divided by |b| |c|and the unit vector notation is used
so b̂ = b

|b| to obtain cos(�) = b̂ • ĉ

• So the cosine of the angle between two vectors b and c is the dot product of the
normalized vectors.

Friday, 2 November 12

Example

find the angle between two vectors b =
ˆ

3 4
˜

and c =
ˆ

5 2
˜

|b| =
⇤

32 + 42 = 5 and |c| =
⇤

52 + 22 = 5.3851

so that b̂ =
ˆ

3
5

4
5

˜
and ĉ =

ˆ
5

5.3851
2

5.3851

˜

This gives us b̂ =
ˆ

0.6 0.8
˜

and ĉ =
ˆ

0.9285 0.3714
˜

The dot product b̂ • ĉ = 0.5571 + 0.296 = 0.8542 = cos(�)

hence � =31.326o from the inverse cosine

this can then be expanded to work for 3 or 4 dimensions

Friday, 2 November 12

AngleBetween.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z...n >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 def Magnitude(Vector) :
12 sum =0
13 for v in Vector[:] :
14 sum +=v*v
15 return sqrt(sum)
16
17 def Normalize(Vector) :
18 return Vector / Magnitude(Vector)
19
20 Vector1=inputVector()
21 Vector2=inputVector()
22
23 Vector1=Normalize(Vector1)
24 Vector2=Normalize(Vector2)
25 ndot=dot(Vector1,Vector2)
26 print "Normalized vectors ",Vector1,Vector2
27 angle = acos(ndot)
28 print "Angle between = ",degrees(angle)

Friday, 2 November 12

The sign of b•c and perpendicularity

• cos(�) is positive if |�|is less than 90o, zero if |�|equals 90o, and negative if
|�|exceeds 90o.

• Because the dot product of two vectors is proportional to the cosine of the angle
between them, we can observe immediately that two vectors (of any non zero
length) are

less than 90o apart if b • c > 0;
exactly 90o apart if b • c = 0;
more than 90o apart if b • c < 0;

Friday, 2 November 12

The standard unit Vector

• The case in which the vectors are 90o apart, or perpendicular is of special importance

Definition : Vectors b and c are perpendicular if b • c = 0

• Other names for “perpendicular” are orthogonal and normal and they are used inter-
changeably.

• The most familiar examples of orthogonal vectors are those aimed along the axes of 2D and
3D coordinate systems as shown

Friday, 2 November 12

The standard unit Vector

• The vectors i, j and k are called standard unit vectors and are defined as follows

i =
ˆ

1 0 0
˜
j =

ˆ
0 1 0

˜
and k =

ˆ
0 0 1

˜

Friday, 2 November 12

Cartesian Vectors

• Let us define three Cartesian unit vectors i, j, k that are aligned with the x, y,
z axes:

i =

2

4
1
0
0

3

5 j =

2

4
0
1
0

3

5 k =

2

4
0
0
1

3

5

• Any vector aligned with the x-, y- or z-axes can be defined by a scalar multiple
of the unit vectors i, j, k.

• A vector 10 units long aligned with the x-axis is 10i.

• A vector 20 units long aligned with the z-axis is 20k.

• By employing the rules of vector addition and subtraction, we can define a vector
r by adding three Cartesian vectors as follows:

r =ai + bj + ck

Friday, 2 November 12

Cartesian Vectors
r =ai + bj + ck

• This is equivalent to writing

r =

�

⇤
a
b
c

⇥

⌅

Therefore the magnitude of r is |r| =
⇤

a2 + b2 + c2

• A pair of Cartesian vectors such r and s can be combined as follows

r = ai + bj + ck
s = di + ej + fk
r±s = [a± d]i + [b± e]j + [c± f]k

Friday, 2 November 12

Cartesian Vectors Example

r =2i + 3j + 4k and s =5i + 6j + 7k

r + s = 7i + 9j + 11k

|r + s| =
⇥

72 + 92 + 112 =
⇥

251 = 15.84

Friday, 2 November 12

The cross product of two vectors
• The cross product (also called the vector product) of two vectors is another vector.

• It has many useful properties but the most useful is the fact that it is perpendicular to
both of the given vectors

• Given the 3D vectors a =
ˆ

ax ay az
˜

and b =
ˆ

bx by bz
˜

their cross
product is denoted as a⇥ b

• It is defined in terms of the standard unit vectors i, j and k as

a⇥ b = [aybz � azby]i + [azbx � axbz]j + [axby � aybx]k

This form is usually replace using the determinant as follows

a⇥ b =

˛̨
˛̨
˛̨

i j k
ax ay az

bx by bz

˛̨
˛̨
˛̨

Friday, 2 November 12

Geometric interpretation of the Cross Product

• By definition the cross product a � b of two vectors is another vector and has the
following properties

• a� b is perpendicular (orthogonal) to both a and b

• The length of a � b equals the area of the parallelogram determined by a and b this
area is equal to |a� b| = |a| |b| sin(�) where � is the angle between a and b measured
from a to b or b to a, whichever produces an angle less than 180o

Friday, 2 November 12

CrossProduct.py
1 #!/usr/bin/python
2 from math import *
3 from numpy import *
4
5 def inputVector() :
6 d=raw_input("enter vector x,y,z...n >")
7 f=d.split(",")
8 Vector=array(f,dtype=float32)
9 return Vector

10
11 def Magnitude(Vector) :
12 sum =0
13 for v in Vector[:] :
14 sum +=v*v
15 return sqrt(sum)
16
17 Vector1=inputVector()
18 Vector2=inputVector()
19
20 print Vector1,"x",Vector2," = ",cross(Vector1,Vector2)
21 print "Area of Vectors = ",Magnitude(cross(Vector1,Vector2))

Friday, 2 November 12

References
• Basic Algebra and Geometry. Ann Hirst and David Singerman. Prentice Hall

2001

• Computer Graphics With OpenGL, F.S. Hill jr, Prentice Hall

• "Essential Mathematics for Computer Graphics fast" John VinceSpringer-
Verlag London

• "Geometry for Computer Graphics: Formulae, Examples and Proofs" John
Vince Springer-Verlag London 2004

• "Engineering Mathematics", K. A. Stroud, Macmillan 3rd Edition 1987

• http://en.wikipedia.org/wiki/Affine_geometry

Friday, 2 November 12

http://en.wikipedia.org/wiki/Affine_geometry
http://en.wikipedia.org/wiki/Affine_geometry

