
Matrices

Monday, 12 November 12

Matrices

•Matrices are convenient way of storing multiple quantities or functions

• They are stored in a table like structure where each element will
contain a numeric value that can be the result of a complex equation
or process

• In CG we tend to store all modelling transforms in matrix form a pass
all vertices of a model through this matrix to scale, translate and
rotate the model

• This is done by multiplying all vertices (stored as vector) by the matrix

Monday, 12 November 12

Matrices in CG

Monday, 12 November 12

Matrices

• In mathematics, a matrix (plural matrices) is a rectangular table of num-
bers or, more generally, of elements of a ring-like algebraic structure.

• The entries in the matrix are real or complex numbers or functions that
result in real or complex numbers

Image from http://en.wikipedia.org/wiki/Image:Matrix.png

Monday, 12 November 12

Definitions and Notations
• The horizontal lines in a matrix are called rows and the vertical lines are

called columns.

• A matrix with m rows and n columns is called an m-by-n matrix (or mn
matrix) and m and n are called its dimensions.

• The entry of a matrix A that lies in the i-th row and the j-th column is
called the i, j entry or (i, j)-th entry of A.

• This is written as Ai,j or A[i, j].

• We often write A := [ai,j]m�n to define an m � n matrix A with each
entry in the matrix A[i, j] called aij for all 1 ⇤ i ⇤ m and 1 ⇤ j ⇤ n.

Monday, 12 November 12

Example

is a 4� 4 matrix, the element A[2, 3] or a2,3 is 7

�

⇧⇧⇤

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⇥

⌃⌃⌅

�

⇧⇧⇤

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⇥

⌃⌃⌅

Monday, 12 November 12

Example

is a 4� 4 matrix, the element A[2, 3] or a2,3 is 7

�

⇧⇧⇤

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

⇥

⌃⌃⌅

�

⇧⇧⇤

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

⇥

⌃⌃⌅

Monday, 12 November 12

General Matrix of the Form A = m� n

• The general form of a matrix is represented as
�

⇧⇧⇧⇤

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

⇥

⌃⌃⌃⌅

• or as A = [aij]m�n or simply as A = [aij] if the order is known

Monday, 12 November 12

Operations with Matrices
• A matrix has m rows and n columns and is said to be of order m� n

• Thus the matrix

M =

⇤

⇧
1 2
3 4
5 6

⌅

⌃

• Has three rows and two columns and is of order 3� 2 not to be confused
with

N =
�

1 3 5
2 4 6

⇥

• These matrices are related and N is the transpose of M or

N = MT

Monday, 12 November 12

Multiplication of a Matrix by a Number
• Multiplying a matrix by a scalar number is simply multiplying every ele-

ment by the scalar

2

�

⇤
6 10
4 6
3 5

⇥

⌅ =

�

⇤
2� 6 2� 10
2� 4 2� 6
2� 3 2� 5

⇥

⌅ =

�

⇤
12 20
8 12
6 10

⇥

⌅

• More generally, for any � ⇤ R,

�A = �

�

⇧⇧⇧⇧⇤

a11 a12 · · · a1n

a21 a22

... a24
...

...
. . .

...
am1 am2 · · · amn

⇥

⌃⌃⌃⌃⌅
=

�

⇧⇧⇧⇤

�a11 �a12 · · · �a1n

�a21 �a22 · · · �a24
...

...
. . .

...
�am1 �am2 · · · �amn

⇥

⌃⌃⌃⌅

Monday, 12 November 12

More Matrix Definitions

• A matrix of any order who’s entries are all zero is called a zero matrix
and this is represented by O

• The matrix (�A) is defined to be the matrix (�1)A

• Note that if � = 0 then for any matrix A or �A is a zero matrix

Monday, 12 November 12

Addition of Matrices
• If two matrices A and B are of the same order m� n, then A + B is the matrix defined by

A + B =

2

6664

a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

3

7775
+

2

6664

b11 b12 · · · b1n

b21 b22 · · · b2n

.

.

.
.
.
.

. . .
.
.
.

bm1 bm2 . bmn

3

7775

=

2

6664

a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

.

.

.
.
.
.

. . .
.
.
.

am1 + bm1 am2 + bm2 · · · amn + bmn

3

7775

Monday, 12 November 12

Addition of Matrices
• For example let A B and C be matrices as shown below

A =

»
1 2 3
4 5 6

–
B =

»
2 �1 3
4 2 �1

–
C =

»
2 7
5 2

–

Then

A + B =

»
1 2 3
4 5 6

–
+

»
2 �1 3
4 2 �1

–
=

»
3 1 6
8 7 5

–

Neither A + C nor B + C can be found since C has a di�erent order from that of A and B

Also note that A + B = B + A

Monday, 12 November 12

Subtraction of Matrices
• To subtract elements of matrices A and B

C = A(�)B

• elements of matrix B are subtracted from their corresponding elements in
matrix A and stored as elements of matrix C

• All the matrices must have the same number of elements.

• In the above example the � sign is enclosed in parentheses to indicate
subtraction of matrix elements

• Although for most operation - is su�cient unless we are looking at more
advanced matrix theory (which we will not need)

Monday, 12 November 12

Matrix subtraction
• The subtraction of matrix elements is defined for two matrices of the same

dimension as follows

2

4
1 3
1 0
1 2

3

5 (�)

2

4
0 0
7 5
2 1

3

5 =

2

4
1� 0 3� 0
1� 7 0� 5
1� 2 2� 1

3

5

=

�

⇤
1 3
�6 �5
�1 1

⇥

⌅

Monday, 12 November 12

Matrix Multiplication
• The most common application of matrices in CG is matrix multiplication.

• It is defined between two matrices only if the number of columns of the
first matrix is the same as the number of rows of the second matrix.

• If A is an m-by-n matrix and B is an n-by-p matrix, then their product
A⇥B is an m-by-p matrix given by

(A⇥B)ij =
n�

r=1

airbrj = ai1b1j + ai2b2j + · · · + ainbnj

Monday, 12 November 12

Matrix Multiplication

• The figure shows how to calculate the (AB)12 element of A�B

• if A is a 2� 4 matrix, and B is a 4� 3 matrix.

• Elements from each matrix are paired o� in the direction of the arrows; each pair is
multiplied and the products are added.

• The location of the resulting number in AB corresponds to the row and column that
were considered.

(A�B)12 =
4X

r=1

a1rbr2 = a11b12 + a12b22 + a13b32 + a14b42

Monday, 12 November 12

Matrix Multiplication
• If A is an m⇥n matrix and B is an n⇥ q matrix then the product matrix AB is defined by

AB =

2

6664

a11 a12 · · · a1n

a21 a22 · · · a2n

.

.

.
.
.
.

. . .
.
.
.

am1 am2 · · · amn

3

7775

2

6664

b11 b12 · · · b1n

b21 b22 · · · b2n

.

.

.
.
.
.

. . .
.
.
.

bm1 bm2 · · · bmn

3

7775
=

2

6664

c11 c12 · · · c1n

c21 c22 · · · c2n

.

.

.
.
.
.

. . .
.
.
.

cm1 cm2 · · · cmn

3

7775

where

cij = [ai1ai2 . . . ain]

2

6664

b1j

b2j

.

.

.
bnj

3

7775
= ai1b1j + ai2b2j + . . . + ainbnj

for i = 1, . . . , m, j = 1, . . . , q1

Monday, 12 November 12

Affine Transform matrix

[1 2 1 1]

⇤

⌥⌥⇧

1 0 0 0
0 1 0 0
0 0 1 0
1 2 3 1

⌅

��⌃ =
�

2 4 4 1
⇥

�

⇧⇧⇤

1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 1

⇥

⌃⌃⌅

�

⇧⇧⇤

1
2
1
1

⇥

⌃⌃⌅ =

�

⇧⇧⇤

2
4
4
1

⇥

⌃⌃⌅

Monday, 12 November 12

Matrix Multiplication
For example

2

4
6 10
4 6
3 5

3

5
»

30
20

–
=

2

4
6� 30 + 10� 20
4� 30 + 6� 20
3� 30 + 5� 20

3

5 =

2

4
380
240
190

3

5

A is an m� n matrix and B is a p� q matrix,
then the product AB can be formed if and only if n = p
and if it can be formed, it will be an m� q matrix.

Monday, 12 November 12

Matrix Multiplication Properties
• All three notions of matrix multiplication are associative

A(BC) = (AB)C

• and distributive:
A(B + C) = AB + AC

• and
(A + B)C = AC + BC

• and compatible with scalar multiplication:

c(AB) = (aA)B = A(cB)

Monday, 12 November 12

The Identity Matrix
• The n � nidentity matrix Inis defined to be the n � nmatrix in which

every element on the leading diagonal is a 1, and every other element is a
zero. Thus,

I1 = [1] , I2 =
�

1 0
0 1

⇥
, I3 =

⇤

⌥⌥⇧

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⌅

��⌃ , ...

• An important property of the identity matrix is the anything multiplied
by the identity matrix remains the same

• For example

�
2 2 1 1

⇥
�

⇤

⌥⌥⇧

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⌅

��⌃ =
�

2 2 1 1
⇥

Monday, 12 November 12

Summary of Properties of Matrices
• The following properties are true whenever the operations of addition or

multiplication are valid. If A, B and C are matrices and � is a real number

A + B = B + A
A + (B + C) = (A + B) + C
�(A + B) = �A + �B
AB �= BA (in general)
A(BC) = (AB)C
A(�B) = (�A)B = �(AB)
A(B + C) = AB + AC

Monday, 12 November 12

Co-ordinate systems and co-ordinate
frames

• When representing Vectors and Points we use the same notation for ex-
ample

• v = (3, 2, 7) is a vector whereas P = (5, 3, 1)

• This makes it seem as if vectors and Points are the same thing

• However Points have a location, but no size and direction

• whereas vectors have size and direction but no location

• What this means is that v has the components (3,2,7) in the underlying
coordinate systems and Similarly P has the coordinates (5,3,1) in the
underlying coordinate system.

Monday, 12 November 12

•Homogenous co-ordinates were proposed by
several mathematicians the most notable being
Möbius

• Basically homogeneous co-ordinates define a
point in a plane using three co-ordinates rather
than two

• For a point (x,y) there exists a homogenous
point (xt,yt,t) where t is an arbitrary number

Homogenous co-ordinates

Monday, 12 November 12

Homogenous co-ordinates

•For example given a point (3,4)

• It may be expressed in homogenous co-ordinates as (6,8,2), because
3=6/2 and 4=8/2

• But the homogenous point (6,8,2) is not unique to (3,4); (12,16,4),
(15,20,5) and (300,400,100) are also possible homogenous co-ordinates
for (3,4)

• The reason why this co-ordinate system is called homogenous is because
it is possible to transform functions such as f(x,y) into the form f(x/t,y/t)
without disturbing the degree of the curve.

Monday, 12 November 12

The homogeneous representation of a
Point and a Vector

• It is useful to represent both points and vectors using the same set of basic
underlying objects [a,b, c, �]

• From the previous equations we see that the vector v = v1a + v2b + v3c
needs the four coe�cients [v1, v2, v3, 0]

• Whereas the point P = p1a + p2b + p3c + � needs the four coe�cients
[p1, p2, p3, 1]

• The fourth component designates whether the object does or does not
include �.

Monday, 12 November 12

The homogeneous representation of a
Point and a Vector

• We can formally write any v and P using matrix notation multiplication
as

v = [a,b, c, �]

�

⇧⇧⇤

v1

v2

v3

0

⇥

⌃⌃⌅ and P = [a,b, c, �]

�

⇧⇧⇤

p1

p2

p3

1

⇥

⌃⌃⌅

• Here the row matrix captures the nature of the coordinate frame, and the
column vector captures the representation of the specific object of interest.

• Thus, vectors and points have di�erent representations : vectors have 0
as a forth component whereas points have 1 as a fourth component.

Monday, 12 November 12

Converting between co-ordinate systems
To go from ordinary to homogeneous coordinates,

if the object is a point, append a 1
if the object is a vector, append a 0

To go from homogeneous coordinates to ordinary coordinates,

if the object is a vector, its final coordinate is 0. So delete the 0
if the object is a point, its final coordinate is a 1. So delete the 1

Monday, 12 November 12

Introduction to Affine Transforms

•Affine transforms are a fundamental computer graphics
operation and are central to most graphics operations

• They also cause problems as it is difficult to get them right

• This is due to the difference between points and vectors and
the fact that they do not transform in the same way.

• To overcome these problems we use homogeneous
coordinates and an appropriate coordinate frame.

Monday, 12 November 12

Transformation in the Graphics Pipeline

• Affine transforms fit into the graphics pipeline as shown

• First points are sent down the pipeline (p1,p2 ..)

•Next the points encounters the current transform (CT) which change
them to a new position

•After this they are displayed in their new position

Monday, 12 November 12

3D affine Transforms
•Any point can be expressed in the coordinate frame as P=

�

⇧⇧⇤

Px

Py

Pz

1

⇥

⌃⌃⌅

•Now using T() as a function to transform the points P to Q we use the
matrix M as follows

M=

�

⇧⇧⇤

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 0 1

⇥

⌃⌃⌅

Monday, 12 November 12

3D affine Transforms
•Now using T() as a function to transform the points P to Q we use

the matrix M as follows

�

⇧⇧⇤

Qx

Qy

Qz

1

⇥

⌃⌃⌅ = M

�

⇧⇧⇤

Px

Py

Pz

1

⇥

⌃⌃⌅

Monday, 12 November 12

Translation
•For a pure translation the matrix has the following form

Where Q=MP is a shift in Q by the vector m=[m14, m24, m34]

2

664

x

0

y

0

z

0

1

3

775 =

2

664

1 0 0 m14

0 1 0 m24

0 0 1 m34

0 0 0 1

3

775

2

664

x

y

z

1

3

775

Monday, 12 November 12

Scaling

•The algebra for 3D scaling is

•where Sx,Sy and Sz causes scaling of the corresponding coordinates.

• Scaling is about the origin as in the 2D as shown in the figure

x

0
= s

x

x

y

0
= s

y

y

z

0
= s

z

z

2

664

x

0

y

0

z

0

1

3

775 =

2

664

s

x

0 0 0
0 s

y

0 0
0 0 s

z

0
0 0 0 1

3

775

2

664

x

y

z

1

3

775

Monday, 12 November 12

Scaling about a point

•Given an arbitrary point we can construct an
algebra for scaling around a point thus

• and in matrix form

(p
x

, p
y

, p
z

)

x

0
= s

x

(x� p

x

) + p

x

y

0
= s

y

(x� p

y

) + p

y

z

0
= s

z

(x� p

z

) + p

z

2

664

x

0

y

0

z

0

1

3

775 =

2

664

s

x

0 0 p

x

(1� s

x

)
0 s

y

0 p

y

(1� s

y

)
0 0 s

z

p

z

(1� s

z

)
0 0 0 1

3

775

2

664

x

y

z

1

3

775

Monday, 12 November 12

Shearing
•3D shears appear in greater variety compared to 2D versions

• The simplest shears are obtained by the identity matrix with one zero
term replaced by some value as in

�

⇧⇧⇤

1 0 0 0
f 1 0 0
0 0 1 0
0 0 0 1

⇥

⌃⌃⌅

•which produces Q=(Px,fPx+Py,Pz) this gives Py offset by some amount
proportional to Px and the other components are unchanged.

• For interesting applications for shears see the paper by Barr in the
accompanying papers.

Monday, 12 November 12

Rotations
•Rotations in 3D are common in graphics (to rotate objects, cameras

etc)

• In 3D we must specify an axis about which the rotations occurs,
rather than just a single point

•One helpful approach is to decompose a rotation into a combination
of simpler ones.

Monday, 12 November 12

Elementary rotations about a coordinate axis

•The simplest rotation is a rotation about one
of the coordinate axis.

•We call a rotation about the x-axis an “x-roll”
about the y a “y-roll” and z a “z-roll”

• The figure shows the different “rolls” around
the different axis

Monday, 12 November 12

Elementary rotations about a coordinate axis

• The following three matrices represent transformations that rotate
points through and angle about a coordinate axis

• The angle is represented in radians

�

Rx(�) =

�

⇧⇧⇤

1 0 0 0
0 cos(�) �sin(�) 0
0 sin(�) cos(�) 0
0 0 0 1

⇥

⌃⌃⌅ Ry(�) =

�

⇧⇧⇤

cos(�) 0 sin(�) 0
0 1 0 0

�sin(�) 0 cos(�) 0
0 0 0 1

⇥

⌃⌃⌅

Rz(�) =

�

⇧⇧⇤

cos(�) �sin(�) 0 0
sin(�) cos(�) 0 0

0 0 1 0
0 0 0 1

⇥

⌃⌃⌅

x-roll y-roll
x-rollx-roll

z-roll

Monday, 12 November 12

Elementary rotations about a coordinate axis

•Note that 12 of the terms in each matrix are the
zeros and ones of the identity matrix

• They occur in the row and column that
correspond to the axis about which the rotation is
being made

• These terms guarantee that the corresponding
coordinate of the point being transformed will not
be altered.

•An example of the different rolls are shown below

Monday, 12 November 12

Composing 3D Affine Transforms
•Composing 3D affine transforms works the same

way as in 2D

•We take the individual matrices for each rotation
(M1 and M2) and then combine them by pre
multiplying M2 with M1 to give M=M2M1

•Any number of affine transforms can be
composed in this way, and a single matrix gives us
the desired rotation.

• This is shown in the figure

Monday, 12 November 12

Combining Rotations

•One of the most important distinctions between 2D and 3D
transformations is the manner in which rotations combine

• In 2D two rotations R() and R() combine to produce R() and
the order in which they combine make no difference

• In 3D the situation is more complex because rotations can be about
different axes

• The order in which two rotations about different axes are performed
does matter.

• 3D rotation matrices do not commute

�1 �2 �1 + �2

Monday, 12 November 12

3D rotations
• It is common to build a rotation in 3D by composing three elementary

rotations

•An x-roll followed by a y-roll and then a z-roll

•Using the previous equations for the rolls we get

M=Rz(�3)Ry(�2)Rx(�1)

• In this context the angles and are called the Euler angles

• Euler's Theorem asserts that any 3D rotation can be obtained by three rolls
about the x-, y- and z-axes

• so any rotation can be written as a particular product of 3 matrices for the
appropriate choice of Euler angles.

�1, �2 �3

Monday, 12 November 12

Rotations about an Arbitrary Axis
•When using Euler angles we perform a sequence of x-,y- and z-rolls

(rotations about coordinate axis)

• But it is much easier to work with rotations if we have a way to rotate
about an axis that points in an arbitrary direction.

• Euler's Theorem states that every rotation can be represented as

Euler's Theorem : Any rotation (or sequence of rotations)
about a point is equivalent to a single rotation about some axis
through that point

Monday, 12 November 12

Euler

•The figure shows an axis represented by a vector
u and an arbitrary point P that is to be rotated
through angle about u to produce the point Q

•Because u can have any direction it is difficult to
find a single matrix that represents the rotation

•However we can do the rotation in one of two
ways

�

Monday, 12 November 12

The classic way
•We decompose the rotation into a sequence of known steps

1.Perform two rotations so that u becomes aligned with the x-axis

2.Do a z-roll through the angle

3.Undo the two alignment rotations to restore u to its original direction

•This method is similar to a rotation about a point in 2D The first step
moves the point into the correct 2D location, we then do the rotation
and finally replace into the original position (in the other axis no
affected)

• The resultant equation is

�

Ru(�) = Ry(�⇥)Rz(⇤)Rx(�)Rz(�⇤)Ry(⇥)

Monday, 12 November 12

The constructive way

•The above figure shows the axis of rotation u and the point P that we wish
to rotate by to make point Q

•As seen in figure b) the point Q is the linear combinations of the two
vectors a and b

•Now we use cross products and dot products of the vectors to produce a
final matrix as shown below

�

Ru(�) =

�

⇧⇧⇤

c + (1� c)u2
x (1� c)uyux � suz (1� c)uzux + suy 0

(1� c)uxuy + suz c + (1� c)u2
y (1� c)uzuy � sux 0

(1� c)uxuz � suy (1� c)uyuz + sux c + (1� c)u2
z 0

0 0 0 1

⇥

⌃⌃⌅

Monday, 12 November 12

References
• Basic Algebra and Geometry. Ann Hirst and David Singerman. Prentice Hall

2001

• Computer Graphics With OpenGL, F.S. Hill jr, Prentice Hall

• "Essential Mathematics for Computer Graphics fast" John VinceSpringer-
Verlag London

• "Geometry for Computer Graphics: Formulae, Examples and Proofs" John
Vince Springer-Verlag London 2004

• "Engineering Mathematics", K. A. Stroud, Macmillan 3rd Edition 1987

• http://en.wikipedia.org/wiki/Affine_geometry

Monday, 12 November 12

http://en.wikipedia.org/wiki/Affine_geometry
http://en.wikipedia.org/wiki/Affine_geometry

