
Object Representation

Friday, 11 January 13

3D Object Representation
• So far we have used the notion of expressing 3D data as points(or vertices) in a

Cartesian or Homogeneous coordinate system.

• We have simplified the representation of objects as a series of line segments
representing the edges between vertices on a polygon object.

• Differing render engines use differing types of methods of representing 3D objects in CG
applications:

• Fundamentally, most render engines reduce surfaces to polygon meshes.

• Some surface shading algorithms require geometry in the execution.

• The resolution of these meshes depends on the renderer and the implementation of the
surface in the renderer.

Friday, 11 January 13

Types of Surface

•Computer graphics applications deal with the notion of
approximating the surface.

•We have already covered Polygonal surfaces in some
depth.

Friday, 11 January 13

CSG
• Constructive Solid Geometry popular in CAD packages to obtain a “solid” representation.

• CSG system uses a succession of Boolean operations on

• primitive objects to gradually build up geometry

• not as tangible to the user.

• Some applications allow the use of CSG.

• Current systems adopt less than solid approaches

• only object surfaces are represented.

Friday, 11 January 13

Mathematical Representation

•Mathematical equations can be used directly to create object surfaces.

• The above examples are the visualisation of different polynomial
equations.

• It would be hard though to explicitly describe objects in this manner
to incorporate all of the detail required that everyday objects have.

• Some applications allow these to be used in conjunction with CSG
Friday, 11 January 13

Parametric Representation

•Parametric representation is an approximation of a surface using
curves to generate patches.

• By manipulating the curves and therefore the patches, explicit objects
can be formed.

• By separating the representation of an object into many different
patches, a surface can be described parametrically.

Friday, 11 January 13

Parametric Representation

•Although patches present an alternate method for surface
representation most computer graphics applications convert
patch based objects to polygons prior to rendering.

Friday, 11 January 13

Rendering Approaches

• Implicit surfaces are utilised where explicit definitions cannot be
practically used.

• E.g. in gaseous elements, Clouds and fluids.

•Methods such as Eulerian grids, voxels, blobbies, particles, volumetric
renderers etc.

Friday, 11 January 13

Illumination Models
• Most CG algorithms are optimised for polygon data (ideally planar triangles).

• Geometric shapes can be manipulated using the notion that 2 vertices form a line
segment – e.g. line clipping algorithms.

• The approximation of meshes varies:

• screen resolution is important

• If the polygon samples(micro polygons) are smaller or the same size as the pixel area on
the viewing plane, then the surface is described in a manner such that appears as a perfect
representation at that given resolution.

• The user usually has some control over surface approximation, more in cases where the
surface is not a primitive supported by the renderer.

• The usage of the mesh is important and the approximation may vary over distance from
the camera: e.g. a surface used to describe an ocean.

Friday, 11 January 13

Visualising Objects

Back Face Removal

Local(object) coordinates

World coordinates

Object Removal

Projection

Virtual Camera

3D Clipping

Display

2D Image Generation

Visible Surface model

Illumination Model

Shading Model

Before we tackle the issue of image
generation, we must concern
ourselves with the information
required for such processes.

Friday, 11 January 13

Image Synthesis
•The process of image synthesis is the part of the pipe line that finally turns

our object information into actual imagery.

• There are 3 main aspects of this process:

1. Rasterisation : mapping the polygons onto the pixels of the image.

2. Hidden Surface Removal:the elimination of polygons not seen and
polygons that are occluded in the output view.

3. Shading the polygons be it from flat shading to full blown illumination
modelling.

Friday, 11 January 13

The Virtual Camera

•The Camera is defined by using a
parallelepiped as a view volume with
two of the walls used as the near and
far view planes

• Typically a view volume is also created
using an angle, the screen dimensions
and near and far planes

Friday, 11 January 13

Drawing 3D scenes

• When drawing in 3D the main emphasis is on transforming objects in order to orient and
position them as a desired 3D scene

• To do this we use matrices and transform all our vertices by these matrices

• Typically each object will also have it’s own transformation matrix to do local
transformations.

• When using realtime systems (like our application viewports) each of the vertices of our
model are processed through a series of these matrices, usually called the Model, View
Project (MVP) matrices.

• Renderers usually have a slightly different way of doing this but the principles will be the
same

Friday, 11 January 13

Overview of the Viewing process

• When using “orthographic” views (such as side, top etc in our apps) we are
actually using a special case of 3D projection.

• The view volume of the camera is a rectangular parallelepiped, whose four
sidewalls are determined by the border of the window and whose other two
walls are determined by a near plane and a far plane

Friday, 11 January 13

Overview of the Viewing process II

• Points lying inside the view volume are projected onto the window along
lines parallel to the z axis.

• This is equivalent to simply ignoring the z components of these points so
that the 3D point projects to

• A separate viewport transformation maps the projected points from the
window to the viewport on the display device

(x1, y1, z1) (x1, y1, 0)

Friday, 11 January 13

3D parallel
projection

• The image above shows a camera immersed in a scene, the scene
consists of a block, part of which lies outside the view volume

• Most applications will then process all of the vertices by the following
matrices before rendering.

• The modelview matrix

• The projection matrix

• The viewport matrix

Friday, 11 January 13

OpenGL pipeline

• Each object is made up of a number of vertices, each vertex can be added
to a scene by the graphics calls (OpenGL for Maya and Houdini)

• Each vertex is multiplied by the various matrices shown, it is then clipped
if necessary

• Any parts that survive clipping are then mapped onto a viewport

Friday, 11 January 13

The modelview matrix I
• The modelview matrix provides what we call the CT (Current Transform).

• It combines two effects

• the sequence of modelling transformations applied to objects

• and the transformation that orients and positions the camera in space

• Although the model view matrix is a single matrix in the actual pipeline it is easier to
think of it as the product of two matrices :-

• a modeling matrix M

• a viewing matrix V

• First the modeling matrix is applied and then the viewing matrix so the modelview
matrix is in fact the product VM

Friday, 11 January 13

The modelview matrix II

• a) shows a unit cube centred at the origin,

• A modelling transformation based on M scales, rotates and translates the cube into the
block shown in part b)

• part b) also shows the relative position of the camera view volume

• The V matrix is now used to rotate and translate the block into a new position.

• The specific transformation is that which would carry the camera from its position in the
scene to its “generic” position, with the eye at the origin and the view volume aligned with
the z-axis as shown in part c)

Friday, 11 January 13

The modelview matrix III

• The vertices of the block are now positioned so that projecting them onto a plane such
as the near plane yields the proper values for displaying the projected image.

• So the matrix V in fact effects a change of coordinates of the scene's vertices into the
camera's coordinate system (eye coordinates)

• In the camera's coordinate system the edges of the view volume are parallel to the x ,y
and z axis

• The view volume extends from left to right in x from bottom to top in y and from -near
to -far in z

• When the vertices of the original cube have passed through the entire modelview
matrix they are located as show in part c)

Friday, 11 January 13

The projection matrix

• The projection matrix scales and shifts each vertex in a particular way, so that all those
vertices that lie inside the view volume will lie inside a standard cube that extends from -1
to 1 in each dimension

• This matrix effectively squashes the view volume into the cube centered at the origin,
which is a particularly efficient boundary to clip against

• Scaling the block in this fashion might badly distort it but this distortion can be
compensated for in the viewport transformation

• The projection matrix also reverses the sense of the z-axis so that an increase in the value
of z now represents increasing values of the depth of a point from the eye.

• clipping is now performed

Friday, 11 January 13

The viewport matrix

• The viewport matrix takes the surviving elements of the block and maps it
to a 3D viewport

• The matrix maps the standard cube into a block shape whose x and y
values extend across the viewport (in screen co-ordinates)

• and a z component which extends from 0 to 1

Friday, 11 January 13

Perspective Camera
• The Camera has an eye positioned at some point in space.

• Its view volume is a portion of a rectangular pyramid, whose apex is at the eye.

• The opening of the pyramid is set by the viewangle (part b of figure)

• Two planes are defined perpendicular to the axis of the pyramid : the near and the far
plane.

• Where these planes intersect the pyramid they form rectangular windows which have
an adjustable aspect ratio.

• We then clip points which lie outside the view volume. Points lying inside the the view
volume are projected onto the viewplane to a corresponding point P'

• With a perspective projection the point P' is determined by finding where a line from
the eye to P intersects the viewplane.

�

Friday, 11 January 13

Setting the View Volume

•Most applications have parameters for
setting the realtime camera (not the
renderable one)

• This lets you set clipping planes for
realtime visualisation as well as the FOV

• Sometimes this will also transfer to the
renderable camera but this depends
upon the renderer

Friday, 11 January 13

Setting The Perspective

•The parameter fov, shown as in the figure is given in degrees and sets
the angle between the top and bottom walls of the pyramid.

• The parameters w and h sets the aspect ratio of any window parallel to
the xy-plane

• The value N is the distance from the eye to the near plane, and F is the
distance from the eye to the far plane. N and F should be positive.

�

Friday, 11 January 13

Perspective Projection

2

664

f
aspect 0 0 0

0 f 0 0
0 0 f+n

f�n
2fn
f�n

0 0 �1 0

3

775

f = cot

✓
fovy

2

◆

•Projections is calculated using a single matrix

•For example a simple Perspective projection
can be generated by using the matrix on the
right

•This can be used to generate all different
types of perspective and effects, especially in
games etc

Friday, 11 January 13

Orthographic Projection
Scale

Translate

2

664

2.0
r�l 0 0 0
0 2.0

t�b 0 0
0 0 2.0

f�n 0

� r+l
r�l � t+b

t�b � f+n
f�n 1

3

775

Friday, 11 January 13

Reverse Perspective

http://www.youtube.com/watch?v=jdMSEJwbCCY

Friday, 11 January 13

http://www.youtube.com/watch?v=jdMSEJwbCCY
http://www.youtube.com/watch?v=jdMSEJwbCCY

The General Camera with Arbitrary Orientation
and Position

• It is useful to attach an explicit co-ordinate system to the camera as shown in the figure
above.

• This co-ordinate system has its origin at the eye and has three axes, usually called the u-,v-,
and n-axis which define the orientation of the camera

• The axes are pointed in directions given by the vectors u,v, and n

• Because, by default, the camera looks down the negative z-axis, we say in general that the
camera looks down the negative n-axis in the direction -n

• The direction u points off “to the right of” the camera and the direction v points “upward”

Friday, 11 January 13

Camera

• The above figure shows a camera with the same co-ordinate system attached to it

• It has u-,v- and n-axes and an origin at position eye

• b) shows the camera with a roll applied to it

• c) shows the camera with zero roll or “no-roll” camera

• The u-axis of a no-roll camera is horizontal, that is perpendicular to the y-axis of
the “world”

• Note that a no-roll camera can still have an arbitrary n direction, so it can have any
pitch or heading.

Friday, 11 January 13

Calculating the View Matrix

• What are the directions of u,v and n vectors with given values for eye, look and
up

• If given the locations of eye, look and up, we immediately know than n must be
parallel to the vector eye-look, as shown above. so we can set n=eye-look

• We now need to find a u and a v that are perpendicular to n and to each other.

• The u direction points “off to the side” of a camera, so it is natural to make it
perpendicular to up which the user has said is the “upward” direction.

Friday, 11 January 13

Calculating the View Matrix
• An easy way to build a vector that is perpendicular to two given vector is to form

their cross product, so we set u=up x n

• The user should not choose an up direction that is parallel to n, because u then
would have zero length.

• We choose u=up x n rather than n x up so that u will point “to the right” as we
look along -n

• With u and n formed it is easy to determine v as it must be perpendicular to both
and is thus the cross product of u and n thus v=n x u

• Notice that v will usually not be aligned with up as v must be aimed perpendicular
to n whereas the user provides up as a suggestion of “upwardness” and the only
property of up that is used is its cross product with n

Friday, 11 January 13

Calculating the View Matrix

•To summarise, given eye look and up, we form

n = eye� look
u = up⇥ n
and
v = n⇥ u
and then normalise the vectors to unit length.

Friday, 11 January 13

• The ModelView is the product of two matrices the matrix V that accounts for the
transformation of the world point into camera coordinates.

• and M that embodies all of the modelling transformations applied to the points.

• We can now multiply the two and generate our points

• Because the job of the V matrix is to convert world co-ordinates to camera co-
ordinates it must transform the camera's coordinate system into the generic position
for the camera as shown in the figure.

ModelView Matrix

Friday, 11 January 13

• This means that V must transform eye into the origin, u into the vector i,v into j, and n k

• The easiest way to define V is to use the following matrix

V =

0

BB@

u
x

u
y

u
z

0
v
x

v
y

v
z

0
n
x

n
y

n
z

0
d
x

d
y

d
z

1

1

CCA

ModelView Matrix

Where (d
x

, d
y

, d
z

) = (�eye • u,�eye • v,�eye • n)

Friday, 11 January 13

Visible Surface Algorithms

• Visible surface algorithms (or hidden surface elimination algorithms) basically do one
thing:

• They calculate what is visible to the viewer and what is not.

• This process is very computationally expensive.

• The process has the potential to be called for every single pixel in an image.

• For example, for a standard PAL sized raster image, there are 720 x 576 pixels.

• This results in a staggering 414,720 pixels.

• Efficiency is paramount – especially in real-time applications.

Friday, 11 January 13

Back Face Culling

•One of the simplest visible surface determination algorithms is culling, or
disregarding all polygons that face away from the camera.

•Most software packages make the option of rendering back faces available
to the user.

•Note : By Default this option is usually on

Friday, 11 January 13

Back Face Culling

•The dot product is used to eliminate polygons, the normal of a polygon and a
ray vector from the polygon to the camera

• From this, we can use simple rules to cull the polygon:

• If the viewing angle of the polygon is greater than 90 degree, cull it.

•Otherwise proceed with using polygon.

Friday, 11 January 13

Visible Surface
Calculations

•The basic system for calculating the surfaces visible deals with the depth
of the objects in the viewing volume

• remember we retained the depth value of point data in our projection
systems.

• If multiple surfaces intersect the ray, then all the surfaces need analysing.

• The surface which is nearest to the Eye is accepted as the viewable
surface hence the depth requirement.

Friday, 11 January 13

Visible Surface
Algorithms

•The first process determines which of n objects is visible at every pixel in
the image: For each pixel in the image

 for every object in the scene (n)
 calculate distance from the Eye to the intersection
 of the ray and the object.
 next
 return colour value of the nearest object
next

This process requires a loop through each pixel (p) and in that a loop through each object(n): np
calculations.
For a PAL image with 20 objects in a scene, that’s 8,294,400 object calls

Friday, 11 January 13

Visible Surface Algorithms
•The second approach is more subtle:

• For every object in a scene (n), compare all the other objects in the scene
and eliminates areas of the object that are occluded.

• In essence it’s a clipping algorithm based on the current view:

 For each object in the scene(n)
 for every object in the scene (n)
 calculate areas occluded by the 2nd loop object and clip
 next
 draw the current object
 next

Friday, 11 January 13

Example

In essence, this algorithm employs only n2 calls.

>The Red square is furthest away<
>The Green Polygon is 2nd nearest<

>The Blue circle is nearest<

Friday, 11 January 13

Types of basic algorithm
•In essence the 2 types of algorithm can be labelled:

• The first, dealing with pixel positions is called an image precision algorithm.

• The second, dealing with object relationships is called an object precision
algorithm.

• Image precision algorithms are directly related to the raster size of the
output image. (resolution dependant)

•Object precision algorithms are at first entirely based on objects
relationships.

Friday, 11 January 13

Types of Algorithms
• Image precision algorithm can be thought of as a sampling algorithm the

objects are sampled to the desired output image resolution.

• The image cannot be scaled without the need to re-calculate the entire
image precision algorithm again.

•Object precision algorithms are independent of the output resolution.

•We still have to address the image resolution in respect to drawing the
pixels but it is a secondary function independent of the process.

•Object precision algorithms can be called prior to the image generation.

• The results are unaffected by any transformation on the actual output
image itself.

Friday, 11 January 13

List Priority Algorithms

•This method of algorithm performs a series of evaluations on the objects to
be viewed in order to ascertain a list of polygons sorted in bias of depth.

•Once a list is generated, the objects are rendered in descending depth order.

• As the pixel colours are calculated and stored in the colour buffer, pixels
nearer the camera will be drawn last and thus overwrite data that is further
away.

Friday, 11 January 13

List Priority Algorithms
•Despite being simplistic in idea, the actual execution of the

algorithm presents obstacles.

In the case to the left,
all of the faces of object A
are nearer than
all of the faces of object B.

Object B will drawn first,
then object A will be drawn.

Any faces of object A that occlude object B will automatically
overwrite the colour buffer.

Friday, 11 January 13

List Priority Algorithms
•Such a distinction between objects cannot be made in some cases.

In these cases, the algorithm splits the polygon faces down further so that a linear order can be
generated.

Friday, 11 January 13

List Priority Algorithms

Friday, 11 January 13

List Priority Algorithms

•List priority algorithms are a combination of image precision methods
and object precision methods.

•Depth comparisons and object splitting is done in an object
operation, whilst the actual image scan conversion relies on the
display device for its operation.

Friday, 11 January 13

The Depth Sort (Painters)
Algorithm

•The Depth Sort Algorithm, by Newell, Newell and Sancha, it is
affectionately termed as the painting algorithm

• (as an artist paints over parts of the image to put objects nearer to the
viewed	

Friday, 11 January 13

Basic Depth Sort Algorithm

•The basic depth sort algorithm works on the following three
steps:

1.Sort all polygons to the farthest z coordinate of each.

2.Resolve any ambiguous polygons where the z distances
overlap – splitting polygons if necessary.

3.Scan convert each polygon in ascending order of farthest z
coordinate(i.e. back to front)

Friday, 11 January 13

Basic Depth Sort
•For a polygon to successively be given a list priority, it must be tested

against up to 5 operations levels of complexity.

• As soon as a single test is passed, the test polygon is deemed NOT to
obscure the other polygon.

• If a polygon passes a test against all other polygons, then the polygon can
be given a list priority.

Friday, 11 January 13

Basic Depth Sort

•For example, if we are testing polygon P
against polygon Q

•Test 1 : Do the polygons’ x extents not
overlap

•And similarly …

•Test 2 : Do the polygons’ y extents not
overlap?

Friday, 11 January 13

Basic Depth Sort

Test 3: Is P entirely on the opposite side of Q’s plane from the viewport?

Test 4: Is Q entirely on the same side of P’s plane from the viewport?

Friday, 11 January 13

Basic Depth Sort

Test 5: Does the projections of the polygons onto the (x,y) plane not overlap?
This can be determined by comparing the edges of one face against another
– similar in essence to 2D line clipping we explored earlier.

If all 5 tests fail, then we can assume that P actually obscures Q.

Friday, 11 January 13

Example

The examples above are annotated only their depth value.
The image on the left passes test 1 – the x extent of each face do not overlap.

Consider the rotation of the left face to resemble the right picture.

Test1 fails – the x extent of each face overlap.
Test 2 fails – the y extent of each face overlap.
Test 3 and Test 4 fail – neither face is wholly in one half space of the other.
Test 5 fails – the face edges overlap.

It is quite possible for a situation where all 5 tests fail on a polygon.
Friday, 11 January 13

Does Depth Sorting Work?
• If the polygons are small the cyclic overlap errors are diminished

• Larger polygons generate larger visible errors

•Nobody uses depthsort:

• Its nasty to resolve cyclic overlaps!

•Many games use list priority sorting without fixing perspective overlap

Friday, 11 January 13

1974 Catmull Z Buffer Algorithm
•This is the simplest image-precision

algorithm.

• It generates not only a colour buffer for the
colour of the pixels,

• but a z buffer as well, for the depth of each
pixel.

• The colour buffer is initialised to the
background colour defined.

• The z buffer is initialised to a very large
distance.

Friday, 11 January 13

Z Buffer

•Each polygon is scanned in turn against each
pixel in the projection

•If pixel depth is no farther away than the current
depth stored then the colour returned from the
pixel polygon is placed in the colour buffer, and
its respective depth in the depth buffer.

Friday, 11 January 13

Catmull Algorithm
•As such, the Catmull algorithm does not require any object component

sorting.

• The hardest problem with the Catmull algorithm is working out what
pixels are covered by the faces.

• If the faces are all triangular then this becomes easier.

d(x,y) = very large
c(x,y) = bg colour
For each face
 For each pixel (x,y) covering the face
 depth = depth of face at x,y
 if depth<d(x,y) then
 c(x,y)=colour of face at x,y
 d(x,y)=depth
 next
next

Friday, 11 January 13

Calculating the pixels in a triangle
•We have a triangular face generated by 3 known points

(v1,v2,v3).

•We can generate a scanline from the top of the triangle
to the bottom, i.e. v1y to v3y.

•We explicitly describe the scanline y position – at vay in
the example above.

• The horizontal pixels on the indicated scanline run from
point vax to vbx – unknown.

Friday, 11 January 13

Calculating the pixels in a triangle

•To Calculate the unknown element we
can use the following equation

Friday, 11 January 13

Vay tends to V2y Vay tends to V1y

start
scaling ratio

vector of distance

Friday, 11 January 13

We can also state that…

Friday, 11 January 13

Hence for x components:

Thus solving the start (vax) and end (vbx) x positions for a given scanline vertical position.

Friday, 11 January 13

Pros and Cons of the Z Buffer

• Pros

• No object sorting, comparison or splitting required – straight forward approach

• Cons

• At least twice the memory overhead-

• more memory for zdepth buffer to prevent depth aliasing

• but we have so much these days or we could scan it in strips…

• We need the z values! (We may require them anyway later for shaders etc)

• We may perform more than one polygon draw per pixel

Friday, 11 January 13

Z Buffer

•The basic algorithm before gives us a colour buffer and a z-depth buffer

• The z buffer algorithm does not require only polygonal data : one of its
strengths

• The z buffer algorithm is an image precision algorithm and as such can
produce aliasing.

•More variations have been made :

•Catmul ‘78

•Carpenter in ’84 A-Buffer

Friday, 11 January 13

Screen Subdivision-Divide & Conquer
•An improvement to the basic algorithm is

to subdivide the screen into “buckets” to
aid efficiency.

•When studying the relationship between
regions and polygons, we can come to 4
distinct cases:

1 2 3 4

1 A polygon completely surrounds the region.
2 A polygon and the region intersect.
3 The regions surrounds a polygon.
4 A polygon and the region are far apart.

Friday, 11 January 13

Subdivision Methods

•This allows us to analyse the situation:

• In case 1,	

 all of the pixels in the region can proceed visibility and testing.

• In case 4, none of the pixels in the region contribute to the visibility of the
polygon and it is discarded.

• In cases 2 and 3, the region is subdivided to smaller regions and the
process starts again.

1 2 3 4

Friday, 11 January 13

Example Algorithm
Subdivide screen into X and Y regions

For y = Y to 1
For x = 1 to X … We loop thru each pixel in the region

 z_buffer(x,y)=Zmax …Set the zbuffer to be very large
 For p = 1 to NOP …we loop thru all the polygons in the scene

 If case 4 then goto next polygon …the poly has no effect

 If case 2 or 3 then subdivide bucket and start again
 …we need to subdivide the region more
 If case 1 then
 z = depth(p,x,y) … get the depth of the current polygon and store in z
 if z < z_buffer(x,y) … is the polygon nearer than the buffer data?
 z_buffer(x,y)=z …replace z_buffer data with current z
 polygon = … the current polygon for this pixel is p

 proceed with shading current pixel with polygon polygon

Friday, 11 January 13

Buckets
•Along the edges of polygons, the

regions must be subdivided
repeatedly until the region becomes a
single pixel in size. For complex
scenes, this algorithm is quite
inefficient.

• Along the edges of polygons, the
regions must be subdivided
repeatedly until the region becomes a
single pixel in size. For complex
scenes, this algorithm is quite
inefficient.

Friday, 11 January 13

References

•Computer Graphics With OpenGL, F.S. Hill jr, Prentice Hall (most images
from the instructors pack of this book)

• Basic Algebra and Geometry. Ann Hirst and David Singerman. Prentice
Hall 2001

• "Essential Mathematics for Computer Graphics fast" John VinceSpringer-
Verlag London

• "Geometry for Computer Graphics: Formulae, Examples and Proofs" John
Vince Springer-Verlag London 2004

Friday, 11 January 13

References

•Computer Graphics: Principles and Practice in C (2nd Edition) (Systems
Programming Series) Foley, van Dam et Al

Friday, 11 January 13

