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Rendering in Passes
• Rendering in Passes is not a new technique for 3D graphics

• The word pass originated in motion-control photography used for miniatures.

• Each time a motion is repeated it is called a “pass”

• Usually the first pass was fully lit and called the “beauty pass”

• Next the lighting and film would be changed for a High contrast “matte” pass.

•  For a third pass a light may be turned on in the model.

• Finally all the passes used to be printed together optically for the final shot 
(before the day of digital compositing systems)
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Render Passes

• It is usually preferable to split our renders up into multiple passes

• These can either be separate files for each pass or combined into one exr 
file.

• This will allow us to make adjustments to overall colour values in the image, 
and also add extra effects or even place elements in different positions

• It is also not uncommon to output other non colour values which give us 
information about elements of the scene such as depth from camera, surface 
normals, motion vectors etc.

Monday, 28 January 13



Shader Development

• Typically when developing a shader we combine in the shader a number of 
different elements layered together.

• Usually for a simple pass we would have a basic colour element and then 
several elements which take into account the position of the viewer and 
the lights in the scene.

• Next week we will start to look at the mathematics behind this next week

• This week we will introduce the basic terms and techniques used in 
rendering.
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Ambient Pass

• The ambient pass on the right is the basic colour of the object multiplied by 
the ambient light values set for the scene.

• The colour on the left is just the colour assigned to the object
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Diffuse Pass

• The diffuse pass usually has the basic shading model 
applied to the objects

• This pass takes into account Position of the lights in 
the scene as well as the orientation of the surface 
(based on the surface Normal)

• The top pass has no shadows

• The 2nd pass has the shadows included as by default 
the renderman ray trace shadows are in the diffuse 
pass
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Specular Pass

• The specular or Highlight pass takes into 
account the direction of the light

• Specular highlights are important in 3D 
computer graphics, as they provide a 
strong visual cue for the shape of an 
object and its location with respect to 
light sources in the scene.
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Combining Basic Passes
• Usually when using a basic Blinn / Plastic / Phong Shader the 

output of the render will be a combination of the Ambient, 
Diffuse and Specular contributions

• If we have separate passes we can combine them to get the same 
effect using the following compositing structure
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Ray tracing
• The previous images can be produced very easily using a process called 

scan line rendering

• This process works on a row-by-row basis rather than a polygon-by-
polygon or pixel-by-pixel basis.  

• However it doesn’t take into account rays bouncing off of object and 
reflections / refraction in the scene

• To do this we need to invoke ray-tracing which will bounce rays around 
the scene to gather more information about the lights in the scene.

• This increases the processing required and will slow down renders
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Reflection pass

• Usually we can determine the number 
of times the rays bounce for the 
reflection pass

• In this case 2 but increasing to 3 or 4 
will increase the render times 
logarithmically

• It is best to keep the bounce levels as 
low as possible
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Indirect diffuse

• Indirect diffuse illumination can add different 
elements such as colour bleeding

• There are a number of methods of 
calculating this including, Photon mapping

• Renderman has a build in function called 
indirect diffuse

• again this process can be slow
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Advanced Passes
• So far we have dealt with passes that contain colour information

• However we can save out other information instead of rgb values.

• Typically we still save to the rgb channels but we store other data in the same 
format.

• For example we may want to store the surface normal values which are usually 
in the form of a Normalized vector N [x,y,z] so the r channel becomes x, g=y 
and b=z.

• We can view these images but they are typically used in the compositor for 
advanced effects such as re-lighting or Zdepth DOF effects
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zDepth

• This zDepth pass was created in 
renderman using the built in depth 
function

• This allows us to pass the current point 
being shaded and get the depth relative 
to the camera

1 Zdepth = 1-depth(P);
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Normals

• The surface normal of the object in view is 
stored in the image

• This is usually normalized and forced to face 
towards the camera / viewer to ensure it is in 
the correct direction
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Points

•  This pass contains the visible point 
transformed into world co-ordinates.

• These values can be used for re-
lighting / additional lighting in the scene
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Point re-lighting
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Spot Light
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Point Clouds
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Illumination Models

• Illumination models are used to generate the colour of an object’s 
surface at a given point on that surface.

• The factors that govern the illumination model determine the visual 
representation of that surface. 

• Due to the relationship defined in the model between the surface of 
the objects and the lights affecting it, illumination models are also called 
shading models or lighting models.
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Light
• The physics of light is a complex subject.

• Shading models are approximations of these laws, in varying levels of realism / 
complexity. 

• This is based on the fact that surfaces, for the most part, are approximations. 

• Micro facet details defines the lighting characteristics of surface colour. 

• CG Object representation (usually) does not transcend to that level.

• Radiosity /global illumination algorithms mimic photonic reactions with 
surfaces.
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The Simplest Shading Model

• The simplest shading model is a simple constant illumination.

• The model represents an un-realistic assumption in that the surface is self 
illuminating (the colour of this constant shading is defined by the user).	


Monday, 28 January 13



Illumination Equation

• We can now introduce the illumination equation, using the notion that 

• Where I represents the illumination colour intensity and value 
represents the expression resulting in that colour value.

• Constant shading illumination equation can be defined as:

I = value

I = Ki
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Constant Shader

• Most shading languages have the concept of an input colour 
which is passed to the shader to do the illumination 

• In renderman this is know as Cs and the final output value 
for the surface Colour is known as Ci

• In Mental ray and Matra this can be done visually using the 
shader editors as shown on the next slide
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Shader Builders
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Renderman
1 surface Constant( string tx="")
2 {
3 Oi=Os;
4
5 if(tx!="")
6 Ci=Oi*texture(tx);
7 else
8 Ci= Oi*Cs;
9

10 }
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Constant Illumination

• This simple equation has no reference to light sources, and as such 
every point on the object has the same intensity. 

• This equation need only be calculated once per object.

• The process of evaluating the illumination equation at one or more 
points on an object’s surface is referred to as lighting the object.

• In the previous example we also use a texture lookup to change the 
colour of the surface but there is still no lighting
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Ambient Light
• Ambient light is usually a scene-based intensity of non directional light. 

•  It affects every object in that scene. 

•  We can then incorporate this into our illumination equation

•    is the ambient light intensity the scene-based value that remains the same for all 
surfaces in the scene.

•    is the ambient reflection coefficient a material based property that determines 
how much ambient light is actually reflected. 

I = IaKa

Ia

Ka
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Ambient Light
• Material based properties are the 

properties that characterise one surface 
from another.

• This equation allows individual surface 
properties to “reflect” a level of ambient 
light.

• The scene above has various levels of Ka 
with a constant value of 0.5 for the 
ambient light intensity

• The renderman shader is shown on the 
next page

Monday, 28 January 13



• We make use of the renderman ambient function which 
returns the level of the ambient light in the scene

• We then multiply this by Ka and the colour value to get 
us the final colour output

1 surface Ambient( float Ka=0.5; string tx="")
2 {
3 Oi=Os;
4
5 if(tx!="")
6 Ci=Oi*texture(tx);
7 else
8 Ci= Oi*Cs*Ka*ambient();
9 }
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BRDF

• Bidirectional Reflectance Distribution Function

• It describes how much light is reflected when light makes contact with a 
material (and hence can be used to specify different material types)

• The degree to which light is reflected depends on the viewer and light 
position relative to the surface normal and tangent

•  BRDF is a function of incoming (light) direction and outgoing (view) 
direction relative to a local orientation at the light interaction point

Monday, 28 January 13



BRDF
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BRDF

• Depending upon the Wavelength of the Light there are different levels 
of absorption, reflection and transmission.

• Therefore BRDF is also dependent upon Wavelength.

•  We need to specify the conservation of energy thus

•  light incident at surface = Reflected Light + Absorbed Light + 
Transmitted Light
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BRDF

• Position of the light is also important as different areas of 
the surface will behave differently.

• This can be used to create surface detail, such as the rings 
and knots in wood.
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BRDF

• BRDF is usually specified as a function thus

•  λ is the wavelength of the light

•        is the incoming light in Spherical Co-ordinates

•         is the outgoing reflected light in Spherical Co-ordinates

• u,v is the position of the surface in parametrised in texture co-ordinate space

✓i�i

BRDF�(�i,⇥i, �o,⇥o, u, v)

�
o

,⇥
o
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BRDF

• If there is no positional invariance then the BRDF may be specified 
thus

• This only works for materials with no surface variation 
(Homogeneous) and can be speeded up using lookup tables and 
texture modulation

BRDF�(�i,⇥i, �o,⇥o)
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BRDF Definition

•       incoming light direction

•       reflected light direction (outgoing)

•    quantity of reflected light in direction 

•    quantity of light arriving from direction

€ 

BRDF =
Lo
Ei

Wi

Wo

Lo Wo

Ei Wi
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Types of BRDF

• There are two main types of BRDF

• isotropic BRDFs and anisotropic BRDFs

• The important properties of BRDFs are reciprocity 
and conservation of energy

• BRDFs that have these properties are considered to 
be physically plausible
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Isotropic BRDF

• These type of surfaces are invariant to with respect to rotation 
around the surface normal

• effectively this means that it should respond the same way 
from wherever we view it.

• and are quicker to calculate from the point of view of the 
render

Monday, 28 January 13



Anisotropic BRDF

• BRDFs that describes reflectance properties that do exhibit 
change with respect to rotation of the surface around the 
surface normal vector

• Anisotropy (the opposite of isotropy) is the property of being 
directionally dependent.

• Something which is anisotropic may appear different or have 
different characteristics in different directions.

•  Seen in a materials such as Velvet
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Anistropic isotropic
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Diffuse Reflection

• Diffuse reflections consider point lights to generate shading 
properties

• a change in colour intensity across the surface of an object in 
relation to light sources.
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Diffuse Reflection

• The simplest of the diffuse models is the Lambert Illumination 
Model.

• In Lambertian Reflection light is reflected with equal intensity in all 
directions (isotropic). 

• The distribution is a basic consideration towards surface detail:

• Light scattering on the surface and in the medium.
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Lambert’s Law
• Lambert’s law states :

• that the intensity of illumination on a diffuse surface is 
proportional to the cosine of the angle generated between 
the surface normal vector and the surface to the light source 
vector.
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Lambert’s Law

• The only data used in this equation is the surface normal and a light 
vector that uses the light source position(taken as a point light for 
simplicity). 

• The intensity is irrespective of the actual viewpoint, hence the 
illumination is the same when viewed from any direction.
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Lambert’s Model
The equation for Lambert’s illumination model is:

€ 

I = Ipkd cos(θ)
Where:
Ip is the intensity of the point light source
kd is the material diffuse reflection coefficient  the amount of diffuse 
light reflected.

By using the dot product between 2 vectors v1 and v2 

€ 

v1 •v2 = v1 v2 cos(θ)
if N and L are normalised, we can re-write the illumination equation:

€ 

I = Ipkd (N •L)
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Renderman 
Version

1 surface Diffuse

2 (

3 float Kd=1;

4 string tx="";

5 )

6 {

7 /
*

init the shader values
*

/
8 normal Nf = faceforward(normalize(N),I);
9 vector V = -normalize(I);

10
11 /

*

now calculate the shading values
*

/
12 color Diffuse=0;
13 illuminance( P , Nf, PI/2.0 )
14 {

15 Diffuse += Cl
*

normalize(L).Nf;
16 }

17
18 color Ct=Cs;
19 // use image based textures
20 if(tx!="")
21 {

22 Ct=Oi
*

texture(tx);
23 }

24 // calculate the colour
25 Ci= Oi

*

Ct
*

(Kd
*

Diffuse);
26
27 }
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Problem with Lambert

• You can see how Lambert’s law is too general
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Problems with Lambert
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Occlusion

€ 

I = Ipkd (N •L)

€ 

I = Ipkd max(N •L,0)

both result in a value of 0
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Lights
• In general lights that we add to a scene in an animation 

package are not physically based.

• They are usually general approximations of a lighting 
function provided as part of the shading functions

• Usually Lights are in fact just other shaders which are 
queried as part of the rendering pipeline to see what light 
colour energy is to be provided to the surface when 
calculating the illumination equations
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Ambient Light

• The ambient parameter in most programs is an unrealistic effect (as 
explained by the example earlier)

• In real life ambient light is a widely distributed “indirect” light that 
has bounced off (or been transmitted through) objects in your 
scene.

• In CG programs ambient means a flat, uniform brightness added to 
all elements of the scene with no attempt at diffusion or scattering.
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Point (omnidirectional) Lights

• A Point light simulates rays shining out from one infinitely small 
point in space

• Usually the have a notional value of being from some position in 
the scene and will illuminate in all directions

• This is quite an unrealistic lighting model as in real life most 
lights will cast light more in one direction than others.
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Point Light Shader
• The following is a renderman pointlight shader it gathers 

all the illumination from the current position 

1 light
2 pointlight(
3 float intensity = 1;
4 color lightcolor = 1;
5 point from = point "shader" (0,0,0);
6 )
7 {
8 illuminate( from )
9 Cl = intensity * lightcolor / L.L;

10 }
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distant lights

• A directional or distant light sets a single vector for all it’s illumination

• It hits every object in the scene from the same angle no matter where 
the object is located

• The position of the light from the object has no bearing on the 
illumination as only the direction vector is used

• Point lights can be specified using a to and from parameter but this is 
just used to calculate the direction vector by subtracting them
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• Distant light with from position [1,1,1] and [10,10,10] 
give the same illumination
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• Directional lights can be hard to aim but do provide a good method of 
fill lighting
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renderman distantlight

1 light
2 distantlight(
3 float intensity=1 ;
4 color lightcolor=1 ;
5 point from = point "shader" (0,0,0) ;
6 point to = point "shader" (0,0,1) ;
7 )
8 {
9 solar( to - from, 0.0 )

10 Cl = intensity * lightcolor;
11 }
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spotlights

• A spotlight simulates light radiating from a point in a similar 
fashion to a pointlight

• However a spot light’s illumination is limited to a user defined 
cone

• This is usually specified by two angles as shown above

Lighting 63

FIGURE 11.4. Spotlight (also Plate I)

Cone
angle

Delta
angle

Figure 11.5. Cone angle and delta angle

A spotlight also allows you to control exactly how directional the light is using
the “coneangle” and “deltaangle” parameters, illustrated in Figure 11.5.
Outside the “coneangle” (specified in radians) the light has no effect, while
within coneangle–deltaangle the full intensity of the light is in effect.
Between these two angles the light falls-off smoothly producing a soft edge to the
beam. This can be seen in Figure 11.6 (also Plate I) where the delta angle
(specified in Listing 11.5) has been increased to produce a softer edge to the light.

Ch11.qxd  30/4/07  5:30 PM  Page 63
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renderman spotlight
1 light
2 shadowspot(
3 float intensity = 1;
4 color lightcolor = 1;
5 point from = point "shader" (0,0,0);
6 point to = point "shader" (0,0,1);
7 float coneangle = radians(30);
8 float conedeltaangle = radians(5);
9 float beamdistribution = 2;

10 string shadowname = "";
11 float samples = 16;
12 float width = 1;
13 )
14 {
15 float atten, cosangle;
16 uniform vector A = (to - from) / length(to - from);
17 uniform float cosoutside= cos(coneangle),
18 cosinside = cos(coneangle-conedeltaangle);
19
20 illuminate( from, A, coneangle ) {
21 cosangle = L.A / length(L);
22 atten = pow(cosangle, beamdistribution) / (L.L);
23 atten *= smoothstep( cosoutside, cosinside, cosangle );
24 if (shadowname != "") {
25 atten *= 1-shadow(shadowname, Ps, "samples", samples,
26 "swidth", width, "twidth", width);
27 }
28 Cl = atten * intensity * lightcolor;
29 }
30 }
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•So far, we have considered only point lights 
•A light source at a near-infinite distance away from a surface has 
near-parallel rays.
•The vector made from the surface to the light source is always 
the same for every surface. 
•This is known as a directional light – light from a known direction 
not position.
•We do not specify a position for directional lights, just a vector to 
indicate ray direction. 
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•To implement a directional light into the illumination equation, 
•we simply use the same light vector in every different surface 
illumination equation  

•i.e. L does not change, as it is constant for the light source. 

€ 

I = Ipkd (N •L)
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Lambert’s lighting model can be 
combined with the previous ambient light 

equation. 

€ 

I = Ipkd (N •L)

€ 

I = Iaka

€ 

I = Iaka + Ipkd (N •L)

Lambert’sAmbient Light
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Real light has an attenuation factor – light intensity 
becomes weaker over distance.
In a similar manner, the perception of sound volume 
decreases the further away you are from its source.

The above is an example of lighting with no 
attenuation and below is an example with a more 
realistic attenuation of light.
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To include attenuation into our illumination equation, we need to insert an attenuation factor 
into the lighting section – in this case labelled fatt.

€ 

I = Iaka + fatt Ipkd (N •L)

With this multiplying factor in place, we can control the intensity of light based on distance.

An fatt of 0 would effectively turn the light off.
An fatt of 1 would result in a maximum intensity of the light.

Light falloff obeys what is commonly known as the inverse square law its intensity decreases 
exponentially in relation to distance. 

If we consider the distance from the surface point to the light L as dL…

€ 

fatt =
1
dL

2
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• This gives a small range of useable light and most CG applications use 
less realistic methods to light scenes.

• e.g. you can set the falloff as a linear amount, with the distances from 
which to range the falloff being defined by the user or even no fall off at 
all.
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So far the notion of using the illumination equation has 
had no reference to actual colour – only monochromatic 
intensity.

What we require to do so, are 3 equations, to represent 
the Red, Green and Blue data.

€ 

IR = IaRkaR + fatt IpRkdR (N •L)

€ 

IB = IaBkaB + fatt IpBkdB (N •L)

€ 

IG = IaGkaG + fatt IpGkdG (N •L)
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• The figure shows how diffuse, glossy, and specular reflection 
appear on surfaces. 

• Diffuse reflection (left) gives materials a matte appearance, so 
that they don't show any reflections or highlights. 

• Glossy reflections (centre) are soft, and diverging rays naturally 
make reflections appear softer with distance

• Specular reflections (right) are crisp and mirror-like.
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Shiny surfaces exhibit specular reflection – the reflection of the light source towards the viewer. 

Specular reflection has 2 main colour biases:

1. The colour of the specular reflection is determined by the light source colour.

or

2. The colour of the specular reflection is determined by the colour of the surface.

Objects that have waxed, or transparent surfaces (apples, plastic, etc.) tend to reflect the colour of 
the light source.

Plastic, for example, is composed of colour pigments suspended in a transparent material. 

…and Gold has a gold coloured highlight.
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• A common misconception is that specular highlights are centred in the 
brightest point of the diffuse shading.

• In reality, the positioning of the specular highlights is derived separately from 
the diffuse shading. 

• Specular shading is calculated only from a specific camera angle, and is based 
on the angle between the light, the surface, and the camera. 

• Because of this, specular highlights are an example of view-dependent 
shading.
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• View-dependent shading is any effect that varies depending on the camera 
angle from which it was rendered. 

• Specularity, reflections, and refraction are all examples of view-dependent 
shading; they seem to shift across a surface when you view it from different 
angles.

•  Contrast this with non-view-dependent shading, such as diffuse shading and 
cast shadows, which can be computed without regard for the camera angle.
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The above diagram describes a perfectly mirrored surface. 

The viewer is seen looking at a point on the surface: viewing vector E. 

The light source L emanates a ray of light that that hits the surface with an angle of i relative to 
the normal. 

The angle of reflection of the light ray then leaves with an angle r relative to the normal. 
The angle of incidence i is the same as angle r.

In a perfect mirror (above), the viewer may ONLY see the light ray if the viewing angle E is 
directly opposite of the reflection vector R.
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Most shiny surfaces are not perfect mirrors. 
Shiny surfaces will reflect the largest intensity where the viewing angle is directly opposite the 
reflection angle. 

They usually also reflect a diminishing gradient of highlight as well, enabling light to be seen from 
angles not directly opposed to the angle of reflection. 

Phong Bui-Tuong developed an illumination model for non-perfect reflectors that has become 
widely used to portray realistic shiny surfaces. 

It is commonly known as the Phong illumination model.
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In the above diagram, the angle of incidence in relation to the surface normal is theta. 

V represents the viewing vector (reversed so we are looking from the surface) 

alpha the angle between the viewing vector and the reflection vector.

Phong postulated that maximum specular reflection was achieved when the angle between the viewing angle 
and the the reflection angle was smallest – i.e. alpha is zero.

He then stipulated that the specular reflection falls off sharply as alpha increases which he stated could be 
represented by cosn alpha.
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What does the cos n alpha mean?

Lets examine some graphical representations of various exponents of cos alpha.

Monday, 28 January 13



1 surface Phong
2 (
3 float Ks=1;
4 float size=100;
5 color SpecColour=1;
6 )
7 {
8 // init the shader values
9 normal Nf = faceforward(normalize(N),I);

10 vector V = -normalize(I);
11
12 // now calculate the shading values
13
14
15 color Phong=0;
16 vector R = reflect( -normalize(V), normalize(N) );
17
18 illuminance( P , Nf, PI/2.0 )
19 {
20 vector Ln = normalize(L);
21 Phong += Cl * pow(max(0.0,R.Ln), size);
22 }
23
24 Ci= Oi*(SpecColour*Ks*Phong);
25 }
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The above examples have Phong falloff vales of 8, 16, 64 and 256 (from left to right).
The Phong Illumination Equation reads as follows:

Ambient Lambert Phong

ks represent the specular reflection coefficient, 
n the exponent of the cosine function, 

and the cosine of the angle between the viewing vector and the reflection vector can be 
calculated via the dot product of the 2 normalised respective vectors.
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1 surface basicPlastic
2 (
3 float Ka=1;
4 float Kd=0.5;
5 float Ks=0.5;
6 float size = 10;
7 color specularcolor = 1;
8 )
9 {

10 // init the shader values
11 normal Nf = faceforward(normalize(N),I);
12 vector V = -normalize(I);
13
14 // now calculate the shading values
15
16
17 color Diffuse=0;
18 color Phong=0;
19 normal Nn=ntransform("object",N);
20 vector R = reflect( -normalize(V), normalize(N) );
21 illuminance( P, Nf, PI/2 )
22 {
23 Diffuse += Cl * normalize(L).Nf;
24 vector Ln = normalize(L);
25 Phong += Cl * pow(max(0.0,R.Ln), size);
26 }
27
28 Ci= Oi*Cs * (Ka*ambient() + Kd*Diffuse + (specularcolor *

Ks*Phong));
29 }
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The vectors used in Lambert’s models are easily generated from information available – 
the surface normal, the surface point and the light position.

The vectors used in Phong’s addition are less easily generated. 
V is fairly straightforward (the viewer position and surface point position are available).

The vector R however has to be generated from existing data.

Ambient Lambert Phong

Monday, 28 January 13



The above diagram incorporates extra detail: h represents the angle between V and R.

Thus using trigonometric functions:
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€ 

cos(h) + cos(p) = 2cos(e) × cos(i)

If we add the two together:

Therefore:

And so…

If we substitute known vectors into the equation:

Thus from our Phong equation:
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We are dealing with a surface with multiple facets.

This micro facet distribution held the key to a lot of further developments.

Blinn stipulated that if a surface was a collection of randomly distributed facets, 
the orientation of the best facet for specular reflection would be one where:

Where 	

L=the light direction 
NB=Blinn normal

V=Eye/Viewer direction
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L

V

N
H

Thus Blinn proposed a new vector replace the normal to represent basis for specular reflection.

As the viewer approaches a view perpendicular to the surface normal of illumination, the specular 
highlights a proportionately larger than Phongs.
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1 surface Blinn
2 (
3 float Ks=0.5;
4 float Kd=0.5;
5 color SpecColour=1;
6 float specularRollOff=0.002;
7 float eccentricity=1;
8 )
9 {

10 // init the shader values
11 normal Nf = faceforward(normalize(N),I);
12 vector V = -normalize(I);
13
14 // now calculate the shading values
15 color Blinn=0;
16 float E;
17 vector H, Ln, Nn;
18 float NH, NH2, NHSQ, Dd, Gg, VN, VH, LN, Ff, tmp;
19 float nondiff, nonspec;
20 illuminance( P , Nf, PI/2.0 )
21 {
22 if(eccentricity != 1)
23 E = 1 / (eccentricity * eccentricity - 1);
24 else
25 E = -1e5;
26 VN = V.Nf;
27 Ln = normalize(L);
28 H = normalize(Ln+V);
29 NH = Nf.H;
30 NHSQ = NH*NH;
31 NH2 = NH * 2;
32 VH = V.H;
33 LN = Ln.Nf;
34 if( VN < LN )
35 {
36 if( VN * NH2 < VH )
37 Gg = NH2 / VH;
38 else
39 Gg = 1 / VN;
40 }
41 else
42 {
43 if( LN * NH2 < VH )
44 Gg = (LN * NH2) / (VH * VN);
45 else
46 Gg = 1 / VN;
47 }
48 // poor man's Fresnel
49 tmp = pow((1 - VH), 3);
50 Ff = tmp + (1 - tmp) * specularRollOff;
51 Blinn = Gg * Ff * SpecColour;
52 }
53
54 Ci= Oi*Cs * (Kd*diffuse(Nf))+(Ks*Blinn);
55 }
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• The French physicist Augustin-Jean Fresnel (1788-1827) advanced the 
wave theory of light through a study of how light was transmitted and 
propagated by different objects. 

• One of his observations is now known in computer graphics as the 
Fresnel effect the observation that the amount of light you see reflected 
from a surface depends on the viewing angle.
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• If you look straight down at a pool of water, you won't see very much 
reflected light on the surface of the pool. 

• From the high angle, without seeing reflections, you can see down through 
the surface to the bottom of the pool. 

• At a glancing angle (looking with your eye level with the water, from the 
edge of the water surface), you will see much more specularity and 
reflections on the water surface, and might not be able to see what's under 
the water at all.
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• A Fresnel shader will let you specify a 
specular colour to be seen on parts of a 
surface directly facing the camera, and 
another specular colour to be seen on parts 
of a surface that are perpendicular to the 
camera. 

• Besides specular colour increasing at the edge 
of an object, the specular highlight size and 
reflectivity also increase.
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Light is an electromagnetic field.
The angle at which incoming light strikes a surface causes light to reflect in 
different manners.
This is due to the orientation of the electromagnetic field when it hits a 
surface.
A non-homogeneous material may have different reflectance for r,g and b
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n1=index of refraction of environment

n2=index of refraction of medium

n1

n2

€ 

F =
1
2
ρ1

2 + ρ2
2( )

ρ1 =
n2 cosθ1 − n1 cosθ2

n2 cosθ1 + n1 cosθ2

ρ2 =
n1 cosθ1 − n2 cosθ2

n2 cosθ1 + n1 cosθ2

ρ
1

= reflect coeff. light parallel to plane of incidence

ρ
2

= reflect coeff. light orthogonal to plane of incidence
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Anisotropic functions take direction of micro facets into account.

These equations accommodate surfaces such as brushed metal where 
groves aligned in a given direction.

The equation usually takes advantage of UV coordinates (as surface 
derivatives, the rate of change in the surface as the current position).

These models take into account self shadowing in the groves to limit 
illumination, thus allowing a given direction and the viewer to dictate 
illumination.
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Cooke and Torrance proposed a method whereby scattering of light is 
wavelength independent i.e. different coloured light behaves in different 

manners.

There are 3 functions that contribute to this model:

Micro Facet Distribution
Geometric Attenuation

Fresnel 
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E.g. based on a Beckman distribution function:

Where 

    = the angle between N and H

m = the root-mean-square slope of the micro-facets.

Large m indicates steep slopes between facets(light spread out)

Small m indicates smaller falloffs

€ 

β

D =

e�( tan �
m )

2

4m2
cos

4 �

Low m levels…

High m levels…

L
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Accounts for shadowing and masking of micro facets by each other…

V

H
L

V

H
L

L

HV

Masking
Shadowing
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The reflectance of copper as a function of wavelength and incidence angle.
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Oren Nayar

• This model assumes rough surfaces to have microscopic grooves and 
hills.

• These are modelled mathematically as a collection of micro-facets 
having a statistical distribution of relative directions.

• This allows us to model materials such as Clay, stone etc.
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Oren Nayar

• where

Lr(⇤r, ⇤i, ⌥r � ⌥i, ⌃) =
⇧

⌅
E0 cos ⇤i(A + B max(0, cos(⌥i � ⌥r)) sin� tan⇥)

A = 1� 0.5
�2

�2 + 0.33

B = 0.45
�2

�2 + 0.09

� = max(⇥i, ⇥r)

� = min(⇥i, ⇥r)

is the reflectivity of the surface (Kd*Cs)�

Eo is the energy arriving from the light Cl
�i is the angle between the surface normal

and the direction of the light source
�r is the angle between the surface normal

and the vector in the direction of the viewer
�r � �i is the angle (about the normal) between 

incoming and reflected light

Monday, 28 January 13



Oren Nayar

  is the standard deviation of the angle distribution of the microfacets 
(in radians). Larger values represent more rough surfaces; smaller values represent 
smoother surfaces. 
If           ,the surface is perfectly smooth, and this function reduces to 
a simple Lambertian reflectance model. 
This parameter is called “roughness”

�

� = 0
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1 color
2 LocIllumOrenNayar (normal N; vector V; float roughness;)
3 {
4 // Surface roughness coefficients for Oren/Nayar's formula
5 float sigma2 = roughness * roughness;
6 float A = 1 - 0.5 * sigma2 / (sigma2 + 0.33);
7 float B = 0.45 * sigma2 / (sigma2 + 0.09);
8 // Useful precomputed quantities
9 float theta_r = acos (V . N); // Angle between V and N

10 vector V_perp_N = normalize(V-N*(V.N)); // Part of V perpendicular to N
11
12 // Accumulate incoming radiance from lights in C
13 color C = 0;
14 extern point P;
15 illuminance (P, N, PI/2)
16 {
17 vector LN = normalize(L);
18 float cos_theta_i = LN . N;
19 float cos_phi_diff = V_perp_N . normalize(LN - N*cos_theta_i);
20 float theta_i = acos (cos_theta_i);
21 float alpha = max (theta_i, theta_r);
22 float beta = min (theta_i, theta_r);
23 C += 1 * Cl * cos_theta_i * (A + B * max(0,cos_phi_diff) * sin(alpha) *

tan(beta));
24 }
25 return C;
26 }
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Ward Anistropic 
• The Ward anistropic model describes a surface similar to 

brushed metal where the machined grooves face in a particular 
direction.

1⇤
cos ⇥i cos ⇥r

1
4⇤�x�y

exp

⇤

⌥⇧�2

�
ĥ·x̂
�x

⇥2
+

�
ĥ·x̂
�y

⇥2

1 + ĥ · n̂

⌅

�⌃

�i is the angle between the surface normal and the direction of the light 
source

�r is the angle between the surface normal and the direction of the 
viewer
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Ward Anistropic
x̂ and ŷ are the two perpendicular tangent directions of the surface

�x and �y are the standard deviations of the slope in the x and y 
directions called x and y roughness

n̂ is the unit surface normal normalize(N)

ĥ is the half angle between incident and reflection rays
H=normalize(normalize(-I)+normalize(L))
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1 float sqr (float x) { return x*x; }
2
3 color LocIllumWardAnisotropic (
4 normal N; vector V;
5 vector xdir;
6 float xroughness;
7 float yroughness;
8 )
9 {

10
11 float cos_theta_r = clamp (N.V, 0.0001, 1);
12 vector X = xdir / xroughness;
13 vector Y = (N ˆ xdir) / yroughness;
14
15 color C = 0;
16 illuminance (P, N, PI/2)
17 {
18 vector LN = normalize (L);
19 float cos_theta_i = LN . N;
20 if (cos_theta_i > 0.0)
21 {
22 vector H = normalize (V + LN);
23 float rho = exp (-2 * (sqr(X.H) + sqr(Y.H)) / (1 + H.N))
24 / sqrt (cos_theta_i * cos_theta_r);
25 C += Cl * ( cos_theta_i * rho);
26 }
27 }
28 return C / (4 * xroughness * yroughness);
29 }
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