
Maya Batch Renderer GUI
The maya batch renderer is a command line tool to allow the rendering of frames from
within a maya file. It has many command line options which can be determined by running
the command Render -h. From this output the following elements have been identified as
most use for the basic batch renderer dialog.

In addition to this we can query the different renderer options and get the following list

 We are going to design a user interface using Qt and Python to generate the command
line arguments shown above and give the user the ability to choose the files, project
directory and output directory for the program.

The program will also report the output of the batch renderer in a window and give the user
the ability to stop batch render at any stage. The main UI is shown next.

1 Usage: ./Render [options] filename

2 where "filename" is a Maya ASCII or a Maya binary file.

3
4 -renderer string Use this specific renderer

5 -proj string Use this Maya project to load the file

6
7 General purpose flags:

8 -rd path Directory in which to store image file

9 -of string Output image file format.

10 See the Render Settings window to

11 find available formats

12 -im filename Image file output name

13
14 Frame numbering options

15 -s float Starting frame for an animation sequence

16 -e float End frame for an animation sequence

17 -b float By frame (or step) for an animation sequence

18 -pad int Number of digits in the output image frame file name

19 extension

20 -fnc int File Name Convention: any of name, name.ext, ... See the

21 Render Settings window to find available options. Use

namec and
22 namec.ext for Multi Frame Concatenated formats. As a

shortcut,

23 numbers 1, 2, ... can also be used

render key Usage

default Use the renderer stored in the Maya file

file Use the renderer stored in the Maya file

hw Maya hardware renderer

mr Mentalray renderer

rman RenderMan renderer

sw Maya software renderer

Batch Render Dialog
First open up designer (/opt/qtsdk/qt/bin/designer in the Linux studios) and choose a
Dialog without buttons as shown

Select the dialog thatʼs created and set the object properties objectName to mainDialog
and windowTitle to Batch Render as shown

We are now going to add a button to the window and then set the layout manager before
we create the rest of the UI.

First drag a button anywhere on the screen, then change the name of the button to
m_chooseFile and the button text to Choose File as shown below.

At present you are free to move any of the UI components within the form, however once
the form is re-sized no of the buttons will re-size correctly. To enable this we need to add a

layout manager to the form. This is done by right clicking on the dialog and in this case we
are going to select the “Layout on Grid” which should now result in the following

Now as we add components to the UI blue areas will appear as slots to add to the grid, for
the next stage we are going to add a “QLineEdit” component next to the button, and name
it m_fileName we will also tick the read-only tickbox.

We are now going to replicate this process and add 2 more QLineEdit and Button
Combinations as shown below

Note the Names of each of the components and set them to the correct names, and set
the read only flag for each of the text components.

Next we are going to add a group box and set it to the following size and values

Next we add another button which will need to be spaced to fit into the correct size
First add the button and name it m_batchRender as shown

Then add a horizontal spacer to make the button fit in the correct area (you may have to
add the spacer above then move the button into place)

We are now going to add the rest of the controls into the group box, we need to first add a
layout to the group box, this is done by choosing the Grid Layout as shown here and
scaling it to fit the group box

Now add the following labels and spin boxes

The spin boxes from left to right are called m_startFrame, m_endFrame, m_byFrame and
m_pad.

We need to set some default values and ranges for each as shown

Name minimum maximum value

m_startFrame 0 99999 0

m_endFrame 1 99999 1

m_byFrame 1 500 1

m_pad 0 10 4

We are now going to add a second row to the group box first a label and a combo box
which we will call m_renderer as shown

By double clicking on the combo box we can get the edit dialog and using the + button add
the following text values for the different renderers.

Next we will add a text edit called m_outputFileName and a combo box called
m_extension and complete the row as shown.

For the final element we are going to add a textedit so we can capture the output of the
batch render, this will be called m_outputWindow and we need to set the read only flag in
the property editor.

The final window should look like the following

Using PyQt
The UI file generated by QtDesigner is a simple XML file containing the layouts of the
different elements. We can convert this into source code using one of the UI compilers, in
this case we are developing a python application so we will use the pyuic4 compiler using
the following command line.

pyuic4 BatchRenderUI.ui -o BatchRender.py

This will produce a python file for the UI elements which we will use within our own class to
then create the program.

Basic Program Operation

The way the program will operate is to check that MAYA_LOCATION is in the current path,
if it is not we need to tell the user and set this. This is so we can determine the correct
location of the Render command in MAYA_LOCATION/bin. The basic python code to do

this is as follows

1 #!/usr/bin/python
2 from PyQt4 import QtCore, QtGui

3 from BatchRenderUI import Ui_mainDialog

4 import os,sys

5
6
7
8 if __name__ == "__main__":

9
10 ResourcePath=os.environ.get("MAYA_LOCATION")

11 app = QtGui.QApplication(sys.argv)

12
13
14 #see if the ResourcePath is set and quite if not
15 if ResourcePath == None :

16 msgBox=QtGui.QMessageBox()

17 msgBox.setText("The environment variable MAYA_LOCATION not set ")

18 msgBox.show()

19 sys.exit(app.exec_())

20
21 else :

22
23 print "ready for UI"

24 sys.exit(app.exec_())

If the environment variable is not set we will get the following dialog box

To set the location we need to add export MAYA_LOCATION=:/usr/autodesk/maya2011-
x64/ to our .bashrc file.

UI Class
We are now going to develop a UI class to contain the UI developed using designer and
then extend it to have our own functionality and methods for the program.

The basic outline of the class init method is as follows

1 class BatchRender(Ui_mainDialog):
2 def __init__(self, _mayaPath=None):
3
4 # @brief the name of the maya file to render
5 self.m_mayaFile=""
6 # @brief the name of the maya project directory
7 self.m_mayaProject=""
8 # @brief the optional name of the output directory
9 self.m_outputDir=""

10 # @brief the main ui object which contains our controls
11 self.m_ui=Ui_mainDialog()
12 # @brief we will use this to thread our render output
13 self.m_process=QtCore.QProcess()
14 # @brief a flag to indicate if we are rendering or not
15 self.m_rendering=False
16 # @brief the batch render command constructed from the maya path
17 self.m_batchRender="%sbin/Render " %(_mayaPath)
18 # now we call the setup UI to populate our gui
19 self.m_ui.setupUi(MainDialog)

This will construct the ui by calling the Ui_mainDialog constructor created from the pyuic4
command and then later call the setupUI command which is automatically generated from
the pyuic compiler.

We can now update our main function to construct this object and build our dialog

1 if __name__ == "__main__":

2 import sys

3 app = QtGui.QApplication(sys.argv)

4
5 ResourcePath=os.environ.get("MAYA_LOCATION")

6
7 MainDialog = QtGui.QDialog()

8 ui = BatchRender(ResourcePath)

9
10 #see if the ResourcePath is set and quite if not
11 if ResourcePath == None :

12 msgBox=QtGui.QMessageBox()

13 msgBox.setText("The environment variable MAYA_LOCATION not set ")

14 msgBox.show()

15 sys.exit(app.exec_())

16
17 else :

18
19 MainDialog.show()

20 sys.exit(app.exec_())

Connecting Buttons to Methods
Qt uses the signals and slots mechanism to connect UI component actions to methods
within our classes. We must explicitly connect these elements for them to work. The
following code section is from the __init__ method of the BatchRender class and show this
in action

1 # here we connect the controls on the UI to the methods in the class
2
3 QtCore.QObject.connect(self.m_ui.m_chooseFile, QtCore.SIGNAL("clicked()"), self.chooseFile)

4 QtCore.QObject.connect(self.m_ui.m_chooseProject, QtCore.SIGNAL("clicked()"), self.chooseProject)

5 QtCore.QObject.connect(self.m_ui.m_chooseOutputDir, QtCore.SIGNAL("clicked()"), self.chooseOutput)

6 QtCore.QObject.connect(self.m_ui.m_batchRender, QtCore.SIGNAL("clicked()"), self.doRender)

7 QtCore.QObject.connect(self.m_process, QtCore.SIGNAL("readyReadStandardOutput()"), self.updateDebugOutput)

8 QtCore.QObject.connect(self.m_process, QtCore.SIGNAL("readyReadStandardError()"), self.updateDebugOutput)

9 QtCore.QObject.connect(self.m_process, QtCore.SIGNAL("started()"), self.updateDebugOutput)

10 QtCore.QObject.connect(self.m_process, QtCore.SIGNAL("error()"), self.error)

11 QtCore.QObject.connect(self.m_process, QtCore.SIGNAL("finished()"), self.finished)

The m_process attribute has a number of signals to indicate the state of the process being
run, this will be outlined later.

The Render process
For the batch render to run we must have a minimum of a filename and project directory
set. We can check these value by seeing if the textEdit fields for each of these values are
empty or not.

As part of this process we will also check to see if the startFrame value is >= endFrame
value by querying the two spin boxes. The basic code for this is shown below

1 """ first we are going to check that we have the correct settings """
2 if self.m_mayaFile =="" :
3 self.errorDialog("no maya file set")
4 return
5 if self.m_mayaProject=="" :
6 self.errorDialog("no Project directory set")
7 return
8 if self.m_ui.m_startFrame.value() >= self.m_ui.m_endFrame.value() :
9 self.errorDialog("start Frame <= end Frame")

10 return
11 else :
12 print "Doing render"

If these fail we pop up a generic dialog error box using the following code

1 def errorDialog(self,_text) :
2 QtGui.QMessageBox.about(None,"Warning", _text)

If the criteria above are correct we can construct the Batch Render command string, this is
done by building up different elements for each of the argument flags as separate strings
as follows.

1 # first we need to build up the render string
2 renderString=self.m_batchRender
3 frameRange="-fnc name.#.ext -s %d -e %d -b %d -pad %d " %(self.m_ui.m_startFrame.value(),
4 self.m_ui.m_endFrame.value(),
5 self.m_ui.m_byFrame.value(),
6 self.m_ui.m_pad.value()
7)
8 outputDir=""
9 if self.m_ui.m_outputDir.text() != "" :

10 outputDir="-rd %s/ " %(self.m_ui.m_outputDir.text())
11 outputName=""
12 if self.m_ui.m_outputFileName.text() !="" :
13 outputName="-im %s "%(self.m_ui.m_outputFileName.text())
14
15 extension=""
16 if self.m_ui.m_extension.currentIndex()!=0 :
17 extension=" -of %s " %(self.m_ui.m_extension.currentText())
18
19 sceneData="-proj %s %s" %(self.m_mayaProject,self.m_mayaFile)
20
21 Renderers={0:"default",1:"mr",2:"file",3:"hw",4:"rman",5:"sw"}
22 rendererString="-renderer %s " %(Renderers.get(self.m_ui.m_renderer.currentIndex()))
23
24 arguments=frameRange+outputName+extension+rendererString+outputDir+sceneData;
25 commandString=renderString+arguments

The combo box for the file extensions contain the correct values for the command
argument, this means that the values may be used directly using the .currentText() method
of the combo box.

However the renderer string is not correct so we make a dictionary of the correct values
using a integer index as the key and the string for the correct values, we then use the
currentIndex value to return the integer key value and use the dictionary get() method to
retrieve the correct string.

QProcess
We wish to start the batch rendering as a separate process from the rest of the system.
This is so that the UI will still respond to commands whilst the batch rendering process is
running, and we can also update the debug window with the text from the batch render
process.

When the class is constructed we create a QProcess object called m_process, this can
then be started with the command line we created above using the following code

1 self.m_process.start(commandString)
2 self.m_rendering = True

Once the process is started it will emit different signals which we can capture and respond
too, we connected these signal together in the earlier code, the main one for the output of
the batch render data is as follows

1 def updateDebugOutput(self) :

2
3 data=self.m_process.readAllStandardOutput()

4 s=QtCore.QString(data);

5 self.m_ui.m_outputWindow.append(s)

6
7 data=self.m_process.readAllStandardError()

8 s=QtCore.QString(data);

9 self.m_ui.m_outputWindow.append(s)

The maya batch renderer outputs most of the debug information on the stderr stream but
some is also sent to the stdout stream so both streams are read to the data returned is
converted to a string and added to the outputWindow.

The full code of this program can be downloaded from the following url.

